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 ABSTRACT. We show that the transfer property (Ri, Ro) - (A+, A) for singular
 A does not imply (even) the existence of a non-reflecting stationary subset of
 A+. The result assumes the consistency of ZFC with the existence of infinitely
 many supercompact cardinals. We employ a technique of "resurrection of
 supercompactness". Our forcing extension destroys the supercompactness of
 some cardinals; to show that in the extended model they still carry some of
 their compactness properties (such as reflection of stationary sets), we show
 that their supercompactness can be resurrected via a tame forcing extension.

 1. INTRODUCTION

 The results presented in this paper extend our previous work on the relative
 strength of combinatorial properties of successors of singular cardinals.

 In a seminal paper [J72] Jensen has presented a collection of combinatorial prop-
 erties that hold in the constructible universe L. From the point of view of applica-
 tions of set theory to other branches of mathematics, these properties are "all you
 have to know about L". Ever since that paper, these properties were applied to a
 wide spectrum of questions to provide consistency results inside set theory as well
 as in other branches of mathematics ([Sh:44], [E80], [F83], to mention just a few).

 It seems natural to ask to what degree can these properties replace the axiom
 V = L? Is there any combinatorial principle that implies all these properties?
 What is the relative strength of these properties? What are the implication relations
 among them?

 The picture seems to be basically settled for limit cardinals and for successors of
 regular cardinals, [Mi72], [G76]. Our investigations have focused on successors of
 singular cardinals. Essentially we have been able to prove, assuming the consistency
 of the existence of large cardinals, that all the nontrivial implications among these
 properties are not provable in ZFC (see [BdSh:203], [BdSh:236], [BM86]).

 Here we examine the strength of the model theoretic two-cardinals transfer

 propertyl (ti, Io) -- (A+, A). Jensen [J72] has shown that it is implied by LOx.
 A quite straightforward argument can show that it implies the weaker OX princi-
 ple.
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 'Which means: if a first-order sentence O (with a unary predicate P) has a model M such that
 JIMIH = R, IPMI = Ro, then it has a model N with JINII = A+, IpNI = A.
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 2828 SHAI BEN-DAVID AND SAHARON SHELAH

 We show that (1i, to) -- (A+, A) for a singular A does not imply the existence
 of a non-reflecting stationary subset of A+ (as long as ZFC is consistent with the
 existence of infinitely many supercompact cardinals). It follows that the implication

 from Ex to (di, to) -> (A+, A) is strict and that 01 (or, equivalently, the existence
 of a special A+-Aronszajn tree) does not imply the existence of a non-reflecting
 stationary subset of A+.

 We use a technique which we call resurrection of supercompactness. (The idea
 of "resurrecting" a large cardinal property in a further forcing extension probably

 first occurred in Kunen [K78].) We start with a model V in which A is a limit of

 supercompact cardinals and therefore all stationary subsets of A+ reflect. We extend
 it through forcing to a model V[G] in which the two-cardinal transfer property
 holds.

 Now we have to argue why we still have reflection of all stationary subsets of
 A+ (although our forcing has inevitably destroyed the supercompactness of a final
 segment of cardinals below A). Instead of applying the commonly used combinato-
 rial analysis to our forcing partial order, we demonstrate the reflection property by

 showing that we could "resurrect" the supercompactness of any cardinal p below A

 by a further forcing extension Qp that preserves reflection of appropriate subsets
 of A+.

 2. PROOF OUTLINE

 The proof is based on a translation of the transfer property to a combinatorial
 principle SA. We show how SA (and therefore (di, to) -> (A+, A)) can be forced
 using a "mild" forcing notion. The mildness of the forcing notion guarantees that
 over certain models, where every stationary subset of A+ reflects, such a forcing
 extension would not destroy the reflection.

