Remarks on the numbers of ideals of Boolean algebra and open sets of a topology

Abstract: We prove that the cardinals μ which may be the number of ideals of an infinite Boolean algebras are restricted: $\mu = \mu^{\aleph_0}$ and if $\kappa \leq \mu$ is strong limit then $\mu^{<\kappa} = \mu$. Similar results hold for the number of open sets of a compact space (we need $w(x)^{<\hat{s}(x)} = 2^{<\hat{s}(x)}$). We also prove that if $\mu \geq \mathbb{I}_2$ is the number of open subsets of a Hausdorff space $X, \mu < \mu^{\aleph_0}$ then $0^{\#}$ exists, (in fact, the consequences of the covering lemma on cardinal arithmetic are violated). We also prove that if the spread μ of a Hausdorff space X satisfies $\mu > \mathbb{I}_2(cf \mu)$ that the sup is obtained. For regular spaces $\mu > 2^{cf \mu}$ is enough.

Similarly for 3(X) and h(X).

§0 Introduction.

We deal with some problems on Boolean algebras and their parallel on topological spaces. The problems are: what can be the number of ideals [open sets], and is the spread (and related cardinals) necessarily obtained (remember it is defined as a supremum.) Compare with the well known result that the cellularity (= first κ for which the κ - chain condition holds) is regular. We shall use freely the duality between a Boolean algebra and its space of ultrafilters. Recall

0.1 Definition: For a topological space *X*:

1) $s(X) = \sup\{|A|: A \text{ is a discrete subspace}\} + \aleph_0 \text{ (note that } A \text{ is a discrete subspace if } A = \{y_i: i < \alpha\} \text{ and for some open subsets } u_i(i < \alpha), y_i \in u_i \iff i = j).$

- 2) $z(X) = \sup\{|A|: A = \{y_i: i < \alpha\}, \text{ and for some open } u_i \ (i < \alpha), i = j \Longrightarrow y_i \in u_j \Longrightarrow i \ge j\} + \aleph_0.$
- 3) $h(X) = \sup\{|A|: A = \{y_i: i < \alpha\} \text{ for some open } u_i(i < \alpha), i = j \Longrightarrow y_i \in u_j \Longrightarrow i \le j\} + \aleph_0.$
 - 4) $\widehat{s}(X),\widehat{s}(X),\widehat{b}(X)$ are defined similarly with $|A|^+$ instead |A|.
- 5) For a Boolean algebra B , $\varphi(B)$ is $\varphi(X)$ where X is the space of ultrafilters of B.

On the problem of the attainment of the supremum when the cofinality is \aleph_0 see Hajnal and Juhasz [HJ 1], Juhasz [J1], Shelah [Sh 3] 1.1 (p. 252) and then Kunen and Roitman [KR].

On a counterexample for higher cofinalities see Roitman [R] and lately Juhaz and Shelah [JSh]. On the number of open subsets see Hajnal and Juhasz [HJ2] and Juhasz [J2]; the author observed in fall 1977 (see [Sh 6] for the main consequence) that by having a specific cardinal exponentiation function we can get from counterexample to the attainment of the spread when the cofinality is κ , a Hausdorff space X with $o(X)^{\kappa} > o(X)$ (this extra demand on the set theory has caused no trouble). This connected our two problems. The author had withdrawn another announcement of [Sh 6]: $o(X) = o(X)^{\aleph_0}$ for X a Lindelof space.

This work is written in the order it was conceived.

§1 The numbers of ideals of a Boolean Algebra

1.1 Theorem: Let B be an infinite Boolean Algebra, Id(B) the set of ideals of B, id(B) its power. Then $id(B) = id(B)^{\aleph_0}$.

Proof: Suppose not, $\lambda = Min\{\kappa : \kappa^{\aleph_0} \geq id(B)\}$, so $cf \lambda = \aleph_0$, $\lambda \leq id(B) < \lambda^{\aleph_0}$. Now $\lambda > 2^{\aleph_0}$ as $id(B) \geq 2^{\aleph_0}$, so $\lambda = \sum_n \lambda_n$, $\lambda_n < \lambda_{n+1} < \lambda$, $\lambda_n = \lambda_n^{\aleph_0}$. We define by induction on $n, a_n \in B$, $a_n \cap a_\ell = 0$ for $\ell < n$, $id(B \upharpoonright a_n) \geq \lambda_n$, $id(B \upharpoonright (1 - \bigcup_{\ell < n} a_\ell) \geq \lambda$. We should fail for some n, so w.l.o.g. for

no $\alpha \in B$, $id(B \upharpoonright \alpha) \geq \lambda_n, id(B \upharpoonright (1-\alpha) \geq \lambda$. W.l.o.g. n = 0, so $\mathcal{I} = \{\alpha \in B : id(B \upharpoonright \alpha) \leq \lambda_0\}$ is a maximal ideal. Now $|B| < \lambda$ (otherwise $|\mathcal{I}| \geq \lambda$, each countable subset of \mathcal{I} generates an ideal, there are $\geq \lambda^{\aleph_0} > id(B)$ such countable subsets, and each ideal of B of this form has power $\leq \lambda_0$ hence has at most $\lambda_0^{\aleph_0} = \lambda_0 < \lambda$ countable subsets. Contradiction). So W.l.o.g. $|B| < \lambda_0$. Now $Id^0(B) = \{I \in Id(B) : I \not\subset \mathcal{I}\} \subset \bigcup_{\alpha \in \mathcal{I}} \{I \in Id(B) : 1-\alpha \in I\}$ has power $\leq \sum_{\alpha \in \mathcal{I}} id(B \upharpoonright \alpha) \leq |B| + \lambda_0$

So $Id^0(B)$ has power $\leq \lambda_0$. Also $Id^1(B) = \{I \in Id(B): I \in \mathcal{I} \text{ but for some } a \in B-I \text{ there is no } b < a,b \in \mathcal{I}-I\}$ has power $\leq \lambda_0$ (for each such a,I $I \cap (B \upharpoonright a) = \mathcal{I} \cap (B \upharpoonright a)$, and for $I \cap (B \upharpoonright (1-a))$ we have $\leq id(B \upharpoonright (1-a)) \leq \lambda_0$ possibilities. So $Id^2(B) \stackrel{\text{def}}{=} Id(B) - Id^0(B) - Id^1(B)$ has cardinality id(B). For each $I \in Id^2(B)$ choose by induction on $i,a_i \in \mathcal{I}-I$ such that $a_i \cap a_j \in I$ for $j < \alpha$, and let $\overline{a}^I = \langle a_i : i < \alpha \rangle$ be the resulting maximal sequence. Note that:

 $\mathfrak{F}(B) = Min\{\mu: \text{ there are no } a_i \in B(i < \mu), a_i \text{ not in the ideal generated by } \{a_i: j \neq i\}\},$

and let

 $\kappa = Min\{\mu: \text{ there are no } \mu \text{ pairwise disjoint non zero elements of } B\}.$

Clearly $\kappa \leq \widehat{s}(B)$, and for $\mu < \widehat{s}(B)$, $2^{\mu} \leq id(B)$ so $2^{<\widehat{s}(B)} \leq id(B)$. It is known that $cf(\widehat{s}(B)) > \aleph_0$, so $(2^{<\widehat{s}(B)})^{\aleph_0} = 2^{<\widehat{s}(B)}$ hence $2^{<\widehat{s}(B)} < \lambda$ and w.l.o.g. $2^{<\widehat{s}(B)} < \lambda_0$. Now easily if $\overline{\alpha}^I = \overline{\alpha}^J = \left\langle a_i : i < \alpha \right\rangle$, $I \cap (B \mid a_i) = J \cap (B \mid a_i)$ for $i < \alpha$, then I = J (if e.g. $I \not\subset J$, choose $x \in I - J$, then x is a good candidate as a_α for J). We shall prove for each $\overline{\alpha}$ that $\{I : I \in Id^2(B), \overline{\alpha}^I = \overline{\alpha}\} \leq \lambda^*$ for fixed $\lambda^* < \lambda$. By the argument above this is equal to $|\{\{I \mid (B \mid a_i) : i\} : I \in Id^{(2)}, \overline{\alpha}^I = \overline{\alpha}\}|$ which is $|\{\{I \mid (B \mid a_i) : i\} : I \in Id^{(2)}, \overline{\alpha}^I = \overline{\alpha}\}|$ which is $|\{\{I \mid (B \mid a_i) : i\} : I \in Id^{(2)}, \overline{\alpha}^I = \overline{\alpha}\}|$ which is $|\{\{I \mid (B \mid a_i) : i\} : I \in Id^{(2)}, \overline{\alpha}^I = \overline{\alpha}\}|$ an ideal, $a_j \cap a_i \in J_i$ for $j \neq i\}$. Let $\mu_i = |\{J : J \in B \mid a_i \text{ an ideal (so } a_i \not\in J)\}$ and for $j \neq i$, $a_j \cap a_i \in J\}$. So the number is $|\{I \mid a_i\} : \{I \mid a_i$

see in 2.11], so $\prod_{i<\alpha}\mu_i<\lambda$. By more cardinal arithmetic (see 2.11) there is a bound λ^* as required.

So necessarily $|\{\bar{a}^I: I \in Id^2(B)\}| \geq \lambda$. Now each \bar{a}^I has length $< \hat{s}(B)$ so $\lambda \leq |B|^{<\hat{s}(B)}$, and as $cf \ \hat{s}(B) > \aleph_0$, $cf \ \lambda = \aleph_0$ clearly there is $\mu < \hat{s}(B)$, $|B|^{\mu} \geq \lambda$. Let $\mathfrak{V} = Max\{\kappa, \mu^+\}$. So \mathfrak{V} is regular $\mathfrak{V} \leq \hat{s}(B)$, B satisfies the \mathfrak{V} -c.c. and $|B|^{<\mathfrak{V}} \geq \lambda$ and $2^{<\mathfrak{V}} \leq 2^{<\hat{s}(B)} \leq \lambda_0$. So $|B|^{<\mathfrak{V}} > 2^{<\mathfrak{V}}$. Let $\chi = Min\{\chi: \chi^{<\mathfrak{V}} \geq |B|\}$, then $\chi > 2^{<\mathfrak{V}}$, $\chi^{<\mathfrak{V}} = |B|^{<\mathfrak{V}} \geq \lambda$ and $(\forall \mu < \chi)\mu^{<\mathfrak{V}} < \chi$. By [Sh 1] 4.4 B has a subset of power χ no one in the ideal generated by the others. So $\chi < \hat{s}(B)$ so $2^{\chi} \leq id(B)$, but $2^{\chi} \geq \chi^{<\mathfrak{V}} \geq \lambda$ so $2^{\chi} \geq \lambda^{\aleph_0} > id(B)$ contradiction.

§2 On the number of open sets

- **2.1 Notation**: 1) X is an infinite Hausdorff space, τ the family of open subsets of X, any $Y \subseteq X$ is equipped with the induced topology i.e $\tau^Y = \tau(Y) = \{U \cap Y : U \in X\}$. B will denote a base of X.
 - 2) Let $o(X) = |\tau|$, (and for $Y \subseteq X$, $o(Y) = |\{U \cap Y : U \in \tau\}|$.
- 3) $\widehat{s}(X) = \{ |A|^+ : A \text{ a discrete subspace of } X, \text{ (i.e. } (A, \tau^A) \text{ is a discrete space } \}.$
- 4) B is a strong base of X if for every $y \in X$, there is v, such that $y \in v \in \tau$, and $[y \in u \subseteq v, u \in \tau \Longrightarrow v \in B]$.

We shall assume in 2.3, 2.4:

2.2 Hypothesis: We assume λ is an infinite cardinal, cf $\lambda = \aleph_0$.

 $(\forall \mu)(\aleph_0 \le \mu < \lambda \to \mu^{\aleph_0} < \lambda)$ and at least one of the following holds:

- (I) $\chi \leq o(X) < \lambda^{\aleph_0}$, $\chi = \lambda$
- (II) $\chi \leq o(X) < \lambda^{\aleph_0}$, $\chi = \lambda^+$,
- (III) $\chi \leq o(X) < \lambda^{\aleph_0}$, $\chi = \lambda$, and X is strongly Hausdorff (which means: for every infinite $A \subseteq X$ there are $p_n \in A$ and pairwise disjoint

$$u_n \in \tau, p_n \in U_n$$
).

2.2A Explanation: We shall want to get a contradiction or at least get information on how an example like that looks like.

So we allow to replace X by X^* if $\chi \leq o(X^*) < \lambda^{\aleph_0}$ is still satisfied; but we shall use this for open X^* only.

2.3 Claim: Assume 2.2.

- 1) $\lambda > 2^{\aleph_0}$ and we can find λ_n , $\lambda_n = \lambda_n^{\aleph_0} < \lambda_{n+1} < \lambda$, $\lambda = \sum_{n < \omega} \lambda_n$.
- 2) W.l.o.g. there are no disjoint open sets $u,v(\in\tau)$ such that $o(u) \ge \chi$, $o(v) \ge \lambda$. (and even no open disjoint u,v such that $o(u) \ge \chi$, $o(v) \ge \lambda_0$) [and even no open u,v such that $o(u-v) \ge \chi$, $o(v-u) \ge \lambda_0$, but then we pass to a non-open subspace.]
- 3) W.l.o.g. every point y has an open number u_y (so $y \in u_y \in \tau$) such that $o(u_y) < \lambda$.
- 4) $o(X) \ge 2^{<\mathfrak{F}(X)}$; hence if $cf(\mathfrak{F}(X)) > \aleph_0$ then $\lambda > 2^{<\mathfrak{F}(X)}$ and w.l.o.g. $\lambda_0 > 2^{<\mathfrak{F}(X)}$.
- 5) if $|X| \ge \mathbb{I}_2$ then $|X| < \lambda$ (and w.l.o.g. $|X| < \lambda_0$; similarly $|X| \ge 2^{2^{\pi}} \Longrightarrow |X|^{\pi} \le o(X)$).

Proof: 1) If every $y \in X$ is isolated, X has $2^{|X|}$ open subsets, but X is infinite so $o(X) \geq 2^{\aleph_0}$. If $y^* \in X$ is not isolated we define by induction on $n, u_n, v_n \in \tau$ and y_n such that $: y^* \in u_n, y_n \in v_n, u_n \cap v_n = \phi$, and $v_{n+1} \subseteq u_n, u_{n+1} \subseteq u_n$. (choose $y_0 \in X, y_0 \neq y^*$ then choose v_0, u_0 ; if u_n is defined, choose $y_n \in u_n - \{y^*\}$ and then u_{n+1}, v_{n+1} using "X is Hausdorff".) So $\{u_n : n < \omega\}$ are open non empty pairwise disjoint hence $o(X) \geq |\{\bigcup_{n \in S} u_n : S \subseteq w\}| = 2^{\aleph_0}$.

