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THE JOURNAL OF SYMBOLIC LoGIc 
Volume 44, Number 4, Dec. 1979 

ALGEBRAICALLY CLOSED GROUPS OF LARGE CARDINALITY 

SAHARON SHELAH AND MARTIN ZIEGLER 

?0. Introduction. Let M be a countable algebraically closed group, K an uncount- 
able cardinal. We will prove in this paper the following theorems. 

THEOREM 1. There is an algebraically closed group N of cardinality K which is xo - 
cw-equivalent to M. 

THEOREM 2. There is an algebraically closed group N of cardinality K which is xo - 

co-equivalent to M, and contains afree abelian group of cardinality K. 
THEOREM 3. There are 2K nonisomorphic algebraically closed groups of cardinality 

X which are x - c-equivalent to M. 
THEOREM 4. There is an algebraically closed group N of cardinality K which is xo - 

co-equivalent to M and satisfies: Every subgroup of N of uncountable regular cardi- 
nality contains a free subgroup of the same cardinality. 

Theorems 2 and 4 illustrate Theorem 3 by exhibiting two groups N M of 
cardinality X which are nonisomorphic by obvious reasons. We state and prove 
Theorem 1 separately in order to give an easy example of our principal tool: the 
use of automorphisms instead of indiscernibles (see ?2). 

This method is due to the second author, who constructed two nonisomorphic 
algebraically closed groups N =-,,M, I NI = X in his Habilitationsschrift (1976). 
Subsequently the first author used an improved version of the method to prove 
Theorem 3 (1976) and Theorem 4 (1977). Some improvements in our proof of 
Theorem 4 are due to the second author. 

Theorem 1 answers a question of A. Macintyre, who proved it for K = x1 [1] 
and-assuming Martin's axiom-for all K < 2K0 [2]. Note that Theorem 1 implies 
the existence of finite-generic groups of cardinality K. 

Macintyre and Shelah [8] dealt with similar problems for universal locally finite 
groups. Macintyre [7] dealt with similar problems (including algebraically closed 
groups) in cardinality 81, assuming > ,1, proving there is N, xo - co-equivalent to 
M, with no uncountable abelian subgroup. Hickin [6] improves those results for 
universal locally finite groups (eliminate diamond, get more properties, but the 
cardinality was 81). Shelah (later than Ziegler's work) in [9] (assuming CH, for 
cardinality x1) and [10] (for cardinality 2K0) improve the results of [7]. He also con- 
structed (assuming CH), N 00 - co-equivalent to M of cardinality t1, with no un- 
countable free group. The parallel of this for any cardinality remains open. 

Addendum. By a slight modification of our method one can sharpen Theorems 
2 and 4. In both cases there are 2K nonisomorphic groups N; if K is regular, there 
are 2K groups N (satisfying all the respective conditions) which are mutually non- 
embeddable. This answers questions of the referee. 

Received February 1, 1978. 
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ALGEBRAICALLY CLOSED GROUPS 523 

?1. Prerequisites from group theory. A nontrivial group N is algebraically closed, 
if every finite system of equations with coefficients from N which is solvable in a 
supergroup of N has a solution in N. 

(1.1) LEMMA ([1]). Let N be a group. 
(1) N = M if] N is algebraically closed and has-up to isomorphy-the same 

finitely generated subgroups as M. 
(2) N M iff N is countabke, algebraically closed and contains the same finitely 

generated subgroups as M. 
We sketch the proof. (1) (Only if) The class of all algebrically closed groups is 

definable by a sentence of LCO1(t) For every finitely generated F the class of all groups 
which embed F is definable by a sentence of L 

(If) The theorem of Higman-Neumann-Neumann ("an isomorphism of sub- 
groups can be extended to an inner automorphism of a supergroup") implies the 
c-homogeneity of algebraically closed groups: 

Every isomorphism of finitely generated subgroups can be extended to an (inner) 
automorphism. 

Two co-homogeneous models having the same finitely generated submodels are 
x0 - co-equivalent. For the family of all isomorphisms between finitely generated 
submodels has the back-and-forth property. 

(2) follows from (1). Countable models which are oo - co-equivalent are isomor- 
phic. 

(1.2) LEMMA. A subgroup L c M is isomorphic to M ifffor all finitely generated 
H c L and all h e M there is an x e CM(H) s.t. xhx-1 e L. 

