SUCCESSORS OF SINGULARS, COFINALITIES OF REDUCED PRODUCTS OF CARDINALS AND PRODUCTIVITY OF CHAIN CONDITIONS

BY
SAHARON SHELAH ${ }^{\dagger}$
Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel;
Department of Mathematics, Rutgers University, New Brunswick, New Jersey, USA; and Institute for Advanced Study, Princeton, New Jersey, USA

ABSTRACT
We continue here our investigation of cofinalities of reduced products of regular cardinals and give some applications, such as the non-productiveness of λ^{+}-c.c. when $\lambda>2^{\text {cf } \lambda}$.

Table of Contents
§0. Introduction . 213
Conventions and notations . 215
§1. Cofinalities 215
§2. Good stationary sets and existence of lub's 224
§3. More on cofinalities . 226
§4. Representation by nice products . 229
§5. Applications . 235
§6. Additional information . 239

§8. $\aleph_{\omega}^{K_{0}}<\aleph_{\left(2^{k_{0}}\right)+\text { revisited } . ~} 247$
References 255

§1. Introduction

A Boolean algebra B satisfies the λ-chain condition (λ-c.c.) if any family of pairwise disjoint nonzero members of B has cardinality $<\lambda$. For a topological space X, by $c(X)$ we denote the cellularity of X which is the supremum of

[^0]cardinalities of families of pairwise disjoint nonempty open sets in X. Clearly $c(X) \leqq \lambda$ iff the regular open algebra of X satisfies λ^{+}-c.c. The problem whether the λ-c.c. is a productive property (of Boolean algebras or, equivalently, of topological spaces) has a very long history which we do not repeat here (see, for example, [T1], [T2]; Juhasz [J] and Monk [M] stress this problem in preliminary versions of their surveys). First ZFC examples of regular cardinals λ for which λ-c.c. is not productive were given by Todorcevic [T1]. The cardinals of [T1] are of the form of 2^{κ} where $\operatorname{ded}\left(\kappa, 2^{\kappa}\right)$ holds (e.g., $\kappa=\aleph_{0}$), so all of them might be weakly inaccessible. Hence [T1] didn't solve the topological question: Is always $c(X \times Y) \leqq c(X) \cdot c(Y)$? Note that this question is trivially equivalent to the question: Is $\lambda^{+}-$c.c. productive for all λ ? In [T2], Todorcevic answered this question (in ZFC) by providing a class of cardinals λ for which λ^{+}-c.c. is not productive: the λ such that $(\forall \mu<\lambda)\left(\mu^{\mathrm{cf} \lambda}<\lambda\right)$. Todorcevic [T2] uses (e.g., when $\left.\lambda=\left(2^{\kappa_{0}}\right)^{+\omega}\right)$ [Sh 1] about cofinalities of reduced products of regular cardinals. He also got negative partition relations, e.g., $\lambda^{+} \nrightarrow\left[\lambda^{+}\right]_{\text {cf } \lambda}^{2}$ when $(\forall \mu<\lambda)\left[\mu^{c f \lambda}<\lambda\right]$, and got $\lambda-S$ and $\lambda-L$ spaces. He told me that a proof of the consistency of " $\lambda^{+}-$c.c. is productive" will be the real generalization of MA (unlike some soft ones; see e.g. [Sh 2]). By [Sh 7], this fails for $\lambda \geqq 2^{K_{0}}$ regular (even $\operatorname{Pr}_{0}\left(\lambda^{+}, \kappa_{0}, \aleph_{0}\right)$ fails, see Definition 31 and for some consequences 36,37). This makes it more desirable to get parallel results not just for some successor of singular, but for quite many.

In [Sh 1], [Sh 3], [Sh 4], [Sh 5, Ch. XIII, §5, §6] and [M Sh] the cofinalities of reduced products of regular cardinals (usually $\leqq \kappa$ cardinals $>2^{\kappa}$) were investigated for various purposes. We continue this here (but start from the beginning, for the reader's convenience, giving the statements but usually not the proof of the repeated parts, but in a way that the reader may reconstruct them).

The main new conclusions are (the hypothesis can be weakened, and apply to some weakly inaccessible):
A. Theorem. If $\lambda=\mu^{+}, \mu>2^{\kappa}, \kappa=\operatorname{cf} \mu$, or $\lambda=\operatorname{cf}\left(\Pi_{1<\kappa} \lambda_{i} / \mathscr{D}\right)$ where $2^{\kappa}>\lambda, \lambda_{i}<\lambda, \mathscr{D}$ a filter on κ, then:
(A) for some regular cardinals σ and λ_{i} from $\left(\left(2^{\kappa}\right)^{+}, \lambda\right)$ for $i<\sigma, \sigma \leqq \kappa$ ($i<j \Rightarrow \lambda_{i}<\lambda_{j}$) and letting $\quad \mathscr{D}_{\sigma}^{\text {cobd }}=\{a \subseteq \sigma: \sigma-a \quad$ bounded $\}$, $\Pi_{i<\sigma} \lambda_{i} / \mathscr{D}_{\sigma}^{\text {cobd }}$ has true cofinality λ, i.e., there are $f_{a} \in \Pi_{i<\sigma} \lambda_{i}$ for $\alpha<\lambda$ $\left[\alpha<\beta \Rightarrow f_{\alpha} / \mathscr{D}<f_{\beta} / \mathscr{D}\right]$ and

$$
\left(\forall f \in \prod_{i<0} \lambda_{i}\right)\left(\exists \alpha<\lambda^{+}\right)\left[f / \mathscr{D}^{\mathrm{cobd}}<f_{\alpha} / \mathscr{D}^{\mathrm{cbb}}\right] ;
$$

