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Abstract

Given a cardinal λ with λ = λℵ0 , we show that there is a field of cardinality λ whose automorphism
group is a free group of rank 2λ. In the proof of this statement, we develop general techniques that
enable us to realize certain groups as the automorphism group of structures of a given cardinality.
They allow us to show that analogues of this result hold for free objects in various varieties of
groups. For example, the free abelian group of rank 2λ is the automorphism group of a field of
cardinality λ whenever λ is a cardinal with λ = λℵ0 . Moreover, we apply these techniques to
show that consistently the assumption that λ = λℵ0 is not necessary for the existence of a field
of cardinality λ whose automorphism group is a free group of rank 2λ. Finally, we use them to
prove that the existence of a cardinal λ of uncountable cofinality with the property that there is no
field of cardinality λ whose automorphism group is a free group of rank greater than λ implies the
existence of large cardinals in certain inner models of set theory.

2010 Mathematics Subject Classification: primary 03E75, 20E05, 20F29; secondary 03E35.

1. Introduction

Given an infinite cardinal λ, we say that a group G is the automorphism group
of a λ-structure if there is a first-order language L and an L-structure M such
that the cardinality of the signature of L and the cardinality of the domain of
M are at most λ and the group Aut(M) consisting of all automorphisms of
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P. Lücke and S. Shelah 2

M is isomorphic to G. The work of this paper is motivated by questions of the
following type: given an abstract group G and an infinite cardinal λ, is G the
automorphism group of a λ-structure? We start by presenting some known results
related to this kind of problem.

Let G be a group that is the automorphism group of a λ-structure for some
infinite cardinal λ. Then G can be embedded into the group Sym(λ) of all
permutations of λ, and therefore has cardinality at most 2λ. It is shown in [6,
Section 5.5] and [11, Section 3] that there is a graph of cardinality λ whose
automorphism group is isomorphic to G. Moreover, the results of [4] and [11]
show that G is also isomorphic to the automorphism group of a field of cardinality
λ. Hence we only need to consider finite languages and structures of cardinality
λ if we want to check whether a given group is the automorphism group of a
λ-structure.

In the other direction, if λ is an infinite cardinal and G is a group of cardinality
at most λ, then it is easy to construct a first-order language L of cardinality λ
and an L-model M of cardinality λ such that the groups G and Aut(M) are
isomorphic. In particular, every infinite group G is the automorphism group of
a |G|-structure. In contrast, for every infinite cardinal λ, there is a group of
cardinality λ+ that is not the automorphism group of a λ-structure. For example,
De Bruijn showed in [3, Theorem 5.1] that the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group Sym(λ). Moreover,
Sanerib showed in [14, Theorem 2.2] that the group Sym(λ) has 22λ-many
nonisomorphic subgroups. Since, up to isomorphism, there are only 2λ-many
fields of cardinality λ, this shows that there is a subgroup of Sym(λ) that is not
the automorphism group of a λ-structure.

In this paper, we focus on free groups and the following instances of the above
problem.

QUESTION 1.1. Given an infinite cardinal λ, is there a free group of rank greater
than λ that is the automorphism group of a λ-structure?

The above question was first asked by David Evans for the case λ = ℵ0. Its
generalization to uncountable cardinalities is motivated by [10, Theorem 1.14].

In [17], the second author showed that Question 1.1 has a negative answer for
λ = ℵ0.

THEOREM 1.2. A free group of uncountable rank is not the automorphism group
of an ℵ0-structure.
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Free groups and automorphism groups of infinite structures 3

The methods developed in the proof of this theorem can be generalized to
higher cardinalities to prove the next result that answers Question 1.1 in the
negative for singular strong limit cardinals of countable cofinality (see [17,
Remark 5.2]).

THEOREM 1.3. Let 〈λn | n < ω〉 be a sequence of infinite cardinals with 2λn <

2λn+1 for all n < ω. Define λ =
∑

n<ω λn and µ =
∑

n<ω 2λn . Then every free
group of rank greater than µ is not the automorphism group of a λ-structure.

In contrast, Just, Thomas, and the second author showed in [10, Theorem 1.14]
that, given an uncountable cardinal λ with λ = λ<λ and a cardinal ν > λ, there
is a cofinality-preserving forcing extension ofthe ground model that adds no new
sequences of ordinals of length less than λ and contains a graph of cardinality
λ whose automorphism group is a free group of rank ν. This shows that it is
consistent with the axioms of set theory that the above question has a positive
answer for some uncountable cardinal.

The following main result of this paper shows that the axioms of ZFC already
imply a positive answer to the above question for a large class of cardinals of
uncountable cofinality.

THEOREM 1.4. Let λ be a cardinal with λ = λℵ0 . Then the free group of rank 2λ

is the automorphism group of a λ-structure.

In particular, the free group of rank 22ℵ0 is always the automorphism group
of a 2ℵ0 -structure. Moreover, a combination of the above results allows us
to simultaneously answer Question 1.1 for all infinite cardinals under certain
cardinal arithmetic assumptions. The following corollary is an example of such
an application.

