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ABSTRACT

This paper generalizes Shelah’s generic pair conjecture (now theorem) for

the measurable cardinal case from first order theories to finite diagrams.

We use homogeneous models in the place of saturated models.

1. Introduction

The generic pair conjecture states that for every cardinal λ such that λ+ = 2λ

and λ<λ = λ, a complete first order theory T is dependent if and only if,

whenever M is a saturated model whose size is λ+, then, after writing

M =
⋃

α<λ+

Mα

where Mα are models of size λ, there is a club of λ+ such that for every pair of

ordinals α < β of cofinality λ from the club, the pair of models (Mβ ,Mα) has

the same isomorphism type.

This conjecture is now proved for λ large enough. The non-structure side is

proved in [She06, She11] and the other direction is proved in [She13, She12], all

by the third author. In [She13], the theorem is proved for the case where λ is

measurable. This is the easiest case of the theorem, and this is the case we will

focus on here. In [She12, Theorem 7.3], the conjecture is proved when

λ > |T |+ + �+
ω .

The current paper has two agendas.

The first is to serve as an exposition for the proof of the theorem in the case

where λ is measurable. There are already two expositions by Pierre Simon on

some other parts from [She13, She12], which are available on his website1.

The second is to generalize the structure side of this theorem in the measur-

able cardinal case to finite diagrams. As an easy byproduct, we also generalize a

weak version of the “recounting of types” result [She12, Conclusion 3.13], which

states that when λ is measurable and M is saturated of cardinality λ, then the

number of types over M up to conjugation is ≤ λ. See Corollary 5.13 below.

A finite diagram D is a collection of types in finitely many variables over ∅ in

some complete theory T . Once we fix such a D we concentrate on D-models,

which are models of T which realize only types from D. For instance, in a

1 http://www.normalesup.org/~simon/notes.html
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theory with infinitely many unary predicates Pi, D could prohibit x /∈ Pi for

all i, thus D-models are just the union of the Pi’s. In this context, saturated

models become D-saturated models, which is the same as being homogeneous

and realize D (see Lemma 2.3), so our model M will be D-saturated instead of

saturated.

We propose a definition for when a finite diagram D is dependent. This

definition has the feature that if the underlying theory is dependent, then so is

D, so there are many examples of such diagrams. We also give an example of

an independent theory T with some dependent D (Example 2.8).

The proof follows [She13] and also uses constructions from [She12]2. However,

in order to make the proof work, we will need the presence of a strongly compact

cardinal θ that will help us ensure that the types we get are D-types and so

realized in the D-saturated models.

Organization of the paper. In Section 2 we expose finite diagrams and prove or

cite all the facts we shall need about them and about measurable and strongly

compact cardinals. We also give a precise definition of when a diagram D is

dependent, and prove several equivalent formulations.

In Section 3 we state the generic pair conjecture in the terminology of finite

diagrams, and give a general framework for proving it: we introduce decompo-

sitions and good families and prove that if such things exist, then the theorem

is true.

Section 4 is devoted to proving that nice decompositions exist. This is done in

two steps. In Section 4.1 we construct the first kind of decomposition (tree-type

decomposition), which is the building block of the decomposition constructed

in Section 4.2 (self-solvable decomposition).

In Section 5 we prove that the family of self-solvable decompositions over a

D-saturated model form a good family, and deduce the generic pair conjecture.

Acknowledgment. We would like to thank the anonymous referee for his

careful reading, for his many useful comments and for finding several inaccura-

cies.

2 Instead of “strict decompositions” from [She13] we use tK from [She12].
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2. Preliminaries

We start by giving the definition of homogeneous structures and of D-models.

Definition 2.1: Let M be some structure in some language L. We say that M

is κ-homogeneous3 if:

• for every A ⊆ M with |A| < κ, every partial elementary map f defined

on A and a ∈ M there is some b ∈ M such that f ∪ {(a, b)} is an

elementary map.

We say that M is homogeneous if it is |M |-homogeneous.

Note that whenM is homogeneous, it is also strongly homogeneous, mean-

ing that if f is a partial elementary map with domain A such that |A| < |M |,
f extends to an automorphism of M .

Fix a complete first order theory T in a language L with a monster model

C—a saturated model containing all sets and models of T , with cardinality

κ̄ = κ̄<κ̄ bigger than any set or model we will consider.

Definition 2.2: For A ⊆ C, let D(A) = {tp(ā/∅)| ā ⊆ A, |ā| < ω}. A set D

of complete L-types over ∅ is a finite diagram in T when it is of the form

D(A) for some A. If D is a finite diagram in L, then a set B ⊆ C is a D-set if

D(B) ⊆ D. A model of T which is a D-set is a D-model.

Let A ⊆ C be a D-set. Let p be a complete type over A (in any number

of variables). We say that p is a D-type if for every c̄ realizing p, A ∪ c̄ is a

D-set. We denote the set of D-types over A by SD(A) (and as usual we use

superscript to denote the number of variables, such as in S<ω
D (A)). We say that

M is (D,κ)-saturated if whenever |A| < κ, every p ∈ S1
D(A) is realized in M .

We say that M is D-saturated if it is (D, |M |)-saturated.
Note that when D is trivial, i.e., D =

⋃{Dn(T )|n < ω} (with Dn(T ) being

the set of all complete n-types over ∅), every model of T is a D-model.

The connection between D-saturation and homogeneity becomes clear due to

the following lemma.

Lemma 2.3 ([GL02, Lemma 2.4]): Let D be a finite diagram. A D-model M

is (D,κ)-saturated if and only if D(M) = D and M is κ-homogeneous.

3 In some publications this notion is called κ-sequence homogeneous, but here we decided

upon this simpler notation which is also standard; see [Hod93, page 480, 1.3].
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Just as in the first order case, we get the following.

Corollary 2.4: Let D be a finite diagram. If M , N are D-saturated of the

same cardinality, then M ∼= N . Furthermore, if λ<λ = λ, and there is a (D,λ)-

saturated model, then there exists a D-saturated model of size λ.

The next natural thing, after obtaining this equivalence, would be to look for

monsters. A diagram D is good if for every λ there exists a (D,λ)-saturated

model (see [She71, Definition 2.1]). We will assume throughout that D is good.

By Corollary 2.4, as we assumed that κ̄<κ̄ = κ̄, there is a D-saturated model

CD ≺ C of cardinality κ̄—the homogeneous monster. From now on we make

these assumptions without mentioning them explicitly.

Let us recall the general notion of an average type along an ultrafilter.

Definition 2.5: Let A ⊆ CD, I some index set, āi tuples of the same length for

i ∈ I, and let U be an ultrafilter on I. The average type AvU (〈āi| i ∈ I〉/A)
is the type consisting of all the formulas φ(x̄, c̄) over A such that

{i ∈ I|CD |= φ(āi, c̄)} ∈ U .
When U is κ-complete, the average is < κ satisfiable in the sequence 〈āi| i ∈ I〉

(any< κmany formulas are realized in the sequence). It follows that the average

type is a D-type (see below).

Lemma 2.6: Let A, I be as in Definition 2.5, and let U be a κ-complete ultra-

filter on I, where κ > |T |. Then r = AvU (〈āi| i ∈ I〉/A) is a D-type.

Proof. We must show that if c̄ |= r (in C), then A ∪ c̄ is a D-set. We may

assume that c̄ is a finite tuple (and so are the tuples āi for i ∈ I). It is enough

to see that if c̄ā is a finite tuple of elements from c̄ ∪ A, then for some i ∈ I,

āiā ≡ c̄ā (i.e., they have the same type over ∅). For each formula ϕ(x̄, ā) such

that ϕ(c̄, ā) holds, the set {i ∈ I|CD |= ϕ(āi, ā)} ∈ U . Since there are |T | such
formulas, by κ-completeness, there is some i ∈ I in the intersection of all these

sets, so we are done.

Now we turn to Hanf numbers. Let μ(λ, κ) be the first cardinal μ such

that if T0 is a theory of size ≤ λ, Γ a set of finitary types in T0 (over ∅) of

cardinality ≤ κ, and for every χ < μ there is a model of T0 of cardinality

≥ χ omitting all the types in Γ, then there is such a model in arbitrarily large

cardinality. Of course, when κ = 0, μ(λ, κ) = ℵ0. In our context, T0 = T ,
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and Γ =
⋃{Dn(T )|n < ω}\D, so we are interested in μ(|T |, |Γ|) which we

will denote by μ(D), the Hanf number of D. In [She90, Chapter VII, 5] this

number is given an upper bound: μ(D) ≤ �(2|T |)+ .

Definition 2.7: A finite diagram D has the independence property if there

exists a formula φ(x̄, ȳ) which has it, which means that there is an indiscernible

sequence 〈āi| i < μ(D)〉 and b̄ in CD such that CD |= φ(b̄, āi) if and only if i is

even. Otherwise we say that D is dependent.

Of course, if the underlying theory T is dependent, then D is dependent.

