A CONSISTENT EDGE PARTITION THEOREM FOR INFINITE GRAPHS

P. KOMJÁTH (Budapest) and S. SHELAH (Jerusalem)

0. Introduction

The fundamental problem of partition theory of infinite graphs is if for every graph Y and cardinal μ there exists a graph X such that if the vertices (or edges) of X are colored with μ colors then there is a copy of Y with all the vertices (edges) getting the same color. This is denoted as $X \rightarrow(Y)_{\mu}^{1}$ and $X \rightarrow(Y)_{\mu}^{2}$; if these statements fail, then, of course, the arrow is crossed. Let $K(\alpha)$ denote the complete graph on α vertices, and let $K(\alpha) \leqq X$ denote that the graph contains $K(\alpha)$ as subgraph. If κ is an infinite cardinal, then obviously $K\left(\kappa^{+}\right) \rightarrow K\left(\kappa^{+}\right)_{\kappa}^{1}$, and by the Erdős-Rado theorem [6], $K\left(\left(2^{\kappa}\right)^{+}\right) \rightarrow\left(K\left(\kappa^{+}\right)\right)_{\kappa}^{2}$, and this result gives the existence of X for any Y, μ.

To make the problem harder, one might require the copy to be induced. This relation is denoted as \mapsto. Though the vertex problem is still fairly easy, the edge case even for finite X, μ was only solved around 1973 by Deuber, Nesetril-Rödl, and Erdös-Hajnal-Pósa [1, 11, 5]. The latter authors even showed that for μ finite, Y countable, there is an appropriate X. Hajnal and Komjáth [9] proved that it is consistent that there exists a Y of size \aleph_{1} such that no X (of any size) has $X \mapsto(Y)_{2}^{2}$. Shelah [14] proved that it is consistent that for any Y, μ there is an X with $X \mapsto(Y)_{\mu}^{2}$. Hajnal recently proved [8] that if Y is finite, μ is infinite, an appropriate X exists, in ZFC.

Another way of making the problem harder is to pose restrictions on X. We may require that if $K(\alpha) \nsubseteq Y$, then $K(\alpha) \nsubseteq X$, either. This excludes the possibility of getting an easy solution by using the above-mentioned ErdösRado theorem. For finite X, μ, Folkman showed the existence of such an X with $X \rightarrow(Y)_{\mu}^{1}$ and also, for finite α, μ the existence of a finite X with $K(\alpha+1) \not 又 X \rightarrow(\alpha)_{\mu}^{2}$. [7]. Nesetril and Rödl solved the edge case, for finite Y, μ [12]. The infinite case for vertices, but if α is finite, was solved by Komjáth and Rödl [10]. The case of general α is given by Hajnal and Komjáth [9]. As for the edge coloring, Hajnal and Komjáth proved in [9] that it is consistent that there is a Y of size \aleph_{1}, with $K(3) \nsubseteq Y$ and if $X \rightarrow(Y)_{\omega}^{2}$ then $K(\omega) \leqq X$. It was an old problem of Erdős and Hajnal if a graph Y
with $K(4) \leq Y \rightarrow K(3)_{\omega}^{2}$ exists. S. Shelah in [14] proved that such a Y may consistently exist. Another old Erdös-Hajnal question was if a Y with $K\left(\omega_{1}\right) \notin Y \rightarrow(K(\omega))_{\omega}^{2}$ may exist. Here we solve (at least consistently) this problem by showing the consistency of the statement that if Y is a graph, μ a cardinal, then there exists a graph X with $X \mapsto(Y)_{\mu}^{2}$ and if $K(\alpha) \not Z Y$ then $K(\alpha) \nsubseteq X$, either.

We first show that if $2^{\mu}=\mu^{+}, \kappa>\mu$ is measurable, Y is a graph on μ, then there is a $\leqq \mu^{+}$-closed poset of size κ, adding a graph X on κ as above. From this, we can get the general result, if we assume that $\left\{\kappa_{\alpha}: \alpha\right.$ ordinal $\}$ is a class of measurable cardinals, and take the iteration $\left\{P_{\alpha}, Q_{\alpha}: \alpha\right.$ ordinal $\}$ of posets, where Q_{α} is the poset of Theorem 1 with $\mu=\kappa_{\alpha}^{+}, \kappa=\kappa_{\alpha+1}$, and Y is some graph on μ. We take inverse limits at singular ordinals, direct limits otherwise. This will guarantee enough closure properties for getting a model of ZFC, and for that the graphs preserve their partition property at later iterations.