COROLLARY 1.5. Assume that the Continuum Hypothesis and the Singular
Cardinal Hypothesis hold. Then the following statements are equivalent for every
infinite cardinal λ.

(1) Either cof(λ) > ω or there is a cardinal κ < λ with 2κ > λ.

(2) There is a free group of rank greater than λ that is the automorphism group
of a λ-structure.

We outline the proof of Theorem 1.4. In Section 2, we will show that it suffices
to construct an inverse system of groups satisfying certain cardinality assumptions
whose inverse limit is a free group of large cardinality. We will construct such
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P. Lücke and S. Shelah 4

systems of groups assuming the existence of certain inverse systems of sets in
Section 3. Finally, we will use the assumption that λ = λℵ0 to construct these
systems of sets in Section 4.

In the approach sketched above, we develop general techniques to construct
structures with prescribed automorphism group. They will allow us to show that
analogues of Theorem 1.4 hold for free objects in various varieties of groups. For
example, the free abelian group of rank 2λ is the automorphism group of a λ-
structure whenever λ is a cardinal with λ = λℵ0 . This contrasts a result of Solecki
(see [19, Remark 1.6]) who showed that a free abelian group of uncountable rank
is not the automorphism group of an ℵ0-structure.

In another direction, the methods developed in the proof of Theorem 1.4
also allow us to show that the cardinal arithmetic assumption that λ = λℵ0 is
consistently not necessary for the existence of a free group of rank 2λ that is the
automorphism group of a λ-structure. This statement follows directly from the
next result. Given a cardinal κ , we let Add(ω, κ) denote the forcing that adds
κ-many Cohen reals to the ground model.

THEOREM 1.6. Let λ be a cardinal with λ = λℵ0 , and let G be Add(ω, κ)-generic
over the ground model V for some cardinal κ . In V[G], there is a free group
of rank greater than or equal to (2λ)V that is the automorphism group of a λ-
structure.

The above results raise the question whether the existence of a cardinal λ of
uncountable cofinality with the property that no free group of rank greater than λ
is the automorphism group of a λ-structure is even consistent with the axioms of
ZFC. Another byproduct of our constructions is the observation that the existence
of such a cardinal has consistency strength strictly greater than that of ZFC. This
observation is a consequence of the next result.

Remember that a partial order T = 〈T,6T〉 is a tree if T has a unique minimal
element and the set preT(t) = {s ∈ T | s 6T t, s 6= t} iswell-ordered by 6T for
every t ∈ T . Given such a tree T and t ∈ T , we define rnkT(t) to be the order-type
of 〈preT(t),6T〉. We define the height ht(T) of T to be the least upper bound of
the set {rnkT(t) | t ∈ T }. Finally, a subset B of T is a branch through T if B is
6T-downwards closed and B is well-ordered by 6T.

THEOREM 1.7. Let λ be a cardinal of uncountable cofinality. If there is a tree of
cardinality and height λ with more than λ-many branches of order-type λ, then
there is a free group of rank greater than λ that is the automorphism group of a
λ-structure.
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Free groups and automorphism groups of infinite structures 5

By considering the tree 〈(<λ2)M ,⊆〉 for some inner model M , the above result
directly implies the following corollary.

COROLLARY 1.8. Let λ be a cardinal of uncountable cofinality, and let M be an
inner model of ZFC. If λ+ = (λ+)M and λ = (2<λ)M , then there is a free group of
rank greater than λ that is the automorphism group of a λ-structure.

This statement allows us to directly derive large cardinal strength from the
nonexistence of certain automorphism groups.

COROLLARY 1.9. Let λ be a regular uncountable cardinal such that there is no
free group of rank greater than λ that is the automorphism group of a λ-structure.
Then λ+ is an inaccessible cardinal in L[x] for every x ⊆ λ.

Proof. Assume, towards a contradiction, that λ+ is not an inaccessible cardinal
in L[x] for some x ⊆ λ. Then there is a subset y ⊆ λ with λ+ = (λ+)L[y]. Since
(2<λ)L[y] = λ holds, we can use Corollary 1.8 to derive a contradiction.

Note that Mitchell used an inaccessible cardinal to construct a model of ZFC in
which every tree of cardinality ℵ1 and height ω1 has at most ℵ1-many branches of
order-type ω1 (see [2, Section 8] and [13]). This statement is also a consequence
of the Proper Forcing Axiom (see [1, Theorem 7.10]).

In the case of singular cardinals of uncountable cofinality, it is possible to use
core model theory (see, for example, [15]) to obtain inner models containing much
larger large cardinals from the above assumption.

COROLLARY 1.10. Let λ be a singular cardinal of uncountable cofinality such
that there is no free group of rank greater than λ that is the automorphism group
of a λ-structure. Then there is an inner model with a Woodin cardinal.

Proof. Assume, towards a contradiction, that there is no inner model with a
Woodin cardinal. Then we can construct the core model K below one Woodin
cardinal (see [9]). It satisfies the Generalized Continuum Hypothesis and has the
covering property. In particular, we have that λ+ = (λ+)K and (2<λ)K = λ. By
Corollary 1.8, this yields a contradiction.

