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ABSTRACT 

We give a complete proof tt of the consistency of the existence of a universal 
graph of power ~, where x = x <* < 2 = cf2 < 2 ~ are arbitrary. 

Introduction 

The problem of  the existence of  universal models  is very natural and appears 

in several contexts. Note  that the related problem of  the existence (for first 
order T) of  saturated models  (which is more central for the model  theorist, but  

not so adopted elsewhere) is completely resolved I for a first order T, T has a 

saturated model  in it i ff2 = it<~ > ID(T)I or T i s  stable in 2 (see [6], VIII, §4 

and reforcing there). Also note that when a universal homogeneous,  or 

saturated, or  even just  special model  exists, a universal one exists (the same) 

(see works of  Jonsson and of  Morley and Vaught). So if T is first order, 

it = it <x > I T I or it > I T I strong limit, then Thas  a universal model  in it. But, 

o f  course, this may be rare. 

To get non-existence of  a universal model  in it is not hard - -  if we add 

t The author would like to thank the NSF for partially supporting this research, Alice Leonhardt 
for the beautiful typing, and M. Kojman for proofreading. Publication No. 175A. 

tt The proof in the second section of [9] is flawed. 
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70 s. SHELAH Isr. J. Math. 

R2-Cohen reals any non-R0-stable countable Thas  no universal model in R~; if 
2 = 2 <~ and we add/1 Cohen subsets of 2, no unstable Thas  a universal model 
in any Z E(2,  tt) (see representation in Mekler [5]). 

In [7] we show that the theory of linear order may have a universal model in 
R, though R~ < 2 ~0 (using a combination of iteration of proper forcing and 
oracles). We also show even stronger results (categoricity of a PC class) for a 
natural unsuperstable theory. 

In [9] we show the same for the theory of graphs (the method is related to the 
one in Abraham, Rubin and Shelah [ 1]). Here we generalize [9] to higher cardinals. 

Meanwhile Mekler [5] generalizes [7] and [9] for a family of universal 
theories with strong amalgamation properties (~ - (3 ) ,  2 - ( 4 )  respectively). 

The author found examples of countable theories which never have a 
universal model in R~ < 2 ao, but are l~0-categorical and with amalgamation, t 

§1. 

1.1. THEOREM. Suppose G .C .H .  for simplicity, x < 2 < Iz, x and 2 are 

regular and/z  <a = Iz. Then for some forcing notion P*: 
(1) P* is x-complete and has power IZ. 

(2) P* does not collapse any Z, x < Z < I~. 

(3) ]~-e* "there is a universal graph o f  power Z". 

(4) I~-e."2K=~ ". 

PROOF. By the proof  of Baumgartner [2] Theorem 6.1 we easily get: 

1.2. PRELIMINARY FORCING. For some forcing notion P, I PI =/~, P is 
x-complete and satisfies the (2)+-c.c., does not collapse cardinals and does not 
change cofinalities, and in Va = V e there is a family ~//= {A~ : a </z } of/z 
subsets of 2 such that: 

(a) A # B E~/ impl ies  I A f~ B I <  x. 
(b) A~ is a stationary subset of {~ < 2 ; c f~  = x}. 

1.3. GENERAL DESCRIPTION. We shall define a ( < x)-support iteration of  
forcing notions satisfying the x+-c.c. Q = (P~, Q~ : a  </z) .  Q0 forces a graph 
(2, R.0), which shall be a universal graph of power 4. We shall define the Q~ by 
induction on a (together with some auxilliary things), and will have to prove 
that it satisfies the x+-c.c. 

t Added in proof. See much more in M. Kojman and S. Shelah, in preparation. 
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In stage a > 0 we will have a P,-name R, so that ]}-po "(2, R,) is a graph" and 
in V~ e*, Q~ will force an embedding f~ of the graph (2, R,) into the graph (2, ./30). 
It is known that we can take care that every Pu-name of a graph on 2 appears as 
(2, R,) for some a < Ft. 

The problem is, of course, that the various f~ may give contradicting 

demands on (2, R0). In order to avoid this as mucl] as possible we shall make 

the f~'s such that forfl < a the set (Rang f~) N (Rang ~)  has cardinality < x. It 
is reasonable to demand that "Rang f~ ~A~". 