In any case $o(X) \ge 2^{\aleph_0}$ but $\lambda \le o(X)^{\aleph_0} > o(X)$ hence $o(X) > 2^{\aleph_0}$, but $o(X) < \lambda^{\aleph_0}$, so $2^{\aleph_0} < \lambda < \lambda^{\aleph_0}$.

so $(\forall \mu < \lambda)(\mu + \aleph_0 < \lambda)$ hence $(\forall \mu < \lambda)\mu^{\aleph_0} < \lambda$ hence we can find λ_n as required.

- 2) Let $u_0 = X$, define by induction on n, $1 \le n < \omega$, u_n, v_n such that
 - (i) $u_n \in \tau, v_n \in \tau$; usually we demand they are disjoint.
 - (ii) $v_{n+1} \subseteq u_n, u_{n+1} \subseteq u_n$
 - (iii) $o(v_n u_n \bigcup_{\ell < n} v_\ell) \ge \lambda_n$
 - (iv) $o(u_n v_n \bigcup_{\ell < n} v_\ell) \ge \chi$

If we succeed, then v_{ℓ} are open, $v_n - \bigcup_{\ell \neq n} v_{\ell} \subseteq (v_n - u_n - \bigcup_{\ell < n} v_{\ell})$ hence $o(v_n - \bigcup_{\ell \neq n} v_{\ell}) \ge \lambda_n$, so by Fact 2.3A below $o(X) \ge \prod_{n < \omega} \lambda_n = \lambda^{\aleph_0} > o(X)$ contradiction.

2.3A Fact: i) If
$$v_n \in \tau$$
 then $o(X) \ge \prod_{n < \omega} o(v_n - \bigcup_{\ell \ne n} v_\ell)$.

ii) If
$$v_i \in \tau(i < \alpha)$$
 then $o(X) \ge \prod_{i < \alpha} o(v_i - \bigcup_{j \ne i} v_j)$.

(ii) Similarly.

We return to the proof of 2.3.

(3) Let $Y = \bigcup \{v \in \tau : o(v) < \lambda \}$. If in X - Y there is a non isolated point y^* , then the proof is as in 1) (with $y_n \in X - Y$). If every point of X - Y is

isolated then: $o(X-Y)=2^{|X-Y|}$. As o(X) is infinite easily o(X)=o(Y) or o(X)=o(X-Y). The latter is impossible as $(2^{|X-Y|})^{\aleph_0}=2^{|X-Y|}$ because it is infinite.

- (4) If $y_i \in v_i \in \tau$, $y_i \not\in v_j$, for $i < \alpha$, $i \neq j < \alpha$, then $\{\bigcup v_i : S \subseteq \alpha\}$ is a family of $2^{|\alpha|}$ distinct open subsets of X, so $o(X) \geq 2^{|\alpha|}$. By the definition of $\widehat{s}(X)$, $o(X) \geq 2^{|\alpha|}$. The second phrase is by cardinal arithmetic.
- (5) Assume $|X| \ge \lambda$. For any countable $A \subseteq X$, the closure of A is a closed subset of X of power $\le \mathbb{I}_2$. The number of A is $|X|^{\aleph_0} > |X| \ge \mathbb{I}_2$, and for any such A; $|\{B:B \subseteq X \text{ countable, the closure of } B \text{ is the closure of } A\}$ has power $\le \mathbb{I}_2$, so we finish.
 - **2.4 Claim:** Assume 2.2. 1) W.l.o.g.
- (*) for every $y \in X$ for some $v_y \in \tau, y \in v_y$, $o(v_y) \leq \lambda_0$, except possibly when: Hypothesis (I), holds (and not II or III) and $(\exists n) \lambda_n^{\beth_1} > \lambda$ (hence $\lambda_n^{\beth_1} \geq o(X)$).
 - 2) $|X| < \lambda$ so w.l.o.g. $|X| < \lambda_0$ so X has strong base of power $< \lambda_0$.

Remark: So if $\lambda \geq \mathbb{I}_2$, then (w.l.o.g.) $\lambda_0 > \mathbb{I}_2$, $\lambda_0 = \lambda_0^{\aleph_0}$, $\lambda_0^{\mathbb{I}_1} > \lambda_0^{+\omega}$, so of exist so the conclusion of [J2, 4.7, p. 97] holds.

Proof: 1) Let $Y_n = \bigcup \{v \in \tau : o(v) \leq \lambda_n \}$. By 2.3(3) $X = \bigcup Y_n$. If for some $n \circ (Y_n) \geq \chi$ we can replace X by Y_n . So assume $o(Y_n) < \chi$. Hence $Y_n \neq X$. If X is strongly Hausdorff choose $y_n \in X - Y_n$. As $X = \bigcup_{n < \omega} Y_n$, $Y_n \in Y_{n+1}$, $\{y_n : n < \omega\}$ is infinite. By the definition of strongly Hausdorff applied to $\{y_n : n < \omega\}$ there are distinct $n(k) < \omega$, and $u_k \in \tau, y_{n(k)} \in u_k$, $\{u_k : k < \omega\}$ pairwise disjoint. So $o(u_k) \geq \lambda_{n(k)}$, (as $y_{n(k)} \in u_k$) and $o(X) \geq \prod_k o(u_k) \geq \prod_{k < \omega} \lambda_{n(k)} = \lambda^{\aleph_0} > o(X)$ contr.

So we have dealt with Hypothesis III.

Next assume Hypothesis II, so

$$\sum_{n < \omega} o\left(Y_n\right) \leq \sum_{n < \omega} \lambda = \lambda < \chi$$

So the following fact is sufficient.

2.4A Fact: If $Z_n \subseteq X$ is open (for $n < \omega$) $\sum_n o(Z_n) + \aleph_0 < o(\bigcup_n Z_n)$ then

$$o\left(\bigcup_{n} Z_{n}\right)^{\aleph_{0}} = o\left(\bigcup_{n} Z_{n}\right) = (\aleph_{0} + \sum_{n} o\left(Z_{n}\right))^{\aleph_{0}}$$

Proof : Let $\vartheta = \aleph_0 + \sum o(Z_n)$.

We define a tree T with ω levels. Now T_n , the n'th level, will be $\{(u,n): u \in \bigcup_{\ell < n} Z_\ell : u \in \tau\}$; the order will be: $(u,n) \leq (v,m)$ iff $n \leq m, u = v \cap (\bigcup_{\ell < n} Z_\ell)$. As $\bigcup_{\ell < n} Z_\ell$ is open (as well as $\bigcup_{\ell < \omega} Z_\ell$). $|T_\ell| = o (\bigcup_{\ell < n} Z_\ell) \leq \sum_{\ell < n} o (Z_\ell) \leq v$, and $o (\bigcup_{\ell < \omega} Z_\ell)$ is the number of ω -branches of T, so it is $v \geq \sum_{\ell < n} |T_n|$. But in that case it is well known that the number of ω -branches of T is $v \in T_n$, as required. So we have proved 2.4A.

We are left with case I, and assume that for each n, $\lambda_n^{\mathbf{l}_1} < \lambda$; let $C = \{(\mathbf{v}^{\mathbf{l}_1})^+ : \mathbf{v} < \lambda\}, \ \varphi(Y) = \sigma(Y)$, and apply 2.5A below, we get a contradiction.

Proof of 2.4(2): Let for $y \in X$ $v_y \in \tau, y \in v_y$, $o(v_y) < \lambda_0$. Suppose $|X| > \lambda_0^+$. Clearly $o(v_\tau) \ge |v_\tau|$ so $|v_\tau| < \lambda_0$. By Hajnal free subset theorem (see $[\ J1]$) there is $Y \subseteq X, |Y| = |X|$ such that $(\forall y \ne z \in Y)(y \not\in v_z)$. So $|Y| < \widehat{s}(X)$, so $o(X) \ge 2^{|Y|} = 2^{|X|}$ contradiction. So $|X| \le \lambda_0^+$, then $\{u \cap v_y : u \in \tau, y \in X\}$ is a strong basis of X of power $\{\lambda_0^+ + \lambda_0^-\}$. Renaming we finish.

We can abstract from the proof of Kunen and Roitman [KJ] (or see [J2]), the following theorem. See 4.4(2), or 3.2A(2) for a simpler proof of 2.5(1)) even weakening (iv) to: $X \neq \bigcup_{\varphi(u) < \lambda_n} u$ for each n.

2.5 Lemma: 1) Suppose $cf \lambda = \aleph_0 < \lambda$, $\lambda = \sum_{n < \omega} \lambda_n, \lambda_n < \lambda$, X a topological space, and φ is a function from subsets of X to cardinals, satisfying:

(i)
$$\varphi(A) \le \varphi(A \cup B) \le \varphi(A) + \varphi(B)$$
.

(ii)
$$\varphi(X) \ge \lambda$$

(iii) for an unbounded family C of cardinals $\langle \lambda \rangle$

(iv)
$$\varphi(\bigcup_{\varphi(u)<\lambda_n}u)<\lambda$$
.

Then there are open sets $u_n\subseteq X$ such that $\varphi(u_n-\bigcup_{\substack{\ell\neq n\\\ell<\omega}}u_\ell)\geq \lambda_n$ for $n<\omega$.

2) We can replace \oplus by $\oplus_{\alpha} + \oplus_{b}$ where:

 \bigoplus_{α} if $\langle A_{\eta}: \eta \in {}^{\omega} 2 \rangle$ is a partition of X, and $\bigcup \{A_{\eta}: \eta(k) = 0\}$ is open for each $k < \omega, \vartheta \in C$ and $B \subseteq X, \varphi(B) \ge \vartheta$, then for some no-where dense set $K \subseteq {}^{\omega} 2$, $\varphi(B \cap \bigcup_{\eta \in K} A_{\eta}) \ge \vartheta$

and

$$\bigoplus_b \text{ if } A_n \subseteq X, \, \mathfrak{V} \in C, \varphi(A_n) < \mathfrak{V} \text{ then } \varphi(\bigcup_{n \le \omega} A_n) < \mathfrak{V}.$$

3) If X is strongly Hausdorff, (i), (ii) suffice.

Proof: 1) We shall use (i) freely.

Case I:
$$\varphi(Y) < \lambda$$
 where $Y = \bigcup \{v : v \in \tau, \varphi(v) < \lambda\}$.

So $\varphi(X-Y)=\lambda$: if X-Y has a non isolated point y^* , then we can define distinct $y_n\in X-Y_n-\{y^*\}$ and pairwise disjoint $u_n,y_n\in u_n\in \tau_n$, y^* not in the closure of u_n . So as $y_n\in Y$, $\varphi(u_n)\geq \lambda>\lambda_n$ and $u_n=u_n-\bigcup_{\ell< n}u_\ell$. So the u_n 's are as required. So X-Y is a discrete space hence $o(X-Y)=2^{|X-Y|}$, but $o(X-Y)=\lambda$, contradiction.

So we can assume $\varphi(Y) \ge \lambda$, so w.l.o.g. X = Y i.e.,

(*) for each $y \in X$ for some $v, y \in v \in \tau, \varphi(v) < \lambda$.

Case II: For every open $Y \subseteq X, \varphi(Y) \ge \lambda$ and $\vartheta < \lambda$, and $\left\langle v_y : y \in Y \right\rangle$ satisfying $y \in v_y \in \tau$ there are $p \in Y$, open $u, p \in u \subseteq v_p$ and open $Z \subseteq Y, \varphi(Z) \ge \lambda$ and v_z^0 , a neighborhood of z, for $z \in Z$ such that: for every $z_m \in Z$, $\varphi(u - \bigcup_{n < \omega} v_{z_n}^0) \ge \vartheta$.

We define by induction on $n,1\leq n<\omega$, p_n,u_n,y_n,ϑ_n and $\left< v_y^n:y\in Y_n\right>$ such that

- (1) $Y_n \subseteq X, \varphi(Y_n) \ge \lambda$, $Y_{n+1} \subseteq Y_n$, Y is open.
- (2) for $y \in Y_n$, v_y^n is an open neighborhood of y, $v_y^{n+1} \subseteq v_y^n$.
- (3) $\vartheta_n \ge \lambda_n \ \vartheta_{n+1} > \vartheta_n$
- $(4)\; p_n \in u_n \in \tau, \quad \vartheta_n \leq \varphi(u_n) < \vartheta_{n+1}, \; u_n \subseteq v_{p_n}^n$
- (5) for every $z_{\ell} \in Y_n(\ell < \omega) \ \varphi(u_n \bigcup_{\ell < \omega} v_{z_{\ell}}^n) \ge \vartheta_n$.

For n=0 we stipulate $Y_0=X$, $v_y^n(y\in Y_0)$ an open number of y with $\varphi(v_y^n)$ minimal and $v_0=v_1+\lambda_0$.

Suppose $Y_n , \langle v_y^n : y \in Y_n \rangle$ as defined. Choose $\vartheta_{n+1} < \lambda$ such that $\vartheta_{n+1} > \lambda_n$, $\vartheta_{n+1} > \vartheta_\ell$, $\varphi(u_\ell)$ when $0 < \ell < n+1$. Next apply the hypothesis of the case to Y_n , and ϑ_n and $\langle v_y^n : y \in Y_n \rangle$, so there are $p = p_{n+1} \in Y_n$, $u = u_{n+1}, Y = Y_{n+1}$, and $\langle v_z^n : z \in Y_{n+1} \rangle$ such that:

$$\begin{split} &Y_{n+1}\subseteq Y_n,\ \varphi(Y_{n+1})\geq \lambda,\quad p_{n+1}\in u_{n+1}\subseteq v_{p_{n+1}}^n,\quad z\in v_z^{n,0}\in \tau,\quad \text{and}\quad \text{for}\\ &z_\ell\in Y_{n+1}(\ell<\omega),\ \varphi(u_{n+1}-\bigcup_{\ell<\alpha}v_{z_\ell}^{n,0})\geq \vartheta_{n+1}. \end{split}$$

We let $v_z^{n+1} = v_z^{n,0} \cap v_z^n$.

Easily everything is o.k. Now in the end, as $u_\ell \in v_{p_\ell}^n$ for $\ell < n$, and by (5) for n

$$\varphi(u_n - \underset{\ell > n}{\bigcup} u_\ell) \geq \varphi(u_n - \underset{\ell > n}{\bigcup} v_{p_\ell}^n) \geq \vartheta_n$$

As for $\ell < n, \varphi(u_{\ell}) < \vartheta_n$ clearly

$$\varphi(u_n - \bigcup_{\ell \neq n} u_\ell) \ge \vartheta_n$$
, as required.

Case III: Not Cases I,II.