 The natural candidate for exhibiting reflection of all stationary subsets of A+ is a
 model in which A is a limit of supercompact cardinals. Letting V be such a model,

 standard compactness arguments show that 01 fails, and therefore (j,R to)
 (A+, A) fails in V. It follows that if we extend V to a model V[G] of (di,j o)
 (A+, A) the supercompactness of a final segment of the cardinals below A will be
 destroyed. We wish to show that our extension was mild enough to retain some of
 the supercompactness consequences namely, the reflection of all stationary subsets
 of A+.

 To this end we use a technique we call resurrection of supercompactness. We
 further extend V[G] to a model V[G] [H]. We show that in V[G] [H] the supercom-
 pactness of certain cardinals is resurrected. Consequently, in V[G][H] we do have
 the desired reflection principle. All that is left to do is to make sure that reflection
 of some stationary S C A+ in V[G] [H] can only occur if S was already a reflecting
 stationary subset of A+ in V[G].

 More precisely, for every supercompact cardinal p below A, we establish the

 existence of a forcing notion Qp such that:

 (i) Qp preserves stationarity of subsets of SA+ = {a < A+ : cf(a) < p},
 (ii) the extension by [G][G,Qp] preserves the supercompactness of p.

 As A is a singular limit of cardinals, given any stationary subset S of A+ (in

 V[G]), there is some supercompact p for which S n SI+ is stationary in A+. In p
 V[G] [G(Qp], p is a supercompact cardinal and, by property (i), S n pI is still
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 THE TWO-CARDINALS TRANSFER PROPERTY 2829

 stationary so it reflects, i.e. for some a < A+, S n SP,+ n a is stationary in a. It
 follows that S reflects in V[G].

 3. THE PRINCIPLE SA

 In [Sh:269] Shelah introduced a principle SA related to 0. This principle captures
 in a combinatorial formulation the model theoretic transfer property

 (t1, 1o) -(A+, A).

 Definition 1. SA asserts the existence of a sequence

 (C<>: a < A+,i < cf(A))

 such that:

 (1) For every a < A+

 a = J C<> and i < j < cf(A) imply C<> C.

 i<cf(A)

 (2) For every i < cf(A), sup{l0C.1: a < A+} < A.
 (3) For a < 3, a e Cp implies C<> = C, n Ra.

 Theorem 2 (Shelah). For a strong limit singular A,

 SA is equivalent to (ti,Yo) -- (A+ ,A)

 (Actually both properties are equivalent to a seemingly stronger transfer property.)
 D

 We refer the reader to [Sh:269] for the full theorem and its proof. To gain a
 feeling for the content of the new SA principle let us demonstrate its strength by
 proving the following corollary of the above theorem directly.

 Corollary 3. For a strong limit singular cardinal A, SA implies 0L.

 Proof. For a set t of ordinals let t be the closure of t in sup(t), i.e. = {a : a e t
 or a = sup(a n t) < sup(t)}.

 Let (C<>: a < A+, i < cf(A)) be a SA sequence. Define A. to be

 U {s: there is an increasing sequence t C C<> such that iti < A and
 i<cf(A)

 s = t (the closure of t in a)} U {s C a : sI < cf(A)}.

 As each C<> has cardinality less than A and A is a strong limit cardinal, we have

 IAal < A for all a. Let us see that the sequence (A.>: a < A+) is a OI-sequence.
 For any 6 < A+, if cf(A) < cf(6), then for some i, C6 is an unbounded subset of 6.
 Let t6 be any increasing sequence of members of such a C, such that t6 (the closure
 of t6 in 6) has order type cf(6) and is unbounded in 6. For any limit point '3 of
 t6, for some j e [i, cf(A)), /3 e Cj and therefore t6 n /3 C 0, (as 073 = C m/3), so

 t6 n,3 is a member of AO. But t6 n 3 = i6 n/3. We still have to handle ordinals 6
 of cofinality < cf(A), but for such an ordinal we can pick any continuous sequence
 increasing to 6, say t6, such that otp(t6) = cf(6) < cf(A) and then for any 3 < 6,

 t6 n,3 is a subset of 3 of cardinality less than cf(6), so it is a member of AO. Z

This content downloaded from 80.109.105.131 on Tue, 16 Jul 2019 15:12:28 UTC
All use subject to https://about.jstor.org/terms

Sh:E91
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 Theorem 4. Assuming ZFC is consistent with the existence of infinitely many
 supercompact cardinals, there is a model of ZFC with a singular strong limit cardinal
 A for which SA holds and every stationary subset of A+ reflects.