1. The consistency proof

Theorem 1. If $2^{\mu}=\mu^{+}, Y$ is a graph on $\mu, \kappa>\mu$ is a measurable cardinal, then there exists a $\leqq \mu^{+}$-closed partial order $P,|P|=\kappa$, adding a graph X such that $X \mapsto(Y)_{\mu}^{2}$, and whenever $K(\alpha) \leqq X$, then $K(\alpha) \leqq Y$.

Proof. The vertex set of X will be $[\kappa]^{2}$. We define a partial ordering $<$ on it by putting $\left\{\beta_{0}, \alpha_{0}\right\}_{<}<\left\{\beta_{1}, \alpha_{1}\right\}_{<}$iff $\beta_{0}<\beta_{1}$ and $\alpha_{0}<\alpha_{1}$. A condition is of the form $p=(s, g, \varphi)$ where $s \cong[\kappa]^{2},|s| \leqq \mu^{+}, g \subseteq[s]^{2}$. If $\left\{\left\{\beta_{0}, \alpha_{0}\right\}_{<}\right.$, $\left.\left\{\beta_{1}, \alpha_{1}\right\}_{<}\right\} \in g$, then either $\beta_{0}<\beta_{1}<\alpha_{0}<\alpha_{1}$ or $\beta_{1}<\beta_{0}<\alpha_{1}<\alpha_{0} . \varphi$ is a function with $\operatorname{Dom}(\varphi)=\left\{A \leqq s:|A|>2,[A]^{2} \subseteq g\right\}$. For $A \in \operatorname{Dom}(\varphi)$, $\varphi(A) \leqq \mu$ spans a complete graph in $Y,|\varphi(A)|=|\bar{A}|$. We also require that if B properly end-extends A, then $\varphi(B)$ should properly end-extend $\varphi(A)$.

Condition $p^{\prime}=\left(s^{\prime}, g^{\prime}, \varphi^{\prime}\right)$ extends $p=(s, g, \varphi)$ if $s^{\prime} \supseteq s, g=[s]^{2} \cap g^{\prime}$, $\varphi^{\prime} \supseteq \varphi$, and if $A \cong s,|A|>2$ spans a complete graph in $g, x \in s^{\prime}-s$, and $A \cup\{x\}$ is complete in g^{\prime}, then $A<x$, i.e. $y<x$ holds for every $y \in A$.

Let P be the set of conditions defined so far.
Lemma 1. (P, \leqq) is transitive.
Proof. Straightforward.
Lemma 2. If $p=(s, g, \varphi) \in P, A \subseteq \kappa$, then $p \mid A \in P$. If $A \cap s$ is an initial segment in s, then $p \leqq p \mid A$.

Proof. Immediate from the definitions.
Lemma 3. (P, \leqq) is $\leqq \mu^{+}$-closed.
Proof. Assume that $p_{\xi}=\left(s_{\xi}, g_{\xi}, \varphi_{\xi}\right)$ is a decreasing, continuous sequence of conditions $\left(\xi<\xi_{0} \leqq \mu^{+}\right)$. Take $p=(s, g, \varphi)$, where $s=\cup\left\{s_{\xi}: \xi<\right.$ $\left.<\xi_{0}\right\}, g=\cup\left\{g_{\xi}: \xi<\xi_{0}\right\}$, and whenever $A \cong s$ spans a complete subgraph in
$g,|A|>2$, then $\varphi(A)=\cup\left\{\varphi_{\xi}\left(A \cap s_{\xi}\right): \xi<\xi_{0},\left|A \cap s_{\xi}\right|>2\right\}$. For $\xi<\zeta<\xi_{0}$, $\varphi_{\zeta}\left(A \cap s_{\zeta}\right)$ end-extends $\varphi_{\xi}\left(A \cap s_{\xi}\right)$, so $\varphi(A)$ induces a complete subgraph in Y, and $|\varphi(A)|=|A|$. If B end-extends A, then select $\xi<\xi_{0}$ with $s_{\xi} \cap$ $\cap(B-A) \neq \emptyset$. By the definition of order on $P, A \cong s_{\xi}$, so $\varphi(A)=\varphi_{\xi}(A)$ and $\varphi(B)$ end-extends $\varphi_{\xi}\left(B \cap s_{\xi}\right)$ which in turn end-extends $\varphi(A)$. To check $p \leqq p_{\xi}\left(\xi<\xi_{0}\right)$, the only nontrivial thing is the clause on $A \cup\{x\}$. If $A \in$ $\in \operatorname{Dom}\left(\varphi_{\xi}\right), x \in s-s_{\xi}$, we can assume that $x \in s_{\xi+1}-s_{\xi}$, so $A<x$, and we are done.

