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Remarks on the numbers of ideals of Boolean algebra

and open sets of a topology

Abstract: We prove that the cardinals g which may be the number of
ideals of an infinite Boolean algebras are restricted: u = y,s" and if £=<pis
strong limit then w<*= u. Similar results hold for the number of open sets of
a compact space ( we need w(z)<¥(®) = 2<§(®))  We also prove that if pw=3,
is the number of open subsets of a Hausdorff space X,u < ;,Ls“ then OF exists,
(in fact, the consequences of the covering lemma on cardinal arithmetic are
violated). We also prove that if the spread u of a Hausdorff space X satisfies
u >35{cf w) that the sup is obtained. For regular spaces u > 2°7 # is enough.

Similarly for 3{X) and A (X).

§0 Introduction.

We deal with some problems on Boolean algebras and their parallel
on topological spaces. The problems are: what can be the number of ideals
[open sets], and is the spread (and related cardinals) necessarily obtained
(remember it is defined as a supremum.) Compare with the well known
result that the cellularity (= first « for which the «- chain condition holds)
is regular. We shall use freely the duality between a Boolean algebra and its

space of ultrafilters. Recall
0.1 Definition : For a topological space X:

1) s{X) =supfld|: 4 is a discrete subspace} +#¥y (note that 4 is a
discrete subspace if A ={y,;:1 < a} and for some open subsets u;(i < a),
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2) z(X) = supf|4: 4 = {y,;: i < a}, and for some open u; {i < a),
i=j =Dy, €u; =>1i275] +8,

3) h(X) =supi|d|: 4 = {y,;: 1 <a} for some open u;(i < a),

4) §(X),2(X),b(X) are defined similarly with |4 |* instead |4].

5) For a Boolean algebra B ,p(B) is ¢{X) where X is the space of
ultrafilters of 5.

On the problem of the attainment of the supremum when the cofinality
is®; see Hajnal and Juhasz [HJ 1], Juhasz [J1], Shelah [Sh 3] 1.1 (p. 252)
and then Kunen and Roitman [KR].

On a counterexample for higher cofinalities see Roitman [R] and lately
Juhaz and Shelah [JSh]. On the number of open subsets see Hajnal and
Juhasz [ HJ2] and Juhasz [J2]; the author observed in fall 1977 (see [Sh 6] for
the main consequence) that by having a specific cardinal exponentiation
function we can get from counterexample to the attainment of the
spread when the cofinality is &, a Hausdorfl space X with o(X)* > o (X) (this
extra demand on the set theory has caused no trouble). This connected our
two problems. The author had withdrawn another announcement of [Sh 8]:
o(X)=o0 (X)N" for X a Lindelof space.

This work is written in the order it was conceived.

§1 The numbers of ideals of a Boolean Algebra

1.1 Theorem: lLet B be an infinite Boolean Algebra, (F) the set of
ideals of B, id (B) its power. Then id (B) = id (B)™.

Proof:  Suppose not, A= Minik o> Wd(B)}, so cf A=N
A=<id(B) <A Now A>2% as id(B)=2% so A=A, Ay <Ansr <A,
n

A, =A:°. We define by induction on n.,a, € B, a, Nag=0 for £ <n,

Wd(Bta,)=N,, id(BN{1— ag) = A. We should fail for some n, so w.l.o.g. for
£<n
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no a € B, Wd{Bra)=A,id{B1{l-a)= A W.log. n =0, S0
J=ta € Bid(Bta)=< Ao} is a maximal ideal. Now | B| < A (otherwise |5| = A,
each countable subset of 7 generates an ideal, there are = X'° > id(B) such

countable subsets, and each ideal of B of this form has power = Ag hence has

at most >\§° = Ag < A countable subsets. Contradiction). So W.lo.g. |B| < Ag.
Now BYB)={TeldB)Ig Rc yYUeHd(B)l—acl] has power
a€Td
= M d(Bra)=|B| +2
a€d

So % B) has power =X, Also KYB) ={J € Id(B):I ¢ but for some
a € B~/ there is no b <a,b € J-7} has power =2Ay (for each such a,]
INnBra)y=9n(Bra), and for In{(Btr{1—-a)) we have
<id(B1 (1-a)) <A, possibilities. So [d*(B) ¥ 1d(B)—-/d%B)—Id(B) has cardi-
nality id (B). For each I€ Id3(B) choose by induction on i,e; € J~7 such that
a; Na; €1 for j <a, and let al = <a,;:i < a> be the resulting maximal

sequence. Note that:

§{(B) = Min{u: there are no a; € B{i < u), a; not in the ideal generated by
{aj j #1 { i R

and let
& = Min {u: there are no u pairwise disjoint non zero elements of 2.

Clearly k < §(B), and for u< §(B), 2#=<id(B) so 2¥F < id(B). It is
known that cf §(B) >R, so (2<sBNNe = 2<8(B) hence 2B < A and w.lo.g.
2B < A, Now easily if a’ =g’ = <ai:i < a>, I n(Bra,)=J n{(Bla,) for
i <a, then I=J (if eg. I &€ J, choose z € [—J, then z is a good candidate as
a, for J). We shall prove for each @ that {/:I € [d?(B),a’ = @} <= A" for fixed
AT <A By the argument above this is equal to
RO (B?a,;):i>:1€ Hd® al =g}| which is < H(Jzz < (x>:J,; ¢ PBrla;, an
ideal, a; M a; € J; for j #1}|. Let p; = |{J:J C Bt a; an ideal (so a; & J) and
for j #1, a; M a; € J{|. So the number is < iEIap,i. Fasily iI{Iap.i =< 1d (B}, and

i < Ag but by cardinal arithmetic ( I1 p.i)s" = II uy; (or II w; = Ag) [you can
i<a i<a i<a
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see in 2.11], so Il p; < A. By more cardinal arithmetic (see 2.11) there is a
i<a

bound A" as required.

So necessarily |{@/:./ € ld3(B)}| = A. Now each @’ has length < §(B) so
A< |B|<SB) and as cf §(B) >N, cf A=8g clearly there is u < §(B),
[B|# =X Let ® = Maz{rx,u*}. So # is regular ¥ < §(B), B satisfies the ¥9-c.c.
and |B|<® 2 A and 2<® < 2<5B)< A, So |B| <P > 2<% Let x = Minf{x:x<*= |B|},
then x> 2<% x¥ = |B|® = A and (Vu < x)u<® < x. By [Sh 1] 4.4 B has a sub-
set of power x no one in the ideal generated by the others. So x < §(B)} so
X < id(B), but 2X = ¥ > A 502X > Ao s id (B) contradiction.

§2 On the number of open sets

2.1 Notation: 1) X is an infinite Hausdorfi space, T the family of
open subsets of X, any Y C X is equipped with the induced topology i.e
¥ =7(Y) ={U n Y:U € X}. Bwill denote a base of X.

2)Let o{X) =|7]l,(andfor Y Cc X, o (V)= {U N Y:U € 1}}.

3) §(X) ={|A]* A a discrete subspace of X, (i.e. (4,74) is a discrete

space .
4) B is a strong base of X if for every y € X, there is v, such that

yeverandly eucvuer=v e H

We shall assume in 2.3, 2.4
2.2 Hypothesis: We assume A is an infinite cardinal, ¢f A =¥,
(Vi) Rg=pu<Ar- y,s“ < A) and at least one of the following holds:
Mx=o(X) <A x=2a
(M x=o(X) <A y=a+,

(Il x=0(X) < ?s.g", X =A, and X is strongly Hausdorfl {which means:

for every infinite A CX there are p, € 4 and pairwise disjoint
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U, €T.p, € U, ).

2.2A Explanation: We shall want to get a contradiction or at least get

information on how an example like that looks like.

So we allow to replace X by X' if y<o(X") < AV is still satisfied; but

we shall use this for open X* only.

2.3 Claim: Assume 2.2.

1) A > 2% and we can find A, A, =)\:° <M <AA= YA,
n<w
2) W.lo.g. there are no disjoint open sets u,v{€T) such that
o{u)=yx o(w)=A (and even no open disjoint w,v such that o{u)=y,
o{v)=Agy) land even no open u,v such that o{u—v)=yx, o{v—u)=Ag but

then we pass to a non-open subspace.]

3) Wlo.g every point y has an open number u, (so ¥ € u, € 7) such
that o(u,) <A

4) o(X) = 2<%, hence if cf §(X)>8, then A>2<¥Y and wlog.
Ag > 25,

5) if {X|=35 then |X| <A (and wlog |X| <Ay similarly
[X| =22 = |X|*<0o(X)).