Example 2.8: Let L = {R,P,Q} where P and Q are unary predicates, and

R is a binary predicate. Let T be the model completion of the theory that

states that R ⊆ Q × P . So T is complete and has quantifier elimination. Let

L′ = L∪ {ci| i < ω} where ci are constant symbols, and let T ′ be an expansion

of T that says that ci ∈ P and ci �= cj for i �= j. So T ′ is also complete and

admits quantifier elimination. As T has the independence property, so does T ′.
Let p(x) ∈ S1(∅) say that x ∈ P and x �= ci for all i < ω. Finally, let D be

the finite diagram S<ω(∅)\{p}. Easily D is good (if C is a monster model of T ,

then let QC ∪ {cCi | i < ω} be CD). It is easy to see that D is dependent.

Recall that a cardinal θ is strongly compact if any θ-complete filter (with

any domain) is contained in a θ-complete ultrafilter. For our context we will

need to assume that if D is non-trivial, then there is a strongly compact cardinal

θ > |T |. Strongly compact cardinals are measurable (see [Kan09, Corollary

4.2]). Recall that a cardinal μ is measurable if it is uncountable and there is

a μ-complete non-principal ultrafilter on μ. It follows that there is a normal

such ultrafilter (i.e., closed under diagonal intersection). See [Kan09, Exercise

5.12]. Measurable cardinals are strongly inaccessible (see [Kan09, Theorem

2.8]), which means that θ > �(2|T |)+ ≥ μ(D). Fix some such θ throughout. If,

however, D is trivial, then we do not need a strongly compact cardinal.

We also note here a key fact about measurable cardinals that will be useful

later:

Fact 2.9 ([Kan09, Theorem 7.17]): Suppose that μ > |T | is a measurable car-

dinal and that U is a normal (non-principal) ultrafilter on μ. Suppose that

〈āi| i < μ〉 is a sequence of tuples in C of equal length < μ. Then for some set

X ∈ U , 〈āi| i ∈ X〉 is an indiscernible sequence.
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As a consequence (which will also be used later), we have the following.

Corollary 2.10: If A =
⋃

i<μ Ai ⊆ C is a continuous increasing union of sets

where |Ai| < μ, B ⊆ C is some set of cardinality < μ, and 〈āi| i < μ〉, U are

as in Fact 2.9 with āi tuples from A, then for some set X ∈ U , 〈āi| i ∈ X〉 is

fully indiscernible over B (with respect to A and 〈Ai| i < μ〉), which means

that for every i ∈ X and j < i in X , we have āj ⊆ Ai , and 〈āj | i ≤ j ∈ X〉 is
indiscernible over Ai ∪B.

Proof. This follows by the normality of the ultrafilter U . First note that if E ⊆ μ

is a club then E ∈ U (why? OtherwiseX = μ\E ∈ U , so the function f : X → μ

defined by β �→ sup(β∩E) is such that f(β) < β, and by Fodor’s lemma (which

holds for normal ultrafilters), for some γ < μ and Y ⊆ X in U , f � Y = γ which

easily leads to a contradiction). Hence the set E = {i < μ| ∀j < i(āj ⊆ Ai)} is

in U . Furthermore, the set of limit ordinals E′ is also in U . The promised set

X is the intersection of E ∩ E′ with the diagonal intersection of Xi for i < μ,

where Xi ∈ U is such that 〈āi| i ∈ Xi〉 is indiscernible over Ai ∪ B (which

exists thanks to Fact 2.9). Note that we have ≤ and not just < when defining

“fully indiscernible”, because 〈Ai| i < μ〉 is continuous and X contains only

limit ordinals.

The following demonstrates the need for Hanf numbers and strongly compact

cardinals.

Lemma 2.11: For a finite diagram D the following conditions are equivalent:

(1) The formula φ(x̄, ȳ) has the independence property.

(2) For any λ there is an indiscernible sequence 〈āi| i < λ〉 and b̄ in CD such

that CD |= φ(āi, b̄) iff i is even.

(3) For any λ there is a set {āi| i < λ} ⊆ CD such that for any s ⊆ λ there

is some b̄s ∈ CD such that CD |= φ(āi, b̄s) iff i ∈ s.

(4) The same as (2) but with λ = θ.

(5) The same as (3) but with λ = θ.

Proof. (1) ⇒ (3): we may assume that λ ≥ μ(D). By assumption there is a

sequence 〈āi| i < μ(D)〉 and b̄ in CD as in the definition. Let M ≺ CD be a

model of size μ(D) containing all these elements. Add to the language L new

constants c̄ in the length of b̄, a new predicate P in the length of x̄ and a 2 lg(x̄)-

ary symbol <, and a function symbol f . Expand M to M ′, a structure of the
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expanded language, by interpreting c̄M
′
= b̄, PM ′

= {āi| i < μ(D)}, āi <M ′
āj

iff i < j and let fM ′
: PM ′ → M ′ be onto.

Let T0 = Th(M ′). By assumption, T0 has a D-model of size μ(D), and so

by definition T0 has a D-model N ′ of cardinality λ and we may assume that its

L-part N is an elementary substructure of CD. So the elements in PN ′
, ordered

by <N ′
, form an L-indiscernible sequence, and |PN ′ | = λ.

For convenience of notation, let (I,<) be an order, isomorphic to (PN ′
, <N ′

),

and write PN ′
= {āi| i ∈ I}. The order < is discrete, so every i ∈ I has a unique

successor s(i), and N |= φ(c̄, āi) ↔ ¬φ(c̄, ās(i)). Let Q = {i ∈ I|N |= φ(c̄, āi)},
so |Q| = λ. Then, by indiscernibility, for any R ⊆ Q,

〈āi| i ∈ Q〉 ≡ 〈āsR(i)(i)| i ∈ Q〉

where R(i) = 0 iff i ∈ R, and s0 = id, s1 = s. Hence by the strong homogeneity

of CD, {āi| i ∈ Q} satisfies (3).

(2) ⇒ (4), (3) ⇒ (5), (4) ⇒ (1): Obvious.

(5) ⇒ (2): We may assume that λ ≥ θ. Let {āi| i < θ} be as in (5). Since θ

is measurable, by Fact 2.9, we may assume that 〈āi| i < θ〉 is indiscernible. By
compactness we can extend this sequence to 〈āi| i < λ〉, and let A = {āi| i < λ}.
Note that by indiscernibility, the set containing all tuples in the new sequence

is still a D-set, so we may assume that this new sequence lies in CD.

Let O be the set of odd ordinals in λ. By indiscernibility and homogeneity, for

each X ∈ [λ]<θ (i.e., X ⊆ λ, |X | < θ) there is some b̄X such that for all i ∈ X ,

CD |= φ(b̄X , āi) iff i /∈ O. By strong compactness, there is some θ-complete ul-

trafilter U on [λ]<θ such that for every X ∈ I we have {Y ∈ [λ]<θ|X ⊆ Y } ∈ U .
Let b̄ |= AvU (〈b̄X |X ∈ [λ]<θ〉/A) which exists in CD by Lemma 2.6. Then

CD |= φ(b̄, āi) iff i is even.

Dependence gives rise to the concept of the average type of an indiscernible

sequence, without resorting to ultrafilters. Let A ⊆ CD, let α be an ordinal

such that cof(α) ≥ μ(D), and let 〈āi| i < α〉 be an indiscernible sequence in

CD. The average type of 〈āi| i < α〉 over A, denoted by Av(〈āi| i < α〉/A),
consists of formulas of the form φ(b̄, x̄) with b̄ ∈ A, such that for some i,

CD |= φ(b̄, āj) for every j ≥ i. This is well defined as cof(α) ≥ μ(D) (and as D

is dependent): otherwise, we can construct an increasing unbounded sequence

of ordinals ji < α, such that φ(b̄, āji) ↔ ¬φ(b̄, āji+1), and the length of this

sequence is ≥ μ(D). We show that this type is indeed a D-type.
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Lemma 2.12: Let A ⊆ CD where D is a dependent diagram, α an ordinal such

that cof(α) ≥ μ(D) + |T |+, and let 〈āi| i < α〉 be an indiscernible sequence in

CD. The average type r = Av(〈āi| i < α〉/A) is a D-type.

Proof. The proof is similar to that of Lemma 2.6, but here we use the fact

that the end-segment filter on α is cof(α)-complete. The main point is that

for a formula ϕ(x̄, ā) ∈ r, there is some j < α such that ϕ(āi, ā) holds for all

i > j.

3. The generic pair conjecture

From this section onwards, fix a dependent diagram D. We also fix a strongly

compact cardinal θ > |T |. WhenD is trivial, there is no need for strong compact

cardinals, and one can assume θ = |T |+, and replace < θ satisfiable by finitely

satisfiable. We leave it to the reader to find the precise replacement.

Conjecture 3.1 (The generic pair conjecture): Suppose D is dependent. As-

sume θ < λ = λ<λ and λ+ = 2λ. Let M̄ = 〈Mα : α < λ+〉 be an increasing

continuous sequence of elementary substructures of CD of cardinality λ, such

that M =
⋃

α<λ+ Mα is D-saturated of size λ+.

Then there exists a club E ⊆ λ+ such that

• if α1 < β1, α2 < β2 ∈ E are all of cofinality λ, then

(Mβ1 ,Mα1)
∼= (Mβ2 ,Mα2).