(CM(H) denotes the centralizer of H in M.) 
PROOF. (Only if) (<H, h> denotes the group generated by H U {h}.) There is y e M 

s.t. y<H, h>y-1 c L, by co-homogeneity of M. The co-homogeneity of L yields an 
element z of L s.t. ywy-1 = zwz-1 for all w e H. Put x = z-1y. 

(If) Let H c L be finitely generated. By induction for all h1, ..., hn E M there is 
x E CM(H) s.t. xh1x-1, ..., xhx-1 E L. For, if y E CM(H), yh1y-1, ..., yhA"1 y-1 E L, 
choose z e CM(<H, yh1 y-1, ..., yh,_1 y1>) s.t. z(yhny-1)z-1 e L, and put x = zy. 

We prove L - M by 1. 1.2. Let S be a finite system of equations with coefficients 
in H c L, which is solvable in a supergroup of L. S is also solvable in the amalga- 
mated product of M and this supergroup, thus there must be a solution h1, ..., h, 
of S in M. Let x e CM(H), xh1x-1, ..., xhx-1 e L. The last sequence is a solution of 
S in L. This proves that L is algebraically closed. On the other hand every finitely 
generated subgroup <h1, ..., h,> of M is embeddable in L. 

Let x1, ..., x. e M. An implication with coefficients x1, ..., x. is a formula of the 
form 

/\ WASXl, . .. I sm, V1, *. I Vn) - VA(Xl * S m, V1, *-- Vn) 
i<k 

W(X1, . ,Vn) -V(X1, J n 

(-xi is a name for xi, vi a variable). 
We quote from [3]. 
(1.3) LEMMA. Let x1, ..., xm e M. A recursively enumerable system of implications 

with coefficients xl, ..., xm which is satisfiable in a supergroup of M is satisfiable in 
M. 
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524 SAHARON SHELAH AND MARTIN ZIELGER 

Let (fi I i e N) be an enumeration of the group F. If F c M, we call the enumera- 
tion compatible if there are x1, ..., xe E M and a recursive sequence Wj(v1, ..., vm), 
i E N, of words s.t.f i = Wi(xj, xm). (fili e N) is effective iffi = fjfk is a recursive 
relation in i, j, k. 

(1.4) LEMMA. Let (fj I i e N) be an effective enumeration of the group F. Then F 
can be embedded in M s.t. (fi I i e N) is compatible. 

PROOF. In [4] a recursive sequence of words Wj(v1, v2) is given, s.t. the system of 
equations { WJ(vj, v2) ? J. I i e N} is solvable in an extension G of F. Take an ele- 
ment x e M \ {e} ({e} denotes the trivial group). The r.e. system of implications 

WiWWj- Wk I i ff, = fA} U tWiWj - Wk ->x e I fi f f fk} 

is solvable in M x G and has therefore a solution x1, x2 in M. f. W(X1, X2) is 
the desired embedding of F in M. 

A sequence (Fi I i e N) of subgroups of M is effective if there are elements x1, 
X Xm e M and a recursive sequence Di, i e N of recursively enumerable sets of 

wordsinvj,..., vm s.t. 

Fj = <W(xl, ... 5xm)| WeQi>, ie-N. 

We remark 
(1.5). Let the enumeration (A I i e N) of F c M be compatible, and (F, I i e N) 

a sequence of subgroups of F s.t. fj e Fj is recursive in i, j. Then (Fi I i e N) is ef- 
fective. 

Let Kj, i e Nbe a family of subgroups of K, and pi a family of isomorphic embed- 
dings pi: Ki -> Fi. Define 

C = <K*Fo*F1* . ; fp(h) = h, h EK, i e N>, 

the free product of K, F05 F1, ... where the Ki are amalgamated with fi[Kj] via Pi. 
We identify K, F0, ... with subgroups of C. Then Fi n K= Ki and Fi q Fj = 

Ki n Kj. We will use the notation 

C = IJ*(K F; K) 

A product coc1 ... c,, of elements of K U UiEN Fj is in normal form, if ck e K -> ck+l 

XK. c e F, - 
ck+l XFj5 k = O. 1, ... , n- 1. 

(1.6) Lemma. (1) Every element of H i*fN(K, F.; Kj) can be written as a product in 
normal form. 