Proof : 1) If every y € X is isolated, X has 21Xl open subsets, but X is
infinite so o{X) = Bo 1p y*® € X is not isolated we define by induction on
N, U, €7 and y, such that : ¥y €u,, Y, €Vp. Uy NVn =¢, and
Upypp CUp, Upgr CU,. (choose yy € Xy, #Yy" then choose voug if u, is
defined, choose ¥y, € u, —{y "} and then wu,, ,,V, 4+, using "X is Hausdorfl".) So

fu, n < wl are open non  empty pairwise disjeint  hence
o(X)= |f Yun:S cwl| =%
nes

In any case o(X)ZZ““ but )\SO(X)N")o(X) hence O(X)>2s°, but
o{X) <A™, so M <A < AN
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so {Vu < A} #85 < A) hence (Vu< }\),us" < A hence we can find A, as

required.
2) Let uy =X, define by induction onn, 1 <n < w, u,,v, such that
(i) w, € T,v, € T; usually we demand they are disjoint.
(i) vy gy © Up Upay C U,

(iil) o{vp—up— Uvg) = A,
g<n

(iv) 0 (Uy —Vp— U?}Q) =X
Z<n

If we succeed, then wg are open, v,— U vg C (v, ~u,— |JVg) hence
L#n Z<n

0(vp— | JVg) = A,, so by Fact 2.3A below o (X) = Il A, = No > 0{X) contrad-
Lw»n n <o
iction.

28AFact i) Ifv, € ttheno(X)= 11 o{v,— (U vg).
n <& C»n

ii) fv; € 7(1 < &) then o(X) = T o(v;— ;).
i<a j#i
Proof : i) Let m, =o(v,~ |Yvg) and let vf* € 7(i < u,) be such that
C#n

PN (v,— Y vg)i <u,}] are pairwise distinct. If pe I u, let
£#n n<ae

v

p= U @gm) Nve) Clearly vy€ 71 and if p#ve Il w,, then for some
n<a

n<e

k.p(k) #v(k), hence Ve N (U= U vg) =vhey N (we— U ve)
C+k 2+k
#vEe) N (Ve— Uve) =v, N (W= U vg) hence Yy # Uy So
L#k Lk

o{X)=|r|= II u, asrequired.
n<w
(ii) Similarly.

We return to the proof of 2.3.

(3) Let Y=yUlv € mo{v) <A}]. If in X—Y there is a non isolated point
y", then the proof is as in 1) (with y, € X=Y). If every point of X-Y is
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isolated then: o(X-Y) =2X-Yl As o(X) is infinite easily o(X) =0(Y) or
0(X) = o(X—Y). The latter is impossible as (2!X~Y)Ro = 21X-Y| pecause it is
infinite.
(4) Ty, €v, €7, Yy € vy, for i <a, 1 #j <a, then { Yv;:S Cai is a
i€S
family of 2!l distinet open subsets of X, so o(X) = 2lal, By the definition of
§(X), o(X) = 2<¢X)_ The second phrase is by cardinal arithmetic.

(58) Assume |X| = A For any countable A ¢ X, the closure of 4 is a
closed subset of X of power =2, The number of 4 is IXIN" > 1X| =2,,and for
any such A4; |{B:B € X countable, the closure of B is the closure of 4} has

power =2, so we finish.

2.4 Claim: Assume 2.2. 1) W.log.
(*) for every y € X for some vy, € 7,y € vy, 0(v,) < A,

except possibly when: Hypothesis (1), holds (and not I or 1II) and {In) )\.2‘ > A
{hence )\:’ =o(X)).

2) |X| < Asowlog |X| <Ayso X has strong base of power < Ag.

Remark: So if A=23;, then (w.l.o.g.) Ag> 35 Ap= )\:", )\g‘ > A9, so of
exist so the conclusion of {J2, 4.7, p. 97] holds.

Proof : 1) Let ¥, = ytverow)=<A,} By23@B)X =y ¥,. If for somen
o0(Y,) = x we can replace X by ¥,. So assume 0{(Y,,) < x. Hence ¥, # X. If X is
strongly Hausdorff choose y, € XY, . As X = U V,, Yp € Yur, fynin < 0} is

n<w

infinite. By the definition of strongly Hausdorff applied to {y,:n < @] there
are distinct n(k) < , and U € T.Yp (k) € Uk, <uk:1c < m) pairwise disjoint. So
o{ug) = M), (85 Ynp) €we) and o(X)=lo(u) = T Mgy = A > 0(x)

contr.

So we have dealt with Hypothesis I11.
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Next assume Hypothesis I, so

Yoo(Yp)= BIA=ALYy

n<w n<w

So the following fact is sufficient.

2.4A Fact: If Z, C X is open (for n < @) },0(Z,) + 8y < 0(|JZy) then
n n
Ra _ - N,
O(U-Z'n.) _O(UZn) "(“O"'EO(Zn))
n 3
Proof : Let 9 =8q + }0(Z,).

We define a tree T with @ levels. Now T,, the n’'th level, will be
flun)u ¢ yZpgu €71}, the order will be: (un)=<(wm) iff

g<n
nsmu=v N(UZg) As Uy is open (as well as | Zg).
Z<n g<n C<w
|Tgl =0(\yZg)= Y 0(Zg)=4¥, and o( U Zg) is the number of w-branches of
£<n g<n C<w

T,soitis >9=)3|7,|. Butin that case it is well known that the number of

w-branches of T is 198", as required. So we have proved 2.4A.

We are left with case I, and assume that for each =, )\2‘ <A; let
C= {('13:‘)*:13 < A}, ¢(Y) =0(Y), and apply 2.5A below, we get a contradiction.

Proof of 2.4(2): Let for y € X v, € 7,y €vy,0(vy) <Ay Suppose
|X| > Ad. Clearly o{v,) = |v,| so |v,| < Ag. By Hajnal free subset theorem
(see [ J1]) there is Y C X,|Y]| = |X| such that (Vy #2 € Y)(y & v,). So
Y] <§(X), so o(X)=2lYl =2X1  contradiction. So [X|=<Ag, then
{u Nv,w €1y € X] is a strong basis of X of power < AJ + Ag. Renaming we
finish.

We can abstract from the proof of Kunen and Roitman [KJ] (or see [J2]),
the following theorem. See 4.4(2), or 3.2A(R) for a simpler proof of 2.5(1))

even weakening {(iv)to: X# |y u foreachn.
p(u)<r,

2.5 Lemma : 1) Suppose cf A =8y <A, A= )} Ay Ay <A, X a topological

n<w

space, and ¢ is a function from subsets of X to cardinals, satisfying:
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(1) ¢(4) = p(AUB) = ¢(4) + ¢(B).
(i) @(X) = A
(iii) for an unbounded family C of cardinals < A:

®if 9 € C, 4 € X(i <2%) and ¢(4;) < ¥ then p(U4;) < 3.
(i) el U uw)<A
e(u)<,

Then there are open sets u,, C X such that ¢(u, — Jug) = A, forn <w.
Z#n

2<w
2) We can replace @ by @, + @&, where:
B, if <A,,:7} €@ 2> is a partition of X, and (4{4,m{k) = 0} is open for each
k<wdeC and B C X, ¢(B)=1, then for some no-where dense set K C 92,

BNy Ad)="
neK

and

@, ifA4, € X, 8 € C.p(4,) <Btheng( (y4,) <3

n<w
3) If X is strongly Hausdorff, (i), (ii) suffice.
Proof : 1) We shall use (i) freely.

Case I (Y} < Awhere ¥ = ylvv € 1,9(w)< Al

So ¢(X—Y) = A: if X—Y has a non isolated point ¥ *, then we can define dis-
tinct y, €X—Y,—{y*} and pairwise disjoint u,,Y, € Un € T, . ¥  not in the

closure of u,. So as y, € ¥, ¢(u,) = A > A, and u, =u,— |Jug. So the u,’s
g<n

are as required. So X-Y is a discrete space hence o{X—-Y) = 21X-Y1 put

0(X—Y) = A, contradiction.

So we can assume g(Y) = A, sow.log X =7Yie,

(*yfor eachy € X for somev,y € v € 1,9(v) <A
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Case H: For every open ¥ € X,¢(Y) = A and 8 < A, and <vy Y € }’> satis-
fyingy € v, € Ttherearep € Y, openu,p € u Cv, andopen Z C 7, e{Z)= A
and v?0, a neighborhood of =z, for z € Z such that: for every z,, € Z,
plu—y vz?‘)->—'19~

nSw
We define by induction on n,1=7n < w, p,,u,.y,. ¥, and <v;‘:y € Yn>
such that

(1), CX (V)= A Yy € Y,, Yis open.