Lemma 4. If $p_{i}=\left(s_{i}, g_{i}, \varphi_{i}\right)$ are conditions for $i<2$, they agree on $s_{0} \cap s_{1}$, then $q=\left(s_{0} \cup s_{1}, g_{0} \cup g_{1}, \varphi_{0} \cup \varphi_{1}\right)$ is a condition. If $s_{0} \cap s_{1}<$ $<\left(s_{0}-s_{1}\right) \cup\left(s_{1}-s_{0}\right)$, then $q \leqq p_{0}, p_{1}$.

Proof. Straightforward.
If $G \subseteq P$ is a generic subset, we let $X=\cup\{g:(s, g, \varphi) \in G\}$.
Lemma 5. If $K(\alpha) \leqq X$ for some α, then $K(\alpha) \leqq Y$.
Proof. $K(\mu+1) \notin X$, as if $A \subseteq[\kappa]^{2}$ spans a complete graph of type $\mu+1$, pick $p=(s, g, \varphi) \in G$ fixing A. This is possible by Lemma 3. But then, $\varphi(A)$ would give a $K(\mu+1)$ in Y, a contradiction. If $K(\alpha) \leqq X, \alpha \leqq \mu$, argue similarly.

In order to finish the proof of Theorem 1, assume without loss of generality that $1 \Perp F: X \rightarrow \mu$. By Fact 2.4 in [14] there is a set A of measure one, $\left\{N_{s}: s \in[A]^{<\omega}\right\}$ such that
(1) $N_{s} \prec\left(H\left(2^{\kappa}\right) ; \in, F, \Vdash, \ldots\right)$;
(2) $\left[N_{s}\right]^{\mu^{+}} \cong N_{s}$;
(3) $\left|N_{s}\right|=2^{\mu^{+}}$;
(4) $N_{s_{0}} \cap N_{s_{1}}=N_{s_{0} \cap s_{1}}$;
(5) there is an isomorphism $H\left(N_{s_{0}}, N_{s_{1}}\right)$ between $N_{s_{0}}$ and $N_{s_{1}}$ for $\left|s_{0}\right|=\left|s_{1}\right|$, mapping s_{0} onto s_{1};
(6) $N_{s} \cap A=s$;
(7) if s_{0} is end-extended to s_{1}, then $N_{s_{0}}$ is end-extended by $N_{s_{1}}$.

Let $A^{\prime} \cong A$ be a set of indiscernibles for $\left\{N_{s}: s \in[A]^{<\omega}\right\}$. Enumerate the first $\mu 2$ elements of A^{\prime} in increasing order as $\{\beta(i): i<\mu\} \cup\{\alpha(i): i<\mu\}$. Put $t(i)=\{\beta(i), \alpha(i)\}, M_{i}=N_{t(i)}$ for $i<\mu$.

Definition. For $p, q \in P, p \sim q$ denotes that $p\left|N_{\emptyset}=q\right| N_{\emptyset}$.
Lemma 6. If $p(i) \in M_{i}, p(j) \in M_{j}, p(i) \sim p(j)$, then $p(i), p(j)$ are compatible.

Proof. By (4), the non-edge amalgamation works.
We next show that one-edge amalgamation can also be constructed.
Definition. If $i<j<\mu, p(i)=(s(i), g(i), \varphi(i)) \in M_{i}, p(j)=$ $=(s(j), g(j), \varphi(j)) \in M_{j}, p(i) \sim p(j)$, then put $p(i)+p(j)=(s, g, \varphi)$ with $s=s(i) \cup s(j), g=g(i) \cup g(j) \cup\{\{t(i), t(j)\}\}, \varphi=\varphi(i) \cup \varphi(j)$.

Lemma 7. $p(i)+p(j)$ is a condition, extending both $p(i)$ and $p(j)$.
Proof. As $\beta(i)<\beta(j)<\alpha(i)<\alpha(j)$, it is possible to join $t(i)$ and $t(j)$. As $\sup \left(N_{\emptyset}\right)<\beta(i)<\beta(j), t(i)$ and $t(j)$ are not joined into N_{\emptyset}, so no new complete subgraph with more than two elements is formed.