(B) there are regular cardinals $\lambda_{i} \in\left(2^{\kappa}, \lambda\right)$ for $i<\delta, \delta<\kappa^{+}\left[i<j \Rightarrow \lambda_{i}<\lambda_{j}\right]$ and a $|\delta|$-complete filter \mathscr{D} on δ, and $\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ witnessing $\Pi_{i<\delta} \lambda_{i} / \mathscr{D}$ has true cofinality λ, which form a kind of a strong Kurepa tree: i.e., for each $i,\left\{f_{\alpha} \backslash i: \alpha<\lambda\right\}$ has cardinality $<\lambda_{i}$.

We then define some strong negative partition relations, observe their interrelations and consequences, and draw some of them from the work on the cofinalities (mainly Theorem I). Part (B) of Theorem I is motivated by its being used by Todorcevic [T2]. In that case it follows by cardinal arithmetic. Lastly we deal with powers of singulars, giving some information of $\left(\lambda, 2^{\lambda}\right)$. We may represent the proof of $\mathcal{K}_{\delta}^{\text {cf } \delta}<\mathcal{K}_{(1 \delta \mathrm{fg})}$ in a simpler way than in [Sh 5], at least in most cases. ${ }^{(1)}$

Conventions and notations

$\alpha, \beta, \gamma, \zeta, \xi, i, j, \delta$ are ordinals, δ should be limit;
$\lambda, \kappa, \mu, \chi, \theta, \sigma$ are cardinals, usually infinite;
for a set $a, \Pi a=\{f: \operatorname{dom} f=a, f(\theta) \in \theta$ for $\theta \in a\} ; \mathscr{P}(a)=\{b: b \subseteq a\}$;
for a sequence $\bar{\lambda}=\left\langle\lambda_{i}: i \in u\right\rangle, \Pi_{i \in u} \lambda_{i}=\Pi \bar{\lambda}=\left\{f: \operatorname{dom} f=u, f(i) \in \lambda_{i}\right\}$;
for a filter \mathscr{D} on $u, \mathscr{D}+A=\{X \subseteq u: X \cup(u-A) \in \mathscr{D}\}$;
for an ideal I on $u, I+A=\{X \subseteq u: X-A \in I\}$.
Many times we do not distinguish between a filter and the ideal dual to it.
\mathscr{D}_{λ} is the filter of closed unbounded subsets of λ, for λ regular uncountable.
$\mathscr{D}_{\lambda}^{\text {cobd }}$ is the filter $\{A: A \subseteq \lambda,|\lambda-A|<\lambda\}, J_{a}^{\text {bd }}=\{b \subseteq a:|b|<|a|\}$. If $(P, \leqq$) is a partial (quasi)order, $p<q$ means $p \leqq q \wedge \neg q \leqq p$.

§1. Cofinalities

1. Definition. For a partial order $P, p \in P$ is a lub (a least upper bound) of $A \subseteq P$ if it is an upper bound $((\forall x \in A)(x \leqq p)$) and $p \leqq q$ for any upper bound q of A.

We say $p \in P$ is a weak lub of A if it is an upper bound and no $q<p$ is an upper bound.

1A. Fact. (1) If a lub exists, it is unique up to equivalence.

[^1](2) If $A, B \subseteq P, \forall p \in A \exists q \in B(p \leqq q), \forall q \in B \exists p \in A(q \leqq p)$, then A, B has the same lub (if any).

1B. Notation. (1) $R^{x, 0}=\{\lambda: \lambda$ a regular cardinal $\}$,

$$
R^{\kappa, 1}=\left\{\lambda \in R^{\kappa, 0}: \lambda>\kappa\right\},
$$

$$
R^{\kappa, 2}=\left\{\lambda \in R^{\kappa, 0}: \lambda>2^{\kappa}\right\},
$$

$$
I^{\kappa, l}=\left\{a \subseteq R^{\kappa, l}:|a| \leqq \kappa\right\}
$$

$$
\mathscr{I}^{\kappa, l}=\left\{\bar{\lambda}: \bar{\lambda}=\left\langle\lambda_{i}: i \in u\right\rangle\right. \text { a sequence of cardinals }
$$