The results of [16, Section 2] show that the nonexistence of trees with the
properties listed in Theorem 1.7 at a singular cardinal of uncountable cofinality is
equivalent to a PCF-theoretic statement that is not known to be consistent. Related
questions can also be found in [18, Chapter II, Section 6].
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P. Lücke and S. Shelah 6

2. Realizing limits of groups as automorphism groups

In this section, we show that certain limit objects in the category of groups
can be realized as the automorphism group of a structure whose cardinality
only depends on the size of the objects appearing in the corresponding limit
construction. We will later use this observation to reduce the problem of
constructing structures with a prescribed automorphism group to the problem of
constructing inverse systems of groups with a prescribed inverse limit.

The results of this section are formulated using the language of category theory.
This approach was suggested to us by one of the anonymous referees. It will allow
us to apply our results to a great variety of limit constructions in the category of
groups. We start by recalling some basic category theoretical notions. Our account
of category theory follows [12].

DEFINITION 2.1. Let F : J −→ C be a functor from a set-sized category J into
a category C.

(1) A cone over F is a pair 〈N , 〈ψX | X ∈ Ob(J)〉〉 such that N is an object
in C, ψX : N −→ F(X) is a morphism in C for every object X in J, and
ψY = F( f ) ◦ ψX holds for every morphism f : X −→ Y in J.

(2) A limit of F is a cone 〈L , 〈ΨX | X ∈ Ob(J)〉〉 over F such that, for every
cone 〈N , 〈ψX | X ∈ Ob(J)〉〉 over F , there is a unique morphism u : N −→
L in C with ψX = ΨX ◦ u for every X ∈ Ob(J).

EXAMPLE 2.2. Limits exist in the category Set of sets. Let J be a set-sized
category, and let F : J −→ Set be a functor. Define AF to be the set of
all (aX )X∈Ob(J) in

∏
X∈Ob(J) F(X) with the property that aY = F( f )(aX ) holds

for every morphism f : X −→ Y in J. Given an object X in J, we let pX :

AF −→ F(X) denote the canonical projection. Then it is easy to check that 〈AF ,

〈pX | X ∈ Ob(J)〉〉 is a limit of F .

EXAMPLE 2.3. Limits exist in the category Grp of groups. If J is a set-sized
category and F : J −→ Grp is a functor, then we can obtain a limit of F by
considering the subgroup G F of

∏
X∈Ob(J) F(X) consisting of all (gX )X∈Ob(J) with

gY = F( f )(gX ) for every morphism f : X −→ Y in J together with the canonical
projections πX : G F −→ F(X).

The following result shows that the group G F constructed in Example 2.3 is
isomorphic to the automorphism group of a structure of small cardinality.
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Free groups and automorphism groups of infinite structures 7

THEOREM 2.4. Let λ be an infinite cardinal, let J be a set-sized category of
cardinality at most λ, and let F : J −→ Grp be a functor with |F(X)| 6 λ for
every X ∈ Ob(J). Then the group G F is the automorphism group of a λ-structure.

Proof. Define LF to be a first-order language with the following symbols.

(i) A binary relation symbols Ḣ f for every morphism f : X −→ Y in J.

(ii) A binary relation symbol Ṙg,X for every object X in J and every g ∈ F(X).

By our assumptions, the signature of LF has cardinality at most λ. We let MF

denote the unique LF -structure with the following properties.

(i) The domain of MF is the set

MF = {〈g, X〉 | X ∈ Ob(J), g ∈ F(X)}.

(ii) If f : X −→ Y is a morphism in J, then

ḢMF
f = {〈〈g, X〉, 〈F( f )(g), Y 〉〉 | g ∈ F(X)}.

(iii) If X is an object in J and g ∈ F(X), then

ṘMF
g,X = {〈〈h, X〉, 〈h · g, X〉〉 | h ∈ F(X)}.

Since our assumptions imply that the set MF has cardinality at most λ, it suffices
to show that the group Aut(MF) is isomorphic to G F . We prove a number of
claims that will allow us to construct such an isomorphism.

CLAIM 1. If σ ∈ Aut(MF), X ∈ Ob(J), and g ∈ F(X), then there is an hσg,X ∈
F(X) with σ(〈g, X〉) = 〈hσg,X , X〉.

Proof of the Claim. By the definition of MF , we have that

〈〈g, X〉, 〈g, X〉〉, 〈σ(〈g, X〉), σ (〈g, X〉)〉 ∈ ḢMF
idX

,

and this shows that there is an h ∈ F(X) with σ(〈g, X〉) = 〈h, X〉.

CLAIM 2. If σ ∈ Aut(MF) and X ∈ Ob(J), then there is a unique cσX ∈ F(X)
with σ(〈g, X〉) = 〈cσX · g, X〉 for all g ∈ F(X).