1.4. THE FULL INDUCTIVE DEFINITION. We let 

Q0 = {(w, r) : w a subset of  2 of  power < x, 
r a reflexive symmetric two-place relation on w }. 

The order on Q0 is: qt < q2 iff ql is a submodel of  q2. Let R.0 be the Q0- 
name U qQ0 so R.0 is a two-place reflexive symmetric relation on 2. 

Now Fwill be a function such that for each ( < x)-support iteration (see 1.6) 

Q~ = (P,~, Q B:fl < ~', a < 7), F(Q ~) is a Py-name of a graph (2, R). Let Z be a 
large enough regular cardinal. 

Now for each a > O, we let (2, R~) = F((Pp, Q p" fl < a)), and we shall define 
(N. ,  i " i < 2 ), and Q,. 

First let (N,,~ : i < 2 ) be a sequence of elementary submodels of  (H(z )v ,  E)  
such that for j < 2: 

(Pp, Qp : fl < a), (2, R~), and (Ap : fl < / t  ) belong to N. j ,  

II N.,j II < 2 ,  N.,j n 2 is an ordinal and N,j  increasing continuous in j;  
(N,~,i:i ~j)EN,~,j+I. Note that this is done in Va, so (N,,,i:i < j ) ~  Va and 

even ((Nis,i:i < 2 ) : f l  < a ) E  V a. 

Define ~,(i) = sup(N~,i N 2). Note that ~ ( i )  is always a limit ordinal and 

(~,(i) : i < 2 ) is increasing continuous. As d~ is a stationary subset of 2, w.l.o.g. 

(**) ~o(i)EA,, for every non-limit i < 2. 

Wele tA~ '=  ( ~ ( i  + 1 ) : i < 2 )  and note that A,' ~ Va. 
Now we come to the main point: defining Qo (in V~eo): 

(A) A member of Q, will consist of  < x many atomic conditions (see (B)) 
with no two of them explicitly contradictory (see (C)). 

(B) There are two kinds of atomic conditions: 

(I) f~(i) = j  where i < j , j ~ A ' ,  a n d j ~ { ~ ( 7  + 1) :xi  < 7 < x i  + x} (or 
i'f you want, the sequence (a, 0, i, j ) ,  is a condition). 
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72 S. SHELAH Isr. J. Math .  

(II) i ~ Rang f~. 
(C) We shall have to say when two atomic conditions are explicitly contra- 

dictory; this occurs just in one of the following three cases: 

(a) One-to-one: f~(il) =j~ and f~(i2) =J2 when 

il = i2, j l  v~ j2 or il ~ i2, j l  = J2. 
([3) Embedding: f~(it) =Jl  and f~(i2) =J2 when 

V~o IF'i~& i2"---1 jl .RoJ2". " 
(y) Range : f~(i) = j  a n d j  ~ R a n g  f~. 

The order is inclusion. 

E x p l a n a t i o n s .  The demand in (B)(I) is in order that Q~ satisfies the r+-c.c. 
Each i < 2 should have only x many possible images. Why in (B)(I),j ~ A ' ?  For 
reasons similar to those in the club method (see [1]). 

1.5. FACT. IfP~ satisfies the x+-c.c, then Q_~ gives an embedding. 

We want to prove (in V~-) that I[-~ "(2, R~) is embeddable into (4, R0)". We 
have a natural name for exemplifying this: f~ (defined byf~ (i) = j iff[f~ (i) = j]  
belongs to the generic subset of Q~). It is (forced to be) a partial function from 2 
to 2 by 1.4(B)(I), one-to-one by 1.4(C)(~) and an embedding by 1.4(C)(~). But 
we should still prove that for every i < 4, ]~-0~ "i ~ D o m  f~". This is equivalent 
to proving that for every q E Q~ for some j ,  q tA ( [ f~ (i) = j ] } ~ Q~ (assuming q 
itself has no such member). By 1.4(B)(I) we have x many candidates for j :  

B = { ~ ( j  + 1)" xi < j  + 1 <tci  + x } .  

