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A CONSISTENT EDGE PARTITION
THEOREM FOR INFINITE GRAPHS

P. KOMJATH (Budapest) and S. SHELAH (Jerusalem)

0. Introduction

The fundamental problem of partition theory of infinite graphs is if for
every graph Y and cardinal u there exists a graph X such that if the vertices
(or edges) of X are colored with p colors then there is a copy of Y with all the
vertices (edges) getting the same color. This is denoted as X — (')}, and
X - (Y)f,; if these statements fail, then, of course, the arrow is crossed. Let
K(a) denote the complete graph on a vertices, and let K(a) < X denote
that the graph contains K(a) as subgraph. If x is an infinite cardinal,
then obviously K(k*) — K(k%)., and by the Erdés-Rado theorem [6],
K((29)%) = (K(x*))?, and this result gives the existence of X for any
Yp.

To make the problem harder, one might require the copy to be induced.
This relation is denoted as —». Though the vertex problem is still fairly easy,
the edge case even for finite X, u was only solved around 1973 by Deuber,
Nesetril-Rodl, and Erdés—Hajnal-Pésa [1, 11, 5]. The latter authors even
showed that for u finite, ¥ countable, there is an appropriate X. Hajnal
and Komjath [9] proved that it is consistent that there exists a Y of size N;
such that no X (of any size) has X ~ (Y)2. Shelah [14] proved that it is
consistent that for any Y, u there is an X with X »» (Y)z Hajnal recently
proved [8] that if Y is finite, 4 is infinite, an appropriate X exists, in ZFC.

Another way of making the problem harder is to pose restrictions on X.
We may require that if K(a) £ Y, then K(a) £ X, either. This excludes the
possibility of getting an easy solution by using the above-mentioned Erdgs—
Rado theorem. For finite X, s, Folkman showed the existence of such an X
with X — (Y),l‘ and also, for finite o, p the existence of a finite X with
K(a+1) £ X — (@) [7]. Nesetril and Rdl solved the edge case, for
finite Y, u [12]. The infinite case for vertices, but if « is finite, was solved
by Komjath and R6dl [10]. The case of general « is given by Hajnal and
Komjéth [9]. As for the edge coloring, Hajnal and Komjath proved in [9] that
it is consistent that there is a Y of size Ry, with K(3) £ Y and if X — (Y2
then K(w) £ X. It was an old problem of Erdés and Hajnal if a graph Y



Sh:414

116 P. KOMJATH and S. SHELAH

with K(4) £ Y — K(3)? exists. S. Shelah in [14] proved that such a Y
may consistently exist. Another old Erdés-Hajnal question was if a Y with
K(w) 2Y — (K(w))? may exist. Here we solve (at least consistently) this
problem by showing the consistency of the statement that if Y is a graph,
p a cardinal, then there exists a graph X with X ~ (Y)2 and if K(a) £Y
then K(a) g X, either.

We first show that if 2# = ut, kK > p is measurable, Y is a graph on p,
then there is a < put-closed poset of size k, adding a graph X on & as above.
From this, we can get the general result, if we assume that {4 : o ordinal}
is a class of measurable cardinals, and take the iteration { Py, Q4: « ordinal}

-of posets, where @, is the poset of Theorem 1 with u = k}, Kk = kqq1, and

Y is some graph on pu. We take inverse limits at singular ordinals, direct
limits otherwise. This will guarantee enough closure properties for getting a
model of ZFC, and for that the graphs preserve their partition property at
later iterations.

1. The consistency proof

THEOREM 1. If2* = ut, Y is a graph on u, & > p is a measurable
cardinal, then there exists a < ut-closed partial order P, |P| = &, adding a
graph X such that X — (Y)2, and whenever K(a) < X, then K(a) £ Y.

PrOOF. The vertex set of X will be []?. We define a partial ordering <
on it by putting {Bo, @0} < {B1, 1} iff Bo < B1 and ap < ¢3. A condition
is of the form p = (s,g,¢) where s C [k]?, |s| £ ut, g C [s]. I {{Bo, @0},
{B1,1}} € g, then either fo < 1 < o < aror B < fo < a1 < ag. ¢
is a function with Dom(¢p) = {4 £ s: |4]| > 2,[A4]? € g}. For 4 € Dom(yp),
©(A) £ p spans a complete graph in Y, |p(A)| = |A]. We also require that
if B properly end-extends A, then ¢(B) should properly end-extend ¢(A).