(2) A product coc1 ... c, in normal form equals e iffn = 0. co = e. 
PROOF. (1) If dod1 *.. d, is not in normal form because dk, dk+l e K or dk, dk+1l e 

Fj, we proceed to the product dod1 ... dkl_(dkdk+1)dk+2 ... d". Finally we arrive at a 
product in normal form. 

(2) This can easily be derived from the normal form theorem for free products 
with amalgamation. Note that H l* N(K, Fj; Kj) is the union of the sequence 

((K*KoFO)*KlFl)*K2 F2 * (H N(K, Fe; K.) is a tree product in the sense of [11], 
in the tree K is connected with each Fi.) 

?2. Models with operation. 
(2.1) DEFINITION. Let M be a model, I a set. An operation _4 of I on M is a map- 
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ALGEBRAICALLY CLOSED GROUPS 525 

ping, which assigns to every finite s c I a submodel X s c M and to every bijec- 
tionf: s t an isomorphism Xf: 4s -> Xt s.t. 

(1) M = UfXs I s c- I}, 
(2) dtids = idxs, 
(3) domf= rngg => Xf o /g = tZ(fog), 
(4)fc g Jfc (- g. 

Note that (2), (3), (4) imply 
s c t => Xs c Xt, 
domf c rng g => ifo JXg = (f o g). 
(2.2) DEFINITION. Let Mbe a submodel of N and X an operation of I c J on N. 

X is an extension of X, if for all s c I, Xs = Js and for all bijectionsf: s - t c 

I, Xf = Xf. 
(2.3) LEMMA. Let 4 be an operation of the infinite set I on the model M, and J a 

superset of I. Then there is a unique extension of I to an operation X of J on a 
suitable model N D M. 

PROOF. (Uniqueness) Let X' be another extension of X to an operation of J 
on N' D M. Choose for every x e N a finite s c J s.t. x e- Xs and a bijection f: 
F -> s, t c I. Define 

f(x) = Xf(Xf-1(x)). 

p is a well-defined isomorphism p: N - N', which satisfies (Plm = idm, c[As] = 

X's, (p - .Xf = ,,Xf o p. 
(Existence) Choose for every finite s c J a bijection fs: s' -5 s, s' C I. (In case 

s c I, we takes = ids.) Set Ys = Xs'. For every s c t c J, there is a unique in- 
jectionfst: s' - t' s.t. f fst = fs. Define an isomorphic embedding Yst: Ns -Y Nt by 
Yst = Xfst. (Note that Yst is the inclusion map of Js c J(t, if s c t c I.) 

The Yst form a commutative system: Yss = idN, YAtstrs = -Yrt r c s c t c J 

Define A as the direct limit of the system Ns, s c J; NYst s c t c J. (The index set 
P,(J), the set of all finite subsets of J, is partially ordered by inclusion.) 

We have embeddings Nso Ls YT. N s.t. s c t => Yto YTst = Nso_ and N= 
U rng s. I s 15 J}. We can assume that for s c I, Ysoo = idxs. As a conse- 
quence M = UJ s cI} ( N. 

We define the operation of J on N by Xs = rng YsN. and for f: s t, X f 
Yto &(f1s ffs)T I0. 

The proof is now completed by chasing commutative diagrams. 
Our construction admits the following generalization (which we use only in the 

proof of Theorem 3, ?5). 
Let I be a relational structure (a model, where no constants and functions are 

defined). An operation J of I on M assigns to every finite substructure s c I a 
submodel Xs c Mand to every isomorphismf: s -+ t an isomorphism Xf: Js 

it s.t. (1), (2), (3), (4) are satisfied. 
Lemma (2.3) generalizes to 
(2.4) LEMMA. Let x be an operation of the relational structure I on the model M. 

Let I be a substructure of f. which contains-up to isomorphy-the same finite sub- 
structures as I. Then there is a unique extension of X to an operation A' of J on a 
suitable model N D M. 
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526 SAHARON SHELAH AND MARTIN ZIEGLER 

PROOF. Same as the proof of (2.3). 
We describe now the way to use (2.4) for the construction of algebraically closed 

groups (no other applications of (2.4) are known to us). 
Let 11 be a group of automorphisms of the relational structure I, which contains 

an extension of every isomorphism of two finite substructures of I. We define for 
every finite s C 1, 11s = {2e f I 2rIs = ids}. 