(R) for y € Y,,, v is an open neighborhood of y, v} *! C v}
B) Wy =N, Fpyy >V,

(4) Pr € Un €7, O = p(un) < By, Un O,

(5) for every zg € Y, (£ < w) p(up,~ U v},)=8,.
<o
For n = 0 we stipulate Yy = X, vy € Yy) an open number of y with g(vg)
minimal and 9 =23; + Aq.

Suppose Yn,<v;}:y € Yn> as defined. Choose ¥,4; <A such that
Tpi1 > Ap, Opyr > Vg, @(ug) when 0 <€ < n+1. Next apply the hypothesis of
the case to %,, and ¥, and <v§‘:y € Yn>, so there are p =pn41 € Yn,
U = Uy, ¥ = Ypaq, and <v;"°:z € Yn+}> such that:

.0
Yoe1 € Yo #{Yns) =X Py €up e Cvg ., zevPPer, and for

z2g € Yp4i(€ < @), 90(’U'n+1_QU 'U;L,z'o) =z Bp
<w

We let v+ =020 vl
Easily everything is o.k. Now in the end, as ug C vg, for £ <m, and by (85)
forn

?(u’n_ U uﬂ) = p(u,— U ”;g) =4,
@on g>n

Asfor € < mn.p{ug) <9, clearly
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p{u, — | ug) = B¥,, as required.
C#n

Case III: Not Cases LII.

So (*) holds, and there are open Y CX,p(Y)=A, ©¥<A and
(vy:y € Y> Y €vy, €7, witnessing the failure of Case II. Wlog X=Y7,
Vel yeucylucen)=e(u)2p(v,) If p(v,) =9, by (iii) @ :

(*%) if P EUET, u C vy, then e(fz € 1! for some
v € T,z €v,p(v nu) <9}) <A [ if this fails p,u,Z = {v: (v N u) <A} and
<'uz°: z € Z> where z € v0, @(v0 M 1) <A, exemplify Z,% do not witness the

failure the assumption of Case II}.
Define by induction on n,p,f € Y,u,f' €71, for ¢ = 1,2 and 9, such that:
(D pfewtul nul=¢ uwlcu,
(R)8 <98, € C,8,21,,9,,,>7,.7.

(3) v, < ¢(’u.,3),¢(u,?) <Vp 41
(4) for every open neighborhood v of pk, if m <n:
p(ul ) =9

For » =0 choose 85 € C,8;> Ag+ ¥ then choose p! #p? in Y such that
p(v,g) =9 (possible by assumption (iv)) and then  choose
uf erpf ceuf gvpg,uol Nnu§ =¢. For n+l, choose first ¥, € C,Bpyy
larger than ﬂn,)\nﬂ,:p(ug), o p(w?) for € = 1,2 (remember (¥). Now we
should choose p,l,,.p,2,;, such that @(vpe, ) = Fp 4y, and for each £ =n, (4)
holds. Each demand excludes a set in {4:¢(4) <A}, (note that
Ulvp:o(v,) <9} satisfies this by assumption (iv)) so there are distinct
Prs1.Pfe1 as required, and now choose disjoint wu,l,; 1,2, such that
Per €ulyy Ypkiy

Defineforn € 92, A, = N ui N N (X—u,).
7(n)=0 n{n)=1



Sh:233

162

We define by induction on n < w, 1, .k, ,m,, such that
(a) mp, € 92
(b)n =k, <my <kpyy <Mpyy
(e) for € <m,mglk,) = ng(my,)
(d) plud, Nws NA,)=V.

For n=0 let k, =0m, =1, now @(u muﬁn)aﬁh by condition (4)
above. Then there is 7, is required in (4) by @. For n.> 0 we first can find &,

m,, as required in { b),(¢) and then 7,, as above.

Now let u, =ud M uzZ . So now by (¢) ug N4, =¢ for £ >m, so

U= U U, N %, 24, hence

g>n

plu,— Jug) =13, as glug) <9, forl <n, g(u,— | up) =9, so we finish.
g>n 2#n

2) Similar proof - instead %, N u,?,m we use finite such intersection and

strenglhen (4) accordingly (and {n,,] is replaced by a no where dense set.)

Remark: If in 2.5(1) we weaken (iv) to @(X—tu: e(u) <A i) =Ax, by
changing ¢ so to satisfy (iv).

2.6 Lemma: 1) Suppose X is a Hausdorfl space, B a basis for X and
o(v) < Ag for v € B. Suppose further that 2<% < ¢(X), A, < 0(X) and for no

€ < §(X), (Ag)* = 0(X). Then [§}<§(X) >0 (X).

2) Under Hypothesis 2.2, if {*) of 2.4 holds, cf §{(X) > 8, and Bis a basis
for X then | B|<¥%0 2 6 (X) (so for some x and ¥ : x<? > o (X) = (y + 2<%) + @),

3) If X is a Hausdorfl space 3;<0{X)< o (X)s" then for some
T {(x +2%)*" < o(X) < x<%.

2.6A Remark: The conclusion in 2.6(3) implies 0¥ exists by the covering

lemma, and similarly much more.
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We first prove some facts, where B is a base of a Hausdorff space X and

o{v)= Ay forv € B

2.7 Definition : 1) We say v = <'v.¢:2'. < a> is good for u (where u,v; € 1)
if

(Dvi—u # ¢
(ii) v; € B (hence v; € T)
(iif) fori # j <a,v; Nv; Cu.

2) We say ¥ is maximally good for u if ¥ is good for u but
fornowv € Bis 7~<v> good for u.

2.8 Observation: 1) For every u € T there ¥ maximally good for it.
2) If <’u,;:71 < (X> is good for u, then & < §(X).
Proof : 1) Immediate.

2) By (i) of Definition 2.7(1)) there is y; € v;—u. Now y; € v;—u € T, and
1#j] =>y; € v; (astheny; €v; N v; —u.)

29 Fact: Let G = §<U,;:i < (X>i v, € B, v; & Ylv;ij <a,j #1ii |
1) If 7 is good for some u then ¥ € G.

2) For each 7 = <vi:i < ¢x> € G the following two sets has the same
power:

Py = {u:v is maximaly good for u}.
@y = {<Ji:i < a>: U winvy) € Jg oy, (so J; # v;) and J; is open §.
i
Proof : 1) Immediate.

2) We define H, a function with domain Pv:H(u)z<Ui(\u:i <a>.
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Clearly H{u) € §,. Now H is one to one: if H(u;) = H(uy) but u; # u, then

w.log u; & uz choose y € u;—~uy then choose v € By € v Cu,;. Soy wit-

ness v & uy and for i<awv NvCu; (as v Cu;) but v Ny Cyy,
Uy YV =Ux N\ Y; SO also v Ny, € Uy We conclude that v contradicts the

maximality of 7 {as good for ug). So H is one Lo one.

Now for any <.l,;:i < cx> € Gy, J % J; is an open set and easily
i<a
vy MY €k CJ for i#jJ N =4 and v; € J. So ¥ is good for J. Let
u® = Ylu:7 is good for u,u N v; = J;} Easily ¥ is maximally good for u"* and
Hu') = i <a).

2.10 Fact: For 7 € G, for some ul, = I uf and pi<
My l Cy | i(Q(v)“v Hy

Proof: Let pl = |{Jem Uly; Nv;) €J vl Clearly Bk <o(v;), but
J#i
v; € ?so ;1.;; = Ag. By the definition of @,1&;| = I;[ p.g.

2.11 Observation: By cardinal arithmetic:

kL
DI p= I<I M; then u =QH1(XQ)"(Q), where n < @,, xg < supfp;:t < ai,
< m
7
YeE) = |al. Also (Vi <a)lxe >ps >x001 2> 6(2)=cf xgl and
g=1

x(2) = i - p = xg, and (Vm)[Xp, < Xg =DXm < #l}]

2) In 1) if p > u; for each %, u infinite then g ° = u; in fact u = x * for

somex=< Y Ro=<k=<jal.
1 <ax

3) Suppose x=2%, then Iy, a<s,u;<x for each i <a but
i<a

IT u; > x} is finite.

i<a
4) If x = 2°5(s = 8;) then for some ¥ <s : x® = x°.

