UNIVERSAL GRAPHS WITHOUT INSTANCES OF CH: REVISITED

BY
SAHARON SHELAH ${ }^{\dagger}$
EECS and Mathematics Department, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel; and
Mathematics Department, Rutgers University, New Brunswick, New Jersey, USA

ABSTRACT
We give a complete proof ${ }^{\text {t† }}$ of the consistency of the existence of a universal graph of power λ, where $\kappa=\kappa^{<x}<\lambda=\mathrm{cf} \lambda<2^{\kappa}$ are arbitrary.

Introduction

The problem of the existence of universal models is very natural and appears in several contexts. Note that the related problem of the existence (for first order T) of saturated models (which is more central for the model theorist, but not so adopted elsewhere) is completely resolved - for a first order T, T has a saturated model in λ iff $\lambda=\lambda^{<\lambda} \geqq|D(T)|$ or T is stable in λ (see [6], VIII, §4 and reforcing there). Also note that when a universal homogeneous, or saturated, or even just special model exists, a universal one exists (the same) (see works of Jonsson and of Morley and Vaught). So if T is first order, $\lambda=\lambda^{<\lambda}>|T|$ or $\lambda>|T|$ strong limit, then T has a universal model in λ. But, of course, this may be rare.

To get non-existence of a universal model in λ is not hard - if we add

[^0]\aleph_{2}-Cohen reals any non- \aleph_{0}-stable countable T has no universal model in \aleph_{1}; if $\lambda=\lambda<\lambda$ and we add μ Cohen subsets of λ, no unstable T has a universal model in any $\chi \in(\lambda, \mu)$ (see representation in Mekler [5]).
In [7] we show that the theory of linear order may have a universal model in \aleph_{1} though $\aleph_{1}<2^{\chi_{0}}$ (using a combination of iteration of proper forcing and oracles). We also show even stronger results (categoricity of a PC class) for a natural unsuperstable theory.
In [9] we show the same for the theory of graphs (the method is related to the one in Abraham, Rubin and Shelah [1]). Here we generalize [9] to higher cardinals.
Meanwhile Mekler [5] generalizes [7] and [9] for a family of universal theories with strong amalgamation properties ($\mathscr{P}^{-}(3), \mathscr{P}^{-}(4)$ respectively).

The author found examples of countable theories which never have a universal model in $\aleph_{1}<2^{\kappa_{0}}$, but are \aleph_{0}-categorical and with amalgamation. ${ }^{\dagger}$

§1.

1.1. Theorem. Suppose G.C.H. for simplicity, $\kappa<\lambda \leqq \mu, \kappa$ and λ are regular and $\mu^{<\lambda}=\mu$. Then for some forcing notion P^{*} :
(1) P^{*} is κ-complete and has power μ.
(2) P^{*} does not collapse any $\chi, \kappa<\chi \leqq \mu$.
(3) $\|_{-P *}$ "there is a universal graph of power λ ".
(4) $\|_{p^{*}} " 2^{\alpha}=\mu$ ".

Proof. By the proof of Baumgartner [2] Theorem 6.1 we easily get:
1.2. Preliminary Forcing. For some forcing notion $P,|P|=\mu, P$ is κ-complete and satisfies the $(\lambda)^{+}$-c.c., does not collapse cardinals and does not change cofinalities, and in $V_{a}=V^{P}$ there is a family $\mathscr{U}=\left\{A_{\alpha}: \alpha<\mu\right\}$ of μ subsets of λ such that:
(a) $A \neq B \in \mathscr{U}$ implies $|A \cap B|<\kappa$.
(b) A_{α} is a stationary subset of $\{\delta<\lambda ; \operatorname{cf} \delta=\kappa\}$.
1.3. General Description. We shall define a $(<\kappa)$-support iteration of forcing notions satisfying the κ^{+}-c.c. $\bar{Q}=\left\langle P_{\alpha}, Q_{\alpha}: \alpha<\mu\right\rangle . Q_{0}$ forces a graph (λ, R_{0}), which shall be a universal graph of power λ. We shall define the ${\underset{\sim}{\alpha}}_{\alpha}$ by induction on α (together with some auxilliary things), and will have to prove that it satisfies the κ^{+}-c.c.

[^1]In stage $\alpha>0$ we will have a P_{α}-name R_{α} so that $\mathbb{H}_{\mathbf{P}_{\alpha}}$ " $\left(\lambda, R_{\alpha}\right)$ is a graph" and in $V_{a}^{P_{\alpha}}, Q_{\alpha}$ will force an embedding f_{α} of the graph $\left(\lambda, R_{\alpha}\right)$ into the graph $\left(\lambda, R_{0}\right)$. It is known that we can take care that every P_{μ}-name of a graph on λ appears as (λ, R_{α}) for some $\alpha<\mu$.
The problem is, of course, that the various f_{α} may give contradicting demands on (λ, R_{0}). In order to avoid this as much as possible we shall make the f_{α}^{\prime} 's such that for $\beta<\alpha$ the set (Rang $\left.f_{\alpha}\right) \cap$ (Rang f_{β}) has cardinality $<\kappa$. It is reasonable to demand that "Rang $f_{\alpha} \subseteq A_{\alpha}$ ".
1.4. The Full Inductive Definition. We let

$$
\begin{aligned}
Q_{0}= & \{(w, r): w \text { a subset of } \lambda \text { of power }<\kappa, \\
& r \text { a reflexive symmetric two-place relation on } w\} .
\end{aligned}
$$

The order on Q_{0} is: $q_{1} \leqq q_{2}$ iff q_{1} is a submodel of q_{2}. Let R_{0} be the Q_{0} name $\cup G_{Q_{0}}$ so R_{0} is a two-place reflexive symmetric relation on λ.
Now F will be a function such that for each ($<\kappa$)-support iteration (see 1.6) $\bar{Q}^{\gamma}=\left\langle P_{\alpha}, Q_{\beta}: \beta<\gamma, \alpha \leqq \gamma\right\rangle, F\left(\bar{Q}^{\gamma}\right)$ is a P_{γ}-name of a graph (λ, R). Let χ be a large enough regular cardinal.
Now for each $\alpha>0$, we let $\left(\lambda, R_{\alpha}\right)=F\left(\left\langle P_{\beta}, Q_{\beta}: \beta<\alpha\right\rangle\right)$, and we shall define $\left\langle N_{\alpha, i}: i<\lambda\right\rangle$, and Q_{α}.
First let $\left\langle N_{\alpha, i}: i<\lambda\right\rangle$ be a sequence of elementary submodels of $\left(H(\chi)^{\left.V_{a}, \in\right)}\right.$ such that for $j<\lambda$:

$$
\left\langle P_{\beta},{\underset{\sim}{\beta}}_{\beta}: \beta<\alpha\right\rangle,\left(\lambda, R_{\alpha}\right) \text {, and }\left\langle A_{\beta}: \beta<\mu\right\rangle \text { belong to } N_{\alpha, j},
$$