So (*) holds, and there are open $Y \subseteq X, \varphi(Y) \ge \lambda$, $\vartheta < \lambda$ and $\langle v_y : y \in Y \rangle, y \in v_y \in \tau$, witnessing the failure of Case II. W.l.o.g. X = Y, $\vartheta \in C$, $y \in u \subseteq v_y (u \in \tau) \Longrightarrow \varphi(u) \ge \varphi(v_y)$. If $\varphi(v_p) \ge \vartheta$, by (iii) \oplus :

(**) if $p \in u \in \tau$, $u \subseteq v_p$, then $\varphi(\{z \in Y: \text{ for some } v \in T, z \in v, \varphi(v \cap u) < v\}) < \lambda$ [if this fails $p, u, Z = \{v: \varphi(v \cap u) < \lambda\}$ and $\langle v_z^0: z \in Z \rangle$ where $z \in v_z^0$, $\varphi(v_z^0 \cap u) < \lambda$, exemplify Z, v do not witness the failure the assumption of Case II].

Define by induction on n, $p_n^{\ell} \in Y$, $u_n^{\ell} \in \tau$, for $\ell = 1,2$ and ϑ_n such that:

- $(1) \ p_n^{\ell} \in u_n^{\ell}, u_n^1 \cap u_n^2 = \phi, \ u_n^{\ell} \subseteq v_{p_n^{\ell}}.$
- (2) $\vartheta < \vartheta_n \in C, \vartheta_n \ge \lambda_n, \vartheta_{n+1} > \vartheta_n, \vartheta.$
- (3) $\vartheta_n \leq \varphi(u_n^1), \varphi(u_n^2) < \vartheta_{n+1}$
- (4) for every open neighborhood v of p_n^k , if m < n:

$$\varphi(u_m^{\ell} \cap v) \ge \vartheta_{\ell}$$

For n=0 choose $\mathfrak{V}_0\in C,\mathfrak{V}_0>\lambda_0+\mathfrak{V}$ then choose $p^1\neq p^2$ in Y such that $\varphi(v_{p_0^\ell})\geq \mathfrak{V}_0$ (possible by assumption (iv)) and then choose $u_0^\ell\in \tau, p_0^\ell\in u_0^\ell\in v_{p_0^\ell}, u_0^1\cap u_0^2=\phi$. For n+1, choose first $\mathfrak{V}_{n+1}\in C,\mathfrak{V}_{n+1}$ larger than $\mathfrak{V}_n,\lambda_{n+1},\varphi(u_0^\ell),\ldots,\varphi(u_n^\ell)$ for $\ell=1,2$ (remember (*)). Now we should choose p_{n+1}^1,p_{n+1}^2 , such that $\varphi(v_{p_{n+1}^\ell})\geq \mathfrak{V}_{n+1}$, and for each $\ell\leq n$, (4) holds. Each demand excludes a set in $\{A:\varphi(A)<\lambda\}$, (note that $\bigcup\{v_p:o(v_p)<\mathfrak{V}\}$ satisfies this by assumption (iv)) so there are distinct p_{n+1}^1,p_{n+1}^2 as required, and now choose disjoint u_{n+1}^1,u_{n+1}^2 , such that $p_{n+1}^\ell\in u_{n+1}^\ell\in v_{p_{n+1}^\ell}$.

Define for
$$\eta \in {}^{\omega}2$$
, $A_{\eta} = \bigcap_{\eta(n)=0} u_n^{-1} \cap \bigcap_{\eta(n)=1} (X - u_{\eta}^{-1})$.

We define by induction on $n < \omega$, η_n, k_n, m_n , such that

- (a) $\eta_n \in {}^{\omega}2$
- (b) $n \le k_n < m_n < k_{n+1} < m_{n+1}$
- (c) for $\ell < n$, $\eta_{\ell}(k_n) = \eta_{\ell}(m_n)$
- (d) $\varphi(u_{k_n}^1 \cap u_{m_n}^2 \cap A_{\eta_n}) \ge \vartheta_{k_n}$

For n=0 let $k_n=0, m_n=1$, now $\varphi(u_{k_n}^1 \cap u_{m_n}^2) \geq \vartheta_{k_n}$ by condition (4) above. Then there is η_0 is required in (4) by \oplus . For n>0 we first can find k_n m_n as required in (b),(c) and then η_n as above.

Now let $u_n = u_{k_n}^1 \cap u_{m_n}^2$. So now by (c) $u_\ell \cap A_{\eta_m} = \phi$ for $\ell > m$, so $u_n - \bigcup_{\ell > n} u_{k_n}^1 \cap u_{m_n}^2 \supseteq A_{\eta_n}$ hence

- $\varphi(u_n \underset{\ell > n}{\bigcup} u_\ell) \geq \vartheta_n; \text{ as } \varphi(u_\ell) < \vartheta_n \text{ for } \ell < n, \ \varphi(u_n \underset{\ell \neq n}{\bigcup} u_\ell) \geq \vartheta_n \text{ so we finish.}$
- 2) Similar proof instead $u_{k_n}^1 \cap u_{m_n}^2$ we use finite such intersection and strengthen (4) accordingly (and $\{\eta_n\}$ is replaced by a no where dense set.)

Remark: If in 2.5(1) we weaken (iv) to $\varphi(X-\bigcup\{u:\varphi(u)<\lambda_n\})\geq\lambda$, by changing φ so to satisfy (iv).

- **2.6 Lemma:** 1) Suppose X is a Hausdorff space, B a basis for X and $o(v) \leq \lambda_0$ for $v \in B$. Suppose further that $2^{<\mathfrak{F}(X)} < o(X)$, $\lambda_0 < o(X)$ and for no $\kappa < \widehat{\mathfrak{F}}(X)$, $(\lambda_0)^{\kappa} = o(X)$. Then $|B|^{<\mathfrak{F}(X)} \geq o(X)$.
- 2) Under Hypothesis 2.2, if (*) of 2.4 holds, cf $\mathfrak{F}(X) > \aleph_0$, and B is a basis for X then $|B| < \mathfrak{F}(X) \ge o(X)$ (so for some χ and $\mathfrak{V}: \chi^{<\mathfrak{G}} > o(X) \ge (\chi + 2^{<\mathfrak{V}})^{+\omega}$).
- 3) If X is a Hausdorff space $\mathbb{E}_2 \leq o(X) < o(X)^{\aleph_0}$ then for some $\chi, \mathfrak{V}: (\chi + 2^{<\mathfrak{V}})^{+\omega} \leq o(X) < \chi^{<\mathfrak{V}}$.
- **2.6A Remark:** The conclusion in 2.6(3) implies $0^{\#}$ exists by the covering lemma, and similarly much more.

* * *

We first prove some facts, where B is a base of a Hausdorff space X and $o(v) \leq \lambda_0$ for $v \in B_0$.

- 2.7 **Definition**: 1) We say $\bar{v} = \langle v_i : i < \alpha \rangle$ is good for u (where $u, v_i \in \tau$) if
 - (i) $v_i u \neq \phi$
 - (ii) $v_i \in B$ (hence $v_i \in \tau$)
 - (iii) for $i \neq j < \alpha, v_i \cap v_j \subseteq u$.
- 2) We say \bar{v} is maximally good for u if \bar{v} is good for u but for no $v \in B$ is $\bar{v} < v >$ good for u.
 - **2.8 Observation**: 1) For every $u \in \tau$ there \bar{v} maximally good for it.

2) If
$$\langle v_i : i < \alpha \rangle$$
 is good for u , then $\alpha < \widehat{s}(X)$.

Proof: 1) Immediate.

2) By (i) of Definition 2.7(1)) there is $y_i \in v_i - u$. Now $y_i \in v_i - u \in \tau$, and $i \neq j \implies y_i \not\in v_j$ (as then $y_i \in v_j \cap v_i - u$.)

2.9 Fact: Let
$$G = \{ \langle v_i | i < \alpha \rangle : v_i \in B, \ v_i \not\in V_j : j < \alpha, j \neq i \} \}.$$

- 1) If \overline{v} is good for some u then $\overline{v} \in G$.
- 2) For each $\bar{v}=\left\langle v_i : i < \alpha \right\rangle \in G$ the following two sets has the same power:

 $P_{\overline{v}} = \{u : \overline{v} \text{ is maximaly good for } u\}.$

$$Q_{\overline{v}} = \{ \left\langle J_i : i < \alpha \right\rangle : \bigcup_{j \neq i} (v_i \cap v_j) \subseteq J_i \subset v_i, \, (\text{so } J_i \neq v_i) \text{ and } J_i \text{ is open } \}.$$

Proof: 1) Immediate.

2) We define H, a function with domain $P_{v}:H(u)=\langle v_{i}\cap u:i<\alpha\rangle$.

Clearly $H(u) \in Q_{\overline{v}}$. Now H is one to one: if $H(u_1) = H(u_2)$ but $u_1 \neq u_2$ then w.l.o.g. $u_1 \not\in u_2$, choose $y \in u_1 - u_2$, then choose $v \in B$, $y \in v \subseteq u_1$. So y witness $v \not\in u_2$; and for $i < \alpha, v \cap v_i \subseteq u_1$ (as $v \subseteq u_1$) but $v \cap v_i \subseteq v_i$, $u_1 \cap v_i = u_2 \cap v_i$ so also $v \cap v_i \subseteq u_2$. We conclude that v contradicts the maximality of \overline{v} (as good for u_2). So H is one to one.

Now for any $\langle J_i:i<\alpha\rangle\in Q_{\overline{v}},\ J\stackrel{\mathrm{def}}{=}\bigcup_{i<\alpha}J_i$ is an open set and easily $v_i\cap v_j\subset J_i\subset J$ for $i\neq j, J\cap v_i=J_i$ and $v_i\not\subset J$. So \overline{v} is good for J. Let $u^*=\bigcup\{u:\overline{v}\text{ is good for }u,u\cap v_i=J_i\}$. Easily \overline{v} is maximally good for u^* and $H(u^*)=\langle J_i:i<\alpha\rangle$.

2.10 Fact: For $\bar{v} \in G$, for some $\mu_{\bar{v}}^i, |Q_{\bar{v}}| = \prod_{i < \ell(\bar{v})} \mu_{\bar{v}}^i$, and $\mu_{\bar{v}}^i \leq \lambda_0$.

 $\begin{array}{ll} \textbf{Proof: Let} \ \ \mu_{\overline{v}}^i = |\{J \in \tau: \bigcup\limits_{j \neq i} (v_j \ \bigcap \ v_i) \subseteq J \subset v_i\}|. \ \ \text{Clearly} \ \ \mu_{\overline{v}}^i \leq o(v_i), \ \ \text{but} \\ v_i \in B \text{ so } \mu_{\overline{v}}^i \leq \lambda_0. \ \ \text{By the definition of } Q_{\overline{v}}, |Q_{\overline{v}}| = \prod\limits_i \mu_{\overline{v}}^i. \end{array}$

2.11 Observation: By cardinal arithmetic:

- 1) If $\mu = \prod_{i < \alpha} \mu_i$ then $\mu = \prod_{\ell=1}^n (\chi_\ell)^{\kappa(\ell)}$, where $n < \omega_i$, $\chi_\ell \le \sup\{\mu_i : i < \alpha\}$, $\sum_{\ell=1}^n \kappa(\ell) = |\alpha|$. Also $(\forall i < \alpha)[\chi_\ell > \mu_i > \chi_{\ell+1} \to \kappa(\ell) \ge cf \chi_\ell]$ and $\kappa(\ell) = |\{i : \mu_i \le \chi_\ell, \text{ and } (\forall m)[\chi_m < \chi_\ell \Longrightarrow \chi_m < \mu]\}|$
- 2) In 1) if $\mu > \mu_i$ for each i, μ infinite then $\mu^{\aleph_0} = \mu$; in fact $\mu = \chi^{\kappa}$ for some $\chi \leq \sum_{i \leq \alpha} \mu_i, \aleph_0 \leq \kappa \leq |\alpha|$.
- 3) Suppose $\chi \ge 2^{<s}$, then $\{\prod_{i < \alpha} \mu_i : \alpha < s, \mu_i \le \chi \text{ for each } i < \alpha \text{ but } \prod_{i < \alpha} \mu_i > \chi \}$ is finite.
 - 4) If $\chi \ge 2^{<s} (s \ge \aleph_0)$ then for some $\vartheta < s : \chi^{\vartheta} = \chi^{<s}$.

Remark: In particular, in 3) $\{\lambda^{\sigma}: 2^{\sigma} < \lambda\}$ is finite. When I visited Budapest (in April 84) I learned that this already appeared explicitly in the Hungarian book of Hajnal on Set Theory.

Proof: 1) We define χ_{ℓ} by induction on ℓ , $\chi_1 > \chi_2 > \cdots$. Let $\chi_1 = \sup_{i < \alpha} \mu_i$.

If χ_{ℓ} is defined and is a successor cardinal, let $\chi_{\ell} = (\chi_{\ell+1})^+$. If χ_{ℓ} is defined, $\chi_{\ell} = 1$ let $n = \ell$.

If $\chi_{\ell} > 0$ is a limit cardinal, let $\chi_{\ell+1}$ be the minimal $\chi < \chi_{\ell}, \chi \ge 1$ such that for every χ^* , if $\chi < \chi^* < \chi_{\ell}$ then

 $(*) |\{i < \alpha : \chi < \mu_i \le \chi_\ell\}| = |\{i < \alpha : \chi^* < \mu_i \le \chi_\ell\}|.$

Now χ exists as $\langle |\{i < \alpha: \chi < \mu_i \le \chi_i\}|: \chi < \chi_\ell \rangle$ is a decreasing sequence.

Clearly for some $\ell \chi_{\ell} = 1$, so $\ell = n$. Now $\prod_{i < \alpha} \mu_i = \prod_{\ell=1}^n \prod \{ \mu_i : \chi_{\ell+1} < \mu_i \le \chi_{\ell} \}$ (remember $\mu_i \ne 0$, and we can ignore $\mu_i = 1$).

By (*),
$$\Pi\{\mu_i:\chi_{\ell+1}<\mu_i\leq\chi_{\ell}\}=\chi_{\ell}^{\kappa(\ell)}$$
, where $\kappa(\ell)=|\{i:\chi_{\ell+1}<\mu_i\leq\chi_{\ell}\}|$.

The last phrase is easy too.

- 2) Easy.
- 3) By 2) if $\prod_{i < \alpha} \mu_i \ge \chi$, $\mu_i \le \chi, \alpha < s$ then for some $\mathfrak{V} \le \chi, \kappa \le |\alpha|$, $\mathfrak{V}^{\kappa} = \prod_{i < \alpha} \mu_i$, so $\mathfrak{V}^{\kappa} \le \chi^{\kappa} \le (\prod_{i < \alpha} \mu_i)^{\kappa} = (\mathfrak{V}^{\kappa})^{\kappa} = \mathfrak{V}^{\kappa}$, hence $\prod_{i < \alpha} \mu_i = \chi^{\kappa}$ where $\kappa \le |\alpha|$. So it suffices to prove $\{\chi^{\kappa}: \kappa < s\}$ is finite. Suppose $\chi^{\kappa(n)}$ are distinct for $n < \omega$, where for each $n \kappa(n) < s$. W.l.o.g. $\kappa(n) < \kappa(n+1)$. Let $\chi_n = \min\{\mu: \mu^{\kappa(n)} \ge \chi\}$, so easily:
 - (i) for each $n, \chi_n \geq \chi_{n+1}$.