Remark: In particular, in 8) {A%: 29 <A} is finite. When I visited
Budapest (in April 84 ) I learned that this already appeared explicitly in the
Hungarian book of Hajnal on Set Theory.
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Proof: 1) We define xg by inductionon € ,x; > x> - - - . Let x; = szlp,u%b
A

If xg is defined and is a successor cardinal, let xg = (xg+1)" If x¢ is defined,
x¢=1lletn =¢.

If x¢ > 0 is a limit cardinal, let xg,; be the minimal x < xg,x = 1 such that for
every X', if x < x* < xg then

() Jti<ax<p; < xgd| = |4 <ax” < py = xe}l.
Now x exists as< i <o x<pu; =x)l:x< xg> is a decreasing sequence.

n
Clearly for some € xg =1, so € =n. Now Il u, = ng s Xee1 < 1y = Xel
i<a =

(remember p; # 0, and we can ignore u; = 1).

By (*), T{asixe1 < 1y < Xe} = xE©, where 1(€) = |fi:xgs1 < i < xe} |-
The last phrase is easy too.

2) Basy.

3) By 2) if .gui‘zx, i =x.ax<s then for some ¥=<yxk=<|al,
Lo

9= 11 p;, so =y*<(Ilu)* =3 =98 hence TIpu;=x" where
i<a i<a i<a

x < |a]. So it suffices to prove §x*:x < s} is finite. Suppose x*) are distinct

for n <w, where for each n «(n)<s. Wlog «{n)<gn+1). Let

Xn = Min {u:pu=™) = ¥, so easily:
(i) for each n, X5 = Xn41-

(if) 3™ = x=).

By {i) w.lo.g. <xn: n < m> is constant; as we have assumed
x*™): n < w} are distinet, by (ii) {x5™): n < @} are distinct.

But (Vo < x,)0%™) < x,,, hence (Vo < xo)(Vn < @) (65") < o), and clearly
o (k) = (1), s0 xE™) = x5 0) = 5§70

tradiction.

. But x=") = y5(n) are distinct, con-
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43 Follows from 3).

Proof of 2.6(1): Suppose |B|<§(X)<O(X). By 2.8(1), 2.9(1),

T = {P; 7 € G}, hence o(X) = < B 1P| By 29(2) o(X)< 3] | gy, and
veG gl

by 2.8(2), |G| = |B|<$™). So to get a contradiction it suffices to prove that
sup{|@,| : 7 € G} <o(X). By 2.10, |@,] = g[( )“’17 where pt <A (as v; € B by
an assumption) and £ () < §(X) (by 2.8(2).) W.Lo.g. (Vi)(uf > 1).

Now by 2.11, for some natural number of n {7} and cardinals Hygg = A and

k(D,2)<2(7) <&§(X), for {€ <n):

n (V)
11 = 11 (i )9

so if g, is infinite, &, = QMQI (“;(g,z))'
=in 7

But (u, )“(‘7*@ = A implies (u,; Q)“(ﬁ'e) =Af70 g0 | &5 | = Ap, implies that
for some lc('u) =2(9), |G;1 =Af =) But ¢(7) < §(X).

So we have proved: if |@;| = Ay then [@,| = A§ £(#) where k(v) < §(X). But
we have assumed (Ag)*") #o0(X) and we know @y | = | Py | =0(X), so
necessarily |@;| =X => @] <o(X). But Ag<o(X) so [g;] <o(X). The
same  argument gives, sup{l@;|:7 € G} =sup[{rg} U A £ <F(X),
AF <o(X)}] but by 2.11 this is AF®, for some x(0) < §(X) hence this

supremum is < 0 (X), which we have shown is enough for 2.6(2).

Proof of 2.6(2): We use freely 2.3, 2.4. So (w.l.o.g.) |X| < Ap,X has a
strong base B,|B| < Ag, 0 (v) < Agfor v € B, and 25&) < o (X). As cf §(X) >R,

(2<S)No = 2<S) hence 29N <A hence wlog. 2@ <A, So all the
assumptions of 2.8( 1) hold, hence |B|<*¥) >q(X) as required. The last

phrase holds if we choose x =18l ¥ = §(X). Note
(x+2)*=(|8] + 2N+ A ¥ < o (X) (as )\0 = Ag also (AF™™ = A¢™) and

o(X) < | B|<S(),
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Proof of 2.6(3): Now X satisfy / from Hypothesis 2.2. If (*) of 2.4 holds we
finish by 2.6(2). Otherwise by 2.4 for some n )\:’ > A, hence )\7:;1 > 0(X), hence
An > 35 {as 0{X) = 3,). Remember )\:" = A,. Let x = A,, ¥ =3¢, they satisfy the

required conclusion.

A corollary of [Sh 1] 4.4 is

2.12 Observation: If £ is in infinite Boolean algebra then
IBI<§(X) < 2<§(E).

Proof: Let k& be the cellularity of B, so & is regular, >N8g,k < §(B), and
let A=Min{AA<®= |B|}; as « is regular (A®)<f = A< If A > 2<% then (V
1 <A) u® <A, and by [Sh 1] 4.4, A < §(B) so 22 = A%* > | B|, hence
'B | <$(X) « (|B ]A)<§(E) < ((2)\))\)<§(B) - 2<§(B)

If A=R2<%, then |B|=<2%,; remember k=5§(B) now if «=75(B), then
| B|<8(B) = p<8(8) as x =§(B) is regular; and  if k < §(B),
IB l <8$(B) « (2‘:) <&(B) - 2<§(E)‘

2.13 Conclusion: 1} If B is a Boolean algebra, id.(B)s" =1id(B).

2) If X is locally compact Hausdorff space then ¢ (X)ﬂ" =o{X).

Proof : 1) Let X be the space of ultrafilters of B, considering B as a
basis. So id(B) = 0(X). By 2.6(2) {note X is strongly Hausdorfl) o {X) < o(X)s"
implies | B|<¥(8) > ¢ (X), but o (X) = 2<¥(X) = 2<¥(B) contradicting 2.12.

2) We need the parallel of 2.12, which is proved by translating the proof
of [Sh]4.2, 4.4 to topology, which is done in 2.14 below.

2.14 Lemma : Let X be a locally compact Hausdorfl compact space with

cellularity «.

1) I (V8 < u){(9<F < u) (so 2<f < u} and every basis of X consisting of

regular open sets has power = u then §(X) = u.

2) If u is regular, X has a subspace Y whose topology is a refinement of
A
2.

Note: Theorem 2.14 was prooved by F. Argyros and A. Tsarpaleas indepen-
dently of [sh].
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Proof: The proof are like [Sh ] 4,2, 4.4; we concentrate on 2.14(2), so &
is regular {anyhow we shall use only this part). Here @ denote the closure of
u. Really it is a repetition of [Sh 1] with one change; use of compactness for a
family of sets u&—u—é

2) Let B be such a base. W.log. (Vu € E)[ﬁ is compact] (otherwise
replace B by fu e B:4is compact}). Let x = (22")* |H(x) the family of sets of

hereditary power < yx. We define by induction on i < u, N, < (H{)),€), such
that Be N;, |INI]l < w, (N} j $i> € Njy1.N; < N; for j<i and every
sequence of < x member of N; belong to N; when 7 is a successor ordinal.

(hence when cf i =«). For each i <pu, let B ={u € N;: u regular open,
~Y

Zcompact]i.

As |B | < u by a hypothesis it is not a basis of X, hence there are in N4,
o~
p; € Xul € B, p; € uf, such that for nov € 8, p; €v Ccu. We can find for
~1
¢ <3, uie € B, such that p; €uig, u}“ (;ut-g. Restrict ourselves to case
~i+1

cf 1=k

Let Jiz[],;e] be a maximal family of pairwise disjoint open sets

u € B,u cuf [u nuf =¢]. So JEIE, are subsets of N; of power < k (as & is
~e

the cellularity of X) hence Jig,Ii‘Z € N;. Let Aie = X—U—Iei, s0 A,iz is open,
belongs to N; (non empty ) uf € Af (as X—uf is closed, ULf ¢ X—uf) and
there is no open {(non empty) v C A,;z—'u,,;e, v € N;. Also A,iﬁ € N;. Let Biz = UJ,-IQ,
so B,;Z C u,;e,B,;e is open belongs to N; and there is no open v < uiQ—B,;ﬁ, v €N
By Fodour's Lemma there are A% B% such that S ={ii <, cf i<k
A,ie = AQ,B,;Q:BQ for ¢ = 0,1,2] is stationary. It is enough to prove

(*) for disjoint finite w(1),w(2) C S,

N uid U ug
acw(1) Bew(2)
As then for any non empty w C S, i?jg ——ué:a cw,f € S—w} is a family of
closed sets, the intersection of any finitely many is non empty and u—ﬁ is com-

pact for a € w, so there is g,, in the intersection. So {((q[al,ug):a € s} exem-
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plify §(X)>pu, and if S={§&: i<u} , let H:*2->X be define by
H(M) = Qyg, 45 ni) = 03 Uteyy then ¥ = {H(n): p € *2] is as required.