$\left\|N_{\alpha, j}\right\|<\lambda, N_{\alpha, j} \cap \lambda$ is an ordinal and $N_{\alpha, j}$ increasing continuous in j; $\left\langle N_{\alpha, i}: i \leqq j\right\rangle \in N_{\alpha, j+1}$. Note that this is done in V_{a}, so $\left\langle N_{\alpha, i}: i<j\right\rangle \in V_{a}$ and even $\left\langle\left\langle N_{\beta, i}: i<\lambda\right\rangle: \beta \leqq \alpha\right\rangle \in V_{a}$.
Define $\xi_{\alpha}(i)=\sup \left(N_{\alpha, i} \cap \lambda\right)$. Note that $\xi_{\alpha}(i)$ is always a limit ordinal and $\left\langle\xi_{\alpha}(i): i<\lambda\right\rangle$ is increasing continuous. As A_{α} is a stationary subset of λ, w.l.o.g.

$$
\begin{equation*}
\xi_{\alpha}(i) \in A_{\alpha} \quad \text { for every non-limit } i<\lambda \tag{**}
\end{equation*}
$$

We let $A_{\alpha}^{\prime}=\left\{\xi_{\alpha}(i+1): i<\lambda\right\}$ and note that $A_{\alpha}^{\prime} \in V_{a}$.
Now we come to the main point: defining Q_{α} (in $V_{a^{\alpha}}^{P^{\alpha}}$):
(A) A member of Q_{α} will consist of $<\kappa$ many atomic conditions (see (B)) with no two of them explicitly contradictory (see (C)).
(B) There are two kinds of atomic conditions:
(1) $f_{\alpha}(i)=j$ where $i<j, j \in A_{\alpha}^{\prime}$ and $j \in\left\{\xi_{\alpha}(\gamma+1): \kappa i \leqq \gamma<\kappa i+\kappa\right\}$ (or if you want, the sequence $\langle\alpha, 0, i, j\rangle$, is a condition).
(II) $i \notin \operatorname{Rang} f_{\alpha}$.
(C) We shall have to say when two atomic conditions are explicitly contradictory; this occurs just in one of the following three cases:
(α) One-to-one: $f_{\alpha}\left(i_{1}\right)=j_{1}$ and $f_{\alpha}\left(i_{2}\right)=j_{2}$ when

$$
i_{1}=i_{2}, j_{1} \neq \tilde{j_{2}} \text { or } i_{1} \neq i_{2}, j_{1}=\tilde{j_{2}}
$$

(β) Embedding: $f_{\alpha}\left(i_{1}\right)=j_{1}$ and $f_{\alpha}\left(i_{2}\right)=j_{2}$ when $V_{a^{\alpha}}^{P_{0}} \|^{"} i_{1} R_{\alpha} i_{2} \equiv j_{1} j_{1} R_{0} j_{2} "$.
(γ) Range : $f_{\alpha}(i)=j$ and $j \notin$ Rang f_{α}.
The order is inclusion.
Explanations. The demand in (B)(I) is in order that $\underset{\sim}{Q_{\alpha}}$ satisfies the κ^{+}-c.c. Each $i<\lambda$ should have only κ many possible images. Why in (B)(I), $j \in A_{\alpha}^{\prime}$? For reasons similar to those in the club method (see [1]).
1.5. FACT. If P_{α} satisfies the κ^{+}-c.c. then Q_{α} gives an embedding.

We want to prove (in $V_{a^{*}}^{P_{\alpha}}$) that $\Vdash_{Q_{\alpha}}$ " $\left(\lambda, R_{\alpha}\right)$ is embeddable into $\left(\lambda, R_{0}\right)$ ". We have a natural name for exemplifying this: f_{α} (defined by $f_{\alpha}(i)=j$ iff $\left[f_{\alpha}(i)=j\right.$] belongs to the generic subset of Q_{α}). It is (forced to be) a partial function from λ to λ by $1.4(\mathrm{~B})(\mathrm{I})$, one-to-one by $1.4(\mathrm{C})(\alpha)$ and an embedding by $1.4(\mathrm{C})(\beta)$. But we should still prove that for every $i<\lambda$, $\Vdash_{Q_{\alpha}}$ " $i \in \operatorname{Dom} f_{\alpha}$ ". This is equivalent to proving that for every $q \in Q_{\alpha}$ for some $j, q \cup\left\{\left[f_{\alpha}(i) \tilde{=} j\right]\right\} \in Q_{\alpha}$ (assuming q itself has no such member). By $1.4(\mathrm{~B})(\mathrm{I})$ we have $\tilde{\kappa}$ many candidates for j :

$$
B=\left\{\xi_{\alpha}(j+1): \kappa i<j+1<\kappa i+\kappa\right\}
$$

The only difficult demand comes from $1.4(\mathrm{C})(\beta)$. As $B \in V_{a}\left(\right.$ as $\left.\left\langle N_{\alpha, i}: i<\lambda\right\rangle \in V_{a}\right)$, and as forcing by P_{α} adds no new subset of λ of cardinality $<\kappa$, by the definition of Q_{0}, κ many $j \in B$ satisfy this, so we finish the proof of 1.5 .

Now the rest of the proof is dedicated to proving that P_{α} satisfies the κ^{+}-c.c. assuming this holds for all $\beta<\alpha$. For this we shall derive more detailed information on \bar{Q}^{α} (using the fact that all ${\underset{\sim}{\alpha}}_{\beta}, \beta<\alpha$, were defined as above).
1.6. Nice Dense Subsets of P_{α}. For a function p with $\operatorname{dom}(p) \subseteq \alpha$ and such that for all $\alpha \in \operatorname{dom}(p), \quad p(\alpha) \in \underset{\sim}{Q_{\alpha}}$, define $\operatorname{Dom}(p)=$ $\{\alpha \in \operatorname{dom} p: p(\alpha) \neq 0\}$. We use the variant of $(<\kappa)$-support iteration in which

$$
\begin{gathered}
P_{\beta}=\{p: p \text { a function with domain } \subseteq \beta, \operatorname{Dom}(p) \text { is of power }<\kappa \\
\quad \text { and } p \upharpoonright \gamma \Vdash_{-P_{\gamma}} \text { " } p(\gamma) \text { is a member of } Q_{\gamma} \text { and is set } \\
\text { of atomic condition of } \left.\underset{\sim}{Q_{\gamma} ", ~ f o r ~} \gamma \in \tilde{\operatorname{Dom}} p\right\},
\end{gathered}
$$

Let

$$
\begin{aligned}
& D_{\beta}^{0}=\left\{p \in P_{\beta}: \text { for each } \gamma \in \operatorname{Dom} p, p(\gamma)\right. \text { is an actual } \\
& \\
& \text { set of atomic conditions of power }<\kappa\} .
\end{aligned}
$$

Note that not every function p with domain a subset of β, of power $<\kappa$, each $p(\gamma)$ a set of $<\kappa$ atomic conditions of the forms mentioned in 1.4(B), is in D_{β}^{0} : we need $p \upharpoonright \gamma \Vdash_{P_{\gamma}} " p(\gamma) \in{\underset{\sim}{\alpha}}_{\gamma}$ " for each $\gamma \in \operatorname{dom} p$.
1.7. Definition. $D_{\beta}^{1}=\{p: p$ is a function with domain $\subseteq \beta$ of power $<\kappa$ and for $\gamma \in$ Dom $p, p(\gamma)$ satisfies the demands for $p(\gamma) \in Q_{7}$ in $1.4(\mathrm{~A}),(\mathrm{B}),(\mathrm{C})$ except possibly "there are no two atomic conditions in $p(\gamma)$ which are explicitly contradictory by $1.4(\mathrm{C})(\beta)$ " $\}$.