Definition. If $i<j<\mu, p(i) \in M_{\mathbf{i}}, p(j) \in M_{j}, \xi<\mu$, we call the pair ($p(i), p(j)) \xi$-good, if $p(i) \sim p(j)$, and for every selection of $p^{\prime}(i) \leqq p(i)$, $p^{\prime}(j) \leqq p(j)$ with $p^{\prime}(i) \in M_{i}, p^{\prime}(j) \in M_{j}, p^{\prime}(i) \sim p^{\prime}(j)$, there is a $q \leqq$ $p^{\prime}(i)+p^{\prime}(j)$ such that $q \Vdash F(\{t(i), t(j)\})=\xi$.

Lemma 8. If $i<j<\mu, p(i) \in M_{i}, p(j) \in M_{j}, p(i) \sim p(j)$, then there exist $\xi<\mu, p^{\prime}(i) \leqq p(i), p^{\prime}(j) \leqq p(j), p^{\prime}(i) \in M_{i}, p^{\prime}(j) \in M_{j}$ such that ($\left.p^{\prime}(i), p^{\prime}(j)\right)$ is ξ-good.

Proof. Assume that the statement is false. Put $p(i, 0)=p(i), p(j, 0)=$ $=p(j)$, and we are going to construct decreasing, continuous sequences $p(i, \xi)$, $p(j, \xi)$ for $\xi \leqq \mu$. If $p(i, \xi), p(j, \xi)$ are defined, let $p(i, \xi+1) \sim p(j, \xi+1)$ be such that no $q \leqq p(i, \xi+1)+p(j, \xi+1)$ can force $F(\{t(i), t(j)\})=\xi$. If $q \leqq p(i, \mu)+p(j, \mu)$ determines $F(\{t(i), t(j)\})$, then we get a contradiction.

By transfinite recursion on $\alpha<\mu^{+}$, we select, for every $f: \alpha \rightarrow 2$, a condition $p(i, f) \in M_{i}$, and an ordinal $\xi(f)<\mu$ such that
(8) $H\left(M_{i}, M_{j}\right)(p(i, f))=p(j, f) \quad(i<j<\mu)$;
(9) $\left(p\left(i, f^{\wedge} 0\right), p\left(j, f^{\wedge} 1\right)\right)$ is $\xi(f)-\operatorname{good}(i<j)$;
(10) $p\left(i, f^{\prime}\right) \leqq p(i, f)$ when $f^{\prime} \supseteq f$;
(11) $p(i, f) \sim p(j, g)$ when $f, g: \alpha \rightarrow 2, i<j$.

For α limit, we can take unions. Given $\{p(i, f): f: \alpha \rightarrow 2, i<\mu\}$ we select $p\left(i, f^{\wedge} 0\right), p\left(i, f^{\wedge} 1\right)$ by a transfinite recursion of length $\left|2^{\alpha}\right| \leqq \mu^{+}$, using Lemma 8. To insure (11), we must keep extending $p(i, f) \mid N_{0}$, this can be done by Lemmas 3 and 4.

By the Baire category theorem, there exist $\xi<\mu$, and increasing $\tau_{i}<\mu^{+}$ $f_{i}: \alpha \rightarrow 2(i<\mu)$ for some $\alpha<\mu^{+}$, such that
(12) $f_{i}\left(\tau_{i}\right)=0, f_{j}\left(\tau_{i}\right)=1, f_{i}\left|\tau_{i} \cong f_{j}\right| \tau_{j}(i<j)$;
(13) $\xi\left(f_{i} \mid \tau_{i}\right)=\xi$.

Put $Y=\{\{\delta(i), \varepsilon(i)\}: i<\mu\}$.
We are going to construct $q(\gamma, i)$ for $\gamma \leqq \mu, i<\mu$. Put $q(0, i)=p\left(i, f_{i}\right)$, for γ limit, $q(\gamma, i)=U\left\{q\left(\gamma^{\prime}, i\right): \gamma^{\prime}<\gamma\right\}$. If the construction is given, up to the γ th level, let $u(\gamma) \in N_{t(i) \cup t(j)}$ be such that

$$
u(\gamma) \leqq q(\gamma, \delta(\gamma))+q(\gamma, \varepsilon(\gamma))
$$

and $u(\gamma)$ ト $F(\{t(\delta(\gamma)), t(\varepsilon(\gamma))\})=\xi$. We then take $q(\gamma+1, i)=q(\gamma, f) \cup$ $\cup u(\gamma) \mid M_{i}$.