To give some motivation, note that it is easy to find a club Esat ⊆ λ+ such

that for any δ ∈ Esat of cofinality λ, Mδ is homogeneous and D(Mδ) = D

(equivalently D-saturated by Lemma 2.3). Just let Esat be the set of ordinals

δ < λ+ such that for any α < δ, every p ∈ S1
D(A) for any A ⊆ Mα of size < λ

is realized in Mδ. Then for any δ ∈ Esat of cofinality λ, Mδ is D-saturated, and

any such two are isomorphic (see Corollary 2.4).

In this section we will outline the proof of Conjecture 3.1 under the assump-

tion that a “good family of decompositions” exists.

We call a tuple of the form x = (Mx, Bx, d̄x, c̄x, rx) a λ-decomposition4

when |Mx| = λ and Mx ⊆ C is a D-model, Bx ⊆ Mx has cardinality < λ,

4 The idea behind the name “decomposition” will be clearer later, where this notion is

used to analyze the type of d̄ over M .
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c̄x, d̄x ∈ C<λ
D and rx ∈ S<λ

D (∅) is a complete type in variables (x̄c̄x , x̄d̄x
, x̄′

c̄x , x̄
′̄
dx
)

(where x̄d̄x
, x̄′̄

dx
have the same length as d̄x, etc.).

An isomorphism between two λ-decompositions x and y is just an elemen-

tary map with domain Mx ∪ ⋃
c̄x ∪⋃

d̄x which maps all the ingredients of x

onto those of y, and in particular, if x ∼= y then rx = ry. A weak isomor-

phism between x and y is a restriction of an isomorphism to (Bx, d̄x, c̄x, rx) (so

there exists some isomorphism extending it). We write x ≤ y when Mx = My,

Bx ⊆ By, rx ⊆ ry (i.e., ry may add more information on the added variables),

c̄x � c̄y (i.e., c̄x is an initial segment of c̄y) and d̄x � d̄y. If x and y are

λ-decompositions with Mx = My such that for some z, z ≤ x,y, we will say

that they are isomorphic over z if there is an isomorphism from x to y fixing

d̄z, c̄z, Bz.

Definition 3.2 (A good family): A family F of λ-decompositions is good when:

(1) The family F is invariant under isomorphisms.

(2) For every x ∈ F, Mx is D-saturated.

(3) For every D-saturated M ≺ CD of size λ, the “trivial decomposition”

(M, ∅, ∅, ∅, ∅) ∈ F.

(4) For every x ∈ F and d̄ ∈ C<λ
D there exists some y ∈ F such that x ≤ y,

and d̄y � d̄xd̄.

(5) For every x ∈ F and b ∈ Mx,

(Mx, Bx ∪ {b}, d̄x, c̄x, rx) ∈ F.

(6) Suppose that x1,x2,y1 ∈ F where x1 ≤ y1 and there exists some iso-

morphism f : x1 → x2; then there exists some y2 ∈ F such that x2 ≤ y2

and f can be extended to an isomorphism y1 → y2.

(7) Suppose that 〈xi| i < δ〉 is a sequence of λ-decompositions from F such

that δ < λ is a limit ordinal and for every i < j < δ we have xi ≤ xj ;

then xδ = supi<δ xi = (M,
⋃

i<δ Bxi ,
⋃

i<δ d̄xi ,
⋃

i<δ c̄xi ,
⋃

i<δ rxi) ∈ F.

Note that as λ is regular and δ < λ this makes sense.

(8) Suppose that 〈xi| i < δ〉 and 〈yi| i < δ〉 are increasing sequences of λ-

decompositions from F such that δ < λ is a limit ordinal and for each

i < δ there is a weak isomorphism gi : xi → yi such that gi ⊆ gj

whenever i < j. Then the union
⋃

i<δ gi is a weak isomorphism from

x = supi<δ xi to y = supi<δ yi.

(9) For every D-model M of cardinality λ, the number of x ∈ F with

Mx = M up to isomorphism is ≤ λ.
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Remark 3.3: The roles of c̄x and rx will become crucial in the next sections. In

this section it is important in order to restrict the class of isomorphisms.

Remark 3.4: In Definition 3.2, (6) follows from (1).

Remark 3.5: Note that by point (1) in Definition 3.2, and as M is D-saturated

of cardinality λ+, if F is good, then F is also good when we restrict it to

decompositions contained in M (rather than CD). More precisely, in points (4)

and (6), the promised decompositions y and y2 respectively can be found in M

if the given decompositions (x, x1, x2 and y1) are in M.

Let us give an example of a “baby application” of the existence of a good

family before we delve into the generic pair conjecture. This next theorem is a

weak version of [She12, Conclusion 3.13].

Theorem 3.6: Suppose F is a good family. Then, for a D-saturated model M

of size λ, the number of types in S<λ
D (M) up to conjugation is ≤ λ.

Proof. Suppose γ < λ, and 〈pi| i < λ+〉 is a sequence of types in Sγ
D(M), which

are pairwise non-conjugate. Let d̄i |= pi. By (4) in Definition 3.2, for some

xi ∈ F, d̄i � d̄xi . Obviously, for i �= j, tp(d̄xi/M) and tp(d̄xj/M) are not

conjugates. But according to (9), this is impossible.

Remark 3.7: Suppose z is a λ-decomposition. From (9) in Definition 3.2 it

follows that the number of x ∈ F such that z ≤ x up to isomorphism over z is

≤ λ. Indeed, if not there is a sequence 〈xi| i < λ+〉 of λ-decompositions in F

containing z which are pairwise not isomorphic over z. By (9), we may assume

that they are pairwise isomorphic, and let fi : xi → x0 be isomorphisms. So fi

must fix d̄z and c̄z as they are initial segments. In addition, fi � Bz is a sequence

of length < λ of elements in Mz, and there are λ such sequences (as λ<λ = λ),

so for some i �= j, fi � Bz = fj � Bz. Hence f−1
i ◦ fj � Bz = id—contradiction.

For a decomposition x, we will write x � M forMx⊆M and (c̄x, d̄x)∈(M<λ)2.

Definition 3.8: Let γ < λ+, and let F be a good family of λ-decompositions.

(1) We say that γ is F-complete if for every α < β < γ such that Mα is

D-saturated, y ∈ F with My = Mα and d̄ ∈ M<λ
β such that y � Mβ,

there exists some y ≤ x ∈ F such that

d̄x � d̄d̄y and x � Mγ .
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(2) We say that γ is F-representative if for every α < β < γ such that

Mα is D-saturated, y ∈ F with My = Mα and every λ-decomposition

z over Mα such that z � Mβ and z ≤ y, there exists x ∈ F such that

Mx = Mα, x � Mγ , z ≤ x and x is isomorphic to y over z.

Proposition 3.9: Let F be a family of good λ-decompositions. Let Ecom ⊆ λ+

be the set of all δ < λ+ which are F-complete. Then Ecom is a club.

Proof. The fact that Ecom is a closed is easy. Suppose β < λ+. Let β < β′ < λ+

be such that for every α < β such that Mα is D-saturated, and every d̄ ∈ M<λ
β

and y ∈ F with y � Mβ and My = Mα, there is some y ≤ x ∈ F such that

d̄x � d̄yd̄, Mx = Mα and x � Mβ′ . The ordinal β′ exists because λ<λ = λ

(so the number of y’s and the number of d̄’s is ≤ λ), by (4) of Definition 3.2

and by Remark 3.5. By induction, we can thus define an increasing sequence of

ordinals βi for i < ω where β0 = β and βi+1 = β′
i. Finally, γ = βω ∈ Ecom.

Proposition 3.10: Let F be a family of good λ-decompositions. Let Erep ⊆ λ+

be the set of all δ < λ+which are F-representative. Then Erep is a club.

Proof. The proof is similar to the proof of Proposition 3.9, but now in order to

show that Erep is unbounded, we use Remark 3.7.

Theorem 3.11: Suppose F is a good family. Let

E = Esat ∩ Erep ∩ Ecom ⊆ λ+.

This is a club. For every α1 < β1, α2 < β2 ∈ E of cofinality λ we have

(Mβ1 ,Mα1)
∼= (Mβ2 ,Mα2). Hence Conjecture 3.1 holds.

Proof. Let AP 5 be the collection of tuples of the form

p = (xp,yp, hp) = (x,y, h)

where x,y ∈ F and h : x → y is a weak isomorphism, such that Mx = Mα1 ,

x � Mβ1 , My = Mα2 and y � Mβ2 . For every p1, p2 ∈ AP we write p1 ≤AP p2

if xp1 ≤ xp2 , yp1 ≤ yp2 , and hp1 ⊆ hp2 .

We proceed to construct an isomorphism by a back and forth argument. In

the forth part, we may add an element from Mα1 to Bx (thus increasing the

Mα1 -part of the domain of h), or an element from Mβ1 to d̄x (thus increasing

the Mβ1-part). We also have to take care of the limit stage.