For $p \in D_{\beta}^{1}, \gamma \notin \operatorname{Dom} p$, let $p(\gamma)=\varnothing$.
We define an order on D_{β}^{1} :

$$
p \leqq r \text { iff for every } \gamma, p(\gamma) \subseteq r(\gamma)
$$

1.8. FACt. (1) D_{β}^{0} is a dense subset of P_{β} and $D_{\beta}^{0} \subseteq D_{\beta}^{1}$.
(2) On $D_{\beta}^{1} \cap P_{\beta}$ the orders of P_{β} and of D_{β}^{1} coincide.
(3) For $p \in D_{\beta}^{1}, p \in D_{\beta}^{0}$ iff for every $\gamma \in \operatorname{Dom} p$ and $\left[\underset{\sim}{f}\left(i_{1}\right)=j_{1}\right],\left[{\underset{\sim}{y}}^{f_{2}}\left(i_{2}\right)=j_{2}\right]$ in $p(\gamma)$

$$
p \upharpoonright \gamma \mathbb{R}_{P_{y}} " i_{1} R_{v} i_{2} \text { iff } j_{1} R_{0} j_{2} "
$$

(prove $p \upharpoonright \gamma \in P_{\gamma}$ by induction).
(4) If $p \in D_{\beta}^{1}, w \subseteq \operatorname{Dom} p$ then $p \upharpoonright w \in D_{\beta}^{1}$.

1.9. Fact.

(1) If ($\beta \leqq \alpha$ and) $p_{\zeta} \in P_{\beta}$ for $\zeta<\delta<\kappa$, and $p_{\zeta} \leqq p_{\xi}$ for $\zeta<\xi<\delta$ and p is defined by: $\operatorname{Dom}(p)=\cup_{\zeta<\delta} \operatorname{Dom}\left(p_{\zeta}\right)$ and for $\gamma \in \operatorname{Dom}(p)$, $p(\gamma)=\bigcup_{\zeta<\delta} p_{\zeta}(\gamma)$ (remember Q_{γ} is ordered by inclusion, and $p_{\zeta}(\gamma)=\varnothing$ for $\gamma \notin \operatorname{Dom}\left(p_{\zeta}\right)$) then $p \in P_{\beta}$ and $p_{\zeta} \leqq p$ for $\zeta<\delta$ (remember the beginning of 1.6). We say in such cases $p=\bigcup_{\zeta<\delta} p_{\zeta}$.
(2) If $p_{\zeta} \in D_{\beta}^{1}$ for $\zeta<\delta<\kappa, p_{\zeta} \leqq p_{\xi}$ for $\zeta \leqq \xi<\delta$ and let $p=\cup_{\zeta<\delta} p_{\zeta}$ be defined by $\operatorname{Dom}(p)=\bigcup_{\zeta<\delta} \operatorname{Dom}\left(p_{\zeta}\right), p(\beta)=\bigcup_{\zeta<\delta} p_{\zeta}(\beta)$, then

$$
p \in D_{\beta}^{1} \text { and } p_{\zeta} \leqq p \text { for } \zeta<\delta
$$

(3) In (2), if $p_{\zeta} \in D_{\beta}^{0}$ for $\zeta<\delta$, then

$$
p \in D_{\beta}^{0}
$$

(4) If $p^{1}, p^{2} \in D_{\beta}^{0}$, and for every $\gamma \in \operatorname{Dom} p^{1} \cap \operatorname{Dom} p^{2}, p^{1}(\gamma) \subseteq p^{2}(\gamma)$ or
$p^{2}(\gamma) \subseteq p^{1}(\gamma)$, then $p^{1} \cup p^{2} \in D_{\beta}^{0}$ where $\left(p^{1} \cup p^{2}\right)(\gamma)=p^{1}(\gamma) \cup p^{2}(\gamma)$ for $\gamma \in \operatorname{Dom} p^{1} \cup \operatorname{Dom} p^{2}$ and $p^{1} \leqq\left(p^{1} \cup p^{2}\right), p^{2} \leqq\left(p^{1} \cup p^{2}\right)$.

Now we continue with
1.10. Definition. For $\gamma \leqq \alpha, q \in \underset{\sim}{Q}$, and ordinal $\delta<\lambda$ (usually but not always limit) we let:

$$
\begin{aligned}
& \text { if } \gamma>0: q^{[\delta]}=\left\{\left[f_{\tilde{z}}(i)=j\right]:\left[f_{\tilde{\gamma}}(i)=j\right] \in q\right. \\
& \text { and for some } \varepsilon<\lambda, \\
&\left.j<\xi_{\gamma}(\varepsilon)<\delta\right\} \\
& \cup\left\{\left[j \notin \operatorname{Rang} f_{z}\right]:\left[j \notin \operatorname{Rang} f_{7}\right] \in q\right. \\
&\text { and for some } \left.\varepsilon<\lambda, j<\xi_{\xi}(\varepsilon)<\delta\right\} ; \\
& q^{(\delta)}=\left\{\left[j \notin \operatorname{Rang} f_{f}\right]:\left[j \notin \operatorname{Rang} f_{\tilde{z}}\right] \in q\right\} \cup q^{[\delta]} \\
& \text { if } \gamma=0: q^{[\delta]}=q^{(\delta)}=q \upharpoonright \delta, \text { i.e., if } \tilde{q}=(w, \gamma), \text { then } \\
& q^{[\delta]}= q^{(\delta)}=(w \cap \delta, r\lceil(w \cap \delta)) .
\end{aligned}
$$

1.11. Definition. (1) For $p \in P_{\alpha}$, and ordinal $\delta<\lambda$, let $p^{[\delta]}$ be a function with domain Dom p and $p^{[\delta]}(\gamma)=(p(\gamma))^{[\delta]}$.
(2) We can make those definitions even for $p \in D_{\beta}^{1}$.
1.12. FACT. (1) For any ordinals $\gamma>0, \delta$ and $q \in Q_{\gamma}, q^{[\delta]}=\varnothing$ or for some $\underset{\sim}{\varepsilon}, q^{[\delta]}=q^{[\xi,(\varepsilon)]}, \xi_{\gamma}(\varepsilon) \leqq \delta$ and ε limit or $q^{[\delta]}=q^{[\xi,(\varepsilon)+1]}=q^{[\xi,(\xi+1)]}, \xi_{j}(\varepsilon)<\delta, \underset{\varepsilon}{\varepsilon}$ successor.
(2) If $p \in D_{\beta+1}^{1}, \varepsilon \leqq \lambda$ and
$(\forall a)\left[a \subseteq N_{\beta, \varepsilon} \wedge|a|<\kappa \Rightarrow a \in N_{\beta, \varepsilon}\right]$, then
$\left(p^{\left[\xi_{\beta}(\ell)\right]} \uparrow\left|N_{\beta, \varepsilon}\right|\right) \in N_{\beta, \varepsilon}$.
(3) If $p \in D_{\beta}^{1}, \delta<\lambda$, then $p^{[\delta]} \in D_{\beta}^{1}$ and $p^{(\delta)} \in D_{\beta}^{1}$.
(4) $p^{[\delta]} \leqq p^{(\delta)} \leqq p$ (in $\left.D_{\beta}^{1}\right)$.
(5) If $p \in D_{\beta}^{0}, p \leqq r \in D_{\beta}^{1}, r=r^{(\delta)}, r^{[\delta]} \leqq p$, then $r \in D_{\beta}^{0}$.
(6) If δ is limit ordinal then for $p \in D_{\beta}^{1}$, $p^{[\delta]}=\cup\left\{p^{[\alpha]}: \alpha<\delta\right\}$.
(7) If $\delta_{1} \leqq \delta_{2}, p \in D_{\beta}^{1}$ then $p^{\left[\delta_{1}\right]} \leqq p^{\left[\delta_{2}\right]}$.