(ii)
$$\chi_n^{\kappa(n)} = \chi^{\kappa(n)}$$
.

By (i) w.l.o.g. $\langle \chi_n : n < \omega \rangle$ is constant; as we have assumed $\{\chi^{\kappa(n)} : n < \omega\}$ are distinct, by (ii) $\{\chi_n^{\kappa(n)} : n < \omega\}$ are distinct.

But $(\forall \sigma < \chi_n)\sigma^{\kappa(n)} < \chi_n$, hence $(\forall \sigma < \chi_0)(\forall n < \omega)$ $(\sigma^{\kappa(n)} < \chi_0)$, and clearly $cf(\chi_n) \leq \kappa(n)$, so $\chi_n^{\kappa(n)} = \chi_n^{cf(\chi_n)} = \chi_0^{cf(\chi_n)}$. But $\chi_n^{\kappa(n)} = \chi^{\kappa(n)}$ are distinct, contradiction.

4) Follows from 3).

 $\begin{array}{lll} & \text{Proof} & \text{of} & 2.6(1): & \text{Suppose} & |\mathcal{B}|^{<\mathfrak{S}(X)} < o(X). & \text{By} & 2.8(1), & 2.9(1), \\ \tau = \bigcup \{P_{\overline{v}} : \overline{v} \in G\}, \text{ hence } o(X) = |\tau| \leq \sum_{\overline{v} \in G} |P_{\overline{v}}|. & \text{By} & 2.9(2) & o(X) \leq \sum_{\overline{v} \in G} |Q_{\overline{v}}|, \text{ and} \\ \text{by } 2.8(2), & |G| \leq |\mathcal{B}|^{<\mathfrak{S}(X)}. & \text{So to get a contradiction it suffices to prove that} \\ \sup \{|Q_{\overline{v}}| : \overline{v} \in G\} < o(X). & \text{By } 2.10, & |Q_{\overline{v}}| = \prod_{i < \ell(\overline{v})} \mu_{\overline{v}}^i \text{ where } \mu_{\overline{v}}^i \leq \lambda_0 \text{ (as } v_i \in \mathcal{B} \text{ by an assumption) and } \ell(\overline{v}) < \widehat{s}(X) \text{ (by } 2.8(2).) & \text{W.l.o.g. } (\forall i) (\mu_{\overline{v}}^i > 1). \end{array}$

Now by 2.11, for some natural number of $n(\bar{v})$ and cardinals $\mu_{\bar{v},\ell} \leq \lambda_0$ and $\kappa(\bar{v},\ell) \leq \ell(\bar{v}) < \hat{s}(X)$, for $(\ell < n)$:

$$|Q_{\overline{v}}| = \prod_{\ell=1}^{n(\overline{v})} (\mu_{\overline{v},\ell})^{\kappa(\overline{v},\ell)}$$

so if $Q_{\overline{v}}$ is infinite, $Q_{\overline{v}} = \underset{\ell = 1, n}{\operatorname{Max}} (\mu_{\overline{v}, \ell}^{\mathbf{r}(\overline{v}, \ell)}).$

But $(\mu_{\overline{v},\ell})^{\kappa(\overline{v},\ell)} \ge \lambda_0$ implies $(\mu_{\overline{v},\ell})^{\kappa(\overline{v},\ell)} = \lambda_0^{\kappa(\overline{v},\ell)}$ so $|Q_{\overline{v}}| \ge \lambda_0$, implies that for some $\kappa(\overline{v}) \le \ell(\overline{v})$, $|Q_{\overline{v}}| = \lambda_0^{\kappa(\overline{v})}$. But $\ell(\overline{v}) < \widehat{s}(X)$.

So we have proved: if $|Q_{\overline{v}}| \geq \lambda_0$ then $|Q_{\overline{v}}| = \lambda_0^{\kappa(\overline{v})}$ where $\kappa(\overline{v}) < \widehat{s}(X)$. But we have assumed $(\lambda_0)^{\kappa(\overline{v})} \neq o(X)$ and we know $|Q_{\overline{v}}| = |P_{\overline{v}}| \leq o(X)$, so necessarily $|Q_{\overline{v}}| \geq \lambda_0 \Longrightarrow |Q_{\overline{v}}| < o(X)$. But $\lambda_0 < o(X)$ so $|Q_{\overline{v}}| < o(X)$. The same argument gives, $\sup\{|Q_{\overline{v}}| : \overline{v} \in G\} \leq \sup[\{\lambda_0\} \cup \{\lambda_0^{\kappa} : \kappa < \widehat{s}(X), \lambda_0^{\kappa} < o(X)\}]$ but by 2.11 this is $\lambda_0^{\kappa(0)}$, for some $\kappa(0) < \widehat{s}(X)$ hence this supremum is < o(X), which we have shown is enough for 2.6(2).

Proof of 2.6(2): We use freely 2.3, 2.4. So (w.l.o.g.) $|X| < \lambda_0, X$ has a strong base $B, |B| < \lambda_0, o(v) < \lambda_0$ for $v \in B$, and $2^{<\mathcal{E}(X)} \le o(X)$. As $cf \ \mathcal{E}(X) > \aleph_0$, $(2^{<\mathcal{E}(X)})^{\aleph_0} = 2^{<\mathcal{E}(X)}$ hence $2^{<\mathcal{E}(X)} < \lambda$ hence w.l.o.g. $2^{<\mathcal{E}(X)} < \lambda_0$. So all the assumptions of 2.6(1) hold, hence $|B|^{<\mathcal{E}(X)} \ge o(X)$ as required. The last phrase holds if we choose $\chi = |B|$, $\vartheta = \mathcal{E}(X)$. Note $(\chi + 2^{<\vartheta})^{+\omega} = (|B| + 2^{<\mathcal{E}(X)})^{+\omega} \le \lambda_0^{+\omega} \le o(X)$ (as $\lambda_0^{\aleph_0} = \lambda_0$ also $(\lambda_0^{+n})^{\aleph_0} = \lambda_0^{+n}$) and $o(X) \le |B|^{<\mathcal{E}(X)}$.

Proof of 2.6(3): Now X satisfy I from Hypothesis 2.2. If (*) of 2.4 holds we finish by 2.6(2). Otherwise by 2.4 for some n $\lambda_n^{\mathbf{2}_1} > \lambda$, hence $\lambda_n^{\mathbf{2}_1} > o(X)$, hence $\lambda_n > \mathbf{2}_2$ (as $o(X) \geq \mathbf{2}_2$). Remember $\lambda_n^{\mathbf{8}_0} = \lambda_n$. Let $\chi = \lambda_n$, $\vartheta = \mathbf{2}_1^+$, they satisfy the required conclusion.

A corollary of [Sh 1] 4.4 is

2.12 Observation: If B is in infinite Boolean algebra then $|B|^{<\mathfrak{S}(X)} \leq 2^{<\mathfrak{S}(B)}$.

Proof: Let κ be the cellularity of B, so κ is regular, $> \aleph_0, \kappa \le \widehat{s}(B)$, and let $\lambda = Min\{\lambda: \lambda^{<\kappa} \ge |B|\}$; as κ is regular $(\lambda^{<\kappa})^{<\kappa} = \lambda^{<\kappa}$. If $\lambda > 2^{<\kappa}$ then $(V \mu < \lambda) \mu^{\kappa} < \lambda$, and by [Sh 1] 4.4, $\lambda < \widehat{s}(B)$ so $2^{\lambda} \ge \lambda^{<\kappa} \ge |B|$, hence

$$|B|^{\langle \mathfrak{S}(X) \leq (|B|^{\lambda})^{\langle \mathfrak{S}(B) \leq ((2^{\lambda})^{\lambda})^{\langle \mathfrak{S}(B) = 2^{\langle \mathfrak{S}(B) \rangle}}$$

If $\lambda \leq 2^{<\kappa}$, then $|B| \leq 2^{<\kappa}$; remember $\kappa \leq \widehat{s}(B)$ now if $\kappa = \widehat{s}(B)$, then $|B|^{<\widehat{s}(B)} = 2^{<\widehat{s}(B)}$ as $\kappa = \widehat{s}(B)$ is regular; and if $\kappa < \widehat{s}(B)$, $|B|^{<\widehat{s}(B)} \leq (2^{\kappa})^{<\widehat{s}(B)} = 2^{<\widehat{s}(B)}$.

- **2.13 Conclusion:** 1) If B is a Boolean algebra, $id(B)^{\aleph_0} = id(B)$.
- 2) If X is locally compact Hausdorff space then $o(X)^{\aleph_0} = o(X)$.

Proof: 1) Let X be the space of ultrafilters of B, considering B as a basis. So id(B) = o(X). By 2.6(2) (note X is strongly Hausdorff) $o(X) < o(X)^{\aleph_0}$ implies $|B|^{<\mathfrak{S}(B)} > o(X)$, but $o(X) \geq 2^{<\mathfrak{S}(X)} = 2^{<\mathfrak{S}(B)}$ contradicting 2.12.

- 2) We need the parallel of 2.12, which is proved by translating the proof of [Sh] 4.2, 4.4 to topology, which is done in 2.14 below.
- **2.14 Lemma**: Let X be a locally compact Hausdorff compact space with cellularity κ .
- 1) If $(\forall \vartheta < \mu)(\vartheta^{<\varepsilon} < \mu)$ (so $2^{<\varepsilon} < \mu$) and every basis of X consisting of regular open sets has power $\geq \mu$ then $\widehat{s}(X) \geq \mu$.
- 2) If μ is regular, X has a subspace Y whose topology is a refinement of λ_2 .

Note: Theorem 2.14 was prooved by F. Argyros and A. Tsarpaleas independently of [Sh].

Proof: The proof are like [Sh] 4,2, 4.4; we concentrate on 2.14(2), so μ is regular (anyhow we shall use only this part). Here \overline{u} denote the closure of u. Really it is a repetition of [Sh 1] with one change; use of compactness for a family of sets $u_{\alpha}^2 - \overline{u_{\beta}^1}$.

2) Let B be such a base. W.l.o.g. $(\forall u \in B)[\overline{u} \text{ is compact}]$ (otherwise replace B by $\{u \in B: \overline{u} \text{ is compact}\}$). Let $\chi = (2^{2^{|X|}})^+$, $H(\chi)$ the family of sets of hereditary power $<\chi$. We define by induction on $i < \mu$, $N_i < (H(\chi), \epsilon)$, such that $B \in N_i$, $||N_i|| < \mu$, $\langle N_j : j \leq i \rangle \in N_{i+1}, N_j < N_i$ for j < i and every sequence of $<\kappa$ member of N_i belong to N_i when i is a successor ordinal. (hence when $cf \ i \geq \kappa$). For each $i < \mu$, let $B = \{u \in N_i : u \text{ regular open, } \overline{u} \text{ compact}\}$.

As $|B_i| < \mu$ by a hypothesis it is not a basis of X, hence there are in N_{i+1} $p_i \in X, u_i^0 \in B$, $p_i \in u_i^0$, such that for no $v \in B_i$, $p_i \in v \subseteq u_i^0$. We can find for $\ell < 3$, $u_i^{\ell} \in B_{i+1}$, such that $p_i \in u_i^{\ell}$, $u_i^{\ell+1} \subseteq u_i^{\ell}$. Restrict ourselves to case $cf \ i \geq \kappa$.

Let $J_i^2[I_i^\ell]$ be a maximal family of pairwise disjoint open sets $u \in B_i$, $u \subseteq u_i^\ell$ $[u \cap u_i^\ell = \phi]$. So J_i^ℓ , I_i^ℓ , are subsets of N_i of power $<\kappa$ (as κ is the cellularity of X) hence J_i^ℓ , $I_i^\ell \in N_i$. Let $A_i^\ell = X - \overline{\bigcup I_\ell^i}$, so A_i^ℓ is open, belongs to N_i (non empty) $u_i^\ell \subseteq A_i^\ell$ (as $X - u_i^\ell$ is closed, $\bigcup I_i^\ell \subseteq X - u_i^\ell$) and there is no open (non empty) $v \subseteq A_i^\ell - u_i^\ell$, $v \in N_i$. Also $A_i^\ell \in N_i$. Let $B_i^\ell = \bigcup J_i^\ell$, so $B_i^\ell \subseteq u_i^\ell$, B_i^ℓ is open belongs to N_i and there is no open $v \subseteq u_i^\ell - B_i^\ell$, $v \in N_i$. By Fodour's Lemma there are A^ℓ , B^ℓ such that $S = \{i: i < \mu, cf \ i < \kappa$. $A_i^\ell = A^\ell$, $B_i^\ell = B^\ell$ for $\ell = 0,1,2\}$ is stationary. It is enough to prove

(*) for disjoint finite $w(1), w(2) \subseteq S$,

$$\bigcap_{\mathbf{\alpha}\in\mathbf{w}(1)} u_{\mathbf{\alpha}}^{2} \not\subset \bigcup_{\mathbf{\beta}\in\mathbf{w}(2)} u_{\mathbf{\beta}}^{1}$$

As then for any non empty $w \in S$, $\{\overline{u_{\alpha}^2} - u_{\beta}^1 : \alpha \in w, \beta \in S - w\}$ is a family of closed sets, the intersection of any finitely many is non empty and $\overline{u_{\alpha}^2}$ is compact for $\alpha \in w$, so there is q_w in the intersection. So $\{((q_{\{\alpha\}}, u_{\alpha}^2) : \alpha \in s\} \text{ exemples}\}$

plify $\widehat{s}(X) > \mu$, and if $S = \{\xi_i : i < \mu\}$, let $H: {}^{\lambda}2 \to X$ be define by $H(\eta) = q_{\{\xi_1 + i : \eta(i) = 0\}} \bigcup \{\xi_0\}$, then $Y = \{H(\eta) : \eta \in {}^{\lambda}2\}$ is as required.

Let RO(X) be the Boolean Algebra of regular open subsets of X. So in RO(X) we identify $u \in \tau(X)$ with $int(\overline{u})$ (and so the operations are changed accordingly). So RO(X) is complete, in $RO(X) \bigcup_{i < \alpha} A_i = int(\overline{\bigcup A_i})$ i.c. the interior of $\bigcup_{i < \alpha} A_i$; $\bigcap_{i < \alpha} A_i = int(\bigcap_{i < \alpha} A_i)$. So RO(X) satisfies the κ -chain condition and $RO(X) \bigcap N_i$ is a complete subalgebra.

So in RO(X), A_i^{ℓ} is minimal such that $A_i^{\ell} \in N_i$, $u_i^{\ell} \subseteq A_i^{\ell}$ and B_i^{ℓ} is maximal such that $B_i^{\ell} \subseteq u_i^{\ell}$, $B_i^{\ell} \in N_i$.