Lemma 9. $u(\gamma)$ exists.
Proof. By Lemma 8 and by $q(\gamma, i) \sim q(\gamma, j)$. This latter property holds for γ limit by continuity, for $\gamma=0$ by definition and (11), and for $\gamma+1$ by definition.

Lemma 10. $q(\gamma+1, i) \leqq q(\gamma, i)$.
Proof. By Lemma 4.
If $u(\gamma)=(s(\gamma), g(\gamma), \varphi(\gamma))$ for $\gamma<\mu$, then put $u=(s, g, \varphi)$ where $s=U$ $\cup\{s(\gamma): \gamma<\mu\}, g=\cup\{g(\gamma): \gamma<\mu\}$, and φ is such that it extends all $\varphi(\gamma)$, and $\varphi(\{t(i): i \in A\})=A$, when $|A|>2$, and A spans a complete subgraph in Y.

Lemma 11. $u \in P$.
Proof. It suffices to show that if $B \subseteq s,|B|>2$, spans a complete subgraph then it is either in the domain of some $\varphi(\gamma)$ or it is of the form $B=\{t(i): i \in A\}$ for some $A \cong \mu$.

If two M_{i}-s cover B, then one of them covers, too, or else $\{t(i), t(j)\} \subseteq B$, but then $B \cap N_{\emptyset}=\emptyset$, so $B=\{t(i), t(j)\}$. If no two M_{i}-s cover B, then $B \subseteq\{t(i): i<\mu\}$, and we are done, again.

Lemma 12. $u \leqq u(\gamma)$.
Proof. There is no complete subgraph in u which is extended the wrong way. The only candidate for this is a set of type $\{t(i): i \in A\}$ of which only two vertices are in $u(\gamma)$.

Lemma 13. $u \Vdash\{t(i): i<\mu\}$ span a monocolored copy of Y.
Proof. Obvious.
Clearly, Lemma 13 concludes the proof of Theorem 1.
Theorem 2. If the existence of class many measurable cardinals is consistent, then it is consistent that for every Y, μ there exists an X with $X \hookrightarrow$ $\mapsto(Y)_{\mu}^{2}$ such that if $K(\alpha) \leqq X$, then $K(\alpha) \leqq Y$.

Proof. By iterating the poset in Theorem 1.
The assumption on the existence of measurables can be eliminated, see [14] Sections 3, 4.

References

[1] W. Deuber, Partitionstheoreme für Graphen, Math. Helv., 50 (1975), 311-320.
[2] P. Erdös and A. Hajnal, On decompositions of graphs, Acta Math. Acad. Sci. Hung., 18 (1967), 359-377.
[3] P. Erdős and A. Hajnal, Unsolved problems in set theory, part I, Proc. Symp. Pure Math., 13 (1971), 17-48.
[4] P. Erdős and A. Hajnal, Unsolved and solved problems in set theory, Proc. Symp. Pure Math., 25 (1974), 269-287.
[5] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, in Infinite and Finite Sets (Keszthely, 1973), Coll. Math. Soc. J. Bolyai, 10, pp. 585-595.
[6] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc., 62 (1956), 427-489.
[7] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math., 18 (1970), 19-24.
[8] A. Hajnal, Embedding finite graphs into graphs colored with infinitely many colors, Israel J. Math., 73 (1991), 309-319.
[9] A. Hajnal and P. Komjáth, Embedding graphs into colored graphs, Trans. Amer. Math. Soc., 307 (1988), 395-409.
[10]'P. Komjáth and V. Rödl, Coloring of universal graphs, Graphs and Combinatorics, 2 (1986), 55-61.
[11] J. Nesetril and V. Rödl, Partitions of vertices, Comm. Math. Univ. Carolin., 17 (1976), 85-95.
[12] J. Nesetril and V. Rödl, The Ramsey property for graphs with forbidden subgraphs, J. Comb. Th. (B), 20 (1976), 243-249.
[13] J. Nesetril and V. Rödl, Partitions of finite relational and set systems, J. Comb. Th. (A), 22 (1977), 289-312.
[14] S. Shelah, Consistency of Positive Partition Theorems for Graphs and Models, Springer Lect. Notes, 1401, 167-193.
(Received August 2, 1990; revised January 28, 1991)
DEPARTMENT OF COMPUTER SCIENCE
R. EÖTVÖS UNIVERSITY

BUDAPEST, MÚZEUM KRT. 6-8
H-1088
hUNGARY
INSTITUTE OF MATHEMATICS
HEBREW UNIVERSITY
JERUSALEM, GIVAT RAM
ISRAEL