1.13. Definition. Let

$$
\begin{aligned}
& D_{\gamma}=\left\{p \in D_{\gamma}^{0} \text { : for every } \delta<\lambda, p^{[\delta]} \in D_{\gamma}^{0} ;\right. \\
& \text { moreover, if } 0<\beta \in \operatorname{Dom} p \text { and for } l=1,2 \text {, } \\
& {\left[f_{\beta}\left(i_{l}\right)=j_{l}\right] \in p(\beta), i_{1}, i_{2}<\xi_{\beta}(\varepsilon) \text { then }} \\
& \left.p^{\left\lceil\left[\xi_{\beta}(\xi) \mid\right.\right.} \upharpoonright \beta \Vdash_{P_{\beta}}{ }^{\prime} i_{1} R_{\beta} i_{2} " \text { or } p^{\left[\xi \xi_{\beta}(\varepsilon) \mid\right.} \upharpoonright \beta \Vdash_{P_{g}} " \neg i_{1} R_{\beta} i_{2} "\right\} \text {. }
\end{aligned}
$$

1.13A. Fact. The second condition ("Moreover ...") in the definition of D_{γ} implies the first.

Proof. Prove by induction on $\beta \leqq \gamma$ that for every $\delta,(p \upharpoonright \beta)^{[\delta]} \in D_{\beta}$.
1.14. The Crucial Claim. D_{β} is a dense subset of $P_{\beta}($ for $\beta \leqq \alpha)$.

Proof. We prove this by induction on β.
Case i. $\beta=0$.
Nothing to prove.
Case ii. $\quad \beta=1$.
Clearly (as Q_{0} is so simple).
Case iii. β limit of cofinality $\geqq \kappa$.
Trivial, as $P_{\beta}=\cup_{\gamma<\beta} P_{\gamma}$.
Case iv. β limit of cofinality $<\kappa$.
Let $p \in P_{\beta}$ and we shall find $q \in D_{\beta}, p \leqq q$.
Let $\beta=\cup_{\zeta<c \mathrm{c} \beta} \beta(\zeta), \beta(\zeta)$ increasing continuous and let $\beta(\mathrm{cf} \beta) \stackrel{\text { def }}{=} \beta$. We define by induction on $\zeta \leqq \operatorname{cf} \beta$ a condition $q_{\zeta} \in P_{\beta(\zeta)}, q_{\zeta} \in D_{\beta(\zeta)}, q_{\zeta}$ increasing and $p \upharpoonright \beta(\zeta) \leqq q_{\zeta}$. For $\zeta=0$ use the induction hypothesis on $\beta(0)$ (and $p \upharpoonright \beta(0)$). For limit, $q_{\zeta} \stackrel{\text { def }}{=} \bigcup_{\xi<\zeta} q_{\xi}$ is in $D_{\beta(\zeta)}$ (as for each $\delta, q_{\zeta}^{[\delta]}=\cup_{\xi<\zeta} q_{\xi}^{[\delta]}$ is in $D_{\beta(\zeta)}^{0}$ by Fact $1.9(3)$), and clearly it is $\geqq p \upharpoonright \beta(\zeta)$ (as $\langle\beta(\xi): \xi \leqq \operatorname{cf}(\beta)\rangle$ is increasing continuous). For successor ζ, use the induction hypothesis and 1.9(4). So q_{ζ} is as required. This applies in particular to $\zeta=\operatorname{cf} \beta$.

Case v. $\beta=\gamma+1, \gamma>0$.
So suppose $p \in P_{\beta}$ and we shall find $p^{1} \geqq p, p^{1} \in D_{\beta}$, First, by Fact 1.8(1) there is $p_{1} \geqq p, p_{1} \in D_{\beta}^{0}$. Second, by the induction hypothesis there is $r \in D_{\gamma}, r \geqq p_{1} \uparrow \gamma$. As $p_{1} \in D_{\beta}^{0}$ by $1.12(1)$ there is an increasing continuous sequence $\langle\delta(\theta): \theta \leqq \theta(*)\rangle$ of ordinals $<\lambda, \delta(0)=0, \theta(*)<\kappa, \delta(\theta+1) \in$ $\left\{\xi_{\gamma}\left(\varepsilon_{\mathcal{L}}+1\right): \varepsilon_{\varepsilon}<\lambda\right\}$ such that, if $\left[f_{\gamma}(i)=j\right] \in p_{1}(\gamma)$, then $\operatorname{Min}\left\{\varepsilon: \xi_{\gamma}(\varepsilon)>i\right\}$ is $\delta(\theta+1)$ for some θ (ε is necessarily non-limit).

We now define by induction on $\theta \leqq \theta(*)$ a condition r_{θ} such that:
(*) (i) $r_{\theta} \in D_{\gamma}$,
(ii) $r_{0} \geqq p_{1} \upharpoonright \gamma$,
(iii) r_{θ} is increasing continuous,
(iv) if $\left[f_{\gamma}\left(i_{1}\right)=j_{1}\right],\left[f_{y}\left(i_{2}\right)=j_{2}\right]$ belongs to $p(\gamma)$ and $i_{1}, i_{2}<\delta(\theta)$ then $r_{\theta}^{[\delta(\theta)]}$ determines the truth value of $i_{1} R_{v} i_{2}$.

If we succeed we shall finish to prove the crucial claim: $p_{1} \cup r_{\theta(\cdot)}$ is as required: for each δ choose θ such that $\delta \geqq \delta(\theta), p_{1}(\gamma)^{[\delta]}=p_{1}(\gamma)^{[\delta(\theta)]}$ so by (*) above

$$
\left.r_{\theta(*)}^{[\delta(\theta)} \| P_{P_{r}} " p_{1}(\gamma)^{[\delta(\theta)]} \in \underset{\sim}{Q}\right\rangle
$$

but $r_{\theta(\theta)}^{[\delta(\theta)} \leqq r_{\theta(\hat{)}}^{[\delta]}$ hence

$$
r_{\theta(\cdot)}^{[\delta]} \| P_{p_{r}} " p_{1}(\gamma)^{[\delta]}=p_{1}(\gamma)^{[\delta(\theta)} \in \underset{\sim}{Q_{n}} "
$$