$$
\text { from } \left.R^{\kappa, l},|u| \leqq \kappa\right\} .
$$

(2) If we omit l it means $l=2$; we usually omit κ as it is fixed.
2. Definition. For a partial order P (which is $(|P|,<)$ or $(|P|, \leqq)$):
(a) $\operatorname{cf}(P)=\operatorname{Min}\{|A|: A \subseteq P,(\forall p \in P)(\exists q \in A) p \leqq q\}$ (it is always well defined). Such A is called a cover.
(b) λ is a possible scale of P if there are $p_{i} \in P$ for $i<\lambda$ such that $\left[i<j<\lambda \Rightarrow p_{i}<p_{j}\right],(\forall p \in P) \vee_{i} p_{i} \not \leq p$ and λ is a regular cardinal.
(c) $\operatorname{psc}(P)=\{\lambda: \lambda$ is a possible scale of $P\}$.
(d) λ is the true cofinality of $P, \lambda=\operatorname{tcf}(P)$ if it is a regular cardinal and there are $p_{i} \in P$ for $i<\lambda,\left[i<j<\lambda \Rightarrow p_{i}<p_{j}\right]$ and $(\forall q \in P) \vee_{i} q \leqq p_{i}$. [Note that $\operatorname{tcf}(P)$, if it exists, is unique and then $\operatorname{cf}(P)=\operatorname{tcf}(P), \operatorname{psc}(P)=$ $\{\operatorname{tcf}(P)\}$.] Also $\operatorname{tcf}(P)=1$ if there is $p \in P$ such that $(\forall q \in P) q \leqq p$. ${ }^{(2)}$
3. Definition. (1) For $\bar{\lambda}=\left\langle\lambda_{i}: i \in u\right\rangle$ a sequence of cardinals, and \mathscr{D} a filter on u, then for $f, g \in \Pi_{i \in u} \lambda_{i}, f \leqq g \bmod \mathscr{D}$, or $f \leqq_{g} g$ iff $\{i \in u: f(i) \leqq g(i)\} \in \mathscr{D}$ [it is a partial order].
(2) If $\mathscr{D}=\{u\}$, we omit it.
(3) If \mathscr{D} is a filter on some $u^{\prime}, u \subseteq u^{\prime}$, this will mean

$$
\{i \in u: f(i) \leqq g(i)\} \cup\left(u^{\prime}-u\right) \in \mathscr{D}
$$

(4) We sometimes replace \mathscr{D} by the dual ideal.
(5) We can replace \leqq by any other relation (in particular $<$).
4. Fact. (1) If $\operatorname{cf} \alpha_{i}=\operatorname{cf} \beta_{i}$ for $i \in u, \mathscr{D}$ a filter on u, then:
(a) $\mathrm{cf}\left(\Pi \alpha_{i}, \leqq_{9}\right)=\operatorname{cf}\left(\Pi \beta_{i}, \leqq_{9}\right)$;
(b) $\operatorname{tcf}\left(\Pi \alpha_{i}, \leqq \leqq_{9}\right)=\lambda \Leftrightarrow \operatorname{tcf}\left(\Pi \beta_{i}, \leqq_{\mathscr{G}}\right)=\lambda$;
(c) $\operatorname{psc}\left(\Pi \alpha_{i}, \leqq_{9}\right)=\operatorname{psc}\left(\Pi \beta_{i}, \leqq \leqq_{9}\right)$;

[^2](d) if in addition $u(*)=\left\{i \in u: \alpha_{i}\right.$ is limit $) \neq \varnothing \bmod \mathscr{D}$, then for $X \in$ \{cf, tcf \}
$$
X\left(\prod_{i \in u} \alpha_{i}, \leqq_{\mathscr{E}}\right)=X\left(\prod_{i \in u} \alpha_{i}, \leqq_{\mathscr{9}+u(*)}\right) ;{ }^{(3)}
$$
(e) if $\left\{i \in u: \alpha_{i}\right.$ is limit $\} \in \mathscr{D}$ and $\left(f_{\alpha}:\langle\lambda\rangle\right.$ witnesses $\lambda=\operatorname{tcf}\left(\Pi_{i \in u} \alpha_{i}, \leqq{ }_{\mathscr{Q}}\right)$ then for some club C of λ
$$
\alpha \in C \wedge \beta \in C \wedge \alpha<\beta \Rightarrow f_{\alpha}<_{\mathscr{G}} f_{p}
$$
(so wlog $C=\lambda$).
(2) If \mathscr{D} is an ultrafilter over u then $\left(\Pi_{i \in u} \lambda_{i}\right.$, $\leqq_{\mathscr{G}}$) has a true cofinality (in fact every P such that $(\forall x, y \in P)(x \leqq y \vee y \leqq x)$).
(3) Suppose for a filter \mathscr{D} on u,
$$
\operatorname{tcf}\left(\prod_{i \in u} \lambda_{i}, \leqq \leqq_{\mathscr{S}}\right)=\lambda, \quad \wedge_{i \in u}|u|<\lambda_{i} \operatorname{cf} \lambda_{i} \neq \lambda \quad \text { and }|u|<\lambda,
$$
then
(a) for each cardinal μ,
$$
\left\{i: \lambda_{i}=\mu\right\}=\varnothing \bmod \mathscr{D}, \text { and } \lambda \geqq \operatorname{Min}\left\{\kappa:\left\{i: \lambda_{i}<\kappa\right\} \in \mathscr{D}\right\}
$$
and
(b) for each filter \mathscr{D}_{1} extending $\mathscr{D}, \operatorname{tcf}\left(\Pi \lambda_{i}, \leqq \varliminf_{\mathscr{Q}_{1}}\right)=\lambda$ (here the assumptions on u, λ_{i} are not necessary, except " λ_{i} a limit ordinal").
Also
(c) defining $\left[i E j \Leftrightarrow i \in u \wedge \lambda_{i}=\lambda_{j}\right]$ (an equivalence relation) $u / E=$ $\{i / E: i \in u\}, \mathscr{D} / E=\{A \subseteq u / E: \bigcup\{i / E: i / E \in A\}$ belong to $\mathscr{D}\}, \lambda_{i / E}=$ λ_{i}, we have
$$
\operatorname{tcf}\left(\prod_{\zeta \in u / E} \lambda_{\zeta},<_{\mathscr{G} / E}\right)=\lambda
$$
(4) In (3)(c), if \mathscr{D} is σ-complete then \mathscr{D} / E is σ-complete; if
$$
\mathscr{D}=\{v: v \subseteq u,|u-v|<\kappa\}
$$