(2.5) LEMMA. Suppose II is a subgroup of M and let for every finite s c I a sub- 
groupMs c( M be given s.t. 

(5) s t => MsMt 

(6) Ms '- CM(IIS)) 
(7) zrMsz-1 = M,,[s, 
(8) Ms M. 

Then 
(1) ./As = Ms, 4f (x) = rxz-1 (if X e II, f c z) defines an operation 4 of I 

onU{Msls I I}. 
(2) If X is an extension of & to an operation of I on N, N is an algebraically 

closed group with N M, I N I < I J I + x0. 
PROOF. (1) We prove that 4f is well defined. Let f: s -+ t be a finite bijection, 

x E 4s and fc ir, p e ll. Then wIs = pIs =: r-1 p e lfs => 2r-1px = xr-1 p => pxp-1 

(2) N is the direct union of the Xs, s e Pw (I), which are isomorphic to M. This 
fact alone entails that N is algebraically closed, possesses the same finitely gener- 
ated subgroups as M and I N I < I JI + S0. 

?3. 
PROOF OF THEOREM 1. Set 

I = N, the set of natural numbers; 
7 = the group of finite permutations of I (i.e. the permutations ir with finite 

support {i E II 1(i) : i }). 
We fix an effective enumeration (u, I i e N) s.t. pi(j) = k is a recursive relation 

between i, j, k. 
By (1.4) we find H7 as a subgroup of M with compatible enumeration. Set Ms = 

Cm(I7s), S E- PJ(l) 
(3.1). HI, (Ms I s c I) satisfy the conditions (5), (6), (7), (8) of (2.5). 
PROOF. (5) and (6) are clear. (7) follows from 

zmsz- 1= 2CM(JJS)*r1 = CM(zr1sz12) = CM(I1E[S]) = M"[S] 

For (8) we use (1.2). Let H be a finitely generated subgroup of Ms and h e M. 11s 
has trivial center. Thus the group <H, 1s> is the direct product H x ffs. We choose 
a group M' D H, isomorphic to M by an isomorphism which leaves the elements 
of H fixed. Let M" be the free product of M' x 11s and M with amalgamated sub- 
group H x ffs. Suppose h1, ..., h, are the generators of H and h' e M' the element 
corresponding to h. The theorem of Higman-Neumann-Neumann gives an element 
y in a supergroup of M" s.t. yhy-1 = h' and yhjy-1 = hi, i = 1, ..., n. By(1.5), 
(115 I s e P,,(I)) is effective (here we identify N and PJ(I)). Thus there are xl, ..., xm e 
M and a r.e. set Q of words s.t. 
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ALGEBRAICALLY CLOSED GROUPS 527 

ifs = < W(x*, X * *, xM) I W(v1, **, vm) E Q> 

y solves the following r.e. system of equations. 

{[v, hi] | i = 1, *..,} n U {[vhv-1, W(xl, ', XM)] e I W(v1, .., vM) e Q} 

([x y] = x-ly-lxy). 
If x is a solution in M, we have x e CM(H) and xhx-1 e CM(lls). This proves (3.1). 
Let now X be the operation of Lemma 2.5, and J D I a set of power K. If we 

extend X to an operation X of J on N using (2.3), we obtain an algebraically 
closed N, oo - co-equivalent to M, I N I < K. 

On order to show I N I = X, we partition J in two-element subsets {ia, JI}, a <K. 

Let a e Jibe the 2-cycle (01) and b = (23). Clearly a e X{0, 1}, b e A-{2, 3}. We fix 
the following notation for later use: fkj::k is the finite injection which maps kk 
to ji. Put aa = Xff-ia(a). If a # A, the isomorphism Xf QlJ2- - maps a,, to a and 
at to Xf f(a) = b. Whence all aa, a < K, are different. 