Proof of (*): We shall work in RO(X) and prove by induction on n = |w(1)| + |w(2)|;

When n is zero the statement is obvious. Let $\alpha = Max((w(1) \cup w(2)))$ and $Max(w(1) \cup w(2) - \{\alpha\}) \le \beta < \alpha$.

By the induction hypothesis $v = \bigcap_{\substack{\gamma \in w(1) \\ \gamma \neq \alpha}} u_{\gamma}^2 - \bigcup_{\substack{\gamma \in w(2) \\ \gamma \neq \alpha}} \overline{u_{\gamma}^1} \cup B^1 \text{ is } \neq 0 \text{ (in } RO(X)).$ Clearly $v \in B_{\alpha}$, and if (*) fails then $v \in B_{\alpha}^1 = B^1$ (if $\alpha \in w(2)$) or $\phi = v \cap A_{\alpha}^2 = v \cap A^2$ (if $\alpha \in w(1)$). In both cases a contradiction follows.

2.18 Conclusion: For locally compact X, $w(X)^{<\mathfrak{S}(X)} \leq 2^{<\mathfrak{S}(X)}$.

Proof: Suppose $w(X)^{<\mathfrak{S}(X)} > 2^{<\mathfrak{S}(X)}$, let $\mu = Min\{\mu^{<\kappa} \ge w(X)\}$, where κ is the cellularity of X. Clearly $\kappa \le \widehat{\mathfrak{S}}(X), \mu \le w(X)$, and $(\forall \chi < \mu)(\chi^{<\kappa} < \mu)$ (as $(\chi^{<\kappa})^{<\kappa} = \chi^{<\kappa}$, κ being regular). So by 2.17 $\mu < \widehat{\mathfrak{S}}(X)$ but $|w(X)|^{<\mathfrak{S}(X)} \le (\mu^{<\kappa})^{<\mathfrak{S}(X)} \le \mu^{<\mathfrak{S}(X)} \le (2^{<\mu})^{<\mathfrak{S}(X)} \le 2^{<\mathfrak{S}(X)}$ contradiction. [if we want to use only the part of 2.17 actually prove, note that

- a) $\mu = \mathfrak{F}(X)$ is singular (by the previous argument).
- b) if μ is not strong limit, let $\vartheta < \mu \le 2^{\vartheta}$, so

 $\models w(X)^{<\mathfrak{T}(X)} \leq (\mu^{<\mathfrak{r}})^{<\mathfrak{T}(X)} = \mu^{<\mathfrak{T}(X)} \leq (2^{\mathfrak{d}})^{<\mathfrak{T}(X)} = 2^{<\mathfrak{T}(X)} \text{ contradiction};$

c) if μ is strong limit singular $\hat{s}(X) = \mu$ is impossible (see [J2] or 3.4.]).

$\S 3$ Nice cardinal functions on a topological space.

- **3.1 Definition**: 1) φ is nice for X if φ is a function from subsets of the topological space X to cardinals satisfying
- (i) $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B) + \aleph_0$ (i.e. monotonicity and subadditivity)
- 2) We call φ (χ,μ) -complete provided that if $A_i \subseteq X$, $\varphi(A_i) < \chi$ for $i < \mu$ then $\varphi(\bigcup_{i \le \mu} A_i) < \chi$.

Let $C(\varphi, \mu) = \{\chi : \varphi \text{ is } (\chi, \mu)\text{-complete}\}.$

- 3) We call φ ($\langle \lambda, \mu \rangle$ -complete, if for arbitrarily large $\chi \langle \lambda, \varphi \rangle$ is (χ, μ) -complete.
 - 4) Let Ch_{φ} be the function from X to cardinals

$$Ch_{\omega}(y) = Min \{ \varphi(u) : y \in u \in \tau(X) \}$$

- **3.1A Remark**: 1) We can replace $i < \mu$ by $i < \alpha < \mu$ and made suitable changes later.
- 2) In our applications we can restrict the domain of φ to the Boolean Algebra generated by $\tau(X)$ and even more, e.g. in 3.2 to simple combinations of the $u_{i,\xi,\xi}$.
 - 3) We can change the definition of $(\langle \lambda, \mu \rangle)$ -complete to

$$(*) \text{ if } A_i \subseteq X(i < \mu), \ \underset{i < \mu}{Sup} \ \varphi(A_i) < \lambda \ \text{then } \varphi(\underset{i < \mu}{\bigcup} A_i) < \lambda$$

without changing our subsequence use. [we then will use: if $\varphi(A_{\alpha}) < \chi_i$ for $\alpha < \mu$ then $\varphi(\bigcup_{\alpha < \mu} A_{\alpha}) < \chi_{i+1}$].

3.2 Lemma: Suppose λ is singular of cofinality ϑ , $\lambda = \sum_{i < \vartheta} \chi_i$, $\chi_i < \lambda$,

 $\vartheta < \lambda$ and $\mu = \beth_5(\vartheta)^+$ or even $\mu = \beth_2(\beth_2(\vartheta)^+)^+$. If

- (i) φ is nice for X.
- (iii) $X_{\chi_i} = \{ y \in X : Ch_{\varphi}(y) \ge \chi_i \}$ has cardinality $\ge \mu$ for $i < \emptyset$.
- (iii) φ is $(\langle \lambda, \mu \rangle)$ -complete.

Then there are open $u_i \subseteq X(i < \vartheta)$ such that

$$\varphi(u_i - \bigcup_{j \neq i} u_j) \ge \chi_i$$

Remark: If $|\{y \in X: Ch_{\varphi}(y) \geq \chi_i\}| < \mu$ it essentially follows from (χ_i, μ) -completeness that $\varphi(X_{\chi_i}) \geq \lambda$ where $X_{\chi} = \bigcup \{v \in \tau(X): \varphi(v) < \chi\}$. Otherwise $\varphi(X-X_{\chi_i}) \geq \lambda$ by additivity, but $\varphi(X-X_{\chi_i}) \leq \prod \{\varphi(\{y\}): y \in X-X_{\chi_i}\}$ so by (χ_i, μ) -completeness for some $y \in X$, $\varphi(\{y\}) \geq \chi_i$ which is impossible for the instances which interest us.

Proof: W.l.o.g. $\chi_i \in C$, $C \stackrel{\text{def}}{=} C(\varphi, \mu) \cap \lambda$. Choose dinstinct $y_{i,\xi} \in X - X_{\chi_i}$ for $i < \vartheta$, $\xi < \mu$.

Let $u_{i,\xi,\zeta}^{\alpha}(i < \vartheta,\xi \neq \zeta < \mu)$ be open sets such that $y_{i,\xi} \in u_{i,\xi,\zeta}$ and $u_{i,\xi,\zeta} \cap u_{i,\xi,\xi} = \phi$. Now

- (*) for every $i < \vartheta, \xi(0) < \xi(1) < \xi(2) < \mu$, there is $x = x_{i,\xi(0),\xi(1),\xi(2)}$ such that :
 - (a) $x \in u_{i,\xi(1),\xi(0)} \cap u_{i,\xi(1),\xi(2)}$
 - (b) if $P \subseteq \Gamma \stackrel{\text{def}}{=} \{u_{j,\xi,\zeta}, X u_{j,\xi,\zeta} : j < \vartheta, \xi \neq \zeta < \mu\},\$ $|P| \leq \vartheta, \text{ and } x \in \bigcap_{A \in P} A \text{ then } \varphi(\bigcap_{A \in P} A) \geq \chi_i$
- If (*) fail, (for $i, \xi(0), \xi(1), \xi(2)$) then for every $x \in u_{i,\xi(1),\xi(0)} \cap u_{i,\xi(1),\xi(2)}$ some \mathcal{P} contradicts (b). So there are $\mathcal{P}_i \subseteq \Gamma$ ($i < \alpha$), $|\mathcal{P}_i| \le \vartheta$, $\varphi(\bigcap_{A \in \mathcal{P}_i} A) < \chi_i$, and $\bigcup_{i < \alpha} \bigcap_{A \in \mathcal{P}_i} A \supseteq u_{i,\xi(1),\xi(0)} \cap u_{i,\xi(1),\xi(2)}$. As $\alpha \le |\Gamma|^\vartheta \le \mu^\vartheta = \mu$, by the (χ_i,μ) -completeness (as $\varphi(\bigcap_{A \in \mathcal{P}_i} A) < \chi_i$):

$$\varphi(u_{i,\xi(1),\xi(0)} \cap u_{i,\xi(1),\xi(2)}) \leq \prod_{i < \alpha} \varphi(\bigcap_{A \in \mathcal{P}_i} A) < \chi_i$$

But $y_{i,\xi(1)} \in u_{i,\xi(1),\xi(0)} \cap u_{i,\xi(1),\xi(2)}$, $y_{i,\xi(1)} \notin X_{\mathbf{X}^i}$, contradiction. So (*) holds and let $x_{i,\xi(0),\xi(1),\xi(2)}$ exemplify it. Now define a five place function F on $\{y_{i,\xi}: i < \vartheta, \xi < \mu\}$, if $i \neq j < \vartheta$, $\xi(0) < \xi(1) < \xi(2) < \mu$, $\zeta(0) < \zeta(1) < \mu$:

$$F(y_{i,\xi(0)},y_{i,\xi(1)},y_{i,\xi(2)},y_{j,\xi(0)},y_{j,\xi(1)})$$

is 0 if $x_{i,\xi(0),\xi(1),\xi(2)} \in u_{j,\xi(0),\xi(1)}$ and is 1 otherwise.

By Erdos Rado if $\mu = \beth_5(\vartheta)^+$ and [Sh 2] if $\mu = \beth_2(\beth_2(\vartheta)^+)^+$ (see remark 3.18 below) there are $\xi(i,\ell)$ ($i < \vartheta$, $\ell < 3$) such that for $i \neq j < \vartheta$:

$$F(y_{i,\xi(i,0)},y_{i,\xi(i,1)},y_{i,\xi(i,2)},y_{j,\xi(j,0)},y_{j,\xi(j,1)}) = F(y_{i,\xi(i,0)},y_{i,\xi(i,1)},y_{i,\xi(i,2)},y_{j,\xi(j,1)},y_{j,\xi(j,2)})$$

(and $\xi(i,0) < \xi(i,1) < \xi(i,2)$)

We can conclude that

Let $u_i = u_{i,\xi(i,1),\xi(i,0)} \cap u_{i,\xi(i,1),\xi(i,2)}$. So $x_{i,\xi(i,0),\xi(i,1),\xi(i,2)} \in u_i - \bigcup_{j \neq i} u_j$, and by the choice of $x_{i,\xi(i,0),\xi(i,1),\xi(i,2)}$, u_i clearly $\varphi(u_i - \bigcup_{j \neq i} u_j) \ge \chi_i$, as required.

3.2A Remark: 1) The demand on μ is (see [Sh 2] Definition 1) to be able to use that $\langle (\mu)_{\mathfrak{d}} \rangle$ have $\langle (3)_{\mathfrak{d}} \rangle$ -cannonization for $\{\langle 2; 3 \rangle_2^5, \langle 3; 2 \rangle_2^5\}$, but really $\{\langle 2; 3 \rangle_2^5, \langle 3; 2 \rangle_2^2\}$.

$$\begin{split} F \big(y_{\alpha(i,0),\xi(i,0)}, y_{\alpha(i,1),\xi(i,1)}, y_{\alpha(i,2),\xi(i,2)}, & y_{\alpha(j,0),\xi(j,0)}, y_{\alpha(j,1),\xi(j,1)} \big) \\ &= F \big(y_{\alpha(i,0),\xi(i,0)}, y_{\alpha(i,1),\xi(i,1)}, y_{\alpha(i,2),\xi(i,2)}, y_{\alpha(j,1),\xi(j,1)}, y_{\alpha(j,2),\xi(j,2)} \big) \end{split}$$

2) If $\vartheta > \aleph_0$ is weakly compact, $\mu = 2^{\vartheta}$ is o.k.; in fact we can use just $\{y_{i,0}: i < \vartheta\}$ by 3.2A(1).

- **3.2B Remark**: How do we apply [Sh 2] in the proof of 3.2? By the composition claim [Sh 2, Claim 5, p. 349] it is enough to prove that:
- (a) $\langle (\exists_2(\exists_2(\vartheta)^+)^+)_{\vartheta} \rangle$ has a $\langle (\exists_2(\vartheta)^{++}))_{\vartheta} \rangle$ -canonization for $\{(2;3)_2^2, (3;2)_2^2\}$.
- (b) $\langle (\mathbb{1}_2(\mathfrak{V})^{++})_{\mathfrak{V}} \rangle$ has a $\langle ((2^{\mathfrak{V}})^{+})_{\mathfrak{V}} \rangle$ -canonization for $\{(2;1)_2^2\}$ really even for $\{(2;1)_{\mathbb{1}_2(2)^2}\}$.
 - (c) $\langle ((2^{9})^{+})_{9} \rangle$ has a $\langle (3)_{9} \rangle$ -canonization for $\{(1)_{2^{9}}^{1}\}$.
- Now (c) is trivial, and (a) we get by e.g. applying [Sh 2, 6(B), p. 249] twice; Now to get (b) (and even for $\{(2;1)_{2(3)}\}$) we apply [Sh 2, 6(F)] with S = 3, $\lambda_{\xi} = 2$ (3)⁺⁺, $\kappa_{\xi} = (2^3)^+$, and check the condition.
- **3.3 Theorem**: 1) If $\mu = \beth_5(cf \lambda)^+ < \lambda$, or $\mu = \beth_2(\beth_2(cf \lambda)^+)^+ < \lambda$, X is a Hausdorff space, with spread λ , then the supremum is obtained, i.e., $\Im(X) \neq \lambda$.
 - 2) The same apply to h(Y), z(X).

Proof: Suppose X is a Hausdorff space, $\widehat{s}(X) \geq \lambda$. Let $\lambda = \sum_{i < cf} \chi_i$, $\chi_i < \lambda$, $\mathfrak{G} \stackrel{def}{=} cf \lambda$, let $|A_i| = \chi_i$, A_i discrete w.l.o.g. $X = \bigcup\limits_{i < \mathfrak{G}} A_i$ and let $\varphi(A) = |A|$, and let C be the family of regular cardinals $< \lambda$ but $> \mu$. Now (i), (iii) are immediate. If (ii) fail for χ , by Hajnal free subset theorem the spread is λ . Otherwise we can find by lemma 3.2 open $u_i(i < cf \lambda)$, $|u_i - \bigcup\limits_{j \neq i} u_j| \geq \chi_i$ w.l.o.g. each χ_i is regular $> cf \lambda$, so for each i for some $\alpha_i < cf \lambda$, $(u_i - \bigcup\limits_{i \neq i} u_i) \cap A_{\alpha_i}$ has power χ_i . The rest is easy too.