The only difficult demand comes from 1.4(C)(fl). As B E V a (as (N~,i : i < 2 ) U Va), 
and as forcing by P~ adds no new subset of 2 of cardinality < x, by the 
definition of Q0, K m a n y j  E B  satisfy this, so we finish the proof  of 1.5. 

Now the rest of the proof  is dedicated to proving that P~ satisfies the K+-c.c. 
assuming this holds for all fl < a. For this we shall derive more detailed 
information on Q~ (using the fact that all Q#, fl < a, were defined as above). 

1.6. NICE DENSE StJSSETS OF P,.  For a function p with dom(p)_c  a 
and such that for all a ~ d o m ( p ) ,  p (a )~Qg,  define D o m ( p ) =  
{a ~ dom p" p(a) =~ 0}. We use the variant of(  < x)-support iteration in which 

P# = { p : p a function with domain c_ r ,  Dom(p)  is of power < x 
and p t 7 I[-v, "P(7) is a member  of Qr and is set 
of atomic condition of Qr", for 7 E l )om p }, 

Let 
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Dg = { p ~Pp: for each 7 E D o m  p, P(7) is an actual 
set of atomic conditions of power < x }. 

Note that not every function p with domain a subset of fl, of power < x, 
each P(7) a set of < x atomic conditions of the forms ment ioned in 1.4(B), is in 

Dg" we n e e d p  t 7 I]-e, "p(7)E Q~" for each 7 ~ d o m  p. 

1.7. DEFINITION. DJ = { p : p is a function with domain C_ f lofpower  < x 
and for 7 E Dom p, P(7) satisfies the demands for P(7) ~ Q.~ in 1.4(A), (B), (C) 
except possibly "there are no two atomic conditions in P(7) which are 
explicitly contradictory by 1.4(C)(fl)"}. 

F o r p ~ D J ,  7 ~ D o m  p, l e t p ( 7 ) =  ~ .  
We define an order on DJ : 

p _-< r ifffor every 7, P(7) c_ r(7). 

1.8. FACT. (1) D~ is a dense subset of Pp and D~ c_ D~. 
(2) On D~ n Pp the orders of Pp and of D~ coincide. 
(3) For p EDJ,  p ED~ ifffor every 7 E D o m  p and 

[fz(i,) =Jl], [~(iz)=Jz] in P(7) 

P ~ 7 1~-1~, "i,R.~i2 iffjl.Roj2" 

(prove p t 7 E Pz by induction). 
(4) I f p  EDJ,  w C_ Dom p then p r w ED~. 

1.9. FACT. 
(1) If  ( f l < a  and) P¢~Pa for ( < 5 < t o ,  and pc<pc for ( < ~ < 5  and 

p is defined by: D o m ( p ) = U ~ < j D o m ( p ¢ )  and for 7 E D o m ( p ) ,  
P(7) = U ¢<a p¢(7) (remember Qr is ordered by inclusion, and P¢(7) = 
for 7~Dom(p¢) )  then p~Pp and p¢ < p  for ( < 5  (remember the 
beginning of 1.6). We say in such cases p = U¢<a pc. 

(2) If Pc EDJ for ( < 5 < x, p~ < p~ for ~ < ~ < 5 and let p = U~<~ p~ be 
defined by Dom(p)  = U~<a Dom(pc), P(fl) = U¢ <~ p¢(fl), then 

p ~ DJ and pc < p for ( < 5. 

(3) In (2), if pc EDg for ~ < 5 ,  then 

pUD~. 

(4) If p~, p2EDg, and for every 7 E D o m  p ~ n D o m p  z, p~(7) C_ p20,) or 
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p~(,/) C P'(7), then pt  U p:~D~ where (p' U P~)(7) = P~(7) U p2(?,) for 
7~Dom pl U D o m  p2 a n d p  I _-< (p l  U p2), p2 < (p l  U p:). 