?4. 
PROOF OF THEOREM 2. We use I and 11 of ?3. Let A be the free abelian group with 

generators ai, i e I. Every ir eE 1 gives rise to an automorphism t of A by t(ai) = 

a,(i). Let B be the split extension of A w.r.t. the homomorhpism ir i t. (B is 
generated by A and 11, and is determined by the conditions A n ff = E, 2raz-1 = 

Z(a). B can explicitly given by the set A x 17 together with the multiplication 
(a, z) (a', a') = (a-(a'), 2x').) We find an effective enumeration (bi I i E N) of B 
s.t. bi ,=1j is a recursive relation. By (1.4) we get an embedding of B in M, where 
(bi I i e N) is compatible. Then (ui I i e N) is a compatible enumeration of 11 c B 
C M, and we can use the results of ?3: 

The family MS = CM(1s) gives rise to an operation X of I on U {Ms I SE 
Pf(I)} according to (2.5). The extension X of X to an operation of J I on N 
yields an algebraically closed group of cardinality K, which is xo - co-equiva- 
lent to M. 

ao is an element of A{0}. Since a, = XAf (ao) for all i e I, aj is well defined by 

aj = Xf O(aO), i E J. If jo, * * .Xj,, are different elements of J, the isomorphism 

.141'f 91'-- :XW{jOl ...J} I * * n}{0, 1, ..., n} 

maps aj0, ..., aj. to ao, ..., a.. Whence the aj, j e J freely generates an abelian group 
of rank x. 

?5. 
PROOF OF THEOREM 3. Set 
I = (Q, < ), the ordering of the rationals; 
H7= the group of all piecewise linear automorphisms of I (i.e. all order-pre- 

serving permutations of Q of the form 

z(x) = rix +pi, x e [qi, qi+i) 

where-co = q0<q < ... < qn < qn+l = oo, ri, pi, q E Q). 
We will use only the following properties of H7: 
H7 satisfies the assumptions preceding (2.5). 
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528 SAHARON SHELAH AND MARTIN ZIELGER 

There is an effective enumeration (pi I i e N) of 17 s.t. u,(p) = q is recursive in 

i,p, q. 
The fs, s e Pj(I), have trivial center. 
Let A be presented by the generators ap, cp, p e Q and the relations [ap, Cq] =e, 

p < q. It is easy to see that A has solvable word problem and q < p => [ap, Cq] # e. 
Every X e H7 permutes the defining relations of A by ap a,,(p), cp c. (p). We call 
the resulting automorphism of A t. 

Let B be the split extension of A w.r.t. the homomorphism X 4 t. We find an 
effective enumeration (bi ie N) of B s.t. bi = 1aj is recursive. By (1.4) we get an 
embedding of B in M, where (bi I i e N) is compatible. Then (Ifi I s e P,(I)) is an 
effective family. 

We set MS = CM(HfS), s e Pj(I). The proof of Theorem 1 shows that we can apply 
(2.5) to obtain an operation , of I on U {MS I s C I}. We choose a linear ordering 
J which contains I and embeds (K, <). Let X extend 4 to an operation of J on N 
(2.4). N is algebraically closed and o - co-equivalent to M. 

ao, co are elements of X {0}. Since a, = X(f6(ao) and ci = XAf (co) for all 
i e Q, we can define aj = Xf6(ao) and cj = Xfi5(co) for all j e J. 

If Jo <Ii are elements of J, the isomorphism Xff11: X{J0, Ji} I _ {O, 1 } 
maps ajo, aj1 to ao, a, and cjo, cjl to co, cl. 

This implies that [ajo, cl] = e Rtio <i, for all jo, ji e J. 
Theorem 3 follows now from the next lemma. (We set k = 2, p(vl, v2, w1, w2)= 

[V1, W2] ? e, take for sb a Scott-sentence of M.) 
(5.1) LEMMA ([5]). Let b be an L1,,,-sentence and p(v1, V2, ... V, W1, ..., Wk) 

an La,,-formula. Suppose that for all A;, there is a model N of sb which contains a se- 
quence a_, e Nk, a < i%; s.t. N # (p(aa, ap) : a < ,3. Then 0b has 2X nonisomorphic 
models of cardinality x;, for all uncountable ,;. 

?6. 
PROOF OF THEOREM 4. We use I and H7 of ?3. Let A be the free group with genera- 

tors aj, i e L Every X e H determines an automorphism X of A by t(aj) = a, (j) . 
Let B be the split extension of A w.r.t. the homomorphism iz z-4 t. There is an 
effective enumeration (bi I i e N) of B s.t. bi = uj is recursive. We can assume that 
B c M and (bi I i e N) compatible (1.4). 

Define As = <a, I i e s> for every finite s c I. Then (As I s c I) is admissible 
in the following sense. 