[^3]where $\kappa \leqq|u|$ or $u=\theta \in R^{\kappa, 0}, \mathscr{D}$ normal, ${ }^{(4)}$ then for some $s \subseteq u, s \neq \varnothing$ $\bmod \mathscr{D}$, and E is equality on s.
(5) If \mathscr{D} is a filter on u,
$$
\operatorname{tcf}\left(\prod_{i \in u} \lambda_{i}, \leqq \leqq_{\mathscr{D}}\right)=\lambda, \quad \wedge_{i \in u} \lambda_{i}<\lambda \quad \text { and } \quad 2^{|u|}<\lambda
$$
then $\left\{i \in u: \lambda_{i} \leqq|u|\right\}=\varnothing \bmod \mathscr{D}$ so the conclusion of (3) holds.
(6) In (5), if $\lambda>\mu^{|u|}\left(\right.$ e.g. $\left.\mu=2^{|u|}\right)$ then $\left\{i \in u: \lambda_{i} \leqq \mu\right\}=\varnothing \bmod \mathscr{D}$, so $\operatorname{tcf}\left(\Pi\left\{\lambda_{i}: \lambda_{i}>\mu\right\}, \leqq_{g}\right)=\lambda$.
(7) If $f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\delta, \mathscr{D}$ a filter on $u, u^{*} \in \mathscr{D}$, $\operatorname{cf} \delta>|u|$ (or alternatively, \mathscr{D} is (cf $\delta)^{+}$-complete) and $\left[\alpha<\beta<\delta \wedge i \in u^{*} \Rightarrow f_{\alpha}(i) \leqq f_{\beta}(i)\right]$, then $\left\{f_{\alpha}: \alpha<\delta\right\}$ has a $\leqq_{g}-\operatorname{lub} f$, where
\[

f(i)= $$
\begin{cases}\bigcup_{\alpha<\delta} f_{\alpha}(i), & i \in u^{*} \\ 0, & i \notin u^{*}\end{cases}
$$
\]

(8) If λ is regular $>2^{|u|}, \mathscr{D}$ a filter on $u,\left\langle f_{\alpha}: \alpha \leqq \lambda\right\rangle$ is $\leqq{ }_{g}$-increasing, then for some $v \subseteq u$:
(i) if $v \neq \varnothing \bmod \mathscr{D}$ then $\left\langle f_{\alpha} /(\mathscr{D}+v): \alpha<\lambda\right\rangle$ is eventually constant,
(ii) if $u-v \neq \varnothing \bmod \mathscr{D}$ then for some club $C \subseteq \lambda,\left\langle f_{\alpha}: \alpha \in C\right\rangle$ is $<_{g}$-increasing.
(9) If \mathscr{D} is a filter on u, λ regular, $f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\lambda,\left[\alpha<\beta \Rightarrow f_{\alpha} \leqq{ }_{\mathscr{D}} f_{\beta}\right]$ and in $\mathscr{P}(u) / \mathscr{D}$ there is no strictly increasing sequence of elements of length λ, then the conclusion of (8) above holds [use the assumption twice].
(10) Suppose λ is regular $>|u|$, \mathscr{D} a filter on $u,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ is $\leqq g_{\boldsymbol{g}}$-increasing and $\left\langle f_{\alpha} / \mathscr{D}: \alpha<\lambda\right\rangle$ is not eventually constant. Let

$$
E=\left\{v \subseteq u:\left\langle f_{\alpha} /(\mathscr{D}+(u-v)): \alpha<\lambda\right\rangle \text { is eventually constant }\right\} .
$$

Then
(i) $\left\langle f_{\alpha}: \alpha<\lambda\right)$ is \leqq_{E}-increasing;
(ii) if $v \neq \varnothing \bmod E$ then $\left\langle f_{\alpha} /(\mathscr{D}+v): \alpha<\lambda\right\rangle$ is not eventually constant;
(iii) if \mathscr{D} is σ-complete then E is σ-complete (and always E is a proper filter).
5. Fact. (1) Suppose \mathscr{D} is a filter on $u, f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\lambda, f_{\alpha} \leqq f_{\beta} \bmod \mathscr{D}$ for $\alpha<\beta<\lambda$, and λ is regular $>2^{|u|}$. Then there is $f \in \Pi_{i \in u}\left(\lambda_{i}+1\right)$ such that
(a) f is a \leqq_{g}-least upper bound of $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$:

$$
\begin{gathered}
f_{\alpha} \leqq \begin{array}{l}
\mathscr{D}
\end{array} \quad \text { for } \alpha<\lambda \\
\left(\forall f^{\prime}\right)\left[\wedge_{\alpha<\lambda} f_{\alpha} \leqq_{\mathscr{Q}} f^{\prime} \Rightarrow f \leqq_{\mathscr{D}} f^{\prime}\right]
\end{gathered}
$$

(b) w.l.o.g. $(\forall i) f(i) \neq 0$ (provided that $\{i: f(i)=0\}=\varnothing \bmod \mathscr{D})$ and for every $f^{\prime}<_{\mathscr{A}} f$, for some $\alpha, f^{\prime}<_{\mathscr{G}} f_{\alpha}$ (if $\{i: f(i)$ limit $\} \in \mathscr{D}$).
(2) If λ is regular $>2^{|u|}, \mathscr{D}$ a filter on $u,\left\langle f_{\alpha}: \alpha \leqq \lambda\right\rangle$ is $<_{\mathscr{G}}$-increasing, then for some $f \leqq f_{\lambda}, \operatorname{tcf}\left(\Pi_{i \in u} f(i),<_{\mathscr{R}}\right)=\lambda$.