but $r_{\theta(\cdot)} \in D_{\gamma}$ hence $r_{\theta(*)}^{[\delta]} \in D_{\gamma}^{0}$ hence $r_{\theta(*)}^{[\delta]} \cup p_{1}^{[\delta]} \in D_{\gamma+1}^{0}$ as required.
So for proving the crucial claim we just have to carry the induction definition of r_{θ} as to satisfy (*). For $\theta=0, r_{\theta}=r$ (remember $p_{1}(\gamma)^{[0]}=\varnothing$), for θ limit $r_{\theta}=\cup_{\sigma<\theta} r_{\sigma}$, and there are no problems (see 1.9). So let $\theta>0$ be a successor ordinal.
Let ε be such that $\xi_{\gamma}(\varepsilon)=\delta(\theta)$ (exists as θ is a successor ordinal). So clearly $p_{1}(\gamma)^{[\delta(\theta)]} \subseteq N_{\gamma, \varepsilon}$ (and if $(\forall \chi<\lambda) \chi^{<\chi}<\lambda$ then w.l.o.g. $p_{1}(\gamma)^{[\delta \theta)]} \in N_{\gamma, \varepsilon}$; otherwise this is not necessarily true). But for every finite subset u of $p_{1}(\gamma)^{[0(\theta)}, u \in N_{\gamma, \xi}$ and let

$$
\begin{aligned}
I_{u}= & \left\{r \in P_{\gamma}: r \in D_{\gamma} \text {, and either } r \mathbb{H}_{P} \text { " } u \text { satisfies } 1.4(\mathrm{C})(\beta) "\right. \\
& \text { or } \left.r \Vdash_{P} \text { " } u \text { fails } 1.4(\mathrm{C})(\beta) "\right\}
\end{aligned}
$$

and let $\left\{u_{\theta, \sigma}: \sigma<\sigma_{\theta}\right\}$ list the finite subsets of $p_{1}(\gamma)^{[\delta(\theta)]}$. Clearly for each $u_{\theta, \sigma}, I_{u_{\theta, \sigma}}$ belongs to $N_{\gamma, \underline{,},}$ and it is a dense subset of P_{γ}. As P_{γ} satisfies the κ^{+}-c.c., necessarily $N_{\gamma, \epsilon} \cap I_{u_{\sigma}}$ is a predense subset of P_{γ}. So we can define by induction on $\sigma \leqq \sigma_{\theta}, r_{\theta, \sigma} \in D_{\gamma}, r_{\theta, \sigma}$ increasing, and $q_{\theta, \sigma} \in I_{\mu_{\theta, \sigma}} \cap N_{\gamma, \sigma}$, such that $q_{\theta, \sigma} \leqq r_{\theta, \sigma}$.
Now $q_{\theta, \sigma} \|$ " $u_{\theta, \sigma}$ fail $1.4(\mathrm{C})(\beta)$ " is impossible as $q_{\theta, \sigma}$ is compatible with r_{θ} ($r_{\theta, \sigma+1}$ exemplifies this) hence with $r_{0} \geqq p_{1} \upharpoonright \gamma$, but $p_{1} \upharpoonright \gamma \|_{P_{\gamma}}$ " $p_{1}(\gamma) \in Q_{\sim}$ " hence $p_{1} \upharpoonright \gamma \|_{P_{r}} " u_{\theta, \sigma} \in Q_{\sim}{ }^{\prime}$.
So $q_{\theta, \sigma} \| T_{P_{r}}$ " $u_{\theta, \sigma}$ satisfies $1.4(\mathrm{C})(\beta)$ " hence $r_{\theta, \sigma} \|_{P_{r}}$ " $u_{\theta, \sigma}$ satisfies $1.4(\mathrm{C})(\beta)$ " hence $\quad r_{\theta, \sigma_{\theta}} \|_{P_{\eta}}$ "every finite $u \subseteq p_{1}(\gamma)^{[\delta(\theta)]}$ satisfies $1.4(\mathrm{C})(\beta)$ " so $r_{\theta, \sigma_{\theta}} \|_{-p_{y}}$ " $p_{1}(\gamma)^{[\delta(\theta)]} \in Q_{y} "$. But for every $\sigma<\sigma_{\theta}, q_{\theta, \sigma} \leqq\left(r_{\theta, \sigma}\right)^{[\delta \theta)]} \leqq\left(r_{\theta, \sigma_{\theta}}\right)^{[\delta(\theta)]}$, hence $\left(r_{\theta, \sigma_{\theta}}{ }^{[\gamma(\theta)]} \mathbb{F}_{P_{r}}\right.$ " $\tilde{p}_{1}(\gamma)^{[\delta(\theta)} \in Q_{\sim}{ }^{\prime}$ ". So let $r_{\theta+1} \stackrel{\text { def }}{=} r_{\theta, \sigma_{\theta}}$, and it is as required, so we have proved 1.14.
1.15. Fact. Suppose $\delta=\xi_{\beta}(\varepsilon)$ and $p \in P_{\alpha}, \beta<\alpha, p=p^{[\delta]}$.
(1) If l is a P_{β}-name of an ordinal, $l \in N_{\beta, \ell}$ then for some $q, p \leqq q \in P_{\alpha}$, $q=q^{[8]}$ and q force a value for $\frac{l}{l}$, and $p \upharpoonright[\beta, \alpha)=q \upharpoonright[\beta, \alpha)$.
(2) We can do this simultaneously to $<\kappa$ such names.
(3) If $u \subseteq \delta,|u|<\kappa$, then there is $q, p \leqq q \in P_{\alpha}, q=q^{[\delta]}$ and q forces a value to ${\underset{\sim}{\beta}}_{\beta} \upharpoonright u$.

Proof. (1) As is the definition of $q_{\theta, \sigma+1}$ in the proof of 1.14 .
(2) By $1.15(1)$ and 1.9 .
(3) By $1.15(2)$.
1.16. Main Lemma. P_{α} satisfies the κ^{+}-c.c.

Proof. Let $p_{\zeta} \in P_{\alpha}$ for $\zeta<\kappa^{+}$, and for $\zeta \neq \xi$ the conditions p_{ζ}, p_{ξ} are not compatible, and we shall eventually derive a contradiction. Clearly we can replace $\left\langle p_{\zeta}: \zeta<\kappa^{+}\right\rangle$by $\left\langle p_{\zeta}^{\prime}: \zeta<\kappa^{+}\right\rangle$if $p_{\zeta}^{\prime} \geqq p_{\zeta}$, and by $\left\langle p_{\zeta}: \zeta \in A\right\rangle$ if $A \subseteq \kappa^{+},|A|=\kappa^{+}$. We shall use this freely.
W.l.o.g. for every ζ :
(a) $p_{\zeta} \in D_{\alpha}$.
(b) $0 \in \operatorname{Dom} p_{\zeta}$.
(c) If $\beta \neq \gamma \in \operatorname{Dom} p_{\zeta}, j \in A_{\beta}^{\prime} \cap A_{\gamma}^{\prime}$, then j belongs to the universe of $p_{\zeta}(0)$.
(d) If $\left[j \notin \operatorname{Rang} f_{\beta}\right] \in p_{\zeta}(\beta)$ or $\left[f_{\beta}(i)=j\right] \in p_{\zeta}(\beta)$ for some β and i, then j belongs to the universe of $p_{\zeta}(0)$.
(e) If $\left[f_{\beta}(i)=j\right] \in p_{\zeta}(\beta)$ and $j_{1} \in A_{\beta}^{\prime}, \kappa i<j_{1}<j$ then j_{1} belongs to the universe of $p_{\zeta}(0)$.
(f) If j belongs to the universe of $p_{\zeta}(0)$ and $\beta \in \operatorname{Dom}\left(p_{\zeta}\right)$ then $\left[j \notin \operatorname{Rang} f_{\beta}\right] \in$ $p_{\zeta}(\beta)$ or $(\exists i)\left(\left[f_{\beta}(i)=j\right] \in p_{\zeta}(\beta)\right)$.
We can easily find $\zeta<\xi<\kappa^{+}$such that:

$$
\text { if } \beta \in \operatorname{Dom}\left(p_{\zeta}\right) \cap \operatorname{Dom}\left(p_{\xi}\right) \text { then } p_{\zeta}(\beta) \cup p_{\xi}(\beta) \text { belongs to } D_{\alpha}^{1} \text {. }
$$