Proof of the Claim. Set cσX = hσ1F(X),X ∈ F(X). Given g ∈ F(X), we have that

〈〈1lF(X), X〉, 〈g, X〉〉, 〈〈cσX , X〉, 〈hσg,X , X〉〉 ∈ ṘMF
g,X ,

and hence hσg,X = cσX · g. This allows us to conclude that σ(〈g, X〉) = 〈cσX · g,
X〉.
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P. Lücke and S. Shelah 8

CLAIM 3. If σ ∈ Aut(MF), then (cσX )X∈Ob(J) is an element of G F .

Proof of the Claim. Let f : X −→ Y be a morphism in J. Then

〈〈1lF(X), X〉, 〈1lF(Y ), Y 〉〉, 〈〈cσX , X〉, 〈cσY , Y 〉〉 ∈ ḢMF
f ,

and hence F( f )(cσX ) = cσY .

CLAIM 4. The map

Φ : Aut(MF) −→ G F; σ 7−→ (cσX )X∈Ob(J)

is an isomorphism of groups.

Proof of the Claim. Given σ0, σ1 ∈ Aut(MF) and X ∈ Ob(J), we have that

(σ1 ◦ σ0)(〈1lF(X), X〉) = σ1(〈c
σ0
X , X〉) = 〈cσ1

X · c
σ0
X , X〉,

and therefore cσ1◦σ0
X = cσ1

X · c
σ0
X . Since Φ(idMF ) = 1lG F holds by the definition of

the function Φ, this shows that Φ is a homomorphism of groups.
Fix an element (gX )X∈Ob(J) of G F . Then the function

σ : MF −→ MF; 〈h, X〉 7−→ 〈gX · h, X〉

is an automorphism of MF with Φ(σ) = (gX )X∈Ob(J). This shows that Φ is
surjective. By Claim 2, Φ is also injective.

This completes the proof of the theorem.

3. Automorphism groups constructed from inverse systems of sets

This section shows that the existence of certain inverse systems of sets allows
us to realize large free groups as the inverse limits of systems of groups of small
cardinality. In combination with the results of the last section, this will enable
us to show that the existence of such limits yields the existence of a structure
whose automorphism group is a large free group. Again, we start by recalling
some standard definitions and presenting the relevant examples.

A directed set is a partial order D = 〈D,6D〉 with the property that D 6= ∅ and
for all p, q ∈ D there is an r ∈ D with p 6D r and q 6D r . Given a directed set
D = 〈D,6D〉, we let JD denote the category defined by the following clauses.

(i) The elements of D are the objects of JD.
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Free groups and automorphism groups of infinite structures 9

(ii) If p 6D q , then HomJD(q, p) consists of a unique element ap,q . Otherwise,
HomJD(q, p) is the empty set.

(iii) If p 6D q 6D r , then ap,r = ap,q ◦ aq,r .

Let D = 〈D,6D〉 be a directed set, let C be a category, and let F : JD −→ C be
a functor. Then we call the pair 〈〈F(p) | p ∈ D〉, 〈F(ap,q) | p 6D q〉〉 an inverse
system in C over D, and we call a limit of the functor F an inverse limit of this
inverse system.

EXAMPLE 3.1. Let I = 〈〈Ap | p ∈ D〉, 〈 f p,q : Aq −→ Ap | p 6D q〉〉 be an
inverse system of sets over a directed set D = 〈D,6D〉. Then the inverse limit
of I consists of the set

AI =

{
(ap)p∈D ∈

∏
p∈D

Ap | f p,q(aq) = ap for all p, q ∈ D with p 6D q
}

together with the canonical projections pq : AI −→ Aq .

EXAMPLE 3.2. Let λ be an infinite cardinal, and let [λ]ℵ0 denote the set of all
countable subsets of λ. Given u, v ∈ [λ]ℵ0 with u ⊆ v, set Au =

u2, and define
fu,v : Av −→ Au by fu,v(s) = s � u for all s ∈ v2. Let

Iλ = 〈〈Au | u ∈ [λ]ℵ0〉, 〈 fu,v | u, v ∈ [λ]ℵ0, u ⊆ v〉〉 (1)

denote the resulting inverse system of sets over the directed set 〈[λ]ℵ0,⊆〉.
Then it is easy to see that

b : λ2 −→ AIλ; x 7−→ (x � u)u∈[λ]ℵ0 (2)

is a well-defined bijection between the sets λ2 and AIλ .

EXAMPLE 3.3. Let T = 〈T,6T〉 be a tree. Given α < ht(T), we let T(α) denote
the set of all t ∈ T with rnkT(t) = α. If t ∈ T and α 6 rnkT(t), then we let t � α
denote the unique element s ∈ T with s 6T t and rnkT(s) = α.

Given α 6 β < ht(T), set Aα = T(α), and

fα,β : Aβ −→ Aα; t 7−→ t � α.

We let
IT = 〈〈Aα | α < ht(T)〉, 〈 fα,β | α 6 β < ht(T)〉〉 (3)

denote the resulting inverse system of sets over the directed set 〈ht(T),6〉.
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P. Lücke and S. Shelah 10

It is easy to see that the induced map

b : AIT −→ [T]; (aα)α<ht(T) 7−→ {aα | α < ht(T)} (4)

is a bijection between the inverse limit AIT and the set [T] consisting of all
branches through T of order-type ht(T).