Now we cont inue with 

1.10. DEFINITION. For  7 ----< a, q E @,  and ordinal  5 < 2 (usually but  not  
always limit) we let: 

i f7  :> O: qI,~l = {[~( i )  = j ]  : [fr(i) = j ] ~ q  
and for some e < 2, 
j < ~(~) < 3} 

U ([ j  S R a n g  ~ ] :  [j S R a n g  ~ ] ~ q  
and for some e < 2, j < ~7(~) < 3}; 

q~a) = {[j S R a n g  ~ ] : [ j  $ Rang f r ] ~ q }  U q[Jl 
i f7  = 0: q[al = qla)= q t 5, i.e., i f  q = (w, 7), then 

qtal = q(a) = (w (q 3, r ~ (w 0 3)). 

1.11. DEFINITION. (1) For  p EP~,  and  ordinal  3 < 2, let p[,l be a funct ion 
with doma in  D o m  p and ptal(7) = (p(7))  t~l. 

(2) We can make  those definit ions even for p EDJ .  

1.12. FACT. (1) For  any ordinals  7 > 0, 3 and q E Qr, q[6] = ~ or for some 
e, q[6] = qte, to], ~y(e) < 5 and e l imit  or q[6] = q[¢,t~_)+~} = qI~,t~+~)], ~r(~) < 5, e 

successor. 
(2) I f p E D J + I ,  e < 2  and 

(Va)[a  c_ Na.,_ ̂  la[ < x ~ a  ENa,~], then 
(pt¢,<ol t iNa, ~ I)~Na.,.- 

(3) I f  p E D~, 5 < 2, then pt~] E DJ and p<~)~ D~. 
(4) ptal < pea) < p (in D~ ). 
(5) I f p  ~ D g ,  p <= r E D ~ ,  r = r ~), r ta] < p,  then r E D g .  

(6) If  3 is l imit ordinal  then for p E D~, 
pta] = U { p(~] : a < 3}. 

(7) If31 < 32, p ~ D J  then pta, l < pta, l. 

1.13. DEFINITION. Let 

D~ = { p ~ D O: for every fi < 2, p[6) E D O; 
moreover ,  if  0 < fl E D o m  p and for l = 1, 2, 
[fa(it) =j~] ~ p(fl),  il, i2 < ~p(e) then 
pr¢,,(,)] ~ fl I[","• "il R p is" or pt¢,,(o] r fl IF ,, "n i, ~ iz "}. 
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1.13A. FACT. The second condition ("Moreover ...") in the definition of 
D 7 implies the first, 

PROOF. Prove by induction on fl ___< 7 that for every fi, (p  tfl)tO]~Dp. 

1.14. THE CRUCIAL CLAIM. Dp is a dense subset ofPp (forfl  < a). 

PROOF. We prove this by induction on ft. 

Case i. fl = O. 
Nothing to prove. 

Case ii. f l = l .  
Clearly (as Q0 is so simple). 

Case iii. fl limit of co finality > x. 
Trivial, as Pp = Ur <~ Pr. 

Case iv. fl limit of co finality < x. 
Let p E Pp and we shall find q E Dp, p < q. 

Let fl = Uc<cfpfl((), f l(()  increasing continuous and let fl(cffl) ~ ft. We 
define by induction on ( < cffl a condition q~ EPpt;), q¢ EDp{~), q~ increasing 
and p r f l ( ( ) <  q¢. For ( =  0 use the induction hypothesis on fl(0) (and 

def 
p r fl(0)). For limit, q~ = U¢<¢ q¢ is in Dp(¢) (as for each 5, q~] = U¢<¢ q~l is in 
D~t o by Fact 1.9(3)), and clearly it is > p r f l ( ( )  (as ( f l (~) :~  <cf(f l ) )  is 
increasing continuous). For successor (,  use the induction hypothesis and 
1.9(4). So qc is as required. This applies in particular to ( = cffl. 

Casev .  f l = y + l , 7 > 0 .  
So suppose p E P p  and we shall find pl>___p, p~EDp, First, by Fact 

1.8(1) there is p~ > p, p~ ~D~. Second, by the induction hypothesis there is 
rEDr,  r > p~tT. As p ~ D ~  by 1.12(1) there is an increasing continuous 
sequence (5(0):  0 < 0(*)) of ordinals < 2 ,  5(0) = 0, 0 ( , ) < x ,  6(0 + 1)E 
(~r(e + 1): e < 2 }  such that, if [ f r ( i )=j ]Gp~(7) ,  then Min{e: ~ r (e )> i}  is 
5(0 + 1) for some 0 (e is necessarily non-limit). 

