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A C O N S I S T E N T  E D G E  P A R T I T I O N  
T H E O R E M  FOR I N F I N I T E  G R A P H S  
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O. I n t r o d u c t i o n  

The fundamental problem of partition theory of infinite graphs is if for 
every graph Y and cardinal # there exists a graph X such that if the vertices 
(or edges) of X are colored with # colors then there is a copy of Y with all the 
vertices (edges) getting the same color. This is denoted as X --* (Y)~ and 
X --* (Y)~; if these statements fail, then, of course, the arrow is crossed. Let 
K(c~) denote the complete graph on a vertices, and let K(a) <= X denote 
that the graph contains K(a)  as subgraph. If ~ is an infinite cardinal, 
then obviously g ( ~  +) --* f((~+)~, and by the Erd6s-Rado theorem [6], 
g((2~) +) -+ (g(~+))~,  and this result gives the existence of X for any 
Y,#. 

To make the problem harder, one might require the copy to be induced. 
This relation is denoted as ~-~. Though the vertex problem is still fairly easy, 
the edge case even for finite X, # was only solved around 1973 by Deuber, 
Nesetril-RSdl, and Erd6s-Hajnal-Pdsa [1, 11, 5]. The latter authors even 
showed that for # finite, Y countable, there is an appropriate X.  Hajnal 
and Komjs [9] proved that it is consistent that there exists a Y of size R1 
such that no X (of any size) has X ~ (Y)~. Shelah [14] proved that it is 
consistent that for any Y, # there is an X with X ~ (Y)~. Hajnal recently 
proved [8] that if Y is finite, # is infinite, an appropriate X exists, in ZFC. 

Another way of making the problem harder is to pose restrictions on X.  
We may require that if g ( a )  ~ Y, then g ( a )  ~ X,  either. This excludes the 
possibility of getting an easy solution by using the above-mentioned Erd6s- 
Rado theorem. For finite X, #, Folkman showed the existence of such an X 
with X --. (Y)~ and also, for finite a,  /~ the existence of a finite X with 
g(a  % 1) ~ X --* (a)~. [7]. Nesetril and RSdl solved the edge case, for 
finite Y, #u [12]. The infinite case for vertices, but if a is finite, was solved 
by Komjs and RSdl [10]. The case of general a is given by Hajnal and 
Komjs [9]. As for the edge coloring, Hajnal and Komjs proved in [9] that 
it is consistent that there is a Y of size R1, with K(3) ~ Y and if X ~ (Y)~ 
then K(w) <= X. It was an old problem of ErdSs and Hajnal if a graph Y 
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with K(4) ~ Y -* K(3) 2 exists. S. Shelah in [141 proved that such a Y 
may consistently exist. Another old Erd6s-Hajnal question was if a Y with 
g (wl )  ~ Y --* (g(w))2~ may exist. Here we solve (at least consistently) this 
problem by showing the consistency of the statement that if Y is a graph, 
# a cardinal, then there exists a graph X with X ~-. (Y)~ and if g ( a )  ~ Y 
then K(a)  ~ X, either. 

We first show that if 2 ~ = #+, ~ > # is measurable, Y is a graph on #, 
then there is a <__ #+-closed poser of size g, adding a graph X on a as above. 
From this, we can get the general result, if we assume that {a~ : a ordinal} 
is a class of measurable cardinals, and take the iteration {Pa, Qa: a ordinal} 
o f  posets, where Q~ is the poser of Theorem 1 with # = ~+, ~ = t~a+l, and 
Y is some graph on #. We take inverse limits at singular ordinals, direct 
limits otherwise. This will guarantee enough closure properties for getting a 
model of ZFC, and for that the graphs preserve their partition property at 
later iterations. 

1. The consistency proof 

THEOREM 1. I f  2 ~' = #+, Y is a graph on p, ~ > p is a measurable 
cardinal, then there exists a <= #+.closed partial order P, IPI = a, adding a 
graph X such that X ~ (Y)~,, and whenever g ( , )  <= X ,  then K(,~) <_ Y .  

PROOF. The vertex set of X will be [~]~. We define a partial ordering < 
on it by putting {/3o, C~o}< < {j31, cq}< iff/3o </3x and (~o < al .  A condition 
is of the form p = (s ,g ,~)  where s c= [g]2, is [ < # +  g c__ [8] 2. If {{f~0, a0}<, 
{/31, ~1}<} E g, then either ~o < f~l < O~0 < O~1 or  /~1 < ~0 < o~1 < O:0. 

is a function with Dora(V)=  (A 5 s: IAI > c__ g}. For A e Dom( ), 
~(A) =< # spans a complete graph in Y, Icp(A)I = IAI. We also require that 
if B properly end-extends A, then ~(B) should properly end-extend ~(A). 