5 AP stands for approximations.
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As one could take p to be a trivial tuple by (3) in Definition 3.2, and as

α1, α1 ∈ Esat (and their cofinality is λ so thatMα1 ,Mα2 are saturated), AP �= ∅.
Adding an element from Mα1 : let p ∈ AP and a ∈ Mα1 . As h is a weak

isomorphism, there is some isomorphism h+ : x → y extending h. Let

h+(a) = b ∈ Mα2 .

Thus, by (5) in Definition 3.2, we may define p′ = (x′,y′, h′) by adding a to

Bx and b to By, and defining h′ = h ∪ {(a, b)}. Of course, h′ is still a weak

isomorphism as witnessed by the same h+. It follows that p ≤AP p′.
Adding an element from Mβ1 : let d ∈ Mβ1 and p ∈ AP . Since F is good,

α1 ∈ Esat, β1 ∈ Ecom, and by (4) in Definition 3.2, there is some x ≤ x′ ∈ F

such that d̄xd � d̄x′ and x′ � Mβ1 (here we also used the fact that the cofinality

of β1 is λ).

Let h+ : x → y be as above. By (6) in Definition 3.2, h+ extends to an

isomorphism h++ : x′ → y′ for some y′ ∈ F, such that y ≤ y′ (and we may also

assume that y is contained in M by Remark 3.5).

Since β2 ∈ Erep (and since its cofinality is λ), there exists some y′′ ∈ F such

that y′′ � Mβ2 , y ≤ y′′, and y′′ is isomorphic to y′ over y, as witnessed by

f : y′ → y′′ (in particular, f � Mα2 is an automorphism of Mα2). We have

then p′ = (x′,y′′, (f ◦ h++) � (Bx′ , d̄x′ , c̄x′ , rx′)) ∈ F satisfies that p ≤AP p′ and
d ∈ d̄x′ .

Of course we must also switch the roles of x and y in the above steps.

The limit stage: suppose 〈pi| i < δ〉 is an increasing sequence of approximation

where δ < λ is some limit. Let

p = sup
i<δ

pi =

(
sup
i<δ

xpi , sup
i<δ

ypi ,
⋃
i<δ

hi

)
.

This tuple is still in AP by (7) and (8) in Definition 3.2.

4. Type decompositions

Section 3 gave the proof of the generic pair conjecture (Conjecture 3.1) by

using λ-decompositions and a good family of these (Definition 3.2). Here we

will start to construct what eventually will be the good family. For this we need

to define two kinds of decompositions. The first is the tree-type decomposition
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(explained in Subsection 4.1), which is the basic building block of the self-

solvable decomposition which will be introduced in Subsection 4.2. Eventually,

the good family will be the family of self-solvable decompositions.

As usual, we assume that θ > |T | is a strongly compact cardinal (unless D is

trivial and then θ = |T |+, and also replace < θ satisfiable by finitely satisfiable

when appropriate, see the beginning of Section 3), and that D is dependent.

Also, assume that λ = λ<λ > θ.

4.1. Tree-type decomposition.

Definition 4.1: Let M ≺ CD be a D-model of cardinality λ. A λ-tree-type de-

composition is a λ-decomposition (M,B, d̄, c̄, r) with the following properties:

(1) The tuple c̄ is of length < κ = θ + | lg(d̄)|+ and the type tp(c̄/M) does

not split over B. See also Remark 4.4.

(2) For every A ⊆ M such that |A| < λ there exists some ēA ∈ M<κ such

that tp(d̄/ēA + c̄) � tp(d̄/A + c̄). By this we mean that if d̄′ ∈ C<λ
D

realizes the same type as d̄ over ēA + c̄ (which we denote by d̄′ ≡ēAc̄ d̄),

then d̄′ ≡Ac̄ d̄. Note: we do not ask that this is true in C, only in CD.

Remark 4.2: Why “tree-type”? If x is a tree-type decomposition such that for

simplicity lg(d̄) < θ, then we may define a partial order on M<θ by ē1 ≤ ē2 if

tp(d̄/c̄+ ē2) � tp(d̄/c̄+ ē1). Then this order is λ-directed (so looks like a tree

in some sense).

Remark 4.3: If tp(d̄/M) does not split over a B (where |B| < λ as usual), then

(M,B, d̄, d̄, r) is a λ-tree-type decomposition for any r: in (2) take ēA = ∅.
Remark 4.4: In Definition 4.1 (1), we could ask that tp(c̄/M) is < θ satisfiable

in B in the sense that any < θ formulas from this type in finitely many variables

are realized in B.

Remark 4.5: In this section, the role of c̄ becomes clearer, but r will not have

any role.

Example 4.6 ([She13, Exercise 2.18]): In DLO—the theory of (Q, <)—suppose

M is a saturated model of cardinality λ, and d ∈ C\M is some point. Let C1, C2

be the corresponding left and right cuts that d determines in M . As M is satu-

rated at least one of these cuts has cofinality λ. If only one has, then tp(d/M)

does not split over the smaller cut, so (M,Ci, d, d, ∅) is a tree-type decomposition
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for i = 1 or i = 2. Otherwise for each A of cardinality< λ, there are e1 < d < e2

in M such that C1 ∩ A < e1 < e2 < C2 ∩ A, so tp(d/e1e2) � tp(d/e1e2A). In

this case, (M, ∅, d, ∅, ∅) is a tree-type decomposition.

Our aim now is to prove that when M is a D-model, then for every d̄ ∈ C<λ
D

there exists a tree-type decomposition x such that d̄ = d̄x. In fact, we can start

with any tree-type decomposition x, for instance the trivial one (M, ∅, ∅, ∅, ∅),
and find some tree-type decomposition y ≥ x such that d̄y = d̄xd̄. In a sense,

we decompose the type of d̄ over M into two parts: the invariant one and the

“tree-like” one.

Definition 4.7: Let M ≺ CD be of size λ, d̄ ∈ C<λ
D and C ⊆ CD be of size

< κ = | lg(d̄)|++θ < λ. The classKM,C,d̄
λ,θ contains all pairs a = (Ba, c̄a) = (B, c̄)

such that:

(1) c̄ = 〈(c̄i,0, c̄i,1)| i < γ〉 ∈ (C<ω
D × C<ω

D )γ , and B ⊆ M , |B| < λ.

(2) γ < κ.

(3) For all i < γ, tp(c̄i/MC + c̄<i) is < θ satisfiable in B where c̄i is

c̄i,0  c̄i,1. Abusing notation, we identify c̄ with the concatenation of

c̄i for i < γ. It follows that tp(c̄/MC) does not split over B.

(4) For every i < γ, tp(c̄i,0/MC+c̄<i) = tp(c̄i,1/MC+c̄<i) and in particular

they are of the same (finite) length, and

tp(c̄i,0/MC + c̄<i + d̄) �= tp(c̄i,1/MC + c̄<i + d̄).

The class MxKM,C,d̄
λ,θ consists of all the maximal elements in KM,C,d̄

λ,θ with re-

spect to the order < defined by a < b iff Ba ⊆ Bb, c̄a � c̄b and c̄a �= c̄b. That

is, it contains all a ∈ KM,C,d̄
λ,θ such that there is no b ∈ KM,C,d̄

λ,θ with Ba ⊆ Bb

and c̄a is a strict first segment of c̄b.

Theorem 4.8: For every d̄ ∈ C<λ
D , C and M as in Definition 4.7, if a ∈ KM,C,d̄

λ,θ

then there exists some b ∈ MxKM,C,d̄
λ,θ such that a ≤ b.

Proof. Let c̄ = c̄a = 〈(c̄i,0, c̄i,1)| i < γ〉. We try to construct an increasing

sequence 〈aα| γ ≤ α < κ〉 of elements in KM,C,d̄
λ,θ , where κ = | lg(d̄)|+ + θ < λ,

as follows:

(1) aγ = a.

(2) If α is limit then aα=supβ<α aβ, i.e., Baα=
⋃

β<αBaβ
and c̄aα=

⋃
β<αc̄aβ

.

Note that this is well defined, i.e., aα ∈ KM,C,d̄
λ,θ .
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(3) Suppose α = β + 1 and aβ has been constructed. Let

aα = (Bα, c̄aβ
 (c̄β,0, c̄β,1))

just in case there are c̄β,0, c̄β,1 ∈ C<ω
D , Baβ

⊆ Bα ⊆ M such that

aα ∈ KM,C,d̄
λ,θ .

If we got stuck somewhere in the construction it must be in the successor stage

α, and then aα ∈ MxKM,C,d̄
λ,θ is as requested. So suppose we succeed: we

constructed 〈(c̄α,0, c̄α,1)|α < κ〉. As usual we denote c̄α = c̄α,0  c̄α,1.

By the definition of KM,C,d̄
λ,θ , it follows that for every α < κ, there are

āα ∈ A<ω where A = MC, b̄α ∈ C<ω
α where Cα =

⋃
β<α c̄β, and a formula

ϕα(x̄d̄, w̄α, ȳα, z̄α) such that CD |= ϕα(d̄, c̄α,0, āα, b̄α) but

CD |= ¬ϕα(d̄, c̄α,1, āα, b̄α).

(The variables are all in the appropriate length, but only finitely many of them

appear in the formula.)