We now consider inverse systems in the category of groups.

EXAMPLE 3.4. Let I = 〈〈G p | p ∈ D〉, 〈h p,q : Gq −→ G p | p 6D q〉〉 be an
inverse system of groups over a directed set D = 〈D,6D〉.

Then the inverse limit of I consists of the subgroup

GI =

{
(gp)p∈D ∈

∏
p∈D

G p | h p,q(gq) = gp for all p, q ∈ D with p 6D q
}

of the product
∏

p∈D G p together with the canonical projections πq : GI −→ Gq .

Let I = 〈〈Ap | p ∈ D〉, 〈 f p,q | p 6D q〉〉 be an inverse system of sets over a
directed set D = 〈D,6D〉, and let F : Set −→ Grp be a functor. Then

IF = 〈〈F(Ap) | p ∈ D〉, 〈F( f p,q) | p, q ∈ D, p 6D q〉〉 (5)

is an inverse system of groups over D, and

uI,F : F(AI) −→ GIF ; g 7−→ (F(pq)(g))q∈D, (6)

is the unique homomorphism u : F(AI) −→ GIF with F(pq) = πq ◦ u for all
q ∈ D.

Let Fr : Set −→ Grp be the functor that sends a set A to the free group with
basis A. Note that this definition implies that Fr(∅) is the trivial group.Assume
that λ is an infinite cardinal, D is a directed set of cardinality at most λ, and
I is an inverse limit of sets of cardinality at most λ over D. Since |Fr(A)| 6
|A| + ℵ0 holds for every set A, Theorem 2.4 implies that the group GIFr is the
automorphism group of a λ-structure. In particular, if the map uI,Fr defined in (6)
is an isomorphism, then the free group of rank |AI| is the automorphism group of
a λ-structure.

Given a functor F : Set −→ Grp and an inverse system I of sets, the above
observation shows that it is natural to ask whether the group F(AI) can be the
inverse limit of IF . In the remainder of this section, we isolate assumptions on
the functor F and the underlying directed set D that lead to a positive answer
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Free groups and automorphism groups of infinite structures 11

to this question. This will allow us to use the argument sketched above to prove
Theorem 1.4.

We start by discussing the desired properties of the functor F . The next
definition and the category theoretical formulation of the following results were
suggested to us by one of the anonymous referees. Given sets Ā ⊆ A, we let
i Ā,A : Ā −→ A denote the canonical inclusion map.

DEFINITION 3.5. A functor F : Set −→ Grp induces a free construction if the
following statements hold.

(1) Given a set A and g ∈ F(A), there is a unique finite subset A(g) of A such
that g ∈ ran(F(iA(g),A)) and A(g) ⊆ Ā for every finite subset Ā of A with
g ∈ ran(F(i Ā,A)).

(2) Given a set A, the homomorphism F(i∅,A) : F(∅) −→ F(A) is injective.

The functor Fr : Set −→ Grp defined above obviously satisfies the assump-
tions of this definition. Moreover, the construction of free objects in all nontrivial
varieties of groups can be realized by a functor with these properties. For example,
the above statements are satisfied by the functor that sends a set A to the free
abelian group with basis A and the functor that sends a set A to the A-fold free
product of some fixed group G.

LEMMA 3.6. Let F : Set −→ Grp be a functor that induces a free construction.
If I is an inverse system of sets, then the induced map uI,F : F(AI) −→ GIF

defined in (6) is injective.

Proof. Let D = 〈D,6D〉 be a directed set with I = 〈〈Ap|p ∈ D〉, 〈 f p,q |p 6D q〉〉.
Fix an element g ∈ F(AI) with uI,F(g) = 1lGIF

. Then there is a unique minimal
finite subset AI(g) of AI with g = F(iAI(g),AI)(ḡ) for some ḡ ∈ F(AI(g)).

First, assume that AI(g) = ∅. Pick some q ∈ D. Since the canonical projection
pq : AI −→ Aq satisfies i∅,Aq = pq ◦ i∅,AI and the canonical projection πq :

GIF −→ F(Aq) satisfies F(pq) = πq ◦ uI,F , we have that

F(i∅,Aq )(ḡ) = (F(pq) ◦ F(i∅,AI))(ḡ) = (πq ◦ uI,F)(g) = 1lF(Aq ).

Since our assumption implies that F(i∅,Aq ) is an injection, this shows that ḡ =
1lF(AI(g)), and hence g = 1lF(AI).

Now, assume that there are pairwise different (a1
p)p∈D, . . . , (an

p)p∈D ∈ AI

with AI(g) = {(a1
p)p∈D, . . . , (an

p)p∈D}. Since D is a directed set, there is a
q∗ ∈ D with ai

q∗ 6= a j
q∗ for all i < j 6 n. This implies that the map
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P. Lücke and S. Shelah 12

pq∗ ◦ iAI(g),AI : AI(g) −→ Aq∗ is injective, and hence F(pq∗) ◦ F(iAI(g),AI) is also
injective. Since

(F(pq∗) ◦ F(iAI(g),AI))(ḡ) = (πq∗ ◦ uI,F)(g) = 1lF(Aq∗ )
,

we can conclude that ḡ = 1lF(AI(g)) and g = 1lF(AI) also hold in this case.