(6.1) DEFINITION. A family (Ls I S e P,,(I)) of subgroups of M is admissible, if 
(5), (6), (7) of (2.5) hold (where Ms is replaced by Ls) and 

(9) Ls n H = e. 
(10) (Ls I s e PJ(I)) is effective. 
(11) Suppose s, t e PJ(I) ; sco ..., 7n e Ifs s t. 7rk[t] n 7rk+l[t] = 0 for k = 0,. I. 

n - 1 ; de Lsut; so ,---, en C {1, - 1}. 

Then Hf ken (:k dzCl)ek = e or de CCM(HS). 
(As I s c I) satisfies (10), since As is generated by {1aiaopq1 I ij(O) e s}. 
To prove (11) we write d e Asut in reduced form: 

d=az a2 ... az, ki E s U t, ki = ki+# , zi E Z\{O}. 

This content downloaded from 195.78.109.119 on Wed, 18 Jun 2014 13:25:50 PM
All use subject to JSTOR Terms and Conditions

Sh:96

http://www.jstor.org/page/info/about/policies/terms.jsp


ALGEBRAICALLY CLOSED GROUPS 529 

If ki e s for all i, d e CM(HfS). If kj e t, we have 1Zk(kj) # 1Zk+1(kj). Thus the azi(kj), 
k = 0, ..., n, are not cancelled in the product 

K' (1:kd1:* 1)ek = 17 (a7zri(k1) *- a-(k))k. kin k<n 

Thus H1 k<n(rk d1k-)k e. 
(6.2) LEMMA. Let (Ks I s e P,,(I)) be an admissible family, h e M and r e P,,(I). 

Then there is an element x e M and an admissible family (Ls 4 s e P,,(I)) s.t. xhx-1 e 
Lr, x e CM(Kr) and Ks c Ls for all s c I. 

We need two facts in our proof of (6.2). 

(6.3) REMARK. (1) CM'(Hfrlnr2) = CM'(Hfr) n CM,(Hr2), for all finite rl, r2 c I 
and all M' D ff. 

(2) Suppose s, t e P,(I); Zo, in, e ff, ss-t. Zk[t] n 1k+l[t] = 0 for k = 0, 
n - 1; de Lsut; o' ., el e {1, -1}. Then Hkfl (ckd1cl)ek ? Cm(fIs) orde CM(IfS). 

PROOF. (1) Clearly CM'(frflnr2) C CcmIri) n CM'(7r2). 

Let b e CM'(I7rl) n CM'(ffr2) and z e "frlnr2. Let s be the support of z. There 
is p e ffrI s.t. p[s] n r1 = 0. We have pirp-l effr1 Since pzp-1 commutes with 
b, z does also. 

(2) Choose 7r e Ijs s.t. 7rn[t] n 7rirn[t] = 0. Set 62n+1-k = 6k and 72n+1-k = 

Z~k for k < n. By (11), Hk?2n+1(7rkd1kl)-k 
= e or d e CM(IlS). The first term 

equals [c-1, z-1], where c = k k<n(Zkdz1l)ek. Whence c $ CM(fIS) or d e CM(fIS). 
PROOF OF (6.2). We are looking for an element x e CM(Kr) s.t. 
(12) LS = <KS U {z(xhx-1)z-1 I z e Hf, z[r] C 5}>, s e P,(I) is admissible. 
(5), (7), (10) are true for any x. (6) is equivalent to 

(13) xhx-1 e CM(H7r). 
Thus x e CM(Kr) has to satisfy (13), (9), (11), where (LS I s C I) is defined by (12). 

There are elements x1, ..., x1 e M, a recursive sequence Wi, i e N of words s.t. 

pi = WAx1, ..., x1), and a recursive sequence Q, s e P,,(I) of r.e. sets of words s.t. 

KS = <W(x1, ..., x1) I We Qs>. We write Iia for WV(xl, ..., xI), and choose a 
recursive enumeration Wjjv), i e N, of all terms of the form 

W( Vl(-x, *- -, XI), *- -, Vk(X1 - - 9 XI), uilvhv-1 Su-1, . .., uimvhv-1 Si-.), 

where W, V1, ..., Vk are words, ,uaj[r] c s, ..., ujim[r] c s. Thus Wis(x), i e N, 
denotes the elements of LS. 

An element x e M is in CM(Kr) and satisfies (9), (13), (11), where (LS I s C I) is 
defined by (12), iff x is a solution of the following r.e. system of implications with 
coefficients x1, ..., x1, h. 