Condition p' = (s/,¢',¢) extends p = (s,g,0) if &' 2 3,9 = [s]2N g,
¢ 2 ¢, and if A C s, |A| > 2 spans a complete graph in g, z € s’ — s, and
AU {z} is complete in ¢, then A < z, i.e. y < z holds for every y € A.

Let P be the set of conditions defined so far.

LemuMmA 1. (P, £) is transitive.
Proo¥F. Straightforward.

LEMMA 2. Ifp = (8,9,9) € P, ACk, thenp| A€ P. IfANs isan
initial segment in s, then p < p| A.

Proor. Immediate from the definitions.
LEMMA 3. (P, %) is € ut-closed.

PROOF. Assume that p; = (s¢,g¢, @¢) is a decreasing, continuous se-
quence of conditions (£ < & £ ut). Take p = (3,9,¢), where s = U{s¢: € <
< &0}, 9 = U{ge: £ < &0}, and whenever A C s spans a complete subgraph in
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g, |Al > 2, then (A) = U{pe(AN s¢): € < &o, [ANs¢| > 2}. For § < ( < &,
@c(A N s¢) end-extends pe(A N s¢), so p(A) induces a complete subgraph
in Y, and |p(4)| = |A|. If B end-extends A, then select £ < & with s¢ N
N (B — A) # 0. By the definition of order on P, A € s¢, 50 ¢(A) = ¢¢(A)
and o(B) end-extends @¢(B N s¢) which in turn end-extends ¢(A). To check
p £ pe (€ < &), the only nontrivial thing is the clause on AU {z}. f A €
€ Dom(pg), = € s — s¢, we can assume that € s¢1 — 8¢, 50 A < z, and we
are done.

LEMMA 4. If p; = (8i,9i,:) are conditions for i < 2, they agree on
S0 N sy, then ¢ = (so U 81,90 U 91,90 U 1) is a condition. If so N sy <
< (s0 = 81) U (81 — s0), then q £ po,p1-

Proor. Straightforward.

If G € P is a generic subset, we let X = U{g: (s,9,¢) € G}.

LEMMA 5. If K(a) £ X for some a, then K(a) £ Y.

ProoF. K(u+1) € X, as if A C []? spans a complete graph of type
¢+ 1, pick p = (s,9,¢) € G fixing A. This is possible by Lemma 3. But
then, ¢(A) would give a K(u+1) in Y, a contradiction. If K(a) £ X, a £ 4,
argue similarly.

In order to finish the proof of Theorem 1, assume without loss of gener-
ality that 1 - F: X — pu. By Fact 2.4 in [14] there is a set A of measure
one, {N,: s € [A]<“} such that
(1) N, < (H(2");€,F,1,...);

(2) [N € N

(3) |N| = 2#+;

(4) Nso nNal = WNgpnay s

(5) there is an isomorphism H(N,,, N,, ) between N,, and N, for |so| = |s1],
mapping sg onto $;;

(6) NyNA=s;

(7) if sg is end-extended to s;, then N, is end-extended by N,, .

Let A’ C A be a set of indiscernibles for {N,: s € [A]<“}. Enumerate the
first u2 elements of A’ in increasing order as {8(z) : ¢ < p} U {a(?) : i < u}.
Put t(i) = {B(?),a(2)}, M; = Nt(,-) for ¢ < p.

DerINITION. For p,q € P, p ~ ¢ denotes that p | Ny = ¢ | Ny.

LemMa 6. If p(i) € M;, p(§) € Mj, p(i) ~ p(4), then p(i), p(j) are
compatible.

Proor. By (4), the non-edge amalgamation works.

We next show that one-edge amalgamation can also be constructed.

DEFINITION. If © < j < p, p(i) = (3(4),9(3), (i) € M;, p(j) =
= (8(7),90), ¢(5)) € Mj, p(i) ~ p(J), then put p(i) + p(j) = (3,9, ) with
s =3(i) U s(7), 9 = g(i) U g(5) U {{t(2), t(5)}}, ¥ = @(3) U ¢(3).
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LEMMA 7. p(i) + p(j) is a condition, extending both p(i) and p(j).

Proor. As B(¢) < B(j) < a(i) < aj), it is possible to join #(7) and
t(5). As sup(Np) < B(i) < B(j), (i) and #(j) are not joined into Ny, so no
new complete subgraph with more than two elements is formed.