Proof. See [Sh 4] 2.3.
6. Definition. (1) For any $a \in I^{x, l}$
(a) $\operatorname{pcf}(a)=\left\{\operatorname{cf}\left(\Pi a, \leqq_{\mathscr{D}}\right): \mathscr{D}\right.$ an ultrafilter over $\left.a\right\}$.
(b) For a property Γ of filters,

$$
\operatorname{pcf}_{\Gamma}(a)=\left\{\operatorname{tcf}\left(\Pi a, \leqq \leqq_{\mathscr{Q}}\right): \mathscr{D} \text { a filter over } a, \vDash \Gamma(\mathscr{D})\right\} .
$$

(c) For $\Gamma=$ being σ-complete, we write σ; for $\Gamma=$ "extending \mathscr{D} " we write \mathscr{D}.
(2) Similarly for $\bar{\lambda} \in \mathscr{I}^{x, l}$..

6A. Remark. (1) As the number of ultrafilters over a is $2^{2|a|}$, we know that $|\operatorname{pcf}(a)| \leqq 2^{2 \cdot a \mid} ;$ however (see $\left.16(3)\right)|\operatorname{pcf}(a)| \leqq 2^{\kappa}$.
(2) For $l=2$ the difference between dealing with $I^{\kappa, l}$, and $\mathscr{I}^{\kappa, l}$ is slight by 4(2)-4(6). For $l=0,1 I^{x, l}$ is more interesting.

6B. Problem. Can $|\operatorname{pcf}(a)|>|a|$ for $a \in I^{x, 2 ?}$?
7. FACt. $\operatorname{pcf}_{\mathrm{K}_{0}}(a)=\operatorname{pcf}(a)\left(\right.$ for any $\left.a \in I^{\kappa, l}\right)$.
8. Definition. For a regular λ (we may omit l if $l=2$):
(1) $I_{<\lambda}^{\kappa, l}=\left\{a \in I^{x, l}: \operatorname{cf}(\Pi a, \leqq)<\lambda\right\}$.
(2) $J_{<\lambda}^{a, l}=J_{<\lambda}^{\kappa, a l}=\left\{b \subseteq a: b \in I_{<\lambda}^{K l}\right\}$ for $a \in I_{<\lambda}^{\kappa l}$.
(3) $\mathscr{I}_{<\lambda}^{k}, l=\left\{\bar{\lambda} \in \mathscr{I}^{\kappa, l}: \operatorname{cf}(\Pi \bar{\lambda}, \leqq)<\lambda\right\}$.
 $u \subseteq \operatorname{dom}(\bar{\lambda})$ and $\mathrm{cf}(\bar{\lambda} \upharpoonright u, \leqq)<\lambda]$.
9. Lemma. (1) Suppose $\lambda \in \operatorname{psc}\left(\Pi_{i \in u} \lambda_{i}, \leqq_{I}\right)$, I an ideal on u, and: $\lambda>2^{|u|}$ or at least in $\mathscr{P}(u) / I$ there is no strictly increasing sequence of elements of length λ.

Then there is an ideal I_{1} on u such that:
(i) $I \subseteq I_{1}$,
(ii) $\lambda=\operatorname{tcf}\left(\Pi_{i \in u} \lambda_{i}, \leqq_{l_{1}}\right)$.
(2) If I is σ-complete then there is a σ-complete ideal I_{1} satisfying (i) + (ii) above.
(3) Similarly for normal filters.
(4) Iff $f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\lambda,\left[\alpha<\beta \Rightarrow f_{\alpha}<_{I} f_{\beta}\right]$ where I is an \aleph_{1}-complete ideal on u, then for some $g \in \Pi_{i \in u}\left(\lambda_{i}+1\right)$ and $f_{\alpha}^{\prime}=f_{\alpha} \bmod I$ for $\alpha<\lambda, f_{\alpha}^{\prime} \in \Pi_{i \in u} g(i)$ and $\left\langle f_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ is a witness for $\lambda \in \operatorname{psc}\left(\Pi_{i \in u} g(i),<_{I}\right)$.
(5) If $\left(\lambda_{i}: i<\delta\right\rangle$ is increasing, $\lambda_{i} \in R^{k, 0}, \delta<\lambda_{0}$ [or at least $\delta<\Sigma_{i<\delta} \lambda_{i}$], I an ideal on δ, δ is a limit ordinal, I includes all bounded subsets of δ, then in $\Pi_{i<\delta} \lambda_{i}$ there are f_{α} for $\alpha<\left(\Sigma_{i<\delta} \lambda_{i}\right)^{+}$as in (4).
(6) If $\lambda \in \operatorname{psc}\left(\left\langle\lambda_{i}: i \in u\right\rangle,<_{I}\right), \lambda>2^{|u|}$ then there is a minimal I_{1}, satisfying (i), (ii) from (1); i.e. every I_{1}^{\prime} satisfying (i), (ii) from (1) extends I_{1}. Similarly for (2), (3).