(14) [v, W(X1', ..., xA)] _ e ; We Qr 
WjV,(v) ? -+ 

?j e ; i, j e N, s e P(I). 

[vhv-1, pi]?e; i e N pi e ffr. 
H (PmjXislt(V) _Ma)ek 

je [Wi~uJ(v) ] ? e ; s, t e 

Mi,..., mn, i, j e N, ..., e6 e {1,-n1}, S.t. mk e Ifs ,uj e s and 

[mnk[t] n /mk+l[t] = 0 for k = 0, 1.... 

We have to show that (14) has a solution in M. In view of (1.3) it is enough to find 
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530 SAHARON SHELAH AND MARTIN ZIEGLER 

an element x in a supergroup M' of M which is contained in CM,(Kf) and satisfies 
(9), (13), (1 1) (if (L, I s c I) is defined by (12), and M replaced by M'). 

Set K = U {K, I s c I}. <K, ff > is a split extension of K, every g E Hf determines 
an automorphism Pi of K by t(y) = zyr-1. Choose an extension H of Kr which is 
isomorphic to KKr, h> by an isomorphism p which leaves the elements of K7 fixed 
and maps h to h'. For every finite bijectionf: r -? s c I, we choose an isomorphism 
f*: H -+ Hf onto an extension Hf of Ks which extends IKr: Kr - Ks, where f c 
g E Hf. We take id* = idH. Let C be the free product of the K, Hf, domf = r, with 
amalgamated subgroups Krngf 

C = H* (K, Hf; Krngf) 
domf r 

We extend it to an automorphism of C by t(f*(y)) = (f )*(y), y E H. 
We can regard <K, 11> as a subgroup of D, the split extension of C w.r.t. the 

homomorphism X + zt. 
Using the free product of M and D with amalgamated subgroup <K, H7>, we find 

a common supergroup M' of D and M. By the Higmann-Neumann-Neumann 
theorem, we can assume that M' contains an element x which yields an inner 
automorphism extending p, i.e. x E CM,(Kr) and xhx-' = h'. 

If we define (Ls | s c I) by (12), (13) and (9) are clearly satisfied. To prove (11), 
we define for all r' c I, r = I rl, 

Fr, = <Hf If: r-r'>. 

Obviously 

(15) C = H'r lIri (K, Fr'; Kr,), Fr, n K = Kr, and Ls = < Ks U U {Fr 

r' C s, Ir'I = IrI}>. 

Suppose now s, t E P(I) ; zo, ..., z,, E Hf s.t. Z1k[tI n fk+1[t] = 0 for k = 0, 
1 ...In- 1; dE Lsut; o ..., e E {1,-1}. We want to show that c = e or de 
CM,(HlS), where c = Hk1ln(Zlkdlr1)-k. We write din normal form w.r.t. (15) 

d = c0c C.m; ciEK U U {Fr IIr'I=IrI}; 

and use the abbreviations Cik* for 1kCi1k -, dk for 7Ck dz-1. We distinguish five cases. 
Case 1. All ci, i = 0, ..., m, are in CM'(IlS). Then de CM'(JIS). 
We assume in the sequel that there is a ci 0 CM,(llS). In fact we can assume that 

Cm 0 CMI(HS). (Otherwise we replace d by a conjugate bdb-', b E CM'(1s).) 
Case 2. There is cl E Fr, \ K, r' c s U t, r' ? s. Then, passing to the normal 

form of I kin (CO,k * Cm,k)ek, the Clkk do not vanish. Whence 

c = FL dl #? e. 
kin 

We can now assume that Ck 0 K => Ck E Fra, r' c s =: Ck E CM,(fls). Let / be the 
smallest number s.t. cl 0 CM'(llS). 