Condition p' = extends p = if s' s, g = ng ' ,  
7] ~ qa, and if A ~ s, IAI > 2 spans a complete graph in g, x E s e - s, and 
A U {x) is complete in g~, then A < x, i.e. y < x holds for every y E A. 

Let P be the set of conditions defined so far. 

LEMMA 1. (P, <) is transitive. 

PROOF. Straightforward. 

LEMMA 2. I f p  = (s,g,~o) E P, A c= ~, then p I A E P. I r A  N s is an 
initial segment in s, then p < p [ A. 

PROOF. Immediate from the definitions. 

LEMMA 3. (P, ~) is < #+-closed. 

PROOF. Assume that p~ = (s~,g~,~o~) is a decreasing, continuous se- 
quence of conditions (~ < ~o < #+). Take p = (s,g,~o), where s = U{sr ~ < 
< ~o}, g = U{g~: ~ < ~o}, and whenever A c__ s spans a complete subgraph in 
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g, IAI > 2, then ~?(A) = u{~odAn s~): ~ < ~0, IAns~l > 2}. For ~ < ~ < ~o, 
qpr n s r  end-extends ~o~(A f3 s~), so ~p(A) induces a complete subgraph 
in Y, and ]qo(A)I = IA]. If B end-extends A, then select ~ < ~o with s~ N 
f3 (B - A) # 0. By the definition of order on P, A c__ s~, so ~o(A) = ~ ( A )  
and ~o(B) end-extends ~o~(B n s~) which in turn end-extends ~o(A). To check 
p =< p~ (~ < ~0), the only nontrivial thing is the clause on A U {x}. If A E 
E Dom(~o~), x E s - s~, we can assume that x E s~+l - s~, so A < x, and we 
are done. 

LEMMA 4. I f  pi = ($i,gi,~oi) are conditions for i < 2, they agree on 
sO M Sl, then q = (so U sl,go U gl,~Oo U ~l)  is a condition. I f  so M sl < 
< (so - Sl) U (Sl - so), then q < Po,px. 

PROOF. Straightforward. 
If G c__ p is a generic subset, we let X = U{g: (s, g, ~o) E G}. 

LEMMA 5. I f  K ( a )  <= X for some a, then g ( a )  < Y .  

PROOI~. K(#  + 1) ~ X, as if A c= [tr 2 spans a complete graph of type 
# + 1, pick p = (s,g,~o) E G fixing A. This is possible by Lemma 3. But 
then, ~o(A) would give a g ( #  + 1) in Y, a contradiction. If g ( a )  __< X, cr =< #, 
argue similarly. 

In order to finish the proof of Theorem 1, assume without loss of gener- 
ality that 1 Ih F :  X --+ #. By Fact 2.4 in [14] there is a set A of measure 
one, {No: s E [A] < '}  such that 
(1) No -< (H(2"); e ,F, l~, . . . ) ;  
(2) [N.]~ + C N,; 
(3) IN, I -  2.*; 
(4) Noo n No, = Noo~ol; 
(5) there is an isomorphism H(Noo,N,~)between Noo and No~ for ]sol--ISl], 

mapping so onto Sl; 
(6) N o N A = s ;  
(7) if so is end-extended to Sl, then Nso is end-extended by Not. 

Let A' ~ A be a set ofindiscernibles for {No: s E [A]<~). Enumerate the 
first #2 elements of A' in increasing order as {fl(i): i < #} U {a( i ) :  i < #). 
Put t(i) = {~( i ) ,a( i )} ,  m i  = Mr(i) for i < #. 

DEFINITION. For p, q fi P, p ,,~ q denotes that p [ Nr = q [ NO. 

LV~MMA 6. I f  p(i) E Mi, p( j )  E Mj,  p(i) ,.~ p(j) ,  then p(i), p( j )  are 
compatible. 

PROOF. By (4), the non-edge amalgamation works. 
We next show that one-edge amalgamation can also be constructed. 
DEFINITION. I f /  < j < #, p ( i ) =  (s(i),g(i),~o(i)) E Mi, p( j )  = 

= (s(j) ,g(j) ,~o(j))  E Mj,  p(i) ,~ p( j) ,  then put p(i) + p( j )  = (s,g,~o) with 
s = s(i) O s(j) ,  g = g(i) O g( j)  U {{t(i), t(j)}}, ~ = ~o(i) U ~(j) .  
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LEMMA 7. p(i) + p(j) is a condition, extending both p(i) and p(j). 
PROOF. As fl(i) < ~( j)  < a(i) < a(j), it is possible to join t(i) and 

t(j). As sup(Nr </3(i)  < fl(j), t(i) and t(j) are not joined into Nr so no 
new complete subgraph with more than two elements is formed. 

DEHNITION. If i < j < #, p(i) E Mi, p(j) E Mj, ~ < #, we call the 
pair (p(i),p(j)) ~-good, if p(i) ,.~ p(j), and for every selection of p'(i) < p(i), 
p'(j) <= p(j) with f ( i )  E M~, p'(j) e Mj, p'(i) ,.~ p'( j) ,  there is a q < 
p'(i) + f ( j )  such that q IF F({t(i), t(j))) = ~. 