Proof. (1) Let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ witness $\lambda \in \operatorname{psc}\left(\Pi_{i \in u} \lambda_{i}, \leqq \begin{array}{l}I\end{array}\right)$. Define

$$
I_{1}=\left\{A \subseteq u:\left\langle f_{\alpha}: \alpha<\lambda\right\rangle \text { does not witness } \lambda \in \operatorname{psc}\left(\Pi_{i \in u} \lambda_{i}, \leqq \begin{array}{l}
1+(u-A) \\
)
\end{array}\right)\right\} .
$$

By 4(8) there are $v \leqq u, C$ as there, so $v \in I_{1}$; and for notational simplicity let $C=\lambda$. So for $A \in I_{1}$, there is $g_{A} \in \Pi_{i \in u} \lambda_{i}$ such that $f_{\alpha}<_{I+(u-A)} g_{A}$ for $\alpha<\lambda$. Clearly $u \notin I_{1}$ (by the choice of $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$). Note that $I \subseteq I_{1}$ as $A \in I \Rightarrow$ $u \in I+(u-A)$, hence $f_{\alpha}<I+(u-A) f_{0}$ for every $\alpha<\lambda$ so $g_{A} \stackrel{\text { def }}{=} f_{0}$ is o.k.

Now I_{1} is downward closed: if $A \in I_{1}, B \subseteq A$ then g_{A} witnesses that $B \in I_{1}$.
Next I_{1} is closed under union: if $A, B \in I_{1}$, then g defined by $g(i)=$ $\operatorname{Max}\left\{g_{A}(i), g_{B}(i)\right\}$ witness $A \cup B \in I_{1}$.

Lastly $\lambda=\operatorname{tcf}\left(\Pi_{i \in u} \lambda_{i}, I_{1}\right)$ because $\left(f_{\alpha}: \alpha<\lambda\right)$ witness it; let us check the conditions of 2(d).
$f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ trivially; $\alpha<\beta \Rightarrow f_{\alpha}<_{I_{1}} f_{\beta}$ as $I \subseteq I_{1}, v \in I_{1}, C=\lambda$; lastly if $f \in \Pi_{i \in u} \lambda_{i}$, let $u_{\alpha}=\left\{i \in u: f(i) \geqq f_{\alpha}(i)\right\}$, then for some $u^{*},\left\{\alpha<\lambda: u_{\alpha}=u^{*}\right\}$ is an unbounded subset of λ [or at least $\left\{\alpha<\lambda: u_{\alpha}=u^{*} \bmod I\right\}$ is an unbounded subset of λ], hence f can serve as $g_{u^{*}}$ hence $u^{*} \in I_{1}$ and we finish easily.
(2), (3) Left to the reader.
(4) Choose by induction on $n, g_{n} \in \Pi_{i \in u}\left(\lambda_{i}+1\right)$ such that $f_{\alpha}<g_{n} \bmod I$ for $\alpha<\lambda$, and $g_{n+1}<g_{n} \bmod I$.

Let g_{0} be: $g_{0}(i)=\lambda_{i}$. As I is \aleph_{1}-complete, for some $n<\omega$, we have chosen g_{n} but cannot choose g_{n+1}. As $f_{0}<_{I} g_{n}$, w.l.o.g. $(\forall i) g_{n}(i)>0$. Let $f_{\alpha}^{\prime}(i)$ be $f_{\alpha}(i)$ if $f_{\alpha}(i)<g_{n}(i)$ and be zero otherwise. Check.
(5) Left to the reader.
(6) We can choose for every $w \subseteq u, I_{1}^{w},\left\langle f_{\alpha}^{w}: \alpha<\lambda\right\rangle$ as in the proof of (1) such that $w \notin I_{1}^{\psi}$, if possible. Easily $\left\{w \subseteq a: I_{1}^{\psi}\right.$ is not defined $\}$ is as required.
10. Conclusion. (1) If

$$
\lambda \in \operatorname{psc}\left(\prod_{i \in u} \lambda_{i}, \leqq_{I}\right), \quad \lambda_{i}<\lambda, \quad|u|<\lambda
$$

(λ regular, I an ideal on u) and $\lambda>2^{|u|}$ or at least in $\mathscr{P}(u) / I$ there is $n o$ strictly increasing sequence of length λ, then for some $u_{1},\left|u_{1}\right| \leqq u$, regular cardinals μ_{i} ($i \in u_{1}$), $\mu_{i} \leqq \lambda_{i}$ and ideal I_{1} on u_{1},

$$
\lambda=\operatorname{tcf}\left(\prod_{i \in u_{1}} \mu_{i}, \leqq_{L_{1}}\right) \text { and }\left[i \neq j \Rightarrow \mu_{i} \neq \mu_{j}\right]
$$