Case 3. 1 < m. It follows I + 1 < m. If c0 K, k < n, CO,k .. Cm,kCO, k+1 Cmk+ 
is a normal form of dkdk+1. If c0 E K, k < n, COk ... Cml,k(Cm,k CO,k+l)Cl,k+l ... Cm,k+l 
is a normal form of dkdk+1. (For, Cm-l,k E Fr' \ K, C1,k+1 E Fr", \ K, r', r" c s. 
But (Cmk COk+l) l CM(Is), since otherwise we would have by (6.3.1), Cm,k E 

CM, (ffsUurkt1) n CMI(HSU7k+l[t]) = CM(lS).) 
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ALGEBRAICALLY CLOSED GROUPS 531 

Similarly one verifies that C7l'kC 1, k ... (Cc, l, k+l)Cl+l, k+1 ... Cm, k+1 is a normal 
form of dkldk+l and that COk *' (Cm,kCmlk+1) ... c6,+1 is a normal form of dkdk+l 

Gluing all these normal forms together (and the related normal form of dk ld-1) 
one obtains a nontrivial normal form of I k*<"(Co,* k.. Cm,k)ek, whence c = e. 

Case 4. 1 = m = 1. Then de Ksut and c = e or de CM(HIS) follows from the 
hypothesis. 

Case 5. 1 < I = m. We look at the cancellation in the product 

d-lldk+2d+3 ... dL 2d41, k < n, k' - k odd, 

alternating exponents. This product equals b = C1Mk+1Cm, k+2 Cmk+3 ... Cm, k'-2Cm, k'-l 

By (6.3.2), b ? CM,(ffS). This shows that CO,k *- Cm-l,k(Cm,k bc1'k')c-,4 okc is a 
normal form of dk(dk4l ... dk'-l)dk'; CO,k ... (Cmkb)COk' *- Cmk' or COk ... (Cm,kbCO, k') 

* Cm, k' is a normal form of dk(dk+l ... )dk'; and ... (cOkbcO k) * ** or * c0 ,bc, k' * 

is a normal form of dk (d-1 ... )dk 

We produce now a normal form of H lk<n(CO,k ... Cmk)- by using the above 
bracketings. We handle the products dk (d-11 ... )d-' similarly, and the products 
dkdk+1, dkd-l, dk ld-1 as in Case 3. One observes that the brackets do not interfere. 
Thus our normal form is nontrivial and c = e. 

This proves Lemma 6.2. 
(6.4) COROLLARY. There is a family (M, I s e P,,(I)) of subgroups of M which satis- 

fies (5), (6), (7), (8) of (2.5) ; (1 1) of (6.1) and A, ' M, for all s e P,,(I). 
PROOF. Let (hi, ri), i e N, be an enumeration of M x P(I), where every pair occurs 

infinitely often. We define a sequence of admissible families (Li I s c I) s.t. Li cLs+'. 
We start with LO = As and define (Li+' I s c I) by an application of (6.2) to hi, ri 
and (Li I s c I). Finally we set Ms = U {Li I i e N}. (8) holds by (1.2). 

Let 4 be the operation which belongs to (Ms I s c I) by (2.5). We extend 4 to 
an operation X of J D I - J a set of power 1-on N. N is algebraically closed and 
oo - co-equivalent to M. As in the proof of Theorem 2, one sees that N contains a 
free-group of rank i. Thus I N I = x. 

Let now 2 be an uncountable regular cardinal and P a subgroup of N of power 2. 
Every b e N is of the form Xfb(db), wherefb: Sb -+rb J, Sb I, db e Msb. 

Since 2 is uncountable and regular, I and M countable, we find a subset P' of P 
of power 2 s.t.: 

the rb, b ep', are almost disjoint i.e. the rb can be represented as a union r U tb, 

where the tb, b e P', are disjoint; 
thef -1[r] are all equal, say to s c I; 
thefj-1[tJ] are all equal, say to t c I; 
the db are all equal to de Msut; 
the functionsf -1 I r are all equal tof'; b e P'. 
(6.5). For all n ? 1, bo, ..., bnleP',bk # bk+l fork = 0, ...,n - 1, e0, ...e ne 

{1, - I} we have 1 k<n bkk = e. 
PROOF. We take an injectionf: r U tb0 U ... U tb. + I s.t.f' c f. Then we choose 

09 ... n e Hs't-ffbk C Zk. All 7Ck are in ffs and Zkz[t] n Zk+1[t] = 0. Since there 
are two different kdz-1 = Xff(bk), d does not belong to CM(I7S). By (1 1) 

e L (7ZAZk l)6k = Xf ((H bk). 
kin kin 
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532 SAHARON SHELAH AND MARTIN ZIELGER 

Let {Ca, bar, a < i be a partition of P' in two-element subsets. Then the products 
Caba generate a free subgroup of P of power 2. 
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