3.4 Lemma: Suppose κ is a strong limit cardinal, X an infinite Hausdorff space, $o(X) \ge \kappa$. If $o(X)^{<\kappa} > o(X)$ then for some $Y \subseteq X$ and $\chi, |X| \le \chi = \chi^{<\kappa} < o(X), |X-Y| < \kappa, Y$ open, $o(Y) = o(X), Y = \bigcup \{v \in \tau: o(v) < \chi\}$, so Y has a strong base of power χ .

Proof: For $\kappa = \aleph_0$, this is trivial; if κ is strongly inaccessible then κ is the limit of strong limit singular cardinals, and it suffice to prove it for each of them [let for $\sigma < \chi$

 $\chi_{\sigma} = Min\{\chi: X - \bigcup \{u \in \tau: \sigma(u) < \chi\} \text{ has cardinality } < \sigma\}.$

$$Z_{\sigma} = \{ y \in X : Ch_{\sigma}(y) \ge \chi_{\sigma} \} \quad (= X - \bigcup \{ u \in \tau : \sigma(u) < \chi \})$$

so when σ increases χ_0 decrease, (and χ_{σ} is well defined: $\chi_{\sigma} \leq \sigma(X)$); so for some $\sigma(0) < \kappa$, $\chi_{\sigma} = \chi_{\sigma(0)}$ hence $Z_{\sigma} = Z_{\sigma(0)}$ whenever $\sigma(0) \leq \sigma < \kappa$. W.l.o.g. $\sigma(0)$ is strong limit singular; checking the definition of $\chi_{\sigma}, \chi_{\kappa} = \chi_{\sigma(0)}$. (as $Ch_{\sigma}(z) \geq \kappa$ for $z \in Z_{\sigma(0)}$) For every strong limit singular σ , $\sigma(0) < \sigma < \kappa$, as 3.4 is assumed to be proved for it, there are χ, Y as required; clearly (by the "Min" in the definition of χ_{σ}) $\chi_{\kappa} = \chi_{\sigma} \leq \chi = \chi^{<\sigma}$, so $\chi_{\kappa}^{<\sigma} < \sigma(X)$. As $\sigma(X) \geq \kappa > \sigma$, κ strong limit regular, clearly $\sigma(X) \geq \kappa \geq 2^{<\kappa}$, hence $\sigma(X) > 2^{<\kappa}$, so either $\chi_{\kappa}^{<\kappa} \leq (2^{<\kappa})^{<\kappa} = 2^{<\kappa} < \sigma(X)$ or by 2.11. $\chi_{\kappa}^{<\kappa} = \chi_{\kappa}^{\sigma}$ for some $\sigma < \kappa$, hence $\chi_{\kappa}^{<\kappa} < \sigma(X)$. Now $\chi = \chi_{\kappa}^{<\kappa}$ is as required (if $|X| > \chi$ use Hajnal free subset theorem.)

So w.l.o.g. κ is a strong limit singular cardinal. Let X be a counterexample, i.e. $o(X)^{<\kappa} > o(X)$.

Let $\lambda = Min\{\lambda : \lambda^{\kappa} \ge o(X)\}$, so $\lambda^{\kappa} = o(X)^{\kappa} > o(X)$, and $\lambda \le o(X)$. Also $[\sigma < \kappa, \chi < \lambda \Longrightarrow \chi^{\sigma} < \lambda]$ and $cf \lambda \le \kappa$. Let $\vartheta = cf \lambda$, so $\vartheta \le \kappa$ but ϑ is regular so $\vartheta < \kappa$, and also $\mu \stackrel{\text{def}}{=} \Im_5(\vartheta)^+$ is $< \kappa$, hence $(\forall \sigma < \kappa)\sigma^{\mu} < \lambda$.

We define the function φ :

 $\varphi(A) = |\{u \cap A : u \text{ is an open subset of } X\}|.$

The family C of cardinals will be $\{(\chi^{\mu})^+:\chi<\lambda\}$.

Now we want to apply the lemma 3.2. Its conclusion clearly suffice by 2.3A (ii) . Now " φ is nice for X" and " φ is $(<\lambda,\mu)$ -complete" are immediate. So (ii) necessarily fail for some $\chi < \lambda$. So $Y = \bigcup \{v : o(v) < \chi\}$ satisfies $|X-Y| < \mu$, hence o(Y) = o(X) [as $o(X-Y) \le 2^{\mu} < \kappa \le o(X)$]. Also $|Y| < \lambda$ [otherwise by Hajnal free subset theorem , $\widehat{s}(X) \ge \widehat{s}(Y) > \lambda$, hence $o(X) \ge 2^{\lambda}$, but $2^{\lambda} \ge o(X)$ so $o(X) = 2^{\lambda}$, hence $o(X)^{\kappa} = o(X)$ contr]. So Y (as a subspace) has a strong base B of power $\le \chi + |X| < \lambda$.

3.5 Conclusion: If X is Hausdorff space, κ strong limit cardinal $o(X) \ge \kappa$,

 $o(X)^{<\kappa} > o(X)$, then for every base $B \text{ of } X \mid B \mid^{<\mathfrak{F}(X)} \ge o(X)$.

Proof: See 3.3, and apply 2.6 to the space Y.

- **3.6 Conclusion:** 1) If B is a Boolean Algebra, κ strong limit and $|B| \ge \kappa$ then $id(B)^{<\kappa} = id(B)$.
- 2) If X is locally compact Hausdorff space, κ strong limit, then $o(X)^{<\kappa} = o(X)$.
- **Proof**: 1) By 3.5 applied to the space of ultrafilters of B, $|B|^{<\mathfrak{s}(B)} \geq a(X)$. By 2.12 $|B|^{<\mathfrak{s}(B)} = 2^{<\mathfrak{s}(B)}$, and clearly $2^{<\mathfrak{s}(B)} \leq a(X)$, so $|B|^{<\mathfrak{s}(B)} = 2^{<\mathfrak{s}(B)} = a(X)$. Now $cf \ \mathfrak{s}(X) \geq \kappa$ by 3.4 (as $\mathfrak{s}(X) \geq \mathfrak{s}(\mu)^+$ whenever $\mu < \kappa$), hence $(2^{<\mathfrak{s}(X)})^{<\kappa} = 2^{<\mathfrak{s}(X)}$. As id(B) = a(X) we finish.
- 2) By 3.5 $|B| < \mathfrak{S}(X) \ge o(X)$ for every base B, but by 2.18 $w(X) < \mathfrak{S}(X) \le 2 < \mathfrak{S}(X)$. As $2 < \mathfrak{S}(X) \le o(X)$ we get $2 < \mathfrak{S}(X) = o(X)$, as $\mathfrak{S}(X) \ge \kappa$ (remember κ strong limit, $o(X) \ge \kappa$) by 3. $4 \text{ cf } \mathfrak{S}(X) \ge \kappa$ hence $(2 < \mathfrak{S}(X)) < \kappa = 2 < \mathfrak{S}(X)$.

Remark: If you want to apply only the part of 2.18, 2.17 actually proved, separate the case λ is strong limit in 3.4.

§4 Further consequences.

- **4.1 Claim:** Let B be a Boolean Algebra , χ a cardinal, and we define by induction on i, ideals $I_i = I_i^{\chi}(B)$ increasing continuous: $I_0 = \{0\}$, $I_{i+1} = \{x \in B : id((B/I_i) \upharpoonright (x/I_i)) < \chi_i\}$ where χ_i is choose as a minimal cardinal $< \chi$ such that $I_{i+1} \neq I_i$.
- 1) For some $\gamma = \gamma(*) = i_{\chi}(B) < |B|^+, I_{\gamma(*)}$ is defined but not $\chi_{\gamma(*)}$ (nor $I_{\gamma(*)+1}$).
 - 2) $B = I_{\gamma(\bullet)}$ or for every $x \in B I_{\gamma(\bullet)}$, $id((B/I_{\gamma(\bullet)}) \upharpoonright (b/I_{\gamma(\bullet)})) \ge \chi$.
- 3) The number of ideals $J \subseteq I_{\gamma(\bullet)}$ of B has the form $\sum_{\alpha < \beta} \mu_{\alpha}^{\kappa(\alpha)}$ where $\beta \leq |B|^{<\mathfrak{S}(B)}$, $\mu_{\alpha} < \chi$, $\kappa(\alpha) < \widehat{\mathfrak{S}}(B)$.

This follows from:

4.2 Claim: For a Hausdorff space X with a base $\overset{B}{\sim}$ and cardinal χ , define by induction on i $u_i = u_i^{\chi}(X)$:

$$u_0 = \phi$$

 $\begin{aligned} u_{i+1} &= u_i \cup \{v: v \in \underline{B} \text{ , } o\left(v - u_i\right) < \chi_i\} \text{ where } \chi_i < \lambda \text{ is minimal such that } \\ u_{i+1} &\neq u_i \ u_{\delta} = \bigcup_{i < \delta} u_i \text{ (so } u_i \text{ is increasing continuous.)} \end{aligned}$

- 1) For some $\gamma(*) = \gamma^{\chi}(X) < |X|^+$, (and $\gamma(*) < |w(X)|^+$) $u_{\gamma(*)}$ is defined but not $u_{\gamma(*)+1}$ and for every $y \in X u_{\gamma(*)}$, $(\forall v)(y \in v \in \tau \rightarrow \sigma(v u_{\gamma(*)}) \geq \chi$.)
- 2) $o(u_{\gamma(\bullet)})$ if $>|B|^{<\mathfrak{S}(X)}$, has the form $\sum_{\alpha<\beta}\mu_{\alpha}^{\kappa(\alpha)}$ where $\beta \leq |B|^{<\mathfrak{S}(B)}$, $[\mu_{\alpha} < \chi, \text{ or } \mu_{\alpha} = \chi, \kappa(\alpha) \geq cf \chi]$ and $\kappa(\alpha) < \mathfrak{S}(X)$.

Proof: Like 2.6.

For every $u \in u_{\gamma({}^{ullet})}$ choose by induction on i, v_i , such that:

- (i) $v_i \cap v_i \subseteq u$ for j < i.
- (ii) $v_i \not \in u$, $v_i \in B$.
- (iii) $v_i \subseteq u_{\alpha(i)}$ for some $\alpha(i) \leq \gamma(*)$ but for no $\beta < \alpha(i)$ and $v' \subseteq v_i$, is $v' \not\subset u_{\beta}$ and $v' \in \tau$.

So let $\pmb{\beta}$ be first such that $v_{\pmb{\beta}}$ is not defined. By (iii) for each $i < \pmb{\beta}$ $\alpha(i)$ is successor ordinal and $u_{\alpha(i)-1} \cap v_i \subseteq u$. As in 2.6 $\overline{v} = \left\langle v_j : j < \pmb{\beta} \right\rangle$, $u \cap v_j$ determine u, the number of u corresponding to \overline{v} is $\prod\limits_{j < \pmb{\beta}} o\left(v_i - u_{\alpha(i)-1} - \bigcup\limits_{j \neq i} v_j\right)$ each multiplicant is $\leq o(v_i) \leq \chi_i < \chi$, $\pmb{\beta} < \widehat{s}(X)$ and the number of \overline{v} is $\leq |B|^{<\widehat{s}(X)}$.

4.3 Remark: At least for compact spaces, this gives heavy restrictions on the relevant cardinals.

Let $\aleph_0 \leq \kappa_0 < \cdots < \kappa_n$ list the cardinals κ such that $2^{\kappa} < o(X)$, and for some $\lambda = \lambda[\kappa]$, $\kappa = cf \lambda$, and $\lambda^{\kappa} > o(X) > \lambda$ but $(\forall \chi < \lambda) [\chi^{\kappa} < \lambda]$ so $o(X)^{<\epsilon_0} = o(X) < o(X)^{\epsilon_0}$ (if there is no such κ we have no problem). As $\pmb{\lambda}[\kappa_a] = \pmb{\lambda}[\kappa_b] \text{ implies } \kappa_a = \kappa_b, \text{ and } [\kappa_a < \kappa_b \Longrightarrow \pmb{\lambda}([\kappa_a]) > \pmb{\lambda}([\kappa_b])], \text{ clearly } n$ is finite and trivially each κ_{ℓ} is regular and let for $\ell = 1, n$, $\lambda_{\ell} = Min\{\lambda: \lambda^{\kappa_{\ell}} \geq o(X)\}; \text{ but } \lambda[\kappa_{\ell}] \geq \lambda_{\ell} \text{ (as } \lambda[\kappa_{\ell}]^{\kappa} \geq o(X))) \text{ and } \lambda[\kappa_{\ell}] \leq \lambda_{\ell} \text{ (as } \lambda[\kappa_{\ell}]^{\kappa} \geq o(X))$ $(\forall \chi < \kappa[\kappa_{\ell}]) [\chi^{\kappa} < \lambda[\kappa_{\ell}]])$, so $\lambda[\kappa_{\ell}] = \lambda_{\ell}$. Hence $cf \lambda_{\ell} = \kappa_{\ell}, \lambda_{0} > \lambda_{1} > \cdots > \lambda_{n}$, $(\forall \chi < \lambda_\ell)[\chi^{\kappa_\ell} < \lambda_\ell]. \text{ Moreover (for } \ell < n) \ (\forall \chi < \lambda_\ell)(\chi^{<\kappa_{\ell+1}} < \lambda_\ell) \text{ [first suppose } \ell < n)$ $\chi < \lambda$, $\kappa_{\ell} \le \vartheta < \kappa_{\ell+1}$, if $\chi^{\vartheta} \ge \lambda_{\ell}$ then $\chi^{\vartheta} \ge \lambda^{\vartheta} \ge \lambda^{\kappa_{\ell}} \ge o(X)$, w.l.o.g. χ is minimal with this property, so $\chi^{0} \ge o(X) > 2^{\kappa \ell + 1} \ge 2^{0}$ hence $\chi > 2^{0}$. Clearly (V $\mu < \chi)(\mu^{\vartheta} < o(X))$ hence $(\forall \mu < \chi)(\mu^{\vartheta} < \chi)$, and $cf(\chi) \le \vartheta$ (otherwise $\chi^{\mathfrak{G}} = \sum_{\alpha \in \mathcal{X}} |\alpha|^{\mathfrak{G}} \leq \chi < \lambda_{\ell} \leq o(X)$ contr.). So $cf \chi \leq \mathfrak{G} < \kappa_{\ell+1}$ and by χ 's minimality $(\forall \mu < \chi)(\mu^{cf} \times \leq \mu^{\vartheta} < \chi)$. Lastly $cf \times \kappa_{\ell}$ [otherwise $\chi^{\vartheta} = \chi^{cf} \times \leq \chi^{\kappa_{\ell}} < \lambda_{\ell}$] contradicting the assumption of ϑ]. So $\vartheta \in \{\kappa_0, \ldots, \kappa_n\}$, contr. Secondly suppose $\chi^{<\kappa_{\ell+1}} \ge \lambda_{\ell}$, for some $\chi < \lambda_{\ell}$, as $\vartheta < \kappa_{\ell+1} \Longrightarrow 2^{\vartheta} < \lambda_{\ell}$, by 2.11 for some $\vartheta < \kappa_{\ell+1}, \chi^{\vartheta} = \chi^{<\kappa_{\ell+1}}$ and we get the first case].