 Proof. Let A be a singular limit of supercompact cardinals, so 2- = A+. It follows
 that A is a strong limit cardinal and that every stationary subset of A+ reflects. We

 define a forcing notion P' such that SA holds in VP,. We will show that in VP', A is
 still a strong limit and every stationary subset of A+ reflects. By iterating Laver's

 indestructibility forcing [L78] we may assume that A is a limit of an increasing
 sequence of supercompact cardinals (Ai: i < cf(A)) such that for each i < cf(A) if
 Q is a Ai-directed-closed forcing notion, then Ai remains supercompact after forcing
 with Q. ?

 Definition of P. A condition p in P is an initial segment of an SA\-sequence, i.e.,
 for some 3 < A+,

 p = {C: ca < 3, i < cf(A)}

 where the C,e's satisfy the demands (1) and (3) from the definition of an SA sequence

 and demand (2) is replaced by IC'al < Ai. We call 3 the domain of the condition
 p,/3 = dom(p).

 For p, q e IP we say that p < q if and only if

 dom(p) C dom(q) and p = q [ dom(p)

 (where q r dom(p) denotes the restriction of q to dom(p)).
 The forcing notion P is the natural candidate for introducing an SA-sequence.

 We do not know how to guarantee reflection of stationary sets in the model obtained
 by forcing with P. To obtain the model we are aiming for we shall later apply a
 further forcing extension.

 Lemma 5. For p e P and -y = dom(p) + 1 there is a condition q E P, p < q such
 that dom(q) = -y.

 Proof. As q is to extend p, its sequence (Cx: i < cf(A), a < -y) is already determined

 and we have to define only (C: i < cf(A)). Let C= {,} U C where /3 = dom(p)
 (so 3y /3 + 1). As for all i < cf(A), we get 3 n C0= C; it is trivial to check that
 q is a condition in P. 0

 We would like to have some closure properties for P. The next lemma shows
 that under some circumstances an increasing chain of conditions in P is guaranteed
 to have an upper bound.

 Lemma 6. Let (pj: j < 6) be an increasing sequence of conditions in P, /j =
 dom(pj) and 3 = limj<6/3j. For each ca < /3 let (CO: i < cf(A)) be such that
 whenever cr E dom(pj) this is the a' s sequence in pj (as the pj 's form an increasing
 chain, this is well defined).

 If there is an unbounded C C /3, such that for every a <y from C there is

 i < cf (A) such that C. =C? n a (or for every mO in C, C n C? for some i), then
 there is a condition q E P such that pj < q for all j < 6.

 Proof. Let

 q (a :a<,,i < cf (A)).X
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 THE TWO-CARDINALS TRANSFER PROPERTY 2831

 As q extends all the pj's all we have to define is (C:: i < cf(A)). We may assume
 that otp(C) = cf(/3) as otherwise we may replace C with such an unbounded closed

 subset. Let Ai, be the first element of (Ai i < cf(A)) above cf(/3). For i < io let
 C' = 0, and for io < i let Ci = U ccCo. As Ui<cf( A,C = Ca for all a e C
 and (C: i < cf(A)) is increasing, we have UiE[iof c()) Ca = a (for a E C). Since
 WEc c = 3, we get Ui<cf(A) C, = l3. As for each a the sequence (C,>: i < cf(A))
 is increasing, so is (C,: i < cf(A)). As each Ai is a regular cardinal, IC, I < Ai and
 otp(C) < A2o, we get IC I < Ai for all i E [io,cf(A)) and for i < io this is trivial.