We now define by induction on 0 _-< 0(*) a condition r o such that: 
(,) (i) ro E Dr, 

(ii) r0 > p~ r 7, 
(iii) ro is increasing continuous, 

(iv) if [fr(il) = j , ] ,  [fr(i2) =J2] belongs to P(7) and il, i2 < 5(0) then r [~°)] -0 
determines the truth value of  i~R~i2. 
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I f  we succeed we shall finish to prove the crucial claim: Pl U to(.) is as required: 
for each 8 choose 0 such that 8 >-_ (f(0), p~(y)t61 = p~(y)ta(o)l so by ( .)  above 

[~(o)1 < rtal hence b u t  % ( , )  = o(,) 

rta(O)l lie, ,,p,(y)ta(o)l • Qr" 
0(,) ~ 

r tal [I-e~ " P I ( 7 )  [61 = P I ( ~ )  [~(0)1 • Q r "  o(.) ~ 

but  ro( , ) •Dy  hence rtal • D r  0 hence rtal U p f a l • D ° + l  as required• "o(,) -o(.) 
So for proving the crucial claim we just  have to carry the induction 

definition ofro  as to satisfy (*). For 0 = 0, ro = r ( remember  pl(y) [°1 = ~ ), for 0 

limit ro = Uo<0 ro, and there are no problems (see 1.9). So let 0 > 0 be a 

successor ordinal. 

Let e be such that ~r(e) = •(0) (exists as 0 is a successor ordinal). So clearly 
p~(y)t~(o)l C Nr, ~ (and if(  VZ < 2)Z <x < 2 then w.l.o.g, p~(y)t~(o)j •Nr ,~;  otherwise 

this is not necessarily true). But for every finite subset u ofp~(y) t6(°)1, u • N r ,  ~ 

and let 
I .  = {r • Pr" r • D  r, and ei ther  r [}-e "u satisfies 1.4(C)( [3)" 

or r [F-e "u fails 1.4(C)(13)"} 

• • - ~ -  t,,~[~(o)l Clearl for each . and let {Uo,o a < ao ) list the finite suosets o ~ p , ~ j  . y Uo,~, I.eo 

belongs to Nr,~ and it is a dense subset o f  Pr. As P~ satisfies the t¢+-c.c., 

necessarily Nr,. " N I.e, ° is a predense subset o f P  r. So we can define by induction 

on a ~ (70, ro,o ~ D r, ro,o increasing, and qo,o • I~,o n Nr,~ ., such that qo,o < ro,o. 

Now qo,. H-"Uo,. fail 1.4(C)(1])" is impossible as qo,~ is compatible  with ro 

(r0,.+ l exemplifies this) hence with ro > PL t y, but  p~ t y It-e~ " p l ( y ) •  Qr" hence 

p, "u0,o • Q r". 
So qo,o I~-p, "u0,. satisfies 1.4(C)(fl)" hence ro,. I[-p, "uo,~ satisfies 1.4(C)(fl)" 

hence ro,.o ]]-p~ "every finite u c_ pl(y) t  a(°)l satisfies 1.4(C)(fl)" so 

ro,~o [I-e "p t (y ) t~(° ) l •  Q~". But for every a < ao, qo,. < (ro,o) t~(°)l = < ('ro,~oJ~t~(°)l, 
,, def 

hence (ro,oo) 1~°)I I]-p, ,,p~(y)tJ(0)] • Qr • So let ro+t = ro,~,, and it is as required, so 

we have proved I. 1 4. 

l . l  5. FACT. Suppose ~ = ~p(~) and p ~P~,  fl < ~, p = p[61. 

(I)  If  ~ is a Pa-name of  an ordinal, t • N~,t then  for some q, p <= q • P , ,  

q = q[61 and q force a value for ~, and p t [fl,~) = q t [fl, o0. 