Let RO(X) be the Boolean Algebra of regular open subsets of X. So in
RO(X) we identify u € 1(X) with int{&) (and so the operations are changed
accordingly). So RO(X) is complete, in RO(X) 1 4; =int({J4;) ic. the

i<a i<a
interior of Y4 M4 =i( n 4;). So KO(X) satisfies the x-chain condition
i<a  i<a i<a

and RO(X) N N; is a complete subalgebra.

So in RO(X), Af is minimal such that 4% € N;, uf c Af and Bf is maximal
such that Bf c uf, BE e N,

Proof of (*): We shall work in RO(X) and prove by induction on
n = |w()] + |w(@)];.

(M*ROXVE N uwie U w}fuyBl
acw(1) aew(2)
When n is zero the statement is obvious. Let a = Max {({w(1)yw(2)) and
Maz{(w (1) yw(2) —fa)) =B < a.

By the induction hypothesisv = u? - U @ U Blis #0 (in RO(X)).
yew(l) yew(2)
rFEa T#+a
Clearly v € B, and if (* fails then v c Bl =8B! ( if acw(2)) or
~a

¢=v N A2 =v N A% (if « € w(1)). In both cases a contradiction follows.
2.18 Conclusion: For locally compact X, w (X)<F@) < 2<5(0),

Proof : Suppose w (X)<SW) > 2<5(X) et y = Min {u<* > w(X)}{, where k is
the cellularity of X. Clearly x < §(X),p = w(X), and (Vx < w){x<* <) (as
(X*)<* = x<*, x  being regular). So by 2.17  u<&X) but
[w(X) ]| <FE) < (u<e)<EW) < [, SE) g (2<)<EW) < 2<5&)  contradiction. [if we

want to use only the part of 2.17 actually prove, note that
a) g = §(X) is singular (by the previous argument).

b) i @ is not  strong  limit, let ©®<u=2® so
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;:w(‘)()<§{X} < (“<:)<§(X) - “<§(X) < (21’)(5’(){) = 2<5(X) contradiction;

¢} if g is strong limit singular §(X) = u is impossible (see [ J2] or 3.4.]).

§3 Nice ecardinal functions on a topological space.

3.1 Definition : 1) ¢ is nice for X if ¢ is a function from subsets of the

topological space X to cardinals satisfying
(i) p(4) = (AUB) = ¢(A) + ¢(B) + ¥y ( i.e. monotonicity and subad-
ditivity)
2) We call ¢ (x.u)-complete provided that if 4, C X, ¢(4;) <xfori<pu

then ¢( U 4) < x.
i<

Let C{g.pu) = {x: @ is (x.44)-complete].

3) We call ¢ (<Au)-complete, if for arbitrarily large x < A,p is (x,1)-
complete.
4) Let Ch, be the function from X to cardinals
Ch,y) = Minfep(u)y € v € T7(X)}
3.1A Remark: 1) We can replace i < u by i < a < g and made suitable

changes later.

2) In our applications we can restrict the domain of ¢ to the Boolean
Algebra generated by 7{X) and even more, e.g. in 3.2 to simple combinations

of the ’Uféké'{.
3) We can change the definition of ( < A,u)-complete to

(%) if 4, € X(1 <), Sup ¢(4;) < Athen (U 4;) <A
t<p LX47
without changing our subsequence use. [we then will use: if ¢{4,) < x; for

a < pthen ¢ U Aa) < Xis1)
- 2473

3.2 Lemma : Suppose A is singular of cofinality ¥, A= )X, X <A,
i<B
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¥ < Aand p =35(9)  or even u = 3,(3,(9)) I
(i) @ is nice for X.
(iii) X, = {y € X:Ch,(y) = x;} has cardinality = ufori <.
{iil) @ is (<A,u)-complete.

Then there are open u; € X(i < ¥) such that
¢(’Un"“’Uluj) =X
jrt
Remark: If |{y € X:Ch ,(y) = x;}| < g it essentially follows from {x;.2)-
completeness that @(X, ) =X where X, = Ulv € 7(X):p(v) < x}. Otherwise
¢(X—X,) = X by additivity, but o(X—X, ) <Ti{p(ly})y € X=X, ] so by (x;.1)-
completeness for some Yy € X, ¢({y}) = x; which is impossible for the

instances which interest us.

Proof: W.lo.g. x; € C, C ¥ C(p.) M A. Choose dinstinct Yi ¢ € X—X,, for
1 <8, E<

Let uf (i <0,{#{<pu) be open sets such that y;g€u; ¢, and
u?:.f,{ n ui"é = ¢ NOW

(*) for every i < 9,£(0) < £(1) < ¢(R) < u, there is T = ; gy £(1),¢(2) Such that :

(8) € U g(1).£(0) M %i,8(1),£(2)
) if Pl e X—Ujpe:j <9, £#¢<p,

[Pl<s, and z € A then o(NA)=x;
Aep Aep
If (%) fail, (for ,£(0).£(1),£(2)) then for every =z € wy gi)g0) M Ui g(1).£(2)

some [7 contradicts (b). So there are PJ; ¢ T' (i < a), Pl <9, ol N A) <x.
A€p

and U N4 2%gne0 N%enee As a< |F?=p®=p by the (u.p)-
i<a A€p,

completeness {as ¢{ N 4) < x;):
A€
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elus gy e N gye@) = 1 ol N 4) <x
1< A€

But yi,f(l) € ’u’i,.f(l),f(()) M ui,é(l),E(Z)’ Yi.g(1) 4 Xx{, contradiction. So (*) holds
and let x; ¢g) ¢(1).¢(2) exemplify it. Now define a five place function F on
tys gt <O &< pl ifi #j <8 £0) < £(1) <&(2) <p, ¢(0) < (1) <

F(Yi 400y Yi.801)Y4.£2)Y5.400) Y5 .4(1)

is O if 2; g0),£01).£(2) € %j.¢(0).¢(1) @nd is 1 otherwise.

By Erdos Rado if p = 34(¢)* and [Sh 2] if u = 3,(3,(9)*)* (see remark 3.18
below) there are £(1,£) (i <49, ¢ < 3)suchthat fori #j <:

F(Yi 4,0 Ys,86,1) Vi £60.2)Y5,6G.0)- Y5 4G 1) =
F(Y5 20,00 Y5 86.1) Yi £6.2) Y5661 Y566 2)
(and &(1,0) < &(i,1) < £(1,2))

We can conclude that

T £(1.0).£(,1).£G.2) € U5 £(7,1).4(7.,0) 1 %5 ,£(5.1).€G 2)
(because u; g ¢ M U ¢ = ¢ for & # ).

Let us =1 46.1).66.0) N %iG.0).£6.2) S0 Tig(i,0),86.1.46.2) € W~ U, and by
VK i

the choice of ; ¢(; 0).¢(i.1).66.2) % clearly g{u;—Uu;) = x;, as required.
i

3.2A Remark: 1) The demand on u is (see [Sh 2] Definition 1) to be able
to use that <(p.),,> have <(3),,> -cannonization for §<2;3>%,<3;2>2], but
really §<2;3>5,<3;2>%}.

Really we can define F for any five tuples from {y; ¢ 1 <3, £ < g}, and it
is enough to find &(i2)<u, a{i,€)<v¥ (for 2 <V, £ <3) such that
9= Sgg (Zggg afi,2})), [k #m => £(ik) #¢&(i,m)]andfori <j < ¥,

1

F(ya(i,o),f(i,o)’ya(i.1).{('&,1)»ya(i.2),£(i,2)' ya(j.o),f(j,o)rya(j,l),f(j,1))
= FY a(4,0).£6.00Y a(i,1),£6.1)Y a(i,2),£6.2)0Y a5 1).6G.1)Y al§ 2).£0,2))

2) If ¥ >R, is weakly compact, u = 2% is ok, in fact we can use just
iyi'oi 1 < 'Iy; by 32A(l)
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3.2B Remark: How do we apply [Sh 2] in the proof of 3.2? By the compo-
sitioin claim [Sh 2, Claim 5, p. 349} it is enough to prove that:

(a) <(32('-"2(73)+)+),;> has a <(32(19)*+)),,>-canonization for
{(2:3)3, (3:2)5).