 We are left with the coherence demand (3). Assume that 6 e C: and let -y

 be the first member of C above 6 and i > io. Since C0 = U,ECa, we have
 CB n fl=U,c CA n a. For a > ^y we have C<> n C= C, whileC2 C CC for a < -Y
 (as Ci? n a = C<>). Thus we may conclude that Cj nla = C? and 6 E C?. Pick some

 pp in the sequence of conditions such that dom(pp) > -y, so pp(-y) = (Ca: i < cf(A)).
 Since 6?E Cn, we know that pp 1F "Ci n 6= Ct". For all pj with j > p we have
 pj () = pp (6) and this is q(6) = (C' : i < cf(A)). It follows that q I- "Cs n 6 = C
 as needed.

 Lemma 7. The forcing notion P is ,a-strategically closed for each ,I < A.

 Proof. Given any such p we have to define a strategy for Player I such that if an
 increasing sequence of conditions (pi: i < 6) (where 6 < ,A) is constructed and for
 any even and limit p < ,u, pp is defined by applying our strategy to (Pi: i < p),
 then there is a condition pb above all members of the sequence.

 Denote by io the first i such that Ai > p (Aj's are as defined in the proof of
 Lemma 6). Our strategy will have the property (where io is as above)

 (X3) If Pl < P2 < t and Ppl, Pp2 are both defined by the strategy, then for all
 i < cf(A)

 Cdmpl)= CdO(p2 nldom(pp ) and i <Z io= dom(p ,) - 0 dom(p .)
 dom(p~,) dom(p dom ppl <_O:: Cdom(0pl Cd

 Let us define the strategy.

 Case (i): p is a limit ordinal. The sequence Ep = (dom(pi) i is even or limit)
 is increasing and unbounded in dom(pp) and the condition (?) holds along it. We
 use the proof of Lemma 6 to define pp. Note that the definition of Lemma 6 does
 satisfy (?) for P1, P2 E Ep U {p}.

 Case (ii): p = 2. Let pp be any one-level extension of P1. By Lemma 5 such an
 extension exists.

 Case (iii): p is a successor ordinal. Let -y be dom(pp_1) and let (* be the maximal
 < p for which p~ is defined by the strategy (of Player I). Such a (* always exists

 as Player I gets to play at limit stages. Let 3 = dom(pQ-). As Pp-, extends p<*,
 for all a < 3 we have Pp- (a) = pQ (a) and let us denote it by (C,*: i < cf(A)).
 For 0 < or < y let (C<>: i < cf(A)) be pp-1(a)-

 Now, pp will be a one-level extension of Pp-i, so we have to define only its last
 level pp(y + 1) = (C+1 : i < cf(A)). Let j be the first such that 3 E C2 . For
 i < io let C^+ = 0, for io < i < j let C+1 = C3 and finally for j < i let

 = {-y} U C. It is easy to check that the condition (?) is satisfied and the pp
 thus defined is a condition in JP extending Pp-.

 To show that this strategy works we just have to invoke Lemma 6 and, by (h),

 Ep contains a set C as assumed by the lemma. O
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 Lemma 8. For each p e P such that dom(p) < a < A+ there is an extension q of
 p such that dom(q) > a.

 Proof. Assume, by way of contradiction, that there is a 3 < A+ so that there is

 some p with no extension q of p satisfying dom(q) > 3. Let 30 be the first such
 /3 and p such a condition. If 30 is a successor apply Lemma 5 to a q' extending
 p with dom(q') = 3 - 1, which exists by the choice of 30. If 3o is a limit ordinal
 pick an increasing sequence (ai: i < ,u) (,t < A) unbounded in !0 (A is singular,

 so cf(,3o) < A). Now play a game of length A such that po = p. Player I uses the
 strategy and Player II picks at stage i + 1 an extension of pi with domain at least
 ai. Such an extension exists as ai < /0. Now (pi: i < t) has some q extending all
 pi's, so necessarily dom(p) > 3o, contradicting the choice of 30.