For every α < κ, let f(α) be the maximal ordinal < α such that b̄α intersects

c̄f(α). By Fodor’s Lemma, There exists some cofinal set S ⊆ κ and β < κ such

that for every α ∈ S we have f(α) = β. By restricting to a smaller set, we may

assume that for any α ∈ S, α > β and ϕα = ϕ is constant.

As c̄α,0 ≡Ac̄<α c̄α,1 and as tp(c̄α/A+ c̄<α) does not split over A, it follows that

tp(〈c̄α,η(α)|α ∈ S〉/ACβ+1) does not depend on η when η : S → 2. To prove

this it is enough to consider a finite subset S0 ⊆ S, and to prove it by induction

on its size. Indeed, given S0 = {α0 < · · · < αn+1}, and any η : S0 → 2,

〈c̄α,η(α)|α ∈ S0〉 ≡ACβ+1
〈c̄α,η(α)|α ∈ S0\{αn+1}〉  〈c̄αn+1,0〉

≡ACβ+1
〈c̄α,0|α ∈ S0〉.

It follows by homogeneity that for any subset R of S there is some d̄R ∈ C<λ
D

such that CD |= ϕ(d̄R, c̄α,0, āα, b̄α) iff α ∈ R. But this is a contradiction to the

fact that D is dependent, see Lemma 2.11 (5).

Definition 4.9: Suppose p(x̄), q(ȳ) ∈ SD(A) for some A ⊆ CD. We say that p is

orthogonal 6 to q if there is a unique r(x̄, ȳ) ∈ SD(A) which extends p(x̄)∪q(ȳ).
6 Usually this notion is called weakly orthogonal, as the notion of orthogonal types

already has meaning in stable theories. However, here we have no room for confusion, so

we decided to stick with the simpler term.
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Definition 4.10: Suppose thatM≺CD, and C⊆CD is some set. Let p∈SD(MC).

We say that p is tree-like (with respect to M ,C) if it is orthogonal to every

q ∈ S<ω
D (MC) for which there exists some B ⊆ M with |B| < |M | such that q

is < θ satisfiable in B.

Proposition 4.11: Let M,C be as in Definition 4.10. Suppose that

p∈Sα
D(MC) is tree-like and that |C| < κ = θ+|α|+. Then for everyB ⊆ M such

that |B| < |M | there exists some E ⊆ M with |E| < κ such that p|CE � p|CB.

Proof. It is enough to show that for any formula ϕ(x̄, ȳ, c̄) where c̄ is a finite

tuple from C, there is some Eϕ ⊆ M such that |Eϕ| < θ and

p|EϕC � (p � ϕ)|B = {ϕ(x̄, b̄, c̄) ∈ p| b̄ ∈ Blg(ȳ)}
(because then we let E =

⋃
ϕ Eϕ).

Suppose not. Let I = [M ]<θ (all subsets of M of size < θ); then for every

E ∈ I there exists some d̄E1 , d̄
E
2 ∈ Cα

D, b̄E ∈ Blg(ȳ) such that d̄E1 , d̄
E
2 realize p|EC

and CD |= ϕ(d̄E1 , b̄E , c̄) ∧ ¬ϕ(d̄E2 , b̄E , c̄). By strong compactness, there is some

θ-complete ultrafilter U on I such that for every X ∈ I we have

{Y ∈ I|X ⊆ Y } ∈ U .
By Lemma 2.6,

r = AvU (〈d̄E1 d̄E2 b̄E |E ∈ I〉/MC) ∈ SD(MC).

Let d̄1, d̄2 ∈ Cα
D and b̄ ∈ C<ω

D be such that d̄1d̄2b̄ is a realization of r. Now,

r′ = tp(b̄/MC) is < θ satisfiable in B, d̄1, d̄2 realize p (by our choice of U) but
tp(d̄1/b̄c̄) �= tp(d̄2/b̄c̄)

(as witnessed by ϕ). Hence p is not orthogonal to r′, which is a contradiction.

Remark 4.12: Let A ⊆ B ⊆ C ⊆ CD. If p ∈ Sn
D(B) is < θ satisfiable in A and

n < ω, then there is an extension p ⊆ q ∈ Sn
D(C) which is < θ satisfiable in A.

Indeed, let U0 = {ϕ(An)|ϕ ∈ p}, note that it is θ-complete, and extend it to a

θ-complete ultrafilter U on all subsets of An. Let

q = {ϕ(x̄, c̄)| c̄ ⊆ C,ϕ(An, c̄) ∈ U}.
Now, as |T | < θ this type is a D-type: for any finite tuple c̄ from C, q|c̄ is

realized by some tuple from An (as in the proof of Lemma 2.5).
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Theorem 4.13: Let

M ≺ CD, d̄ ∈ C<λ
D , and c̄′ ∈ C<λ

D

be of length < κ = | lg(d̄)|++ θ. Let C =
⋃
c̄′ and suppose that a ∈ MxKM,C,d̄

λ,θ

and that tp(c̄′/M) does not split over Ba. Then for any r,

x = (M,Ba, d̄, c̄
′c̄a, r)

is a λ-tree-type decomposition (see Definition 4.1).

Proof. As tp(c̄′/M) does not split over Ba, and tp(c̄a/MC) does not split over

Ba, it follows that tp(c̄
′c̄a/M) does not split over Ba. Let c̄ = c̄′c̄a. We are left

to check that for every A ⊆ M such that |A| < λ there exists some ēA ∈ M<κ

where κ = | lg(d̄)|+ + θ, such that tp(d̄/ēA + c̄) � tp(d̄/A+ c̄).

By Proposition 4.11 it is enough to prove that p(x̄) = tp(d̄/M + c̄) is tree-like

(with respect to M , c̄). Let q(ȳ) ∈ S<ω
D (M + c̄) be some type which is < θ

satisfiable in some B ⊆ M with |B| < λ. Suppose that p is not orthogonal to

q. This means that there are d̄1, d̄2, b̄1, b̄2 in CD such that d̄1, d̄2 |= p, b̄1, b̄2 |= q

and d̄1b̄1 �≡Mc̄ d̄2b̄2. By homogeneity, we may assume d̄1 = d̄2 = d̄. Let

q′(ȳ) ∈ S<ω
D (M + c̄b̄1b̄2) be an extension of q which is < θ satisfiable in B

(which exists by Remark 4.12), and let b̄ |= q′. Then for some i = 1, 2, it must

be that d̄b̄i �≡Mc̄ d̄b̄. Let b ≥ a be (Ba∪B, c̄a  (b̄i, b̄)), then easily b ∈ KM,C,d̄
λ,θ ,

which contradicts the maximality of a.

By Theorems 4.8 and 4.13, we get that:

Corollary 4.14: Suppose x is a λ-tree-type decomposition, and d̄0 ∈ C<λ
D .

Then there exists some λ-tree-type decomposition y ≥ x such that d̄xd̄0 = d̄y

and ry = rx.

Proof. Apply Theorem 4.8 with d̄= d̄xd̄0, C=
⋃
c̄x, M=Mx and b=(Bx, ∅), to

get some b≤a∈MxKM,C,d̄
λ,θ . Now apply Theorem 4.13 with c̄′= c̄x, a and rx.

4.2. Self-solvable decomposition.

Definition 4.15: Let M ≺ CD be a D-model of cardinality λ. A λ-self-solvable

decomposition7 is a λ-tree-type decomposition (M,B, d̄, c̄, r) such that for

every A ⊆ M with |A| < λ there exists some c̄Ad̄A ∈ M<λ with the following

properties:

7 In [She12, Definition 3.6], this is called tK.
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(1) The tuple c̄A has the same length as c̄ (so < κ = | lg(d̄)|+ + θ) and d̄A

has the same length as d̄.

(2) (c̄x, d̄x, c̄A, d̄A) realize rx(x̄c̄x , x̄d̄x
, x̄′̄

cx , x̄
′̄
dx
).

(3) (c̄A, d̄A) realize tp(c̄xd̄x/A).

(4) The main point is that we extend point (2) from Definition 4.1 by

demanding that

tp(d̄x/c̄A + d̄A + c̄x) � tp(d̄x/A+ c̄x + c̄A + d̄A).

The first thing we would like to show is that under the assumption that λ is

measurable, a λ-self-solvable decomposition exists. In the first order case one

can weaken the assumption to ask that λ is weakly compact (see [She12, Claim

3.27]). However, we do not know how to extend this results to D-models, so we

omit it.

Note that the trivial decomposition

(M, ∅, ∅, ∅, ∅)
is a λ-self-solvable decomposition.

Proposition 4.16: Let M be aD-saturated model of cardinality λ, with λ > θ

measurable. Let U be a normal non-principal λ-complete ultrafilter on λ. Let x

be a λ-self-solvable decomposition with Mx = M , and let d̄ ∈ C<λ
D . Also write

M as an increasing continuous union
⋃

α<λ Mα where Mα ⊆ M is of size < λ.

Finally, let κ = | lg(d̄xd̄)|+ + θ.