(b) <(32(19)++},,> has a < ((2")*)9> -canonization for {(2;1)%] really even
for §{2;1)a,6h3-

(c) <((2"’)+)19> has a ((3),,> -canonization for {(1)Je}.

Now (c) is trivial, and (a) we get by e.g. applying [Sh 2, 8(B), p. 248] twice;
Now to get (b) (and even for f(z;l);z(f)f) we apply [Sh 2, 8(F)] with
S =9, Ag =3(I)*, ke = (2%)*, and check the condition.

3.3 Theorem : 1} If w=35(cf MY <A, or p=3,3:{(cf M ' <A Xisa
Hausdorff space, with spread A, then the supremum is obtained, i.e., §(X) # A.

2) The same apply to h(Y),z(X).

Proof : Suppose X is a Hausdorfl space, §(X)=A. Let A= 3, x;,

i<cf A
X <AOEcf A, let |4 =x;, 4; discrete wlog. X= () 4 and let
i<?
@(A) = |A}, and let C be the family of regular cardinals < A but > u. Now (i},
(ii1) are immediate. If (ii) fail for x, by Hajnal free subset theorem the spread

is A. Otherwise we can find by lemma 3.2 open % (i <cf A), |u;—Uu; | = x;
i#i
w.l.o.g. each x; is regular >cf A, so for each 1 for some oy <cf A,
(u;— ;) N Ag, has power x;. The rest is easy too.
j#i

3.4 Lemma: Suppose « is a strong limit cardinal, X an infinite Hausdorff
space, o{X)=k. I o{(X)*>o(X) then for some Y CX and
x| XI=x=x*<e(X),|X-Y| <k7Y open, o(YY=0o{(X),Y =
Utv € To(v) < x}, so Y has a strong base of power x.

Proof: For & =R, this is trivial; if & is strongly inaccessible then x is
the limit of strong limit singular cardinals, and it suffice to prove it for each
of them [let for o < x



Sh:233

174

Xo = Minfy X—fu € 7: o(u) < x} has cardinality < o}.

Zeg=1y €X: Cho(y) =2 x,} (=X—Ulu e7:0(u) <x})

so when o increases x; decrease, (and x, is well defined: x, < o(X)); so for
some 0(0) < £, Xg = Xq(0) hence Z, = Z 40y whenever o(0) = o < k. W.lLo.g. a(0)
is strong limit singular; checking the definition of xg.xc= Xo(o) (as
Cho(z) =k for z € Zg) For every strong limit singular o, 0(0) < ¢ < «,
as 3.4 is assumed to be proved for it, there are x,Y as required; clearly (by
the "Min" in the definition of x,) X =Xe=x=Xx%% so xJ°<o(X). As
o(X)=k>0,k strong limit regular, clearly o(X)=x=> 2, hence
0{X) > %%, so either x5 < (2<)<* =2<F < g(X) or by 2.11. x<* = xZ for some
o < k, hence x5° < 0 (X). Now x = xX* is as required (if |X| > x use Hajnal free

subset theorem.)]

So w.log. xis a strong limit singular cardinal. Let X be a counterexam-
ple, L.e. 0 (X)<F > 0 (X).

Let A=Mn{A: AN =20(X)}, so A*=0(X)*>0(X), and A=o(X). Also
[6<kx<A=>x"<Alandcf A=k let ¥ =cf A so¥<k but 9 is regular
so? < k, and also u ¥'35(¥)* is < &, hence (Vo < k)o* < A.

We define the function ¢:
9{4) = |{u NA4:u is an open subset of X}|.
The family C of cardinals will be §{(x*)*:x < Al.

Now we want to apply the lemma 3.2. Its conclusion clearly suffice by 2.3A
(ii) . Now "¢ is nice for X" and "¢ is ( < A,u)-complete” are immediate. So (ii)
necessarily fail for some x <A So Y = fv:o(v) < x}] satisfies |X—Y]| < u,
hence o(Y) =o(X) [as 0(X—Y)=2* <k =<0{(X)]. Also |[Y]| <A [otherwise by
Hajnal free subset theorem , §(X) = §(Y) > A, hence o(X) = 2*, but 2* > o (X)
so o(X) = 2* hence o(X)®=0(X) contr]. So ¥ {(as a subspace) has a strong
base gof power <y + | X| <A,

3.5 Conclusion: If X is Hausdorfl space, & strong limit cardinal o (X) = «,
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0(X)<* > o (X), then for every base Bof X |B| <) = o (X).

Proof : See 3.3, and apply 2.6 to the space Y.

3.6 Conclusion: 1) If B is a Boolean Algebra , « strong limit and |B| =2«
then id (B)<* = id (B).

2) If X is locally compact Hausdorfl space, « strong limit, then
0 (X)<* = o (X).

Proof : 1) By 3.5 applied to the space of ultrafilters of B5,
|B|<(®) = o(X). By 212 |B|<®) =2<B) and clearly 2@ <o (X), so
| B|<8¥(B) = 2<8(B) = o(X). Now cf §(X)=« by 3.4 {as §(X)=35(u)* whenever
u < k), hence (2<5(¥)) <k = 2<8(X) A5 id (B) = o (X) we finish.

2) By 3.5 | B] S > o (X) for every base B, but by 2.18 w (X)<¥(0 < 2<5(0),
As 2 < o (X) we get 20 =5 (X), as §(X) = k (remember k strong limit,

0(X)=«) by 3. 4cf §(X)= k hence (2<X))<x = 2<8(X)

Remark: If you want to apply only the part of 2.18, 2.17 actually proved,

separate the case A is strong limit in 3.4.

§4 Further consequences.

4.1 Claim: Let B be a Boolean Algebra , x a cardinal, and we define by
induction on 1, ideals L = IX(B) increasing continuous:
=10}, L=tz e B:id({B/ L) {x/[)) <x3} where x; is choose as a

minimal cardinal < x such that [, # ;.

1) For some 7 =7(*) =1(B) < |B|¥,1,(+) is defined but not x,(s) (nor
Ly(s)+1)-

2) B = Iy or for every z € B—I,), id ((B/ L) 1 (b/ L)) = x-

3) The number of ideals J C I ) of B has the form 3 uE® where
a<f

B= BB u, <x,cla)<5(B).
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This follows from:

4.2 Claim: For a Hausdorff space X with a base A and cardinal ¥,

define by induction on i u; = uX(X) :
Ug = ¢

Uiy = U v v € B ,o{v—u;) <x;} where x; <A is minimal such that

Ugyq # Uy Ug = U"Un’ {so u,; is increasing continuous.)
i<
1) For some 7{*) = »XX) < |X|*, (and 7(*) < [w(X)|*) u () is defined

but not Uos)yy and for everyy €X—u ), (Vo) (y €v € 7 > 0 (v —uys)) = x)

R)  oluywy) if >|B|<*X) has the form Zy.,‘;(“) where
~ a<f

B=|BI<$B) [u, <x, orp,=xx(a)=cf x] and k(a) < §(X).
Proof : Like 2.6.

For every © € u.(+) choose by induction on 1, ¥;, such that:
(v; Ny Cuforj<i.

(ii)v, € u,v; € B

(iif) v; Cugqy) for some a(i) < y(*) but for no B < a(i) and v Cuy, is
v' g u, v Cugandv € 7.