 Lemma 9. If G is a generic filter for P, then:

 (i) SA holds in V[G].
 (ii) V and V[G] share the same cardinals, power function and cofinalities.

 Proof. (i) Naturally we define in V[G] the sequence

 (C : a < A+,i < cf(A))

 as the union of all p(a)'s for conditions p in G and a's in their domain. Clearly it
 is an So sequence.

 (ii) By Lemma 7 no subsets of size < A are added to V by G; as A is singular,
 no subsets of size A are added to V. Therefore cardinals < A+ are not collapsed

 and cofinalities < A+ are not changed. Since IP1 = 2- = A+, it trivially satisfies the
 A++-cc. Hence cardinals and cofinalities above A+ are preserved. O

 In VP we introduce a further forcing notion IR. Let

 (C<>: a < A+,i < cf(A))

 be the P-generic S\-sequence.
 A condition r e R is a closed bounded subset of A+ such that a e r implies that

 for some i < cf(A) the set C<> is unbounded in a.
 iR is ordered by end extensions.

 The forcing notion IR is designed to introduce a closed unbounded subset in A+,
 along which, for each a some C<> contains an unbounded subset of a. Such a c.u.b.

 is needed in order to construct for each , < A a partial order Q,? such that the
 iteration P * R * Q, is ,u-closed and forcing with Q,2 (over VP*) preserves stationary

 subsets of SA+ = - < A+: cf(6) < }.
 The model in which our theorem is realized is V*R, so we will study the prop-

 erties of P * IR (rather than those of R)).
 Let us work in the ground model V. The iteration P * R can be represented as

 the set of all pairs (p, r) such that p e P, and p 1U "r e R". Note that as P does not

 introduce any new sets of size < A, each member of iR is in V. It is easy to see that

 p 1F- "r e R" if and only if

 r C dom(p) + 1 and for every a e r there is some C<> in p(a) which is
 unbounded in a, and of course r is closed (as a subset of dom(p) + 1).

 Lemma 10. The set

 {(p, r): (p, r) e P * R and sup(r) = dom(p)}

 is dense in P * R.
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 Proof. Given any (p, r) E IP * iR, define a one-level extension q of p as in the proof

 of Lemma 5. As 0i(= dom(p) + 1) = dom(q) is a member of each C,, we may define
 r' = r U {13} to get (q, r') in P * IR above (p, r). O

 FRom now on let us assume that all the members of P * IR have this property (the
 second coordinate is a closed cofinal subset of the domain of the first).

 Lemma 11. For any (p, r) fe P * R and any a < A+ there is a condition (p', r') >
 (p, r) such that a Ce dom(p') = sup(r').

 Proof. This is an easy consequence of Lemmas 10 and 8. 0

 Lemma 12. The forcing notion P*R is ,u-strategically-closed for any regular A < A.

 Proof. The strategy for Player I will be an adaptation of the strategy presented in

 the proof of Lemma 7. Let ((piri)i : i < p) be the sequence played so far. We are
 going to define (pp, rp) the next condition picked by Player I.

 We start with the successor stages.

 For p = 2 we pick any one-level extension of (pi, ri).
 For p successor bigger than 2, we modify the definition of the C,,+1 from Lemma 7

 by defining

 0 if i<io,

 = {,3} U C: if io < i < j,

 1{'y}UC? if j<i.

 As -y E C+, for i > j, we may define rp =rp_ U {y}.
 Now we are left with the limit stages.

 Let y be Ui<P dom(pi) (= Ui<P sup(ri)). We repeat the definition of the P part

 of Lemma 7: C? = UaCEp CO? (the union of the C<> for all a's where a = dom(pi)
 for pi's played by Player I). The IR part can only be rp = Ui<pri U {}.