Then for any n<ω, there is a set Un∈U , a sequence 〈(c̄α,n, d̄α,n)|α∈Un∪{λ}〉,
a type rn and a set Bn ⊆ M with |Bn| < λ such that the following holds:

(1) For each n < ω, Un+1 ⊆ Un, xn = (M,Bn, c̄λ,n, d̄λ,n, rn) is a λ-tree-type

decomposition, x ≤ xn ≤ xn+1 and d̄xd̄ � d̄λ,n. Also,

lg(d̄λ,n), lg(c̄λ,n) < κ.

(2) For each n < ω and α ∈ Un∪{λ}, c̄α,n−1, d̄α,n−1 � c̄α,n, d̄α,n, and when

α < λ they are in M , (c̄λ,n, d̄λ,n, c̄α,n, d̄α,n) |= rn (so rn is increasing)

and c̄α,nd̄α,n realizes tp(c̄λ,nd̄λ,n/Mα) (where c̄α,−1, d̄α,−1 = ∅).
(3) For each n < ω and α ∈ Un, tp(c̄λ,n, d̄λ,n, c̄α,n, d̄α,n) contains rx (when

restricted to the appropriate variables).

(4) For each n < ω and α ∈ Un,

tp(d̄λ,n/c̄λ,n + d̄α,n+1) � tp(d̄λ,n/c̄λ,n + c̄α,n + d̄α,n +Mα).
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Proof. The construction is by induction on n.

Assume n = 0. Let d̄λ,0 = d̄xd̄ and let c̄λ,0 ∈ C<κ
D , B0 be such that

x ≤ (M,B0, d̄λ,0, c̄λ,0, rx)

is a λ-tree-type decomposition (which exists by Corollary 4.14). For α < λ,

as x is a self-solvable decomposition, there are c̄α,x, d̄α,x in M which realize

tp(c̄x, d̄x/Mα) such that (c̄x, d̄x, c̄α,x, d̄α,x) |= rx.

Go on to find c̄α,x, d̄α,x � c̄α,0, d̄α,0 in M which realize tp(c̄λ,0d̄λ,0/Mα)

(exists as M is D-saturated). By Corollary 2.10, we can find U0 such that

〈c̄α,0d̄α,0|α ∈ U0〉 is a fully indiscernible sequence over c̄λ,0 + d̄λ,0. Let

r0 = tp(c̄λ,0, d̄λ,0, c̄α,0, d̄α,0/∅),
where α ∈ U0.

Assume n = m+ 1. Note that κ = | lg(d̄λ,m)|+ + θ. For α ∈ Um, let

ēα,m ∈ M<κ

be such that tp(d̄λ,m/c̄λ,m + ēα,m) � tp(d̄λ,m/c̄λ,m + d̄α,m + c̄α,m +Mα), which

exists as xm is a tree-type decomposition. As κ < λ, by restricting Um, we

may assume that ēα,m has a constant length, independent of α. Further, let

us assume that 〈d̄α,mc̄α,mēα,m|α ∈ Um〉 is fully indiscernible. Let ēλ,m be such

that d̄λ,mc̄λ,mēλ,m |= ⋃{tp(d̄α,mc̄α,mēα,m/Mα)|α ∈ Um}. This is a type by full

indiscernibility, and such a tuple can be found in CD since d̄λ,mc̄λ,m already

realize this union when we restrict to the appropriate variables, by point (2).

Now we essentially repeat the case n = 0, applying Corollary 4.14 with d̄0,x

there being ēλ,m,xm to find Bn and c̄λ,n, but now we want that c̄α,m � c̄α,n

and d̄α,mēα,m = d̄α,n for α ∈ Um ∪ {λ}, so we find these tuples and find

Un such that 〈c̄α,nd̄α,n|α ∈ Un〉 is fully indiscernible over c̄λ,nd̄λ,n and we let

rn = tp(c̄λ,m, d̄λ,m, c̄α,n, d̄α,n/∅).
(In fact, in the proof we did not need full indiscernibility at any stage. In

the case n = 0 and the last stage of the successor step, we only needed that

tp(c̄λ,m, d̄λ,m, c̄α,n, d̄α,n/∅) is constant, and in the construction of the ēλ,m we

only needed that the types tp(d̄α,mc̄α,mēα,m/Mα) are increasing with α.)

Corollary 4.17: Let M be a D-saturated model of cardinality λ, where λ ≥ θ

is measurable, and let d̄ ∈ C<λ
D . Let x be some λ-self-solvable decomposition,

possibly trivial. Then there exists some λ-self-solvable decomposition x ≤ y

such that d̄xd̄ � d̄y.
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Proof. Write

M =
⋃
α<λ

Mα

where Mα ⊆ M are of cardinality < λ and the sequence is increasing and con-

tinuous. Also choose some normal ultrafilter U on λ. Now we apply Proposition

4.16, to find Un, Bn, rn and 〈(c̄α,n, d̄α,n)|α ∈ Un ∪ {λ}〉. Let d̄λ =
⋃

n<ω d̄λ,n,

c̄λ =
⋃

n<ω c̄λ,n, B =
⋃

n<ω Bn and r =
⋃

n<ω rn (note that this is indeed a

D-type). Also, let U =
⋂

n<ω Un ∈ U (as U is λ-complete).

Then (M,B, d̄λ, c̄λ, r) is a λ-self-solvable decomposition: first of all it is a tree-

type decomposition, as tp(c̄λ/M) does not split overB. Also, κ = | lg(d̄xd̄)|++θ

is regular of cofinality > ℵ0, so lg(c̄λ) < κ = | lg(d̄λ)|+ + θ. For each A ⊆ M of

size < λ, there is some α ∈ U such that Mα contains A. Let

c̄A, d̄A =
⋃
n<ω

c̄α,n,
⋃
n<ω

d̄α,n.

Then, it follows from point (2) in Proposition 4.16 that (c̄λ, d̄λ, c̄A, d̄A) |= r and

that (c̄Ad̄A) realize tp(c̄λd̄λ/A). Also, note that rx ⊆ r, Bx ⊆ B, c̄x, d̄x � c̄λ, d̄λ.

Finally, we must check that

tp(d̄λ/c̄A + d̄A + c̄λ) � tp(d̄λ/A+ c̄λ + c̄A + d̄A).

This holds since formulas have finitely many variables.

5. Finding a good family

In this section we will show that the family of λ-self-solvable decompositions

is a good family of λ-decompositions whenever λ > θ is measurable (note that

in that case λ<λ = λ). This will conclude the proof of Conjecture 3.1 in this

case. So let F be the family of λ-self-solvable decompositions x such that Mx

is D-saturated of cardinality λ. Let us go over Definition 3.2, and prove that

each clause is satisfied by F.

Claim 5.1: Points (1), (2), (3), (4), (5) and (6) are satisfied by F.

Proof. Everything is clear, except (4), which is exactly Corollary 4.17.

We now move on to point (7), but for this we will need the following lemma.
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Lemma 5.2: Suppose that (I,<) is some linearly ordered set. Let 〈āi| i ∈ I〉
be a sequence of tuples of the same length from CD, and let B ⊆ CD be some

set. Assume the following conditions.

(1) For all i ∈ I, āi = c̄id̄i.

(2) For all i ∈ I, tp(āi/Bi) is increasing with i, where Bi = B∪{āj | j < i}.
(3) For all i ∈ I, tp(c̄i/Bi) does not split over B.

(4) For every j < i in I, tp(d̄i/c̄i + āj) � tp(d̄i/c̄i + āj +Bj).

(5) For every i1 < i2, j1 < j2 from I, tp(āi2 āi1/∅) = tp(āj2 āj1/∅).
Then 〈āi| i ∈ I〉 is indiscernible over B.

Proof. We prove by induction on n that 〈āi| i ∈ I〉 is an n-indiscernible sequence

over B.

For n = 1 it follows from (2).

Now suppose that 〈āi| i∈I〉 is n-indiscernible overB. Let i1<· · ·<in<in+1∈I

and j1 < · · · < jn < jn+1 ∈ I be such that, without loss of generality,

in+1 ≤ jn+1. By (2), we know that āi1 · · · āin āin+1 ≡B āi1 · · · āin ājn+1 . By (3)

and the induction hypothesis, we know that āi1 · · · āin c̄jn+1 ≡B āj1 · · · ājn c̄jn+1 .

Combining, we get that

āi1 · · · āin c̄in+1 ≡B āj1 · · · ājn c̄jn+1 .

Suppose that ϕ(d̄in+1 , c̄in+1 , āin , . . . , āi1 , b̄) holds where b̄ is a finite tuple from

B. Let r(x̄d̄, x̄c̄, x̄ā) = tp(d̄in+1 , c̄in+1 , āin/∅). By (4),

r(x̄d̄, c̄in+1 , āin) � ϕ(x̄d̄, c̄in+1 , āin , . . . , āi1 , b̄).

Applying the last equation, we get that

r(x̄d̄, c̄jn+1 , ājn) � ϕ(x̄d̄, c̄jn+1 , ājn , . . . , āj1 , b̄).

By (5), r = tp(d̄jn+1 , c̄jn+1 , ājn/∅), so d̄jn+1 satisfies the left-hand side, and so

also the right-hand side, and so ϕ(d̄jn+1 , c̄jn+1 , ājn , . . . , āj1 , b̄) holds and we are

done.