So let B be first such that vg is not defined. By (iii) for each ¢ < 8 a{i) is
successor ordinal and YUg()-1 NV CU. As in 2.6 ¥ = <'uj:j < ﬁ> s U MY Yy

determine u, the number of u corresponding to ¥ is Hp 0 (Vi U g1)—1— U V)

i< At
each multiplicant is =o(y;)=2x; <y, f<5§(X) and the number of ¥ is
< |B|<s()

4.3 Remark: At least for compact spaces, this gives heavy restrictions
on the relevant cardinals.
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Let By=xy<--- <k, list the cardinals « such that 2* < 0(X), and for
some A=Alk], k=cf A, and A*>o{X)>A but (Vx<A) [x*<A] so
0(X)® =0(X) <0o(X)™ (if there is no such x we have no problem). As
Akg] =A[x,] implies x, =&y, and [k, < x5 = A([k,]) > A([xp])], clearly n
is finite and trivially each kg is regular and let for € =1,n,
Ag = Minfh: A" = o (X)]; but Alkg] = Mg (as Algg]* = 0(X))) and Afxg] < Ag (as
(Vx < x[eg]) [X* < A[xgl]), so Alegl =Ag. Hence cf Ag=kg, Ag> Ay > " > Ay,
(Vx < Ag)[X™ < Ag]. Moreover (for € < n) (Vx < Ag)(x<**' < Ag) [first suppose
X<A kg=<D<kKg,,, if x*=x; then x?2A%2A"=0(X), wlog x is
minimal with this property, so x* = o(X) > 2°*' > 2% hence x > 2%. Clearly (V
E<x)(u®<o(X)) hence (Vu<xy){u®<x), and cf(x)<® ( otherwise
=3 lal?<x<Ag=<o(X) contr.). So cf x<% < kg4, and by x's minimal-

aly
ity (V< x)(usf X= u® <yx). Lastly cf x> kg [otherwise x? = x/ X< ¥ < Ay
contradicting the assumption of ¥]. So ¥ € {xo, ...,K,}, contr. Secondly

suppose x<**' > Ay, for some x < Ag, as ¥ < kgy; => 2% < Ag, by 2.11 for some

<K@y

V< kg, X0 =X and we get the first case].

Lel Ay = Minfy 2X=20(X){ and K,y = Cf Aueq SO0 A4 = A, hence, as
above) (Vx < A, ) (V8 < A1) [x® < A,]. By the proof of 3.4 35(xg)* = kg4, (for
€ <n), otherwise using A,,kp,u = 35(kg)* we get contradiction. If A, ,q is
singular, <2x: x < )\n+1> is not eventually constant [as then
(AX < Apyq)2X = 2X01], 2P < 6 (X), (2Pnu)Enr = oA 5 (X)), so
Mkn1] = 2, 50 Ay = Mgy hence 2ggen)(o) 2 0(X), 0(X) < = 0 (X). T Apay
is regular, then (VO < Ap4q) (Vx <20 [x? < A,] hence 25(k,) = Ayyy, SO We

get the same conclusion.

4.4 Lemma: Suppose X is a Hausdorff space, A a singular cardinal,

Y=cf A= Y x.x: <A p<Aand (i), (ii), (iii) of 3.2 holds { for ¢).
i<®

1) If o =35(8)% (or even Y, 33{0)*%) then there are open sets u;(i <¥)
o<Y
such that g(u; —u;) = x;.
i»i

2) If X = yYfu:o(u) <A}, g as in 1) then there are open sets u; such
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that p{u;— 1 %) = x;.
g#i
3) If u=34(2%%)*, ¢ is ( < xp.u)-complete, then there are u,;(i <) such
that g(u;—uy) = xo (so X, x;(0 <% <), are irrelevant).
j#i
Remarks: 1) Part 1) of the lemma is suitable to deal with Boolean alge-
bras, part 2) with existence of {z,: a < A} such that for every a < A for some
U, Za€u N{zg: <N Clzg: B=ai.
Proof: 1) We repeat the proof of 3.2, for p =3,{89)*, but cannot use the

partition relation used there, but we can use a weaker one. We choose by
induction on j <4, £(j,0) < &(7,2) < €{j,R) < p such that fori < j:

F(Yi ¢6,0) Yi£.1)Yi.66.2) Y5 .00 Y5.66.1)) =
FyYs g6.0p Yi.66.1) Yi.66.,20Y5.6G.1) Yi.66.2)
This is clearly possible by the assumption on u.
Y

We can COHClude that, lettlng ’u"i. = u‘i,t(i,l),f(i,o) r\ u";,f(i,l),f(i,z) then

Ty £(4,0),6(1,1),£(1,2) € Wy~ Uy, so we can get the desired conclusion.
i>i

2) In the proof of 1) we can take care that for every i <8, £ 2 £ < p,
Uy ¢ ¢ satisfies 0(u; ¢ ¢) <A; hence we shall get o(%;) <A. So by thinning the

sequence <ui: 1< 19> caso(u )= x;, A = sug X; We can assume:
i<
[P <j =>o(u;) <yl

As ¢ is (<x;.u)-complete, ¥ < u, necessarily o ({J u;) < X;- Hence
i<j

of{u;— u;) =o{{u;— U %;)—U ’“j) =X
J#i j<i j<i

as required.

3) Really the proof is as in 3.2, but we use (for o =2, & finite large
enough, note u =3,(c<%)*; is 0.K. in 4.5):

4.5 Observation: If F is a S-place function from p to o, =292
B ()] ¥=RE g5 (3)2 [eg p>3,(¥27) =35(0°%+K) k= (2°9)* +¥],
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k- (3)3 [eg. p>3,(292°) =2,(0<P+€D) = (29* or x is finite large
enough] then, there are distinct £(7,£){( < %, > 3) such that, fori # j:
F(&(i,0),8(:,1),€(1,2),6(5.0).£(5,1)) =
F(€(2,0).€(:.1),8(2,2).£(7,1).£(7 )
Remark: We can get of course more general theorem.
Proof : We choose by induction on i<¥, Y; cu, |Y | <cltl*s 48, ¥,

increasing and all "types” of cardinality < |i]* + x* realized in u are realized

in Y4, Let Y= |y Y;. Now we can find distinct £ (€) € u—Y for £ <« such
i<y
that for every £4,€1,€5 € | Y; there are c,(£s.€,,€2).¢2(£.£1) such that
i<y

(*)g forevery & <m <k F(&y.&,.€2.8(€).6"(m)) = ¢ (&0.61.6p
(*)p and for every £ <m <n <k F(£(£). £ (m),£ (k)& &) =caléo &) -

Why we can do this? We want to apply the partition relation pu - (x).?,
for this we have to check what is the number of " colours”, clearly it is

< 2RIV 1P+ 1Y 7 g Boretle® D)y o Ny we choose by induction on i <,

£(1,2),€ < & such that :
(i) £(7,0),£(1,2),£(1,2) are distinct.
(ii) £(i.2) € V1= Y5
(iii)

F(£(5,0),£(7.1).6(j 2). £(1.£),£(:,m)) = F(£(7,0),£(j,1),£(j.,2).£"(€).£"(m)), when
J <i,and € m <k.

(iv) F(£(2.€1).8(1.£2).6(1.L3).£(7.24).£(J L5)) =

FE (€1).6(£2).6 (£3),6(7.£ 4).6(G £5))
whenj <1i,¢,< - <k.

There is no problem in doing this:

For each i <9, as k£ » (3)2 there are £4(1) < €,(1) < £(i) < « such that:
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F(£7(0),67(1),€°(R),£(1.£4(2)).£(2.£,(2))) =
F(E7(0),67(1),€(2),6(1.21(1)),£(4.,£ (1))

Now £(i,m) = £(1,€,,(1)) (i <¥,m < 3) are as reequired.

4.4A Remark: Assume (i), (ii), (iii) of 3.2. We try to decrease p. let
Zi=ly € X: Ch{y)=x;}, so |Z]=2p, and let X =ylup(u)<A. If
| X=Xy | < p then necessarily |Z; N X¢,| = p, so we can continue as in 4.4(2).
So we assume |X—X, | =y and let y; € X—X, (£ < ) be distinct. Choose for
£ <{, open disjoint sets ug, Uy, such that Y, € uUgs, Ye € Uge As in 3.2's
proof we can choose for distinct £(0),£(1),€(2) < u,
T4 £(0).£(0.62) € Y(1).£0) N ¥E(1).42) such that: for every
Pclugez—uge £2<ul, [Pl =9,

(%5 ¢0) 60,62 € N e = e(Ne)=x]
acp acp

We need the parallel of 4.5 for ¥ functions simultaneously or, what is
equivalent, the range of F has cardinality 2%, so o = 2%, and we get pu = 35(9)*

but this is not interesting.

§5 When the spread is obtained and how helpful is regularity of the space

5.1 Lemma : 1) Suppose X is a regular (i.e. T3) topological space, B a

base of X, A= Y x;, B <x; <A g = (2°)* and
i<P

(i) @ is nice for X,

(ii) for every (closed) Y € X with ¢{Y)= A and % <, there are
Ya € Y{a <), Chyy(ya) = x; and {y ca < pf is a discrete set,

(iii) p is (<A, u)-complete.

Then for some w; € B (i <), ¢(ui“qu) = Xi-
~ FE

2) Instead u = (2%)* it suffices that g = u? > 2% (and (i), (ii), (iii)).