DEeFINITION. If ¢ < 7 < p, p(%) € M;, p(j) € M;, € < p, we call the
pair (p(%),p(7)) £-good, if p(7) ~ p(j), and for every selection of p'(i) < (i),
P'(j) £ p(7) with p'(i) € M;, p'(j) € Mj, p'(i) ~ p/(j), there is a ¢ £

p'(5) + ¥ (5) such that g+ F({#(),()}) = ¢.

LEMMA 8. Ifi < j < u, p(i) € M;, p(3) € M;, p(i) ~ p(j), then there
ezist £ < p, p'(3) € p(3), P'(4) £ p(5), P'(3) € M, p'(j) € M; such that
(#'(2),2'(5)) s £-good.

PROOF. Assume that the statement is false. Put p(i,0)=p(s), p(7,0)=
=p(j), and we are going to construct decreasing, continuous sequences p(i, £),
p(4,€) for & < p. If p(4,€), p(j,€) are defined, let p(,£ + 1) ~ p(5,§ +1)
be such that no ¢ < p(i,€+ 1) + p(4,€ + 1) can force F({t(i),t(j)}) = €. If
g < p(i, ) + p(j, n) determines F({t(¢),4(5)}), then we get a contradiction.

By transfinite recursion on a < ut, we select, for every f: a — 2, a
condition p(¢, f) € M;, and an ordinal £(f) < p such that

(8) H(M;, My)(p(i, 1)) = p(4, f) (i <J < p);
(9) (w3, £10),p(3, 1)) is £(f)-good (i < j);
(10) p(i, ') € p(i, f) when f' 2 f;
(11) p(i, f) ~ p(4, 9) when f,g: a = 2,i <.

For « limit, we can take unions. Given {p(%,f): f: @ — 2, i < pu} we
select p(7, f°0), p(i, f*1) by a transfinite recursion of length |2%] £ p*t, using
Lemma 8. To insure (11), we must keep extending p(, f) | Ng, this can be
done by Lemmas 3 and 4.

By the Baire category theorem, there exist ¢ < u, and increasing 7; < u*
fita— 2 (i < p) for some a < p¥t, such that
(12) fi(r) =0, fi(m) =1, fi | i € fi | 75 (i < j);

(13) &(film) = ¢

Put Y = {{6(3),e(5)} : ¢ < p}.

We are going to construct q('y,z') for v < p, i < p. Put ¢(0,4) = p(i, f;),
for 4 limit, g(y,%) = U{q(’y ,1): 7" < 4}. If the construction is given, up to
the yth Ievel let u(7) € NyGiyus(j) be such that

u(y) £ ¢(7,6(7)) + ¢(7,€(7))

and u(y) = F({t(6(7)),#(e(7))}) = §. We then take ¢(y + 1,%) = ¢(v,f) U
Uu(y)| M;.

LeMMA 9. u(7y) ezists.

ProoF. By Lemma 8 and by ¢(7,%) ~ ¢(v,7)- This latter property holds
for 4 limit by continuity, for v = 0 by definition and (11), and for v + 1 by
definition.
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LeMMA 10. ¢(y + 1,%) £ q(7,9).
Proor. By Lemma 4.

If u(y) = (s(7), 9(7), (7)) for ¥ < p, then put u = (s, g,¢) where s = U
U{s(7) : v < 1}, 9 = U{g(y) : ¥ < u}, and ¢ is such that it extends all p(7),
and @({t(¢):¢ € A}) = A, when |A| > 2, and A spans a complete subgraph
inY

LEMMA 11. uw € P.

Proor. It suffices to show that if B C s, |B| > 2, spans a complete
subgraph then it is either in the domain of some ¢(y) or it is of the form
B = {t(i): i € A} for some A C p.

If two M;-s cover B, then one of them covers, too, or else {t(3),t(5)} € B,
but then BN Ny = @, so B = {t(3),t(j)}. If no two M;-s cover B, then
B C {t(?) : i < p}, and we are done, again.

LEMMA 12. u £ u(y).

Proor. Thereis no complete subgraph in  which is extended the wrong
way. The only candidate for this is a set of type {t(:) : ¢ € A} of which only
two vertices are in u(y).

LeEMMA 13. u I+ {t(¢): i < p} span a monocolored copy of Y.

Proor. Obvious.
Clearly, Lemma 13 concludes the proof of Theorem 1.

THEOREM 2. If the existence of class many measurable cardinals is con-
sistent, then it is consistent that for every Y, u there ezists an X with X —
— (Y)2 such that if K(o) £ X, then K(a) S Y.

Proor. By iterating the poset in Theorem 1.

The assumption on the existence of measurables can be eliminated, see
[14] Sections 3, 4.
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