Corollary 5.3: Suppose that x ∈ F, and let M = Mx. Let B ⊇ Bx be

any subset of M of cardinality < λ, and let α ≤ λ. For i < α, let āi be

such that ā0 = c̄B d̄B (see Definition 4.15), and for i > 0, āi = c̄Bi d̄Bi where

Bi = B ∪ {āj| j < i}. Then 〈āi| i < α〉  〈c̄xd̄x〉 is an indiscernible sequence

over B.
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Proof. Apply Lemma 5.2 with I = α + 1 (so that āα = c̄xd̄x). Let us check

that the conditions there hold. (1) is obvious. (2) holds as

tp(āi/Bi) = tp(c̄xd̄x/Bi) ⊇ tp(c̄xd̄x/Bj)

when α+ 1 > i ≥ j. (3) holds as tp(c̄x/Bi) does not split over B, so the same

is true for c̄i. (5) holds because for i1 < i2 < α+ 1,

tp(āi2 āi1/∅) = tp(c̄xd̄xc̄i1 d̄i1/∅) = rx

= tp(c̄xd̄xc̄j1 d̄j1/∅) = tp(āj2 āj1/∅).

Finally, (4) holds because tp(d̄x/c̄x + āj) � tp(d̄x/c̄x + āj + Bj), and as

c̄xd̄x ≡Bj+1 c̄Bi d̄Bi = āi, we can replace c̄xd̄x by c̄Bi d̄Bi in this implication by

applying an automorphism of CD.

Lemma 5.4: Suppose that x1 ≤ x2 are two λ-decompositions from F. Then

for every subset A of M of size < λ containing Bx1 , and for any choice of

c̄A, d̄A which we get when we apply Definition 4.15 on x2, their restrictions to

lg(c̄x1), lg(d̄x1) satisfy all the conditions in Definition 4.15.

Proof. Denote these restrictions by c̄′A, d̄
′
A. As rx1 ⊆ rx2 , we get Clause (2) of

Definition 4.15 immediately. Clause (3) is also clear, so we are left with (4).

Since x1 ∈ F, there are some c̄′′A, d̄
′′
A in M in the same length as lg(c̄x1), lg(d̄x1),

which we get when applying Definition 4.15 on x1. It is enough to show that

d̄x1 c̄x1 c̄
′′
Ad̄

′′
A ≡A d̄x1 c̄x1 c̄

′
Ad̄

′
A. Note first that c̄′′Ad̄

′′
A ≡A c̄′Ad̄

′
A by (3), and as

tp(c̄x1/M) does not split over A, we also get c̄x1 c̄
′′
Ad̄

′′
A ≡A c̄x1 c̄

′
Ad̄

′
A. So suppose

that CD |= ϕ(d̄x1 , c̄x1 , c̄
′′
A, d̄

′′
A, ā) where ā is a finite tuple from A. By (4) and (2),

rx1(c̄x1 , x̄d̄x1
, c̄′′A, d̄

′′
A) � ϕ(x̄d̄x1

, c̄x1 , c̄
′′
A, d̄

′′
A, ā), and applying the last equation,

we get that rx1(c̄x1 , x̄d̄x1
, c̄′A, d̄

′
A) � ϕ(x̄d̄x1

, c̄x1 , c̄
′
A, d̄

′
A, ā), but as d̄x1 satisfies

the left hand side (because rx1 ⊆ rx2), we are done.

Theorem 5.5: Suppose δ < λ is a limit ordinal. Let 〈xj | j < δ〉 be an increasing

sequence of decompositions from F. Then x = supj<δ xj ∈ F. Hence point (7)

of Definition 3.2 is satisfied by F.

Proof. Easily x is a λ-decomposition (i.e., |Bx| < λ and rx is well defined).

Also, tp(c̄x/M) does not split over Bx =
⋃
Bxi , where we let M = Mx.

Let A ⊆ M be of cardinality < λ and without loss of generality suppose

Bx ⊆ A.
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In order to prove the theorem, we need to find some c̄, d̄ ∈ M<λ in the same

length as c̄x, d̄x such that tp(c̄d̄/A) = tp(c̄xd̄x/A), tp(c̄x, d̄x, c̄, d̄) = rx, and

tp(d̄x/c̄x + c̄+ d̄) � tp(d̄x/c̄x + c̄+ d̄+A).

Let us simplify the notation by letting βj = lg(c̄xj ), γj = lg(d̄xj ). Note that

when βj and γj are constant from some point onwards, finding such c̄, d̄ is done

by just applying Definition 4.15 to some xj , so although the following argument

works for this case as well, it is more interesting when βj and γj are increasing.

For every i < δ, let c̄i, d̄i = c̄Ai d̄Ai be as in Definition 4.15 applied to xi (so

their length is βi, γi), where Ai = A ∪ {c̄j, d̄j | j < i}. Now repeat this process

starting with Aδ to construct c̄i, d̄i for δ ≤ i < δ + δ.

Now we repeat this process κ + 1 times, for κ = μ(D)+ + |T |+ < λ, to

construct c̄i, d̄i and Ai for δ + δ ≤ i < δ · κ+ δ. For j < δ, let Oj ⊆ δ · κ+ δ be

the set of all ordinals i such that i (mod δ) ≥ j. By Corollary 5.3 and Lemma

5.4, for each j < δ, the sequence Ij = 〈(c̄i � βj , d̄i � γj)| i ∈ Oj〉  〈(c̄xj d̄xj )〉 is
an indiscernible sequence over A.

Let O′
j = Oj ∩ δ · κ, O′′

j = Oj ∩ [δ · κ, δ · κ + δ), and let I ′j = Ij � O′
j ,

I ′′j = Ij � O′′
j . As O

′
j has cofinality κ (suppose X ⊆ O′

j is unbounded, then the

set {i < κ|X∩ [δ ·i, δ ·i+δ) �= ∅} is unbounded, so has cardinality κ, so |X | ≥ κ,

but easily, the set {δ · i+ j| i < κ} is cofinal in O′
j), we can apply Lemma 2.12,

and consider the type qj(x̄) = Av(I ′j/Aδ·κ+δ), which is a complete D-type. So

each qj is a type in βj + γj variables.

Claim: For j1 < j2, qj1 ⊆ qj2 .

Proof. Suppose ϕ(ȳ, ā) ∈ qj1 , where ā is a finite tuple from Aδ·κ+δ and ȳ is a

finite subtuple of variables of x̄. By definition, it means that for large enough

i ∈ O′
j1
, ϕ(c̄i � βj1 , d̄i � γj1 , ā) holds (where we restrict c̄i, d̄i to ȳ, of course).

But j2 > j1, so O
′
j2

⊆ O′
j1
, so the same is true for O′

j2
, and so ϕ(ȳ, ā) ∈ qj2 .

Let q =
⋃

j<δ qj . As δ is limit, it follows that q is also a D-type over Aδ·κ+δ.

Let c̄′, d̄′ |= q, and for each j < δ, let c̄′j = c̄ � βj , d̄
′
j = d̄′ � γj . It now follows

that for each j < δ, the sequence I ′j  〈c̄′j , d̄′j〉  I ′′j is indiscernible over A.

Let us check that c̄′, d̄′ are as required. To show this it is enough to see that

for every j < δ, c̄xj d̄xj c̄
′
j d̄

′
j ≡A c̄xj d̄xj c̄j d̄j . Suppose ϕ(c̄xj , d̄xj , c̄j , d̄j , ā) holds,

where ā is a finite tuple from A. By indiscernibility, ϕ(c̄xj , d̄xj , c̄δ·κ+j, d̄δ·κ+j , ā)

holds as well. By choice of c̄δ·κ+j+1, d̄δ·κ+j+1, it follows that

(∗) rxj (c̄xj , x̄d̄xj
, c̄δ·κ+j+1 � βj , d̄δ·κ+j+1 � γj) � ϕ(c̄xj , x̄d̄xj

, c̄δ·κ+j , d̄δ·κ+j , ā).
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By indiscernibility,

(c̄δ·κ+j+1 � βj)(d̄δ·κ+j+1 � γj)c̄δ·κ+j d̄δ·κ+j

≡A(c̄δ·κ+j+1 � βj)(d̄δ·κ+j+1 � γj)(c̄′ � βj)(d̄
′ � γj),

and as tp(c̄x/M) does not split over A,

c̄xj (c̄δ·κ+j+1 � βj)(d̄δ·κ+j+1 � γj)c̄δ·κ+j d̄δ·κ+j

≡Ac̄xj (c̄δ·κ+j+1 � βj)(d̄δ·κ+j+1 � γj)c̄′j d̄′j .

Applying the last equation to (∗), we get that

(∗∗) rxj (c̄xj , x̄d̄xj
, c̄δ·κ+j+1 � βj , d̄δ·κ+j+1 � γj) � ϕ(c̄xj , x̄d̄xj

, c̄′j , d̄
′
j , ā).

As d̄xj satisfies the left hand side of (∗∗), it also satisfies the right side, and we

are done.