Let $w=\{\delta(\theta): \theta<\theta(*)\}$ where $\theta(*)<\kappa$ be such that:
(1) $\delta(\theta)$ is increasing continuous.
(2) $\delta(0)=0, \delta(\theta)<\lambda$.
(3) $\operatorname{Dom}\left(p_{\zeta}(0)\right) \cup \operatorname{dom}\left(p_{\xi}(0)\right) \subseteq\{\delta(\theta): \theta<\theta(*)\}$.
(4) If $\delta(\theta)$ is limit then $\delta(\theta+1)=\delta(\theta)+1$.

Note. $(\forall \theta)[\theta$ limit $\theta \leqq \theta(*) \rightarrow \operatorname{cf}(\delta(\theta))=\operatorname{cf} \theta]$.
Now we shall define r_{θ} by induction on $\theta \leqq \theta(*)$ such that:
(A) $r_{\theta} \in D_{\alpha}^{0}, r_{\theta}$ increasing continuous (in θ).
(B) $r_{\theta}=r_{\theta}^{[(\theta)]}$.
(C) $p_{\ell}^{[\delta(\theta)]} \leqq r_{\theta}, p_{\xi}^{[\delta(\theta)]} \leqq r_{\theta}$.
(D) $p^{[\delta(\theta)]} \subseteq r_{\theta}$ where
$p=p_{a} \cup p_{b}$ where

```
\(p_{a}(\beta)=\left\{\left[j \notin \operatorname{Rang} f_{\beta}\right]: \beta \in \operatorname{Dom} p_{\xi} \cup \operatorname{Dom} p_{\xi}\right.\) and
    \(\urcorner(\exists i)\left(\left[f_{\beta}(i)=j\right] \in p_{\xi}(\beta) \cup p_{\xi}(\beta)\right)\)
    and \(\left.j \in \operatorname{dom}\left(p_{\zeta}(0)\right) \cup \operatorname{dom}\left(p_{\xi}(0)\right)\right\}\),
\(p_{b}(\beta)=\left\{\left[j \notin \operatorname{Rang} f_{\beta}\right]: \beta \in \operatorname{Dom} p_{\xi} \cup \operatorname{Dom} p_{\xi}\right.\) and
    \(\neg(\exists i)\left(\left[f_{\beta}(i)=j\right] \in p_{\xi}(\beta) \cup p_{\xi}(\beta)\right)\)
    and for some \(\gamma \in\left(\operatorname{Dom} p_{\xi} \cup \operatorname{Dom} p_{\xi}\right), \gamma \neq \beta\) and \(\left.j \in A_{\beta}^{\prime} \cap A_{\gamma}^{\prime}\right\}\).
```

Case I. $\theta=0$.
Trivial.
Case II. $\theta=1$.
Use $1.9(4)$ for $p_{\xi}^{[\delta(1)]}, p_{\xi}^{[\delta(1)]}$.
Case III. θ limit.
So $\delta(\theta)=\bigcup_{\sigma<\theta} \delta(\sigma)$, and $\bigcup_{\sigma<\theta} r_{\sigma}$ is as required.
Case IV. $\theta=\sigma+1, \delta(\sigma)$ non-limit >0.
Trivial.
Case V. $\theta=\sigma+1, \sigma>0$, not Case IV.
Let $u_{\zeta}=\left\{\beta<\alpha: \beta \in \operatorname{Dom}\left(p_{\zeta}\right)\right.$, and $\left.(\exists i)\left(\left[f_{\beta}(i)=\delta(\sigma)\right] \in p_{\zeta}(\beta)\right)\right\}$ so u_{ζ} has cardinality $<\kappa$ and, for $\beta \in u_{\zeta}$, let $i=i_{\zeta, \beta}$ be such that $\left[f_{\beta}\left(i_{\zeta, \beta}\right)=\delta(\sigma)\right] \in p_{\zeta}(\beta)$; similarly for ξ.
1.16A. Fact. There is q_{σ} such that
(1) $r_{\sigma} \leqq q_{\sigma} \in D_{\alpha}$,
(2) $q_{\sigma}^{[\delta(\sigma)}=q_{\sigma}$,
(3) for $\beta \in u_{\zeta}, q_{\sigma} \upharpoonright \beta$ forces a value for

$$
R_{\beta} \upharpoonright\left(\left\{i:(\exists j)\left(\left[f_{\beta}(i)=j\right] \in q_{\sigma}\right)\right\} \cup\left\{i_{\zeta, \beta}\right\}\right),
$$

(4) for $\beta \in u_{\xi}, q_{\sigma} \mid \hat{\beta}$ forces a value for $R_{\beta} \upharpoonright\left(\left\{i:(\exists j)\left(\left[f_{\beta}(i)=j\right] \in q_{\sigma}\right)\right\} \cup\left\{i_{\xi, \beta}\right\}\right)$.
Proof. By 1.15 and closure under union.
We now want to define r_{θ}. Let r_{θ} be defined as follows:
for $\beta<\alpha, \beta \neq 0$,

$$
r_{\theta}(\beta)=q_{\sigma}(\beta) \cup p_{\xi}^{[\delta(\theta)]}(\beta) \cup p_{\xi}^{[\delta(\theta])}(\beta) \cup p^{[\delta(\theta)]}(\beta) ;
$$

for $\beta=0$,
$r_{\theta}(0)$ has universe $\operatorname{dom}\left(q_{\sigma}(0)\right) \cup\{\delta(\sigma)\}$, extends $q_{\sigma}(0)$, and $p_{\zeta}^{[\delta \theta]}(0), p_{\xi}^{[\delta(\theta]]}(0)$ and:
(*) suppose $\beta \in \operatorname{Dom}\left(p_{\zeta}\right),\left[f_{\beta}(i)=j\right] \in q_{c}$ and $\left[f_{\beta}\left(i_{\zeta, \beta}\right)=\delta(\sigma)\right] \in p_{\zeta}(\beta)$ then $q_{\sigma} \upharpoonright \beta \Vdash i R_{\beta} i_{\zeta, \beta}$ iff $\left.q_{0} \upharpoonright \beta \| \tilde{\forall}\right\urcorner i R_{\beta} i_{\zeta, \beta}$ iff $\left.r_{\theta}(0) \vDash j R_{0} \delta(\sigma)\right)$
and
(**) similarly for ξ.
Note that $q_{\sigma} \upharpoonright \beta \Vdash i{\underset{\sim}{\alpha}}_{\beta} i_{\zeta, \beta}$ iff $q_{\sigma} \upharpoonright \beta \| \neg i R_{\beta} i_{\zeta, \beta}$ by 16 A . We should verify that r_{θ} is as required.