(2) We can do this simultaneously to < t¢ such names. 
(3) If  u ___ J ,  lu I < x ,  then there is q, p <= q • P ~ ,  q = qt~l and q forces a 

value to R a t u. 
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PROOF. (1) As is the definition of qo,,+~ in the proof  of 1.14. 
(2) By 1.15(1)and 1.9. 
(3) By 1.15(2). 

1.16. MAIN LEMMA. P, satisfies the tc+-c.c. 

PROOF. Let Pc ~P~ for ( < x +, and for ( 4: ~ the conditions Pc, Pc are not 
compatible, and we shall eventually derive a contradiction. Clearly we can 
replace ( p c : ( < x  +) by ( p ~ ' ( < x  +) if p~>p( ,  and by ( P c ' l E A )  if 
A c x+, I A I = x+. We shall use this freely. 

W.l.o.g. for every ~: 

(a) &~Do. 
(b) 0 ~ Dom Pc. 
(c) Iffl ¢ 7 E Dom Pc, J EA'p n A~, then j belongs to the universe of pc(0 ). 
(d) If  [jq~Rang~]Epc(fl)  or [ ~ ( i ) = j ] E p c ( f l )  for some fl and i, then j 

belongs to the universe of pc(0 ). 
(e) If  [~( i )=j]Epc( f l  ) and j1EA'p, xi <j~ < j  then jl belongs to the 

universe of pc(0 ). 
(f)  I f j  belongs to the universe of pc (0) and fl E Dom(Pc) then [j ~ Rang ~ ] E 

Pc(fl) or ( q i)([~(i)  =j]Epc(fl)).  
We can easily find ( < ~ < x ÷ such that: 

iffl ~Dom(p¢)  n Dom(pc) then p¢(fl) u Pc(fl) belongs to D2. 

Let w = {5(0) : 0 < 0(,)} where 0(,)  < x be such that: 
(1) 5(0) is increasing continuous. 
(2) 5(0) = 0, 5(0) < , t .  
(3) Dom(pc(0)) U dom(pc(0)) __. {5(0) : 0 < 0(*)}. 
(4) IfS(0) is limit then 5(0 + 1) = 5(0) + 1. 

Note. (VO)[O limit 0 < 0 ( , )~c f (5 (0 ) )  = cf0]. 

Now we shall define ro by induction on 0 < 0(*) such that: 
(A) re ED °, ro increasing continuous (in 0). 
( B )  ro = .tat0)l 

t o 

(C)  nt6(0)l < - _16(0)] ,-¢ = ro, e¢ < ro. 
(D) pt6to)l C_ ro where 

P = Pa U Pb where 
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p~(fl) = {[j ~ R a n g  fs] : f l ~ D o m  pc to D o m  pcand  

7 ( 3 i ) ( [ f p ( i ) = j l ~ p c ( f l )  U p¢(fl)) 
a n d j  E dom(pc(0))  tO dom( pc(0))}, 

Pb(fl) = {[J ~ Rang f~] : f l  ~ Dora pc U D o m  pc and 

n ( 3 i ) ( [ f p ( i ) = J ] ~  Pc(fl)U p¢(fl)) 
and for some 7 ~ (Dom Pc tO Dora Pc), Y # fl a n d j  EAk N A~}. 

Case I. 0 = 0 .  

Trivial. 

Case II. 0 = 1 .  
Use 1.9(4) for v c'l~(l)l, p~6(l)l. 

Case III. 0 limit. 

So g(O) = t.3,<o 3(tT), and U,<o r, is as required. 

Case IV. 0 = a + 1, 8(a) non-limit > 0. 
Trivial. 

Case V. O = a + l, tr > O, not Case IV. 

Let u c = {fl < a :fl ~ Dom(pc), and ( 3 i)([~(i)  = g(a)] E p¢(fl))} so u c has car- 
dinality < x  and, for f lEuc,  let i = k .  p be such that [~(ic ,p)=g(a)]~pc(f l ) ;  

similarly for ~. 

1.16A. FACT. There is q~ such that 

(1) G <-- qaED~, 
(2) qla(~)l = q., 
(3) for fl E u c, q. ~ fl forces a value for 

R p ~'({i: ( 3 j ) ( [ ~ ( i )  = j l ~ q . ) }  U {k,p}), 
(4) for fl E u¢, q. r fl forces a value for 

R p r ({i: (3 j ) ( [@( i )  = j ] ~ q ~ ) }  U {i¢,p}). 