(2) If $\lambda>2^{|u|}$, we can have $\mu_{i} \in R^{|u|, 2}$ (for $i \in u_{1}$).
(3) If I is σ-complete, we can have " $I_{1} \sigma$-complete" and if I is normal ($u=\theta \in R^{\kappa, 1}$) we can have " I_{1} is normal ideal on θ ".
(4) Suppose $f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\lambda, I$ is an ideal on u and $\left[\alpha<\beta \Rightarrow f_{\alpha}<_{I} f_{\beta}\right]$, $\lambda>2^{|u|}, \lambda>\lambda_{i}$ for $i \in u, \lambda$ regular. Then we can find a set v, a function h from some $u_{1}, u-u_{1} \in I$, onto v, an ideal J on v and regular cardinals μ_{i} for $i \in v$ s.t.:
(i) $J=\left\{h^{\prime \prime}(A): A \in I\right\}$,
(ii) $\lambda=\operatorname{trf}\left(\Pi_{i \in v} \mu_{i}, \leqq\right.$,
(iii) $\mu_{h(i)} \leqq \lambda_{i}$ for $i \in u$,
(iv) if $i \in v, j \in v, i \neq j$ then $\mu_{i} \neq \mu_{j}$,
(v) $2^{|u|}<\mu_{j}$ for $j \in v$.
(5) If in (1) I is selective [i.e., for every equivalence relation E on u, for some i if $E \neq \varnothing \bmod I$ or for some $v \neq \varnothing \bmod I,|v \cap i / E| \leqq 1$ for $i \in u(v \subseteq u)]$, then we can have $(i)^{\prime} v \subseteq u, J=\{w \cap v: w \in I\}, h \upharpoonright v=\mathrm{id}_{v}$ [note: if $\kappa \leqq|u|$, then $\{v \subseteq u:|v|<|u|\}$ is selective, and if $u=\theta=\operatorname{cf} \theta>\mathcal{K}_{0}$ then \mathscr{D}_{θ} is selective].
(6) Suppose $f_{\alpha} \in \Pi_{i \in u} \lambda_{i}$ for $\alpha<\lambda, J, I$ ideals on $u, J \subseteq I, I$ is an \aleph_{1-} complete ideal on $u,\left[\alpha<\beta \Rightarrow f_{\alpha} \leqq f_{\beta}\right], \lambda$ is regular, $\wedge_{i \in u} \lambda_{i}<\lambda,|u|<\lambda$ and $\left\langle f_{\alpha} / I: \alpha<\lambda\right\rangle$ is not eventually constant and in $\mathscr{P}(u) / J$ there is no strictly increasing sequence of length $\lambda($ which remains so $\bmod I)$ and I is \aleph_{1}-complete, then
(i) for some $v \subseteq u$, and pairwise distinct or equal regular cardinals μ_{i} $(i \in v), \mu_{i} \leqq \lambda_{i}$, and some filter $I(*)$ on $v, \operatorname{tcf}\left(\Pi_{i \in v} \mu_{i} \leqq_{I(\bullet)}\right)=\lambda, I(*)$ κ_{1}-complete (and is σ-complete, normal, if J is),
(ii) $\operatorname{tcf}\left(\Pi \mu_{i}, \leqq \sum_{(*)}\right)=\lambda$ is witness by $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ s.t. $\alpha<\beta \Rightarrow f_{\alpha} \leqq$ $f_{\beta} \bmod J$.

Proof. (1) by 5(2) and 9(1); and for " $\lambda_{i} \neq \lambda_{j}$ " use 4(3). (We use 4(1) without saying.)
(2) Use 4(6).
(3) Use 9(2), 9(3), too.
(4) By 5(2), 4(3).
(5) Easy.
(6) By 4(9), wlog $\left[\alpha<\beta \Rightarrow f_{\alpha}<_{1} f_{\beta}\right]$ and then use 9(4) to have some $g, \wedge_{i \in u} g(i) \leqq \lambda_{i}$, and $\lambda \in \operatorname{psc}\left(\Pi_{i \in u} g(i), \leqq_{I}\right)$, then use $9(1)+9(2)$ and lastly 4(3). (There is no problem to preserve normality too.) (When $J \neq I$, we have to look again at the proof of 9 (1).)

10A. Corollary. (1) Suppose $\lambda>\operatorname{cf} \lambda>\kappa_{0}$, I is a normal ideal on $\operatorname{cf} \lambda$ such that (*) for no $\left\langle u_{\alpha}: \alpha<\lambda\right\rangle: u_{\alpha} \subseteq \operatorname{cf} \lambda, \quad\left[\alpha<\beta \Rightarrow\left|u_{\beta}-u_{\alpha}\right|<\operatorname{cf} \lambda\right]$, $\left[\alpha<\beta \Rightarrow u_{\alpha} \nsubseteq u_{\beta} \bmod I\right]$. Then
(i) for some normal ideal J on cf $\lambda, I \subseteq J$, and some regular $\lambda_{i}<\lambda$ for $i<\operatorname{cf} \lambda,\left\langle\lambda_{i}: i<\operatorname{cf} \lambda\right\rangle$ constant or strictly increasing, $\lambda^{+}=\operatorname{tcf}\left(\Pi_{i<\mathrm{cf} \lambda} \lambda_{i}, \leqq \leqq_{j}\right)$,
(ii) $\lambda^{+}=\operatorname{tcf}\left(\Pi_{i<\mathrm{cf} \lambda} \lambda_{i}, \leqq \leqq_{J}\right)$ is witnessed by some $\left\langle f_{\alpha}: \alpha<\lambda^{+}\right)$s.t. for $\alpha<\beta$, $f_{\alpha} \leqq f_{\beta} \bmod \mathscr{D}_{c+\lambda}^{\text {cobd }}$,
(iii) the λ_{i} 's are all equal or $\left\langle\lambda_{i}: i<\operatorname{cf} \lambda\right\rangle$ is strictly increasing.
(2) We can replace "normal" by " σ-complete" if: $\mathrm{cf} \lambda \geqq \sigma>\aleph_{0}$ and in (iii) we assume $I=\{v \subseteq \operatorname{cf} \lambda:|\nu|<\operatorname{cf} \lambda\}$.