3) We can replace (ii) above by
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(ii)’ for each 1 < ¥ there are u, € Bla<u) such that:
(Vg:u > 2%)Ea # B)g(a) = g (B) A ¢l (ua—zg) N V) = x:].

or

(ii)" there are U Yo € Ug € B, such that: Ch (Y o) = x; and

(Vg:u-» 2%)Ea # B)[g(a) = g(B) nya & ugl.

Proof : 1) W.lo.g. ¢ is (x;,u)-complete for i < ¥. We first try to choose a
family K of open subsets of X, {or even C H), and a ¥ € X such that:

(A) K] =17 =™

(B) if w is the union of < ¥ members of K, p(X—u) = A and i < ¥ then
there is a sequence <ya,v3,v; a< (2")") such that: yg€ Y—u,
[ya€vg <> a=8], viv}ek, yacvlcvlcvl, and (Vv er(X))

[Ya€v » plv—u) = x].
It is easy to find such K,Y (by (ii)). Let fori <1,

ZAK) ¥z € X: if up€ K(a<®), and u, € {ugX—u,} and z € uy for

each a < ¥ then ¢{ N ’Ulf,(‘)) =y,
a<d

By the proof of 3.2 for each © < ¥ there is 2; € Z;(K). Now we choose by

induction on i,x;,u4; such that:
(a) u, € K, z; € Z;(K),
(b)z; € uy, (Ve < i)z, & uynz; € U,),
(e)z, & u; wheni < & <9¥.

Suppose z;,u; are defined for j <4. We want to apply (B) to Uu,, now for

i<i
each ¢, if 1 <& <®¥ then p(X—yUu;)2x, as {u;1j <ijJ CK, 2, & Uu; and
j<i i<i
Z, € Z,(K). Hence ¢(X—yu;)=A So by (B) above there Iis

j<i
(y,wg,v‘}l:a < (2")*) as mentioned there. By cardinality consideration, for
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some o # f,

vy N (fz5:0 <BJULY;0 <i) =vf N (125 <83 Uly;d <id)

So u; ®vJ—v g is open, is disjoint to {2;:5 <8} Uly;:7 <1}, and y, belongs
toit (as ya & v v§ Cv4). As (by (B)) (Vv € Ty €v = 0(v—Uyy) = x:],

j<i

clearly @(u;—1Ju;) = x;, hence (as in 3.2) there is z; € Z;(K) N (u;—Yu;). So
i<i i<

we succeed in the induction. In the end as u; € K, z; € Z;(K) N (u;—Uy,;)

J#t
clearly g(u;— (J ;) = x;, so we finish.
J#i
2),3) Similar.

52 Lemma : Suppose X is a Hausdorff space, A= ¥} x;, X: <A and
i<d
B =35(8)%, Ba base for X, and

(i) ¢ is nice for X.

{ii} for every (closed) Y € X,p(Y) = A, and i < ¥ there are at least u
points y € ¥ with Ch 4y(y) = x;.

(1ii) ¢ is { <A, u)-complete.

Then for some u; € B,(i <) o{u;— Y %) =X
~ F#i

Proof : Like the previous one, replacing (B) by (B)’, (C)’ {D)"

(B)' if % is the union of < members of K,p(X—w)= A and ¢ <9 then
there are 3;(9)* points ¥y € Y—u such that (Vv € 7(X))(y € v -» p(v—u) = x;].

(Cyify;#yz€ Ythenforsomeu,v € K,y, € w,ys€v,u N\v = ¢.
(D} K is closed under finite intersections.

Then having defined u;,z;(j<%) and shown ¢(X—{Ju;) = A, we can find distinct
i<i
Ya €Y — U u{a <35(8)*) such  that Ch.X_Uu](ya) >y;. We  let
F<i i<t
A =1z <8} U x5 <1}, Iq = v NA:y€vEK], so for some a # B < 2,(89)",
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Iq=1g and using (C) there is wu; € K, such that y, €w;, obviously

ANnu =¢. As Ya € Uy o(u,—UYy) = X;, hence there is
j<i
z; € Zi(K) N (uy—uUy,).
J<i

We may remember:
5.3 Fact : 1) Suppose £ =«k<F, x = 3 x;, X; increasing continuous

i<®

Then for some forcing notion P:
a) P is k-complete satisfying the £*-chain condition.

b) In V¥ there is a topological space X with a basis of clopen sets

such that A(X) = £(X) = §(X) = x, o(X) = 2% and | X| = x.
<9

2) In fact we can get that X is the dual of a Boolean algebra and there is
no set of pairwise incomparable members of the Boolean algebra, of cardinal-

ity x.

Proof: Let p € P be a set of < xk alomic conditions with no two contrad-

ictory ones, where an atomic condition is a € Ug Or a (*4 Ug, where a,f < Xx,

and @ €[x;.X;41) => B < ;v B=av B2 x;,,.

Two conditions are contradictory if they have the form a € uga ¢ ug.

The order is inclusion.
Now (a) is obvious.
In V¥ we define:
uf = fa < A:a € ug belong to some p € g{

On x we define a topological space X: by having Euf;:ﬁ < x} be a basis of clopen
sets.
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The rest is easy too.

2) Similar (just asin [Sh 9] 4.4) . i.e. let P = §{B,W): B a Boolean alge-
bra of cardinality < & generated by {z; :1 € W}, W a subset of x of cardinality
<&, and if ag ...,&, are distinct members of W N [x.x'%) then

n
BEFz, ¢ QU Z g,
=1

5.4 Conclusion: 1) If X is Hausdorff §(X) is singular of cofinality ¥ then

cf { §(X)) < 2% [repeat the proof of 3.3 but instead of 3.2 use 5.1 remember-
ing cf (2%) > k.
2) If X is regular {i.e. T3) 5(X) singular of cofinality ¥ then

cf (§(X)) < 2% [repeat the proof of 2.3 but instead of 3.2 use 5.2 remembering
cf (2%) > 8]

3) Both results are best possible in the sense of complementary con-
sistency results. {see [JSh] and 5.3).

4) We can replace above s by 2 or .

5.5 Lemma : Suppose A is singular of cofinality 8, A = 3}, x;, X3 <A, and
1<?

£ = 0. Assume further (for a topological space X and function ¢):
(i) @ is nice for X.
(ii) v € X: Cho(y) = x;} has power = u, for i < 9.
(iil) ¢ is { < A, up)-complete.

1) If X is Hausdorfl, pg = uy = 3} 3o(x)*, then for some u,; € 7(X) (for
<3

i < ¥) for each i,p(u; — U ;) = x;.
j<i
R) If X is regular, po = pu, = ¥, (25)* then for some u; € 7(X) (for
k<9

1 <) foreachi @{u;—Uu;) 2 x;.
i<i

Remark: The proofs are similar to those of 5.1, 5.2.
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Proof : 1) W.l.o.g. ¢ is {x;.4g)-complete for each i. We define X,1"

{A) K is a family of open subsets of X of power < ug.

{B) Y is a subset of X of power < .

(C) there are uq distinct y € Y such that Ch,(y) = x;.

{D) for any distinct ¥,y € Y for some disjoint u,us € K, ¥ € 1, and
Yz €U

{E) K is closed under finite unions of intersections

There is no problem to carry this definition. Let Z;(K) = {z € X: if for

J<® a; CX a; € KvX-a; €K, and z €a; then p{ Na;)=x3 Now we
i<
choose by induction on i < ¥, z; and u; such that :

(a) u.i' € K, .’ti € Z‘(K‘)
(b) x; € u.,;,(Vj < 'L) (.’Ei 4 uj)
Suppose we have defined z;,u; for j <1.

By (C) above there are distinct y% € Y for a < pg, with Ch,(ys) = x;- By (E)
above there are, for a# B uUgg€ Kgyy, such that yh € ub g, and
ubpg Nuha =¢. Now as gy > (3)% for some a < f < 7 < ug:

ufx,p Ntz <4 :ufg,«, N ({z;:5 <i})
As u%,a M ufx,p = ¢, clearly u; :’U,ip'a ﬂu%,., is disjoint to ij:j <1}, Also

y}', Eu}",,a r\u%‘.,, so ¢(u;) = x;, hence as in the proof of 3.2 there is
z; €u; M Z(K). In the end z; witnesses @(u;—Ju;)=x; as z; €y, (V
>t
7>z & uy).
2) Similarly (remembering the proof of 5.2).
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