PROOF. By 1.15 and closure under  union. 

We now want to define ro. Let ro be defined as follows: 

for# <a,~ ÷0, 

ro(fl) = q~(fl) to p~a(o)l(fl) tO p~a(o)l(fl) to pt6(o)l(fl); 

f o r f l  = O, 
re(0) has universe dom(q.(0)) U {d~(a)}, extends q~(0), and p~6(°)J(O), p~6(°)~(O) 

and: 
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(*) suppose fl ~Dom(pc) ,  [~( i )  = j ]  ~q~ and [f~(i¢,a) = 8(a)] ~ Pc(fl) then 
q~ tfl [[- iRak, ~ iffqo tfl ~ i~P~ic,~ iff ro(0) ~ jRoS(a)) 

and 

(**) similarly for ~. 

Note that q. t fl I[- iRa k,a iff q. t fl I[~ -1 i./~o ic, a by 16A. We should verify that 
ro is as required. 

Point (i). Why is ro(O) well defined? 
A priori we may have two conflicting demands on the truth value o f j l  RoJ2. 

We have five sources of such demands: q~ p~*(°)l(O), p~*(°)J(O), (,) and (**). 
The first and second do not contradict as q, = qt6(~)l whereas (p~*(°)l)t~(')l = 

p~(,)l __< r, _-< q~. Similarly the first and third do not contradict. 
The second and third do not contradict by the choice of ( <  ~, i.e., as 

pc U p¢~D~ so pc(O ) U p¢(O)EQ0. 
Next, the first and fourth do not contradict as qf,)l  = q,, so for every 

j:jRo~(tr)q~q~(O) and 7jRoJ(a)q~q~(O). Similarly, the first and fifth do not 
contradict. 

What about a contradiction between the second and fourth, i.e., p~(8)J(O) 
and an instance of (*)? Let the instance of (*) be fl ~Dom(pc) ,  [ f~( i )= j ]  
q,, [~(k,~)=~(a)]~pc(fl) and the contradiction is about j/~ofi(a). So 
fl ~Dom(p¢)  (by the last sentence), and j ~dom(pc(O)) (as pc(O) forces a 
truth value to jRoS(a)), hence by (f), [jq~Rang~]~pc(fl ) or 
( ~ i ) ( [~( i )= j ]~p¢( f l ) ) .  In the first case 

[j ~ Rang ~] ~ pc(fl) la(~)l < q~ 

(as j <~(a ) )  contradiction, hence the second case occurs. So for some 
i~[~(i~) =j]Epc(fl), but then Xim < j  < ~ ( a )  clearly [ ~ ( i l ) = j ] E q , ,  hence 
i~ = i. So [fp(ic,p)=8(a)], [f~(i~)--j] belongs to Pc(fl) hence, as pcED~, 
pg(~n ~ fl force a truth value t;or iRpi¢, p equal to the one pc(0) determine for 
jR~(a) and we get an easy contradiction as p~6(~)1 __< q~. 

Similarly there is no contradiction between the third and fifth. 
What about a contradiction between the second and fifth, i.e., between 

p~l°)l(0) and an instance of (**) which is fl ~Dom(p¢),  [~ ( i )= j ]Eq~( f l ) ,  
[~(i¢,p) = ~(a)] ~ p¢(fl) and the contradiction is aboutjR,8(a)? But in such a 
case by (d), ~ ( a ) ~ d o m  pc(0). As p~(fl)16(8)l ___< q~(fl) and jEDom(p¢(0) )  and 
[~(i)  =j]Eq~(fl), necessarily j Edom pc(0). So both Pc and pc force truth 
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values for jRoJ(a), but Pc U pcED2,  hence it is the same and we get a 
contradiction between the third and fifth, and we finish by the previous case. 

Similarly there is no contradiction between the third and fourth. 
Next we deal with two instances of the fourth, i.e., 

(.) for I = 1, 2, f l t~Dom(p¢),  
[fp,(it) =Jl] ~ q~ and [fp,(i¢,p,) = d(a)] E P~(flt). 