Point (i). Why is $r_{\theta}(0)$ well defined?
A priori we may have two conflicting demands on the truth value of $j_{1} R_{0} j_{2}$. We have five sources of such demands: $q_{\sigma} p_{\xi}^{[\delta(\theta)}(0), p_{\xi}^{[\delta(\theta)]}(0),(*)$ and (**).
The first and second do not contradict as $q_{\sigma}=q_{\sigma}^{[\delta(\sigma)]}$ whereas ($\left.p_{\zeta}^{[\delta(\theta)]}\right)^{[\delta(\sigma)]}=$ $p_{\zeta}^{[\delta(\sigma)]} \leqq r_{\sigma} \leqq q_{\sigma}$. Similarly the first and third do not contradict.
The second and third do not contradict by the choice of $\zeta<\xi$, i.e., as $p_{\zeta} \cup p_{\xi} \in D_{\alpha}^{1}$ so $p_{\zeta}(0) \cup p_{\xi}(0) \in Q_{0}$.
Next, the first and fourth do not contradict as $q_{\sigma}^{[\delta(\sigma)]}=q_{\sigma}$, so for every $j: j R_{0} \delta(\sigma) \notin q_{\sigma}(0)$ and $\urcorner j R_{0} \delta(\sigma) \notin q_{\sigma}(0)$. Similarly, the first and fifth do not contradict.
What about a contradiction between the second and fourth, i.e., $p_{\xi}^{[\delta(\theta)]}(0)$ and an instance of $(*)$? Let the instance of $(*)$ be $\beta \in \operatorname{Dom}\left(p_{\zeta}\right),\left[f_{\beta}(i)=j\right] \in$ $q_{\sigma},\left[f_{\beta}\left(i_{\zeta, \beta}\right)=\delta(\sigma)\right] \in p_{\zeta}(\beta)$ and the contradiction is about $j \tilde{R}_{0} \delta(\sigma)$. So $\beta \in \operatorname{Dom}\left(p_{\zeta}\right)$ (by the last sentence), and $j \in \operatorname{dom}\left(p_{\zeta}(0)\right)$ (as $p_{\zeta}(0)$ forces a truth value to $j R_{0} \delta(\sigma)$), hence by (f), $\left[j \notin \operatorname{Rang} f_{\beta}\right] \in p_{\zeta}(\beta)$ or $(\exists i)\left(\left[f_{\beta}(i)=j\right] \in p_{\zeta}(\beta)\right)$. In the first case

$$
\left[j \notin \operatorname{Rang} f_{\beta}\right] \in p_{\zeta}(\beta)^{|\delta(\sigma)|} \leqq q_{\sigma}
$$

(as $j<\delta(\sigma)$) contradiction, hence the second case occurs. So for some $i_{1}\left[f_{\beta}\left(i_{1}\right)=j\right] \in p_{\zeta}(\beta)$, but then $\kappa i_{1}<j<\delta(\sigma)$ clearly $\left[f_{\beta}\left(i_{1}\right)=j\right] \in q_{\sigma}$, hence $i_{1} \rightleftharpoons i$. So $\left[f_{\beta}\left(i_{\zeta, \beta}\right)=\delta(\sigma)\right],\left[f_{\beta}\left(i_{1}\right)=j\right]$ belongs to $p_{\zeta}(\tilde{\beta})$ hence, as $p_{\zeta} \in D_{\alpha}$, $p^{|\delta(\sigma)|} \upharpoonright \beta$ force a truth value for $i R_{\alpha} i_{\zeta, \beta}$ equal to the one $p_{\zeta}(0)$ determine for $j R \delta(\sigma)$ and we get an easy contradiction as $p_{\zeta}^{[\delta(\sigma)]} \leqq q_{\sigma}$.

Similarly there is no contradiction between the third and fifth.
What about a contradiction between the second and fifth, i.e., between $p_{\zeta}^{[\delta(\theta)}(0)$ and an instance of $(* *)$ which is $\beta \in \operatorname{Dom}\left(p_{\xi}\right),\left[f_{\beta}(i)=j\right] \in q_{\sigma}(\beta)$, $\left[f_{\beta}\left(i_{\xi, \beta}\right)=\delta(\sigma)\right] \in p_{\xi}(\beta)$ and the contradiction is about $j R_{\sigma} \delta(\sigma)$? But in such a case by (d), $\delta(\sigma) \in \operatorname{dom} p_{\xi}(0)$. As $p_{a}(\beta)^{[\delta(\theta)} \leqq q_{\sigma}(\beta)$ and $j \in \operatorname{Dom}\left(p_{\zeta}(0)\right)$ and $\left[f_{\beta}(i)=j\right] \in q_{\sigma}(\beta)$, necessarily $j \in \operatorname{dom} p_{\xi}(0)$. So both p_{ζ} and p_{ξ} force truth
values for $j R_{0} \delta(\sigma)$, but $p_{\xi} \cup p_{\xi} \in D_{\alpha}^{1}$, hence it is the same and we get a contradiction between the third and fifth, and we finish by the previous case.
Similarly there is no contradiction between the third and fourth.
Next we deal with two instances of the fourth, i.e.,
(*) for $l=1,2, \beta_{l} \in \operatorname{Dom}\left(p_{\zeta}\right)$,

$$
\left[f_{\beta_{1}}\left(i_{l}\right)=j_{l}\right] \in q_{\sigma} \text { and }\left[f_{\beta_{l}}\left(i_{5, \beta_{l}}\right)=\delta(\sigma)\right] \in p_{\zeta}\left(\beta_{l}\right) .
$$

Since there is a contradiction between $j_{1} R_{0} \delta(\sigma), j_{2} R_{0} \delta(\sigma)$ it may be assumed that $j_{1}=j_{2}$ and $\beta_{1} \neq \beta_{2}$. But

$$
\begin{aligned}
& \beta_{1}, \beta_{2} \in \operatorname{Dom}\left(p_{\xi}\right) \text {, hence by (c) } \\
& A_{\beta_{1}}^{\prime} \cap A_{\beta_{2}}^{\prime} \subseteq \operatorname{dom}\left(p_{\zeta}(0)\right) \text {, but by the above } \\
& \left\{j_{1}, \delta(\sigma)\right\} \subseteq A_{\beta_{1}}^{\prime} \cap A_{\beta_{2}}^{\prime}
\end{aligned}
$$

so $j_{1} R_{0} \delta(\sigma) \in p_{\zeta}(0)$ or $\urcorner j_{1} R_{0} \delta(\sigma) \in p_{\zeta}(0)$, so we get a contradiction between the second and one of the instances of (*) with which we have already dealt.