Remark 5.6: The proof of Theorem 5.5 as above can be simplified in the case

where D is trivial (i.e., the usual first order case). There, we would not need to

introduce κ (i.e., we can choose κ = 1), and we would not have to use depen-

dence (which we used in applying Lemma 2.12 which states that the average type

of an indiscernible sequence exists and is a D-type). To make the proof work,

we only needed to find c̄′, d̄′ such that the sequence I ′j  〈c̄′ � βj , d̄
′ � γj〉  I ′′j

is indiscernible over A, and this can easily be done by compactness.

We now move on to points (8) and (9) of Definition 3.2.

Suppose x is a λ-tree-type decomposition. Let Lc̄x be the set of formulas

ϕ(x̄c̄x , ȳ) where x̄c̄x is a tuple of variables in the length of c̄x (of course only

finitely many of them appear in ϕ). For B ⊆ Mx over which tp(c̄x/Mx) does

not split, define Φx,B : Lc̄x → P(S<ω
D (B)) by

Φx,B(ϕ(x̄c̄x , ȳ)) = {p(ȳ) ∈ SD(B)| ∃ē ∈ M lg(ȳ)
x (ē |= p ∧ CD |= ϕ(c̄x, ē))}.

As tp(c̄x/M) does not split over B, we can also replace ∃ with ∀ in the definition

of Φx,B. This implies that for B′ ⊇ B and p ∈ SD(B′),

(†) p ∈ Φx,B′(ϕ) ⇔ p|B ∈ Φx,B(ϕ).

Suppose that y is another λ-tree-type decomposition. When h is an elementary

map from Bx to By, then it induces a well defined map from SD(Bx) to SD(By)

which we will also call h. So if c̄x has the same length as c̄y, it makes sense

to ask that h ◦ Φx,Bx = Φy,By . When rx = ry, a partial elementary map h
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whose domain is Bx∪
⋃

c̄x∪
⋃

d̄x which maps (d̄x, c̄x, Bx) onto (d̄y, c̄y, By) and

satisfies h ◦Φx,Bx = Φy,By is called a pseudo isomorphism between x and y.

Note that if h is a pseudo isomorphism, then for any two tuples ā, b̄, from

Mx, My respectively, if h � Bx can be extended to witness that Bxā ≡ By b̄,

then c̄xBxā ≡ c̄yByā.

Proposition 5.7: Suppose x,y ∈ F are such that rx = ry, and suppose that

h : x → y is a pseudo isomorphism. Then h is a weak isomorphism, i.e., it

extends to an isomorphism h+ : x → y. Conversely, if h is a weak isomorphism,

then it is a pseudo isomorphism.

Proof. We will do a back and forth argument. In each successor step we will

add an element to either Bx or By and increase h. In doing so, the new x and

y’s will still remain in F (by point (5) of Definition 3.2 which is easily true for

F). In addition, the increased h’s will still be pseudo isomorphisms by (†). In

order to do this, it is enough to do a single step, so assume that h : x → y

is a pseudo isomorphism, and a ∈ Mx. We want to find b ∈ My such that

h ∪ {(a, b)} is a pseudo isomorphism from x′ = (Mx, Bx ∪ {a}, d̄x, c̄x, rx) to

y′ = (My, By ∪ {b}, d̄y, c̄y, ry).
Let A = Bx ∪ {a}, and let c̄xA, d̄

x
A be as in Definition 4.15 for x. Let c̄yBy

, d̄yBy

be the parallel tuples for y and By. By (3) of Definition 4.15,

Bxc̄
x
Ad̄

x
A ≡ Byc̄

y
By

d̄yBy
,

as witnessed by expanding h � Bx to Bxc̄
x
Ad̄

x
A. Hence as My is D-saturated

there is some b∈My such that Bxac̄
x
Ad̄

x
A≡Bybc̄

y
By

d̄yBy
. So we have found our b.

As noted above, as h is a pseudo isomorphism, we get that

(††) Bxac̄
x
Ad̄

x
Ac̄x ≡ Bybc̄

y
By

d̄yBy
c̄y.

Suppose now that ϕ(d̄x, c̄x, a, ē) holds, where ē is a finite tuple from Bx. By

the choice of c̄xA, d̄
x
A, rx(c̄x, x̄d̄x

, c̄xA, d̄
x
A) � ϕ(x̄d̄x

, c̄x, a, ē). Applying (††), we get

that rx(c̄y, x̄d̄y
, c̄yBy

, d̄yBy
) � ϕ(x̄d̄y

, c̄y, b, h(ē)). As rx = ry, d̄y realizes the left

hand side, so also the right hand side and so CD |= ϕ(d̄y, c̄y, b, h(ē)).

For the limit stages, note that if 〈hi| i < δ〉 is an increasing sequence

of pseudo isomorphisms hi : xi → yi where xi = (Mx, Bxi , d̄x, c̄x, rx) and

yi = (My, Byi , d̄y, c̄y, ry) are increasing, and δ < λ, then
⋃{hi| i < δ} is a

pseudo isomorphism from supi<δ xi to supi<δ yi.

The other direction is immediate.
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Corollary 5.8: Clause (8) in Definition 3.2 holds for F.

Proof. We are given two increasing sequences of decompositions 〈xi| i < δ〉 and
〈yi| i < δ〉 in F, and we assume that for each i < δ there is a weak isomorphism

gi : xi → yi such that gi ⊆ gi whenever i < j. We need to show that the union

g =
⋃

i<δ gi is also a weak isomorphism from x = supi<δ xi to y = supi<δ yi.

We already know by Theorem 5.5 that x,y ∈ F, so by Proposition 5.7, we only

need to show that g is a pseudo isomorphism and that rx = ry. The latter is

clear, as

rx =
⋃
i<δ

rxi =
⋃
i<δ

ryi = ry.

Also, it is clear that g is an elementary map taking (d̄x, c̄x, Bx) to (d̄y, c̄y, By).

Note that Lc̄x =
⋃

i<δ Lc̄xi
and that for ϕ ∈ Lc̄xi

, Φx,Bx(ϕ) = Φxi,Bx(ϕ).

The same is true for y. Hence, for such i < δ, ϕ and for any p ∈ SD(By),

p ∈ g(Φx,Bx(ϕ)) ⇔ p ∈ g(Φxi,Bx(ϕ))

⇔ p|Byi
∈ g(Φxi,Bxi

(ϕ))

⇔ p|Byi
∈ gi(Φxi,Bxi

(ϕ))

⇔ p|Byi
∈ Φyi,Byi

(ϕ)

⇔ p ∈ Φyi,By(ϕ).

Definition 5.9: For a modelM ≺ C andB ⊆ C, we letM[B] beM with predicates

for all B-definable subsets. More precisely, for each formula ϕ(x1, . . . , xn, b̄) over

B, we add a predicate Rϕ(x̄,b̄)(x̄) and we interpret it as ϕ(Cn, b̄)∩Mn. If B ⊆ M ,

then this is definably equivalent to adding names for elements of B.

For a λ-decomposition x, denote by M[x] the structure M[c̄x+d̄x+Bx].

Theorem 5.10: Suppose x ∈ F. Then M[x] is homogeneous.

Proof. We have to show that if A ⊆ M is of cardinality < λ, and f is a

partial elementary map of M[x] with domain A, then we can extend it to an

automorphism. We may assume that Bx ⊆ A and that f � Bx = id, as f

preserves all Bx-definable sets. It follows that x′ = (Mx, A, d̄x, c̄x, rx) and

x′′ = (Mx, f(A), d̄x, c̄x, rx) are both in F. By definition, f extends to an el-

ementary map f ′ : (A, d̄x, c̄x) → (f(A), d̄x, c̄x), but moreover f is a pseudo

isomorphism. This follows easily by (†) above. Hence we are done by Proposi-

tion 5.7.
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Corollary 5.11: Clause (9) in Definition 3.2 holds for F.

Proof. Suppose {xi| i < λ+} is a set of pairwise non-isomorphic elements of F

with Mxi = M for all i. We may assume that for some β, γ < λ and all i < λ+,

c̄xi is of length β and d̄xi is of length γ. We may also assume, as λ<λ = λ, that

Bxi = B for all i < λ+. Let L′ be the common language of the structures M[xi]

(which we may assume is constant as it only depends on the length of c̄xi , d̄xi

and Bxi). Let Di = D(M[xi]) in the language L′ (recall that D(A) consists of

all types of finite tuples from A over ∅). The language L′ has size < λ, so the

number of possible D’s is ≤ 22
|L′|

< λ, so we may assume that Di = D0 for

all i < λ (it follows that Mxi ≡ Mx0). Finally, we are done by Lemma 2.3,

Corollary 2.4 and Theorem 5.10.

Remark 5.12: One can also prove Corollary 5.11 directly, showing that the

number of λ-decompositions in F up to pseudo isomorphism is ≤ λ, and then

use Proposition 5.7.

Finally, we have proved that F is a good family of λ-decompositions, so by

Theorem 3.11 we get:

Corollary 5.13: Conjecture 3.1, and the conclusion of Theorem 3.6 hold

when λ is measurable.

Problem 5.14: To what extent can we generalize [She12, Theorem 7.3] to depen-

dent finite diagrams? For instance, is the generic pair conjecture for dependent

finite diagrams also true when λ is weakly compact?
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