L~.MMA 8. /f  i < j < p, p(i) e Mi, p(j) e Mi, p(i) ,~ p(j), then there 
exist ( < #, f ( i )  <= p(i), f ( j )  <_ p(j), pl(i) e -Vii, p'(j) e Mj such that 
(p'(i),p'(j)) is ~.good. 

PROOF. Assume that the statement is false. Put p(i, O)=p(i), p(j, O)= 
= p(j), and we are going to construct decreasing, continuous sequences p(i, ~), 
p(j,~) for ~ =< p. If p(i,~), p(j,~) are defined, let p(i,~ + 1) ~ p(j,~ + 1) 
be such that no q <= p(i,~ + 1) + p(j,~ + 1) cart force f ({ t ( i ) , t ( j )})  = ~. If 
q <= p(i,#) + p( j ,p)  determines F({t(i),t(j)}), then we get a contradiction. 

By transfinite recursion on a < #+, we select, for every f :  a --. 2, a 
condition p(i, f )  E Mi, and an ordinal ~(f) < p such that 
(8) H(Mi, Mj)(p(i,f)) = p( j , f )  (i < j < #); 
(9) (p(i,y"o),p(j,y"l)) is  (f)-good (i < j); 

(10) p(i , f ' )  < p(i , f )  when f '  ~ f ;  
(11) p(i,f)~ p(j,g) when f,g: a ~ 2, i < j .  

For a limit, we can take unions. Given {p(i, f ) :  f :  a ~ 2, i < p} we 
select p(i, f^O), p(i, f ^ l )  by a transfinite recursion of length 12 a] < p+, using 
Lemma 8. To insure (11), we must keep extending p(i , f )  I Nr this can be 
done by Lemmas 3 and 4. 

By the Baire category theorem, there exist ~ < p, and increasing ri < p+ 
fi: a --* 2 (i < #) for some a < p+, such that 
(12) fi(ri) = O, fj(ri) = 1, fi I1"/r fj I rj (i < j); 
(13) ~(fi I t  i) = ~. 

Put Y = {{6(i),r : i < #}. 
We are going to construct q(7, i) for 7 < #, i < #. Put q(O, i) = p(i, f,.), 

for 7 limit, q(7, i) = O{q(7', i) : 71 < 7}- If the construction is given, up to 
the 7th level, let u(7) e Nt(1)ut(j) be such that 

u(7) <___ q(7,$(7)) + q(7,e(7)) 
and u(7)IF F({t($(7)),t(e(7))}) = ~. We then take q(7 + 1,i) = q(7 , f )  U 
U u(7) l M,. 

LEMMA 9.  U("f ) exists. 
PaOOF. By Lemma 8 and by q(7, i) ,,, q(7,J). This latter property holds 

for 7 limit by continuity, for 7 = 0 by definition and (11), and for 7 + 1 by 
definition. 
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LEMMA 10. q(7 n L 1, i) = q(7, i). 

PROOF. By Lemma 4. 

If u ( 7 ) =  (s(v),g(7),~o(7)) for 7 < #, then put u = (s,g,~o) where s = U 
U{s(7) : 7 < P}, g = U{g(7) : 7 < #}, and ~o is such that  it extends all ~o(7), 
and ~o({t(i): i e A}) = A, when ]A I > 2, and A spans a complete subgraph 
in Y. 

LEMMA 11. u E P .  

PROOF. It suffices to show that  if B c__ s, [B[ > 2, spans a complete 
subgraph then it is either in the domain of some ~0(7) or it is of the form 
B = {t(i):  i e A} for some A c__ ft. 

If two Mi-s cover B, then one of them covers, too, or else {t(i), t ( j )}  c= B, 
but then B n N0 = 0, so B = {t(i) , t( j)}.  If no two M~-s cover B, then 
B c= { t ( i ) :  i < ft}, and we are done, again. 

LEMMA 12. U __< u(7 ). 

PROOF. There is no complete subgraph in u which is extended the wrong 
way. The only candidate for this is a set of type {t(i) : i E A} of which only 
two vertices are in u(7 ). 

LEMMA 13. u I~- {t(i):  i < ft) span a monocolored copy o.fY. 

PROOF. Obvious. 

Clearly, Lemma 13 concludes the proof of Theorem 1. 

THEOREM 2. I f  the existence of class many measurable cardinals is con- 
sistent, then it is consistent that for every Y, ft there exists an X with X ~-, 

( r )  2 such that if K(a)  <= X ,  then g ( a )  <= Y .  

PROOF. By iterating the poset in Theorem 1. 

The assumption on the existence of measurables can be eliminated, see 
[14] Sections 3, 4. 
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