Let $\lambda_{n+1}=Min\{\chi\colon 2^\chi\geq o(X)\}$ and $\kappa_{n+1}=cf$ $\lambda_{n+1};$ so $\lambda_{n+1}\leq \lambda_n$, hence, as above) $(\forall\chi<\lambda_n)(\forall\vartheta<\lambda_{n+1})[\chi^\vartheta<\lambda_n].$ By the proof of 3.4 $\beth_5(\kappa_\ell)^+\geq \kappa_{\ell+1}$ (for $\ell< n$), otherwise using $\lambda_n,\kappa_\ell,\mu=\beth_5(\kappa_\ell)^+$ we get contradiction. If λ_{n+1} is singular, $\langle 2^\chi:\chi<\lambda_{n+1}\rangle$ is not eventually constant [as then $(\Im\chi<\lambda_{n+1})2^\chi=2^{\chi_{n+1}}],$ $2^{<\lambda_{n+1}}\leq o(X),$ $(2^{<\lambda_{n+1}})^{\epsilon_{n+1}}=2^{\lambda_n}>o(X),$ so $\lambda[\kappa_{n+1}]=2^{<\lambda_{n+1}},$ so $\lambda_n=\lambda_{n+1}$ hence $\beth_{6(n+1)}(\kappa_0)\geq o(X),$ $o(X)^{<\kappa_0}=o(X).$ If λ_{n+1} is regular, then $(\forall\vartheta<\lambda_{n+1})$ $(\forall\chi<\lambda_n)[\chi^\vartheta<\lambda_n]$ hence $\beth_5(\kappa_n)^+\geq\lambda_{n+1},$ so we get the same conclusion.

- **4.4 Lemma:** Suppose X is a Hausdorff space, λ a singular cardinal, $\vartheta = cf$ λ , $\lambda = \sum_{i \le 1} \chi_i, \chi_i < \lambda$, $\mu < \lambda$ and (i), (ii), (iii) of 3.2 holds (for φ).
- 1) If $\mu = \mathbf{I}_2(\mathbf{\vartheta})^+$ (or even $\sum_{\sigma < \mathbf{\vartheta}} \mathbf{I}_2(\sigma)^+$) then there are open sets $u_i(i < \mathbf{\vartheta})$ such that $\varphi(u_i \bigcup_{i > i} u_j) \ge \chi_i$.
 - 2) If $X = \bigcup \{u : o(u) < \lambda\}$, μ as in 1) then there are open sets u_i such

that $\varphi(u_i - \bigcup_{j \neq i} u_j) \ge \chi_i$.

3) If $\mu \geq \beth_3(2^{<\vartheta})^+$, φ is $(\langle \chi_0, \mu)$ -complete, then there are $u_i (i < \vartheta)$ such that $\varphi(u_i - \bigcup_{j \neq i} u_j) \geq \chi_0$ (so λ , $\chi_i (0 < i < \vartheta)$, are irrelevant).

Remarks: 1) Part 1) of the lemma is suitable to deal with Boolean algebras, part 2) with existence of $\{x_{\alpha}: \alpha < \lambda\}$ such that for every $\alpha < \lambda$ for some $u, x_{\alpha} \in u \cap \{x_{\beta}: \beta < \lambda\} \subseteq \{x_{\beta}: \beta \leq \alpha\}$.

Proof: 1) We repeat the proof of 3.2, for $\mu = \mathbf{2}_2(\vartheta)^+$, but cannot use the partition relation used there, but we can use a weaker one. We choose by induction on $j < \vartheta$, $\xi(j,0) < \xi(j,2) < \xi(j,2) < \mu$ such that for i < j:

$$F(y_{i,\xi(i,0)}, y_{i,\xi(i,1)}, y_{i,\xi(i,2)}, y_{j,\xi(j,0)}, y_{j,\xi(j,1)}) = F(y_{i,\xi(i,0)}, y_{i,\xi(i,1)}, y_{i,\xi(i,2)}, y_{j,\xi(j,1)}, y_{j,\xi(j,2)})$$

This is clearly possible by the assumption on μ .

We can conclude that, letting $u_i = u_{i,\xi(i,1),\xi(i,0)} \cap u_{i,\xi(i,1),\xi(i,2)}$ then $x_{i,\xi(i,0),\xi(i,1),\xi(i,2)} \in u_i - \bigcup_{i > i} u_j$, so we can get the desired conclusion.

2) In the proof of 1) we can take care that for every $i < \emptyset$, $\xi \neq \zeta < \mu$, $u_{i,\xi,\xi}$ satisfies $o(u_{i,\xi,\xi}) < \lambda$; hence we shall get $o(u_i) < \lambda$. So by thinning the sequence $\langle u_i : i < \emptyset \rangle$, as $o(u_i) \geq \chi_i$, $\lambda = \sup_{i \in \mathbb{N}} \chi_i$ we can assume:

$$[i < j \implies o(u_i) < u_j].$$

As φ is $(\langle \chi_i, \mu \rangle)$ -complete, $\vartheta \leq \mu$, necessarily $\circ (\bigcup_{i < j} u_i) < \chi_j$. Hence

$$o\left(u_{i}-\underset{j\neq i}{\bigcup}\;u_{j}\right)=o\left((u_{i}-\underset{j< i}{\bigcup}\;u_{j}\right)-\underset{j< i}{\bigcup}\;u_{j}\right)\geq\chi_{j}$$

as required.

- 3) Really the proof is as in 3.2, but we use (for $\sigma=2$, κ finite large enough, note $\mu=2(\sigma^{<3})^+$; is 0.K. in 4.5):
- **4.5 Observation**: If F is a 5-place function from μ to σ , $\sigma \ge 2, \vartheta \ge \aleph_0$ $\mu \to (\kappa)^3_{\psi}$, $\psi = 2^{(\sigma^{<\vartheta}) + \kappa}$ $\kappa \to (3)^2_{\sigma}$ [e.g. $\mu > \beth_1(\psi^{2^{<\vartheta}}) = \beth_3(\sigma^{<\vartheta} + \kappa)$ $\kappa = (2^{<\sigma})^+ + \aleph_0$],

 $\kappa \to (3)^2_{\mathfrak{V}}$ [e.g. $\mu > \mathbb{1}_1(2^{\psi+2^{*\mathfrak{V}}}) = \mathbb{1}_3(\sigma^{<(\mathfrak{V}+\kappa^+)})$, $\kappa = (2^{*\mathfrak{V}})^+$, or κ is finite large enough] then, there are distinct $\xi(i,\ell)(i < \mathfrak{V},\ell > 3)$ such that, for $i \neq j$:

$$F(\xi(i,0),\xi(i,1),\xi(i,2),\xi(j,0),\xi(j,1)) = F(\xi(i,0),\xi(i,1),\xi(i,2),\xi(j,1),\xi(j,2))$$

Remark: We can get of course more general theorem.

Proof: We choose by induction on $i < \emptyset$, $Y_i \subseteq \mu$, $|Y_i| \le \sigma^{|i|+\kappa} + \aleph_0$, Y_i increasing and all "types" of cardinality $< |i|^+ + \kappa^+$ realized in μ are realized in Y_{i+1} . Let $Y = \bigcup_{i < \emptyset} Y_i$. Now we can find distinct $\xi^*(\ell) \in \mu - Y$ for $\ell < \kappa$ such that for every $\xi_0, \xi_1, \xi_2 \in \bigcup_{i < \emptyset} Y_i$ there are $c_1(\xi_0, \xi_1, \xi_2), c_2(\xi_0, \xi_1)$ such that

$$(*)_a \text{ for every } \ell < m < \kappa \ F(\xi_0, \xi_1, \xi_2, \xi^*(\ell), \xi^*(m)) = c_1(\xi_0, \xi_1, \xi_2)$$

(*)_b and for every
$$\ell < m < n < \kappa \ F(\xi^*(\ell), \xi^*(m), \xi^*(k), \xi_0, \xi_1) = c_2(\xi_0, \xi_1)$$
.

Why we can do this? We want to apply the partition relation $\mu \to (\kappa)_{\psi}^3$, for this we have to check what is the number of "colours", clearly it is $\leq 2^{(\kappa^2|Y|^5 + \kappa^3|Y|^2)} \leq 2^{\aleph_0 + \kappa + (\sigma^{<(\Phi < \kappa^+)})}) = \psi$. Now we choose by induction on $i < \vartheta$, $\xi(i,\ell),\ell < \kappa$ such that:

- (i) $\xi(i,0),\xi(i,2),\xi(i,2)$ are distinct.
- (ii) $\xi(i,\ell) \in Y_{i+1} Y_i$.

(iii)

 $F(\xi(j,0),\xi(j,1),\xi(j,2),\xi(i,\ell),\xi(i,m)) = F(\xi(j,0),\xi(j,1),\xi(j,2),\xi^{*}(\ell),\xi^{*}(m)), \text{ when } j < i, \text{ and } \ell, m < \kappa.$

$$\begin{split} \text{(iv) } F(\xi(i,\ell_1), & \xi(i,\ell_2), \xi(i,\ell_3), \xi(j,\ell_4), \xi(j,\ell_5)) = \\ & F(\xi^{\bullet}(\ell_1), \xi^{\bullet}(\ell_2), \xi^{\bullet}(\ell_3), \xi(j,\ell_4), \xi(j,\ell_5)) \\ \text{when } j < i, \ell_1 < \dots < k \,. \end{split}$$

There is no problem in doing this:

For each $i < \vartheta$, as $\kappa \to (3)^2_\sigma$ there are $\ell_0(i) < \ell_1(i) < \ell_2(i) < \kappa$ such that:

$$F(\xi^*(0), \xi^*(1), \xi^*(2), \xi(i, \ell_0(i)), \xi(i, \ell_1(i))) = F(\xi^*(0), \xi^*(1), \xi^*(2), \xi(i, \ell_1(i)), \xi(i, \ell_2(i)))$$

Now $\xi'(i,m) = \xi(i,\ell_m(i))$ $(i < \vartheta, m < 3)$ are as reequired.

4.4A Remark: Assume (i), (ii), (iii) of 3.2. We try to decrease μ . Let $Z_i = \{ y \in X : Ch_{\varphi}(y) \ge \chi_i \}, \text{ so } |Z_i| \ge \mu, \text{ and let } X_{<\lambda} = \bigcup \{ u : \varphi(u) < \lambda \}. \text{ If }$ $|X-X_{\leq \chi}| < \mu$ then necessarily $|Z_i \cap X_{\leq \chi}| \ge \mu$, so we can continue as in 4.4(2). So we assume $|X-X_{<\chi}| \ge \mu$ and let $y_{\xi} \in X-X_{<\lambda}$ $(\xi < \mu)$ be distinct. Choose for $\xi < \zeta$, open disjoint sets $u_{\xi,\xi}, u_{\xi,\xi}$ such that $y_{\xi} \in u_{\xi,\xi}, y_{\xi} \in u_{\xi,\xi}$. As in 3.2's distinct we proof can choose $\xi(0), \xi(1), \xi(2) < \mu$ $x_{i,\xi(0),\xi(1),\xi(2)} \in u_{\xi(1),\xi(0)} \cap u_{\xi(1),\xi(2)}$ such that: for every

$$\left[x_{i,\xi(0),\xi(1),\xi(2)}\in\bigcap_{\alpha\in\mathcal{P}}a\Longrightarrow\varphi(\bigcap_{\alpha\in\mathcal{P}}a)\geq\chi_{i}\right]$$

We need the parallel of 4.5 for ϑ functions simultaneously or, what is equivalent, the range of F has cardinality 2^{ϑ} , so $\sigma = 2^{\vartheta}$, and we get $\mu \geq \beth_5(\vartheta)^+$ but this is not interesting.

§5 When the spread is obtained and how helpful is regularity of the space

- **5.1 Lemma** : 1) Suppose X is a regular (i.e. T_3) topological space, B a base of X, $\lambda = \sum_{i < 0} \chi_i$, $\vartheta < \chi_i < \lambda$, $\mu = (2^{\vartheta})^+$ and
 - (i) φ is nice for X,
- (ii) for every (closed) $Y \subseteq X$ with $\varphi(Y) \ge \lambda$ and $i < \vartheta$, there are $y_{\alpha} \in Y (\alpha < \mu)$, $Ch_{\varphi \upharpoonright Y}(y_{\alpha}) \ge \chi_i$ and $\{y_{\alpha} : \alpha < \mu\}$ is a discrete set,
 - (iii) φ is $(\langle \lambda, \mu \rangle)$ -complete.

Then for some $u_i \in B$ $(i < \vartheta)$, $\varphi(u_i - \bigcup_{j \neq i} u_j) \ge \chi_i$.

- 2) Instead $\mu = (2^{\circ})^+$ it suffices that $\mu = \mu^{\circ} > 2^{\circ}$ (and (i), (ii), (iii)).
- 3) We can replace (ii) above by

(ii)' for each $i < \vartheta$ there are $u_{\alpha} \in \mathop{B}(\alpha < \mu)$ such that:

$$(\forall g: \mu \to 2^{\vartheta})(\exists \alpha \neq \beta)[g(\alpha) = g(\beta) \land \varphi[(u_{\alpha} - \overline{u}_{\beta}) \cap Y) \geq \chi_i].$$

or

(ii)" there are $u_{\alpha}, y_{\alpha} \in u_{\alpha} \in B$, such that: $\mathit{Ch}_{\varphi}(y_{\alpha}) \geq \chi_{i}$ and

$$(\forall g : \boldsymbol{\mu} \to 2^{\boldsymbol{\theta}})(\exists \alpha \neq \boldsymbol{\beta})[g(\alpha) = g(\boldsymbol{\beta}) \land y_{\alpha} \not\in \overline{u_{\boldsymbol{\beta}}}].$$

Proof: 1) W.l.o.g. φ is (χ_i, μ) -complete for $i < \vartheta$. We first try to choose a family K of open subsets of X, (or even $\subseteq B$), and a $Y \subseteq X$ such that:

- (A) $|K| = |Y| = (2^{9})^{+}$.
- (B) if u is the union of $< \vartheta$ members of K, $\varphi(X-u) \ge \lambda$ and $i < \vartheta$ then there is a sequence $\left< y_{\alpha}, v_{\alpha}^{0}, v_{\alpha}^{1} : \alpha < (2^{\vartheta})^{+} \right>$ such that: $y_{\alpha} \in Y-u$, $[y_{\alpha} \in v_{\beta}^{1} \iff \alpha = \beta]$, $v_{\alpha}^{0}, v_{\alpha}^{1} \in K$, $y_{\alpha} \in v_{\alpha}^{0} \subseteq \overline{v_{\alpha}^{0}} \subseteq v_{\alpha}^{1}$, and $(\forall v \in \tau(X))$ $[y_{\alpha} \in v \rightarrow \varphi(v-u) \ge \chi_{i}]$.