Next, we discuss the desired properties of the underlying directed set. Given a
directed set D = 〈D,6D〉, we define an infinite game G(D) of perfect information
between Player I and Player II: in the i th round of this game, Player I chooses an
element p2i from D with pk 6D p2i for all k < 2i , and then Player II chooses
an element p2i+1 from D with p2i 6D p2i+1. Player I wins a run (pi)i<ω of G(D)
if and only if there is a q ∈ D with pi 6D q for all i < ω. If Player I does not
win a run of G(D), then Player II wins the run. A similar game can be used to
characterize the σ -distributivity of Boolean algebras (see [7]).

PROPOSITION 3.7. Given a directed set D = 〈D,6D〉, the following statements
are equivalent.

(1) Player I wins every run of G(D).

(2) If A ∈ [D]ℵ0 , then there is a q ∈ D with p 6D q for every p ∈ A.

If these equivalent statements hold, then we say that D is σ -directed. In the
following, we are interested in a weakening of this property that is defined using
the notion of winning strategies.

DEFINITION 3.8. Let D = 〈D,6D〉 be a directed set.

(1) A function s : <ωD −→ D is a strategy for Player II in the game G(D) if
p2i 6D s(〈p0, . . . , p2i 〉) holds for all i < ω and p0, . . . , p2i ∈ D.

(2) A strategy s for Player II in the game G(D) is a winning strategy if Player
II wins every run (pi)i<ω of G(D) that is played according to s, in the sense
that s(〈p0, . . . , p2i 〉) = p2i+1 holds for all i < ω.

Clearly, if D is σ -directed, then there is no winning strategy for Player II in the
game G(D).

PROPOSITION 3.9. Let D = 〈D,6D〉 be a directed set, and let n : D −→ ω be
a function with n(p) 6 n(q) for all p, q ∈ D with p 6D q. If Player II has no
winning strategy in the game G(D), then there is a p ∈ D with n(p) = n(q) for
all q ∈ D with p 6D q.
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Free groups and automorphism groups of infinite structures 13

Proof. Assume, towards a contradiction, that, for every p ∈ D, there is a q ∈ D
with p 6D q and n(p) < n(q). Then there is a strategy s : <ωD −→ D for Player
II in the game G(D) with n(p2i) < n(s(〈p0, . . . , p2i 〉)) for all i < ω and p0, . . . ,

p2i ∈ D. By our assumption, s is not a winning strategy, and there is a run (pi)i<ω
of G(D) played according to s that is won by Player I. This gives us a p ∈ D with
pi 6D p for all i < ω. Then there is an i < ω with n(pi) > n(p), which is a
contradiction.

We are now ready to show that the map uI,F defined in (6) can be an
isomorphism witnessing that the group F(AI) is an inverse limit of IF .

THEOREM 3.10. Let F : Set −→ Grp be a functor that induces a free
construction, and let I be an inverse system of sets over a directed set D. If
Player II has no winning strategy in the game G(D), then the induced map
uI,F : F(AI) −→ GIF is an isomorphism, and F(AI) is an inverse limit of IF .

Proof. Let D = 〈D,6D〉 and I = 〈〈Ap | p ∈ D〉, 〈 f p,q | p 6D q〉〉. Given sets
Ā ⊆ A and p, q ∈ D with p 6D q , we define ι Ā,A = F(i Ā,A), G p = F(Ap)

and h p,q = F( f p,q). If ∅ ( Ā ⊆ A, then ι Ā,A has a left inverse. In combination
with our assumptions, this shows that all homomorphisms of the form ι Ā,A are
injective.

By Lemma 3.6, it suffices to show that uI,F is surjective. Fix an element (gp)p∈D

of GIF . Given p ∈ D, let Āp denote the unique minimal finite subset of Ap with
gp ∈ ran(ι Āp,Ap

), and set Ḡ p = F( Āp). By the above remarks, there is a unique
ḡp ∈ Ḡ p with ι Āp,Ap

(ḡp) = gp. Let n(p) denote the cardinality of Āp.

CLAIM 1. If p 6D q, then n(p) 6 n(q), and the set Āp is contained in the image
of Āq under f p,q .

Proof of the Claim. We let Ā denote the image of Āq under f p,q , and define
f̄ = f p,q � Āq : Āq −→ Ā. Then we have that f p,q ◦ i Āq ,Aq

= i Ā,Ap
◦ f̄ , and

this implies that

gp = h p,q(gq) = (h p,q ◦ ι Āq ,Aq
)(ḡq) = (ι Ā,Ap

◦ F( f̄ ))(ḡq).

This shows that gp ∈ ran(ι Ā,Ap
), Āp ⊆ Ā, and n(p) = | Āp| 6 | Ā| 6 | Āq | =

n(q).