 We have to verify that indeed (pp, rp) E P*R. The only potential problem is that
 maybe there is no C? unbounded in -y. But, as dom(pi) e Co for a E Ep, where i

 is any even ordinal such that dom(pi) < a, we get Ep C C', so C' is unbounded
 in y. L

 Lemma 13. Forcing with P * R does not add sets of size < A to the ground model,

 does not collapse cardinals or change cofinalities. It introduces an SA sequence

 (C, : i < cf(A), a < A+) and a closed unbounded subset C C A+ such that for
 a E C some CO is unbounded in a.

 Proof. The proof is just a straightforward adaptation of the proof of Lemma 9. 0

 The next step is, of course, to prove that in VP*R every stationary subset of A+
 reflects. Let S C A+ be stationary.

 For a supercompact t' and an ordinal p if cf(p) > ,, then every stationary
 subset of SP = {ar: a < p, cf(a) < ri} reflects. Working in VP* we define partial
 orders Q 'ii - QAi(S) for every Ai (for i < cf(A)) and every stationary subset
 S C {a < A+: cf(a) < Ai}.

 Each QAi satisfies:

 (i) P * R * Q?i is a Ai-directed closed forcing notion (in V).

 (ii) In V*R*Qs the set S is a stationary subset of (A+)v (= the ordinal that
 is A+ in VP*R).
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 If such QAs exist, then, working in VP*, for every stationary S C A+, pick i < cf(A)
 such that the set S\i = {a e S: cf(a) < Ai} is stationary. Then force with the
 appropriate d2\iX .In this forcing extension Sx\ is stationary in (A+)v R and Ai is
 a supercompact cardinal (as in V, Ai was an indestructible supercompact cardinal

 and IP * R QAi is Ai-directed-closed). It follows that

 VP*R*Q>i (S\i) k "SAi reflects",

 i.e. for some a < (A+)vR , the intersection SA, nck is stationary in a. It follows that
 in VP*R the set S,f n a is stationary in a and hence S n a is stationary. Therefore
 S reflects.

 We are left with the task of constructing the Q\ 's.

 Definition of the Q ' i Q)>i (S). We work in VP*R. Let (C,: a < A+, i < cf(A))
 be the S\-sequence generated by the P generic set, and let C be the closed un-
 bounded subset of A+ added by IR. For i < cf(A) and a stationary set S C {a <

 A+: cf(a) < Ai}, let jo be such that the set

 S= {ac e C n S: C00 is unbounded in a}

 is stationary. (Recall that by the definition of C for each a E S n C there is such a

 jo.) Without loss of generality we may assume S = S.

 A condition q E Q\' is a bounded subset of A+ such that otp(q) < A.
 The order on Q\i is that of end-extensions.

 Note that the only role of S is determining jo.

 Lemma 14. For every S and every Ai the partial order Q\i is (less than) Ai -closed.

 Proof. This is trivial as the definition of a condition is closed under unions of size

 < Ai.

 Definition 15. A condition (p, r, q) E IP * R * ?Q\i is leveled if dom(p) = sup(r) =
 sup(q).

 Lemma 16. The following holds in the ground model V:

 (a) The set of leveled conditions is dense in IP * IR * Qi.

 (b) The set of leveled conditions of P * R * Q\i is Ai -closed.

 Proof. We may assume that the minimal condition of IP * IR forces that S is a

 stationary subset of {a < A+: cf (a) < Ai} and decides the value of jo.
 (a) By Lemma 10 we may assume dom(p) = sup(r) as q is forced by (p, r) to

 be a member of Q\i and sup(q) cannot exceed dom(p). Denote dom(p) = 6 + 1
 and sup(q) =-y. Let i* be the first i such that -y e C4, and let p' be the one-level

 extension of p defined by p'(& + 1) = (C6+1: i < cf(A)), where

 00 if i < Jo,

 if jo < i <i*,

 C' U {6 + 1} if i* < i < cf(A).