It is easy to find such K, Y (by (ii)). Let for $i < \vartheta$,

 $Z_i(K) \stackrel{\text{def}}{=} \{ z \in X : \text{ if } u_{\alpha} \in K(\alpha < \vartheta), \text{ and } u_{\alpha}^* \in \{ u_{\alpha}, X - u_{\alpha} \} \text{ and } z \in u_{\alpha}^* \text{ for each } \alpha < \vartheta \text{ then } \varphi(\bigcap_{\alpha < \vartheta} u_{\alpha}^{t(*)}) \ge \chi_i \}.$

By the proof of 3.2 for each i < 0 there is $z_i \in Z_i(K)$. Now we choose by induction on i, x_i, u_i such that:

- (a) $u_i \in K$, $x_i \in Z_i(K)$,
- $\text{(b) } x_i \in u_i, (\forall \varepsilon < i) (x_\varepsilon \not\in u_i \land x_i \not\in u_\varepsilon),$
- (c) $z_{\varepsilon} \not\in u_i$ when $i < \varepsilon < \vartheta$.

Suppose x_j, u_j are defined for j < i. We want to apply (B) to $\bigcup u_j$, now for each ε , if $i \le \varepsilon < \vartheta$ then $\varphi(X - \bigcup u_j) \ge \chi_\varepsilon$ as $\{u_j : j < i\} \subseteq K$, $z_\varepsilon \not\in \bigcup u_j$ and $z_\varepsilon \in Z_\varepsilon(K)$. Hence $\varphi(X - \bigcup u_j) \ge \lambda$. So by (B) above there is $\langle y, v_\alpha^0, v_\alpha^1 : \alpha < (2^{\vartheta})^+ \rangle$ as mentioned there. By cardinality consideration, for

some $\alpha \neq \beta$,

$$v_{\alpha}^{\,0} \, \cap \, (\{z_j : j < \vartheta\} \, \cup \, \{y_j : j < i\}) = v_{\beta}^{\,0} \, \cap \, (\{z_j : j < \vartheta\} \, \cup \, \{y_j : j < i\})$$

So $u_i \stackrel{\text{def}}{=} v_\alpha^0 - \overline{v_\beta^0}$ is open, is disjoint to $\{z_j : j < \vartheta\} \cup \{y_j : j < i\}$, and y_α belongs to it (as $y_\alpha \not\in v_\beta^1, \overline{v_\beta^0} \subseteq v_\beta^1$). As (by (B)) $(\forall v \in \tau(X))[y_\alpha \in v \to \varphi(v - \bigcup u_j) \ge \chi_i]$, clearly $\varphi(u_i - \bigcup u_j) \ge \chi_i$, hence (as in 3.2) there is $x_i \in Z_i(K) \cap (u_i - \bigcup u_j)$. So j < i we succeed in the induction. In the end as $u_i \in K$, $x_i \in Z_i(K) \cap (u_i - \bigcup u_j)$ clearly $\varphi(u_i - \bigcup u_j) \ge \chi_i$, so we finish.

- 2),3) Similar.
- 5.2 Lemma : Suppose X is a Hausdorff space, $\lambda = \sum_{i < \vartheta} \chi_i$, $\chi_i < \lambda$ and $\mu = \Im_2(\vartheta)^+$, B a base for X, and
 - (i) φ is nice for X.
- (ii) for every (closed) $Y \subseteq X, \varphi(Y) \ge \lambda$, and $i < \vartheta$ there are at least μ points $y \in Y$ with $Ch_{\varphi \upharpoonright Y}(y) \ge \chi_i$.
 - (iii) φ is $(\langle \lambda, \mu \rangle)$ -complete.

Then for some $u_i \in B_i (i < \vartheta) \quad \varphi(u_i - \bigcup_{j \neq i} u_j) \ge \chi_i$.

Proof: Like the previous one, replacing (B) by (B)', (C)' (D)':

- (B)' if u is the union of $< \vartheta$ members of $K, \varphi(X-u) \ge \lambda$ and $i < \vartheta$ then there are $\mathbb{E}_2(\vartheta)^+$ points $y \in Y-u$ such that $(\forall v \in \tau(X))(y \in v \to \varphi(v-u) \ge \chi_i]$.
 - (C)' if $y_1 \neq y_2 \in Y$ then for some $u, v \in K$, $y_1 \in u, y_2 \in v, u \cap v = \phi$.
 - (D)' K is closed under finite intersections.

Then having defined $u_j, x_j (j < i)$ and shown $\varphi(X - \bigcup_j u_j) \ge \lambda$, we can find distinct $y_\alpha \in Y - \bigcup_{j < i} u_j (\alpha < \mathbb{1}_2(\mathfrak{V})^+)$ such that $Ch_{X - \bigcup_{j < i} u_j} (y_\alpha) \ge \chi_i$. We let $A = \{z_j : j < \mathfrak{V}\} \cup \{x_j : j < i\}$, $I_\alpha = \{v \cap A : y_\alpha \in v \in K\}$, so for some $\alpha \ne \beta < \mathbb{1}_2(\mathfrak{V})^+$,

$$\begin{split} I_{\pmb{\alpha}} &= I_{\pmb{\beta}}, \text{ and using (C)' there is } u_i \in K, \text{ such that } y_{\pmb{\alpha}} \in u_i, \text{ obviously} \\ A &\cap u_i = \pmb{\phi}. \quad \text{As} \quad y_{\pmb{\alpha}} \in u_i \ \varphi(u_i - \bigcup_{j < i} u_j) \geq \chi_i, \quad \text{hence there is} \\ x_i &\in Z_i(K) \cap (u_i - \bigcup_{j < i} u_j). \end{split}$$

We may remember:

5.3 Fact : 1) Suppose $\kappa = \kappa^{<\kappa}$, $\chi = \sum_{i < \vartheta} \chi_i$, χ_i increasing continuous $\kappa < \vartheta < \chi_i$.

Then for some forcing notion P:

- a) P is κ -complete satisfying the κ^+ -chain condition.
- b) In V^P there is a topological space X with a basis of clopen sets such that $\widehat{h}(X) = \widehat{z}(X) = \widehat{s}(X) = \chi$, $o(X) = \sum_{i < 0} 2^{\chi_i}$ and $|X| = \chi$.
- 2) In fact we can get that X is the dual of a Boolean algebra and there is no set of pairwise incomparable members of the Boolean algebra, of cardinality χ .

Proof: Let $p \in P$ be a set of $\langle \kappa \rangle$ atomic conditions with no two contradictory ones, where an atomic condition is $\alpha \in u_{\beta}$ or $\alpha \not\in u_{\beta}$, where $\alpha, \beta < \chi$, and $\alpha \in [\chi_i, \chi_{i+1}) \Longrightarrow \beta < \chi_i \vee \beta = \alpha \vee \beta \ge \chi_{i+1}$.

Two conditions are contradictory if they have the form $\alpha \in u_{\beta}, \alpha \notin u_{\beta}$. The order is inclusion.

Now (a) is obvious.

In V^P we define:

$$u_{\beta}^{P} = \{ \alpha < \lambda : \alpha \in u_{\beta} \text{ belong to some } p \in G \}$$

On χ we define a topological space X: by having $\{u_{\beta}^{P}: \beta < \chi\}$ be a basis of clopen sets.

The rest is easy too.

- 2) Similar (just as in [Sh 9] 4.4). i.e. let $P = \{(B, W): B \text{ a Boolean algebra of cardinality } < \kappa \text{ generated by } \{x_i : i \in W\}, W \text{ a subset of } \chi \text{ of cardinality } < \kappa, \text{ and if } \alpha_0, \ldots, \alpha_n \text{ are distinct members of } W \cap [\chi_i, \chi_i^+) \text{ then } B \models x_{\alpha_0} \not\subset \bigcup_{\ell=1}^n x_{\alpha_\ell} \}.$
- **5.4 Conclusion**: 1) If X is Hausdorff $\widehat{s}(X)$ is singular of cofinality \mathfrak{F} then $cf(\widehat{s}(X)) < 2^{2^{\mathfrak{F}}}$. [repeat the proof of 3.3 but instead of 3.2 use 5.1 remembering $cf(2^{\mathfrak{F}}) > \kappa$].
- 2) If X is regular (i.e. T_3) $\widehat{s}(X)$ singular of cofinality ϑ then $cf(\widehat{s}(X)) < 2^{\vartheta}$. [repeat the proof of 2.3 but instead of 3.2 use 5.2 remembering $cf(2^{\vartheta}) > \vartheta$].
- 3) Both results are best possible in the sense of complementary consistency results. (see [JSh] and 5.3).
 - 4) We can replace above s by z or h.
- 5.5 Lemma : Suppose λ is singular of cofinality ϑ , $\lambda = \sum_{i < \vartheta} \chi_i$, $\chi_i < \lambda$, and $\mu \ge 0$. Assume further (for a topological space X and function φ):
 - (i) φ is nice for X.
 - (ii) $\{y \in X: Ch_{\varphi}(y) \ge \chi_i\}$ has power $\ge \mu_1$ for $i < \vartheta$.
 - (iii) φ is $(\langle \lambda, \mu_0 \rangle)$ -complete.
- 1) If X is Hausdorff, $\mu_0 = \mu_1 = \sum_{\kappa < \vartheta} \mathbf{1}_2(\kappa)^+$, then for some $u_i \in \tau(X)$ (for $i < \vartheta$) for each $i, \varphi(u_i \bigcup_{j < i} u_j) \ge \chi_i$.
- 2) If X is regular, $\mu_0 = \mu_1 = \sum_{\kappa < 0} (2^{\kappa})^+$ then for some $u_i \in \tau(X)$ (for i < 0) for each $i \quad \varphi(u_i \bigcup_{i < i} u_j) \ge \chi_i$.

Remark: The proofs are similar to those of 5.1, 5.2.

Proof: 1) W.l.o.g. φ is (χ_i, μ_0) -complete for each i. We define K, Y:

- (A) K is a family of open subsets of X of power $\leq \mu_0$.
- (B) Y is a subset of X of power $\leq \mu_1$.
- (C) there are μ_0 distinct $y \in Y$ such that $Ch_{\varphi}(y) \ge \chi_i$.
- (D) for any distinct $y_1, y_2 \in Y$ for some disjoint $u_1, u_2 \in K$, $y_1 \in u_1$ and $y_2 \in u_2$.
 - (E) K is closed under finite unions of intersections

There is no problem to carry this definition. Let $Z_i(K) = \{z \in X : \text{ if for } j < \vartheta \ a_j \subseteq X, \ a_j \in K \lor X - a_j \in K, \text{ and } z \in a_j \text{ then } \varphi(\bigcap_{j < \vartheta} a_j) \ge \chi_i \}$. Now we choose by induction on $i < \vartheta, x_i$ and u_i such that :

- (a) $u_i \in K$, $x_i \in Z_i(K)$.
- (b) $x_i \in u_i, (\forall j < i) (x_i \not\in u_j).$

Suppose we have defined x_j, u_j for j < i.

By (C) above there are distinct $y^i_{\alpha} \in Y$ for $\alpha < \mu_0$, with $Ch_{\varphi}(y^i_{\alpha}) = \chi_i$. By (E) above there are, for $\alpha \neq \beta$ $u_{\alpha,\beta} \in K_{\zeta+1}$, such that $y^i_{\alpha} \in u^i_{\alpha,\beta}$, and $u^i_{\alpha,\beta} \cap u^i_{\beta,\alpha} = \phi$. Now as $\mu_0 \to (3)^2_{\mathbb{Z}^0}$ for some $\alpha < \beta < \gamma < \mu_0$:

$$u_{\alpha,\beta}^{i} \cap \{x_{j}: j < i\} = u_{\beta,\gamma}^{i} \cap (\{x_{j}: j < i\})$$

As $u^i_{\beta,\alpha} \cap u^i_{\alpha,\beta} = \phi$, clearly $u_i = u^i_{\beta,\alpha} \cap u^i_{\beta,\gamma}$ is disjoint to $\{x_j: j < i\}$. Also $y^i_{\beta} \in u^i_{\beta,\alpha} \cap u^i_{\beta,\gamma}$, so $\varphi(u_i) \ge \chi_i$, hence as in the proof of 3.2 there is $x_i \in u_i \cap Z_i(K)$. In the end x_i witnesses $\varphi(u_i - \bigcup_{j > i} u_j) \ge \chi_i$ as $x_i \in u_i$, $(\forall j > i)(x_i \not\in u_j)$.

2) Similarly (remembering the proof of 5.2).

References

[HJ1]

A. Hajnal and I. Juhasz, Some remarks on a property of topological cardinal functions, Acta Math. Acad. Sci. Hungar, 20 (1969), 25-37.

- [HJ2]
 - A. Hajnal and I. Juhasz, On the number of open sets, Ann. Univ. Sci. Budapest, 16 (1973), 99-102.
- [J1] I. Juhasz, Cardinal functions in topology, Math. Center Tracts. Amsterdam, 1971.
- [J2] I. Juhasz, Cardinal functions in topology ten year later, Math. Center Tracts. Amsterdan, 1980.
- [JSh]
 - I. Juhasz and S. Shelah, How large can a hereditary separable or hereditarily Lindelof space by? *Israel J. of Math*, submitted.
- [KR]K. Kunen and J. Roitman, Attaining the spread of cardinals of cofinality ω, Pacific J. Math. 70 (1977), 199-205.
- [R] J. Roitman, Attaining the spread at cardinals which are not strong limit, Pacific J. Math. 57 (1975), 545-551.
- [Sh1]
 - S. Shelah, Remarks on Boolean algebra, Algebra Universalis, 11 (1980), 77-89.
- [Sh2]
 - -----, Canonization theorems and applications, J. of Symb. Logic, 46 (1981), 345-353.
- [Sh3]
 - -----, On cardinal invariants in topology, *General Topology and its applications*, 7 (1977), 251-259.
- [Sh4]
 - -----, On some problem in general topology, a preprint, Jan. 1978.
- [Sh5]
 - -----, If \bigotimes_{\aleph_1} + "there is an \aleph_1 -Kurepa tree with κ -branches" then some B.A. of power \aleph_1 has λ filters and λ^{\aleph_0} -ultrafilters. Mimeograph Notes from Madison, Fall 77.
- [Sh6]
 - -----, On P-points, $\beta(\omega)$ and other results in general topology, *Notices of A.M.S.* (1984) 25 (1978), A-365.
- [Sh7]
 - -----, Number of open sets and Boolean algebras with few endomorphisms. Abstracts of A.M.S. 5(1984)

[Sh8]
-----, Boolean algebras, General topology and independence results, *Abstracts of A.M.S.*5(1984).

[Sh9]

-----, Constructions of many complicated uncountable structures and Boolean Algebra, Israel J. Math. 45 (1983), 100-146.