By Proposition 3.9 and Claim 1, our assumptions imply that there is a p∗ ∈ D
with n(q) = n(p∗) for all q ∈ D with p∗ 6D q . Given q, r ∈ D with p∗ 6D q 6D
r , Claim 1 shows that Āq is equal to the image of Ār under fq,r , the resulting
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P. Lücke and S. Shelah 14

function f̄q,r = fq,r � Ār : Ār −→ Āq is a bijection, and the map h̄q,r = F( f̄q,r ) :

Ḡr −→ Ḡq is an isomorphism of groups.

CLAIM 2. If q, r ∈ D with p∗ 6D q 6D r , then h̄q,r (ḡr ) = ḡq .

Proof of the Claim. Since p∗ 6D q, r , we know that Āq is equal to the image of
Ār under f p,q , and this implies that fq,r ◦ i Ār ,Ar

= i Āq ,Aq
◦ f̄q,r . We can conclude

that

ι Āq ,Aq
(ḡq) = gq = hq,r (gr ) = (hq,r ◦ ι Ār ,Ar

)(ḡr ) = (ι Āq ,Aq
◦ h̄q,r )(ḡr ),

and the injectivity of ι Āq ,Aq
yields the statement of the claim.

CLAIM 3. If q, r0, r1 ∈ D with q, p∗ 6D r0, r1, then

fq,r0 ◦ i Ār0 ,Ar0
◦ f̄ −1

p∗,r0
= fq,r1 ◦ i Ār1 ,Ar1

◦ f̄ −1
p∗,r1

.

Proof of the Claim. Pick r ∈ D with r0, r1 6D r and i < 2. Then we have that
f̄ p∗,r = f̄ p∗,ri ◦ f̄ri ,r , and this implies that f̄ −1

p∗,ri
= f̄ri ,r ◦ f̄ −1

p∗,r . This shows that

fq,ri ◦ i Āri ,Ari
◦ f̄ −1

p∗,ri
= fq,ri ◦ i Āri ,Ari

◦ f̄ri ,r ◦ f̄ −1
p∗,r = fq,r ◦ i Ār ,Ar

◦ f̄ −1
p∗,r

holds for all i < 2.

By the above claim, there is a unique function f∗ : Āp∗ −→ AI such that

pq ◦ f∗ = fq,r ◦ i Ār ,Ar
◦ f̄ −1

p∗,r (7)

holds whenever q, r ∈ D with p∗, q 6D r . Set h∗ = F( f∗) : Ḡ p∗ −→ F(AI).

CLAIM 4. (gp)p∈D = (uI,F ◦ h∗)(ḡp∗) ∈ ran(uI,F).

Proof of the Claim. Pick q ∈ D. Then there is an r ∈ D such that p∗, q 6D r and
(7) holds. By Claim 2, we have that

(πq◦uI,F ◦ h∗)(ḡp∗) = F(pq ◦ f∗)(ḡp∗) = F( fq,r ◦ i Ār ,Ar
◦ f̄ −1

p∗,r )(ḡp∗)

= (hq,r ◦ ι Ār ,Ar
◦ h̄−1

p∗,r )(ḡp∗) = (hq,r ◦ ι Ār ,Ar
)(ḡr ) = hq,r (gr ) = gq .

These computations show that (uI,F ◦ h∗)(ḡp∗) = (gp)p∈D.

The above claim completes the proof of the theorem.
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4. Good inverse systems

In this section, we complete the proofs of the results listed in Section 1 by the
construction of suitable inverse systems of sets from the assumptions appearing
in the statements of those results. The next definition makes the notion of suitable
inverse system precise.

DEFINITION 4.1. Let λ and ν be infinite cardinals. We say that an inverse system
I = 〈〈Ap | p ∈ D〉, 〈 f p,q | p 6D q〉〉 of sets over a directed set D = 〈D,6D〉 is
(λ, ν)-good if the following statements hold.

(1) Player II has no winning strategy in the game G(D).

(2) |D| 6 λ and |Ap| 6 λ for all p ∈ D.

(3) |AI| = ν.

The following corollary summarizes the results of the previous sections.

COROLLARY 4.2. Let F : Set −→ Grp be a functor that induces a free
construction with |F(A)| 6 |A| + ℵ0 for every set A. If there exists a (λ, ν)-good
inverse system, then the group F(ν) is the automorphism group of a λ-structure.

Proof. Let IF denote the corresponding system of groups defined in (5). By
our assumptions, we have that |F(Ap)| 6 λ for every p ∈ D. In this situation,
Theorem 2.4 shows that the inverse limit GIF of IF is the automorphism group of
a λ-structure. By Theorem 3.10, the groups GIF and F(AI) are isomorphic. Since
our assumptions imply that the groups F(AI) and F(ν) are also isomorphic, this
shows that the group F(ν) is the automorphism group of a λ-structure.

In order to prove Theorem 1.4, we now construct a (λ, 2λ)-good inverse system
from the assumption that λ = λℵ0 .

LEMMA 4.3. If λ is a cardinal with λ = λℵ0 , then the inverse system of sets Iλ
defined in (1) is (λ, 2λ)-good.