Similarly there is no contradiction between two instances of the fifth.
Lastly, what about a contradiction between (*) and (**)? So we assume

$$
\begin{gathered}
\beta_{1} \in \operatorname{Dom}\left(p_{\zeta}\right),\left[f_{\beta_{1}}\left(i_{1}\right)=j_{1}\right] \in q_{\sigma}, \\
{\left[f_{\beta_{1}}\left(i_{\zeta, \beta_{1}}\right)=\delta(\sigma)\right] \in p_{\zeta}\left(\beta_{1}\right) ;} \\
\beta_{2} \in \operatorname{Dom}\left(p_{\xi}\right),\left[f_{\beta_{2}}\left(i_{2}\right)=j_{2}\right] \in q_{\sigma}, \\
{\left[f_{\beta_{2}}\left(i_{\xi, \beta_{2}}\right)=\delta(\sigma)\right] \in p_{\xi}\left(\beta_{2}\right) .}
\end{gathered}
$$

As we can assume that there is a contradiction necessarily $\beta_{1} \neq \beta_{2}, j_{1}=$ $j_{2} \in A_{\beta_{1}}^{\prime} \cap A_{\beta_{2}}^{\prime}, j_{1}<\delta(\sigma)$, and $\left[j_{1} \notin \operatorname{Rang} f_{\left.\beta_{1}\right]}\right] \notin p_{\zeta}\left(\beta_{1}\right)$. Now $\beta_{1} \in \operatorname{Dom}\left(p_{\zeta}\right)$ and $p_{b}^{[\delta(\sigma]} \leqq p^{[\delta(\sigma)]} \leqq r_{\sigma} \leqq q_{\sigma}$, so by the definition of p_{b}, and the last sentence, necessarily $j_{1} \in \operatorname{dom}\left(p_{\zeta}(0)\right)$. Similarly, $j_{1} \in \operatorname{dom}\left(p_{\xi}(0)\right)$. Also $\delta(\sigma) \in \operatorname{dom}\left(p_{\zeta}(0)\right)$ (as $\left[f_{\beta_{1}}\left(i_{\zeta, \beta}\right)=\delta(\sigma)\right] \in p_{\zeta}\left(\beta_{1}\right)$ and $\delta(\sigma) \in \operatorname{dom}\left(p_{\xi}(0)\right)$. So p_{ζ}, p_{ξ} determine the truth value of $j_{1} R_{0} \delta(\sigma)$, and in the same way (as $p_{\xi} \cup p_{\xi} \in D_{\alpha}^{1}$) we hence reduce the contradiction to a previous case.
Point (ii). Why does $r_{\theta}(\beta)$ (where $\beta>0$) satisfy $1.4(\mathrm{C})(\mathrm{d})$ (one-to-oneness)? There are three sources of atomic condition $\left[f_{\beta}(i)=j\right]$ for $r_{\theta}(\beta): q_{\sigma}, p_{\xi}^{[\delta(\theta)]}$, $p_{\xi}^{[\delta(\theta)]}$. The second and third cannot contradict as $p_{\xi} \cup p_{\xi} \in D_{\alpha}^{1}$.
Suppose that the first and second contradict. As $p_{\zeta}^{[\delta(\sigma)]} \leqq q_{\sigma}$, the only possibility is that $\left[f_{\beta}\left(i_{1}\right)=\delta(\sigma)\right] \in p_{\zeta}$ contradict some member $\left[f_{\beta}\left(i_{2}\right)=j_{2}\right]$ of q_{σ}. As necessarily $j_{2}<\delta(\sigma)$ we conclude $i_{2}=i_{1}$.
As $\left[f_{\beta}\left(i_{1}\right)=\delta(\sigma)\right] \in p_{\zeta}(\beta)$, clearly for some $\varepsilon_{0}: \delta(\sigma)=\xi_{\beta}\left(\varepsilon_{0}\right), \kappa i_{1}<\varepsilon_{0}<\kappa i_{1}+\kappa$,
and $\kappa i_{1}<\underset{\varepsilon}{\varepsilon}<\mathcal{E}_{0} \Rightarrow\left[\xi_{\beta}(\underset{\sim}{\varepsilon}) \notin \operatorname{Rang}{\underset{\sim}{\beta}}^{f_{\sim}}\right] \in p_{\zeta}(\beta)$ hence $\kappa i_{1}<\varepsilon_{\sim}<\varepsilon_{0} \Rightarrow\left[\xi_{\beta}(\varepsilon) \notin \operatorname{Rang} f_{\beta}\right] \in$ $r_{\sigma}(\beta) \subseteq q_{\sigma}(\beta)$, contradicting $j_{2}<\delta(\sigma)=\xi_{\beta}\left(\varepsilon_{0}\right),\left[f_{\beta}\left(i_{1}\right)=j_{2}\right] \in q_{\sigma}(\beta)$.

Similarly the first and third do not contradict.
Point (iii). Why does $r_{\theta}(\beta)$ (where $\beta>0$) satisfy $1.4(\mathrm{C})(\beta)$ (embedding)?
In the choice of q_{σ} (in the fact above) and $(*),(* *)$ of the definition of $r_{\theta}(0)$ take care of this.

Point (iv). Why does $r_{\theta}(\beta)$ (where $\beta>0$) satisfy 1.4(C)(γ) (Rang)?
Left to the reader.
Point (v). Why do (A), (B), (C), (D) above hold?
See definition of r_{0}, r_{θ}.
Discussion.
Question. Can we get a similar result for two cardinals λ_{1}, λ_{2} simultaneously (when $\kappa<\lambda_{1}<\lambda_{2}<2^{\kappa}$)?

Question. Can you classify countable first-order theories by, e.g., $T_{1} \sim T_{2}$ iff for any universe of set theory (e.g., which you get by set forcing and cardinal λ; e.g., such that $\left.(\exists \kappa)\left(\aleph_{0}<\kappa=\kappa^{<\kappa}<\lambda<2^{\kappa}\right)\right) T_{1}$ has a universal model of power λ iff T_{2} has a universal model of power λ ?

Question. For which classes, e.g., is there no universal model of power λ if $(\exists \kappa)\left(\aleph_{0}<\kappa=\kappa^{<\kappa}<\lambda<2^{\kappa}\right)$, or even if just $(\exists \mu<\lambda)\left(2^{\mu}>\lambda\right)$? (See [9], p. 86 on this.)

References

1. U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous coloring and the structure of \aleph_{1}-dense real order type, Ann. Pure Appl. Logic 29 (1985), 123-206.
2. J. Baumgartner, Almost disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 9 (1976), 401-439.
3. W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
4. R. Grossberg and S. Shelah, On universal locally finite groups, Isr. J. Math. 44 (1983), 289-302.
5. A. H. Mekler, Universal structures in power \aleph_{1}, J. Symb. Logic, to appear.
6. S. Shelah, Classification Theory and the Number of Non-isomorphic Models, NorthHolland, Amsterdam, 1978, $542+$ xvi pp.
7. S. Shelah, Independence results, J. Symb. Logic 45 (1980), 563-573.
8. S. Shelah, Some results in set theory, Abstracts Am. Math. Soc. (1982), 522.
9. S. Shelah, Universal graphs without instances of CH, Ann. Pure Appl. Logic 26 (1984), 75-87.

[^0]: ${ }^{\dagger}$ The author would like to thank the NSF for partially supporting this research, Alice Leonhardt for the beautiful typing, and M. Kojman for proofreading. Publication No. 175A.
 \# The proof in the second section of [9] is flawed.
 Received August 14, 1988 and in revised form May 15, 1989

[^1]: ${ }^{\dagger}$ Added in proof. See much more in M. Kojman and S. Shelah, in preparation.