Since there is a contradiction between j~RoO(a), j2Ro~(a) it may be assumed 

that j~ = J2 and fll ~ f12- But 

fix, #z E Dom(p~), hence by (c) 
Ak, ~ Ak, _ dom(p~(0)), but by the above 
{j,, O(a)} _ A~, ~ A~, 

soj~Ro~(a) ~ pc(O) or "1 j~RoS(a)~ pc(O), so we get a contradiction between the 
second and one of the instances of (*) with which we have already dealt. 

Similarly there is no contradiction between two instances of the fifth. 
Lastly, what about a contradiction between (*) and (**)? So we assume 

fl, ~ Dom(pc),  [ ~,(i,) - j,] G qo, 

[~,(i¢3,) = 6(a)] ~ p¢(fl,); 

f l ~  Dom(pc), [ ~,(iz) = j : ]  G q~, 

[ ~( i¢32)  = 5 ( a ) ]  ~ p~(fl:). 

As we can assume that there is a contradiction necessarily fl~ ~ f12, J~ = 
j2EA~, tq A~, j~ < 8(a), and [31 ~ Rang ~,] ~ Pc(tim). Now fll ~Dom(p¢)  and 
pt~t,)J __< pt~t~)J < G < qo, so by the definition of Pb, and the last sentence, 
necessarily j~ ~ dom( Pc (0)). Similarly, Jl ~ dom(p¢(0)). Also 5(a) E dom(pc(0)) 
(as [~,(i¢3) = 5(a)] ~ Pc(ill) and 8(a) E dom(p¢(0)). So Pc, Pc determine the 
truth value ofjlRoS(a), and in the same way (as pc U pC U D2) we hence reduce 

the contradiction to a previous case. 

Point (ii). Why does ro(fl) (where fl > 0) satisfy 1.4(C)(d) (one-to-oneness)? 
~[6(0)1 There are three sources of atomic condition [fp(i) = j ]  for ro(fl): q~, ~,~ , 

p~6(o)1. The second and third cannot contradict as Pc O pc ~ D2. 
Suppose that the first and second contradict. As p~aO)J < qo, the only 

possibility is that [fp(i0 = 5(a)]E Pc contradict some member  [f~(i2)=.~] of 
q~. As necessarily j2 < 6(a) we conclude i 2 ---- i l .  

As [f~(i0 = ~(a)]~ P¢(fl), clearly for some e.0 : ~(tr) = ~p(~), xi~ < e.o < r.it + x, 
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and x/, < e < .e.o ~ [~p(e.)~ Rang ~ ]E  pc(fl) hence ]¢/i < ~ < ~0 ==~' [~(~){~ Rangfp]E 

G(fl) C_ q~(fl), contradicting J2 < 8(a) = ~p(.e0), [fp(i,) = J2] U qo(fl). 
Similarly the first and third do not contradict. 

Point (iii). Why does ro(fl) (where fl > 0) satisfy 1.4(C)([3) (embedding)? 
In the choice of q, (in the fact above) and (*), (**) of the definition of to(O) 

take care of this. 

Point (iv). Why does ro(fl) (where fl > 0) satisfy 1.4(C)(y) (Rang)? 
Left to the reader. 

Point (v). Why do (A), (B), (C), (D) above hold? 

See definition of  to, r0. 

DISCUSSION. 

Question. Can we get a similar result for two cardinals 21, 22 simulta- 

neously (when x <21 <22 < 2~)? 
Question. Can you classify countable first-order theories by, e.g., TI ~ T2 

ifffor any universe of set theory (e.g., which you get by set forcing and cardinal 
2; e.g., such that ( 3 x)(Ro < x = x <~ < 2 < 2~)) T1 has a universal model of  
power 2 iff T2 has a universal model of  power 2? 

Question. For which classes, e.g., is there no universal model of  power it if 

( 3 x)(R0 < x = x <~ < 2 < 2~), or even ifjust ( 3 It < 2)(2 ~ > 2)? (See [9], p. 86 
on this.) 
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