 Let r' be rU{6+1} and q' = qU{6+1}. It should beclearthat (p',r',q') E P*R*?\
 is leveled.

 (b) We can restrict ourselves to the set of leveled conditions. First we note that

 in P * IR * Qzi, if two conditions are compatible, then they are comparable (i.e.
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 if (p, r, q) and (p', r', q') have a common extension, then one of them is above the
 other). Therefore, the notions of being ,-closed and p-directed-closed coincide for
 this partial order.

 Let ((pj, rj, qj) j < p < Ai) be an increasing sequence of leveled conditions. Let
 6 = sup{dom(pi) i < p} and let pp be Ui<ppi pp(6), where pp(6) is the sequence
 (C : i < cf(A)) defined by

 J0 if i <jo,

 lU{Ci: a E Ui<pqi if jo < i < cf(A).

 Let rp = Ui<p ri U {6} and q = Ui<p qi. Applying Lemma 6, it is straightforward
 to check that (pp, rp, qp) is a condition extending each (pi, ri, qi).

 Lemma 17. If in VP*R, S is a stationary subset of

 {la < A': cf(a) < Ai, C<> is unbounded in a},

 then in V*R*s, the set S is stationary in (A+)V

 Proof. We work in V*. Assume,2 by way of contradiction, that qo C Qi and a

 QS"-name Ti are such that qo forces that Ti is a closed unbounded subset of (A+)V
 disjoint from S. For al < A+ let

 To = {t: t C CQ? U {oa&a E t}.

 Note that / E t e T, * t n (a+ 1) e Ta. We choose by induction on a < A+, T' C
 T, and for every t e T', a condition qt eC Q\i and an ordinal (t such that

 (a) 3 E t => qtn(/3+1) < qt,

 (b) qt F- "(t c T", max(t) < (t < A+,
 (c) T' = {t c T. : (V3 c t) (t n (3 + 1) c To'& sup(qtn(ol?) ) < a) }

 Note that IT, I < A, so for some closed unbounded E C A+ we have

 a < 6 C E&t E T, =* sup(qt) < 6.

 Take 6 E S n E and choose t C Ci0 unbounded in 6 of order type cf(6) < Ai such
 that

 a E t&L3 E t&a </3 => E n (a> /3) 7& 0.

 Easily

 ae E t => t n (a + 1) E Ta' I q =U qtn(a+l) is in (Q\i
 aEt

 and the condition q is above each qtn(o+l). Hence a E t implies that q 1F "(t E "
 and a < (a < min(t \ (a + 1)). Thus q 1- "6E C n sI', contradicting the assumption
 that qo IF "Sfnl =0". El

 2Actually the proof is by [Sh:108], as in VP*, A+ E I[A+], then QAi (really it is Levy (Aj, A+))
 is Ai-closed hence preserves stationarity of S C {6 < A+: cf(6) < Aj}. But we give specific proof.
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 4. A GENERALIZATION

 Our main theorem is stated in terms of the existence of some cardinal A with
 the desired properties. Using results from [BD86] we get a generalization of the
 theorem to every singular A.

 Theorem 18 (Ben-David). If ZFC is consistent with the existence of a proper class

 of supercompact cardinals, then it is consistent with the statement

 For every regular cardinal ,t < A every stationary subset of SA = {6 <
 A: cf(6) < ,t} reflects and reflection of subsets of SA is retained after
 forcing with ,u-directed-closed forcing notions.

 Proof. This is the content of Theorems 4.1, 4.5 and Remark 4.7 of [BD86]. El

 Theorem 19. For every singular cardinal A, if ZFC is consistent with the existence

 of class many supercompact cardinals, then it cannot be proved that (Nl, NO)
 (A+, A) implies the existence of a non-reflecting stationary subset of A+.

 Proof. Just note that the conclusion of Theorem 18 is all we need to prove the main
 theorem. See more in [Sh:351]. El
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