Proof. By our assumption, we have that |[λ]ℵ0 | 6 λ and |u2| 6 λ for all u ∈ [λ]ℵ0 .
Since the function b defined in (2) is a bijection, we have that |AIλ | = 2λ. Finally,
the directed set 〈[λ]ℵ0,⊆〉 is σ -directed, and an application of Proposition 3.7
shows that Player II has no winning strategy in the corresponding game.

The statement of Theorem 1.4 now follows directly from a combination of
Corollary 4.2 and Lemma 4.3.
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Proof of Theorem 1.4. Define Fr : Set −→ Grp to be the functor that sends a
set A to the free group with basis A. Then Fr induces a free construction, and
|Fr(A)| 6 |A| + ℵ0 holds for every set A. Let λ be a cardinal with λ = λℵ0 . By
Lemma 4.3, there exists a (λ, 2λ)-good inverse system of sets. In this situation,
Corollary 4.2 shows that the group Fr(2λ) is the automorphism group of a
λ-structure.

Next, we show that Corollary 1.5 is a direct consequence of Theorem 1.4 and
the results presented in the first two sections.

Proof of Corollary 1.5. Assume that the Continuum Hypothesis and the Singular
Cardinal Hypothesis hold. Let λ be an infinite cardinal.

If cof(λ) > ω, then our assumptions and [8, Theorem 5.22.(ii).(b)] imply that
λ = λℵ0 , and in this situation Theorem 1.4 shows that the free group of rank 2λ is
the automorphism group of a λ-structure.

Next, assume that cof(λ) = ω and that there is a cardinal κ < λ with 2κ > λ.
Then we can find a regular uncountable cardinal κ with these properties, and the
above argument shows that the free group of rank 2κ is the automorphism group of
a κ-structure. Hence this group is also the automorphism group of a λ-structure.

Finally, assume that cof(λ) = ω and 2κ 6 λ holds for all κ < λ. Then either
λ = ℵ0 or λ is a singular strong limit cardinal of countable cofinality. In this
situation, Theorem 1.2 and Theorem 1.3 imply that there is no free group of rank
greater than λ that is the automorphism group of a λ-structure.

Next, we prove Theorem 1.6. The following notion was introduced by Hamkins
(see [5]).

DEFINITION 4.4. Let M be an inner model of ZFC. We say that M has the
ω1-cover property if every countable set of ordinals in V is a subset of a set that
is an element of M and countable in M .

LEMMA 4.5. Let M be an inner model of ZFC with the ω1-cover property. If λ is
an infinite cardinal such that λ = (λℵ0)M and (2λ)M is a cardinal in V, then there
is a (λ, ν)-good inverse system of sets for some cardinal ν > (2λ)M .

Proof. Let I = IM
λ be the inverse system of sets defined by (1) in M , and let

ν be the cardinality of AI in V. Since every element of (λ2)M gives rise to a
distinct element of AI and (2λ)M is a cardinal in V, we have that ν > (2λ)M .
By Proposition 3.7, our assumption implies that the directed set 〈([λ]ℵ0)M ,⊆〉 is
σ -directed in V, and hence Player II has no winning strategy in the corresponding
game. We can conclude that the inverse system I is (λ, ν)-good in V.
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Proof of Theorem 1.6. Let λ be a cardinal with λ = λℵ0 , and let G be Add(ω, κ)-
generic over the ground model V for some cardinal κ . Since Add(ω, κ) satisfies
the countable chain condition, the ground model V has the ω1-cover property in
V[G], and (2λ)V is still a cardinal in V[G]. Now, the statement of the theorem
directly follows from Corollary 4.2 and Lemma 4.5.

Finally, the results of the last two section also allow us to prove Theorem 1.7.

Proof of Theorem 1.7. Let λ be a cardinal of uncountable cofinality, and let T be
a tree of cardinality and height λ with the property that the set [T] of branches
through T of order-type λ has infinite cardinality ν > λ. By Proposition 3.7, the
assumption that cof(λ) > ω implies that the directed set 〈λ,6〉 is σ -directed, and
hence Player II has no winning strategy in the corresponding game. Since the
computations in Example 3.3 show that the inverse limit of the inverse system IT
defined in (3) also has cardinality ν, we can conclude that IT is (λ, ν)-good, and
Corollary 4.2 yields the statement of the theorem.

5. Open questions

We close this paper with questions raised by the above results.

QUESTION 5.1. Is it consistent with the axioms of ZFC that there is a cardinal λ
of uncountable cofinality with the property that the free group of rank 2λ is not
the automorphism group of a λ-structure?

QUESTION 5.2. Is it consistent with the axioms of ZFC that there is a cardinal λ
of uncountable cofinality with the property that every free group of rank greater
than λ is not the automorphism group of a λ-structure?

QUESTION 5.3. Is it consistent with the axioms of ZFC that there is a singular
cardinal λ of uncountable cofinality with the property that there is no tree of
cardinality and height λ with more than λ-many branches of order-type λ?
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