Proof. (1) Let $\left\langle\lambda_{i}: i<\operatorname{cf} \lambda\right\rangle$ be strictly increasing $<\lambda$ s.t. $\lambda=\Sigma_{i<c f \lambda} \lambda_{i}$. By $9(5)$ we can find $\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$s.t.: $f_{\alpha} \in \Pi_{i<c \mathrm{cf} \lambda} \lambda_{i}^{+} \quad$ and $\left[\alpha<\beta \Rightarrow f_{\alpha}<f_{\beta} \bmod \mathscr{D}_{c \lambda 1}^{\text {cobd }}\right]$. By 10(6) we can finish (with μ_{i} there as our desired λ_{i} 's).
(2) Similarly,
11. Corollary. If $2^{\mathrm{cr} \lambda}<\lambda$ then for some constant or strictly increasing sequence $\left\langle\lambda_{i}: i<\operatorname{cf} \lambda\right\rangle$ of regular cardinals $<\lambda \operatorname{tcf}\left(\Pi \lambda_{i}, \leqq و_{i d i d}\right)=\lambda^{+}$(witnessed by a $\leqq_{\left.\text {quad }_{\text {max }}-\text { increasing sequence }\right) . ~}^{\text {. }}$

Proof. Choose $\lambda_{i}, \lambda=\Sigma\left\{\lambda_{i}: i<\operatorname{cf} \lambda\right\},\left\langle\lambda_{i}: i<\operatorname{cf} \lambda\right\rangle$ as in $9(5)$ and then use 9(5), 10(4).
12. Lemma. If $\sigma=\operatorname{cf} \mu>\mathcal{K}_{0},(\forall \theta<\mu)\left[\theta^{<\sigma} \leqq \mu\right], \mu<\lambda \leqq \mu^{\sigma}, \lambda$ regular, then for some normal filter \mathscr{D} on σ and $\theta_{i}<\mu($ for $i<\sigma), \operatorname{tcf}\left(\Pi_{i<\sigma}, \mathscr{D}\right)=\lambda$.

Proof. By [Sh 4] §7.
13. Lemma. (1) In 9(4) if ($u=\theta$ a regular cardinal) E, \mathscr{D} are nice
(normal) filters on λ, θ resp. (see [Sh 4, 7.10]), then for some nice \mathscr{D}_{1} extending \mathscr{D},

$$
\operatorname{tcf}\left(\prod_{i<\theta} \lambda_{i}, \leqq \leqq_{\mathscr{Q}_{1}}\right)=\lambda
$$

(2) If λ is singular, on λ^{+}, cf λ there are nice filters E, \mathscr{D} then for some nice filter \mathscr{D}_{1}, extending \mathscr{D} and $\lambda_{i}<\lambda($ for $i<\operatorname{cf} \lambda)$

$$
\operatorname{tcf}\left(\prod_{i<\mathrm{cf} \lambda} \lambda_{i} / \mathscr{D}\right)=\lambda^{+} .
$$

Proof. (1) Let g_{n} be as in the proof of 9(4) and let for $\alpha<\lambda$

$$
A_{\alpha}=\left\{i \leqq \theta: f_{\alpha}(i)<g_{n}(i)\right\} .
$$

Clearly: $A_{\alpha} \neq \varnothing \bmod \mathscr{D}$,

$$
\alpha<\beta \Rightarrow A_{\beta} \subseteq A_{\alpha} \bmod \mathscr{D} .
$$

W.l.o.g. $(\forall i) g_{n}(i)>0$.

Let $\mathscr{D}=\left\{A \subseteq \theta\right.$: for every $\left.\alpha, A \cup\left(\theta-A_{\alpha}\right) \in \mathscr{D}^{+}\right\}$. Clearly

$$
\operatorname{tcf}\left(\prod_{i<\theta} \lambda_{i}, \leqq \leqq .\right.
$$

Why is \mathscr{D} nice? By observation 13A below.
(2) By 13(1) and 9(5).

13A. Observation. If $\lambda>\theta>\aleph_{0}$ are regular, E a nice filter on λ, and for $\alpha<\lambda \mathscr{\mathscr { D }}_{\alpha}$ is a nice filter on θ, then:
(i) $\mathscr{D} \stackrel{\text { def }}{=}\left\{A \subset \theta:\left\{\alpha<\lambda: A \in \mathscr{D}_{\alpha}\right\} \in E\right\}$ is nice,
(ii) if $f \in{ }^{\theta} \operatorname{Ord}, h \in^{\lambda} \operatorname{Ord}, r \kappa\left(f, \mathscr{D}_{\alpha}\right) \leqq h(\alpha)$ for $\alpha<\lambda$, then $r \kappa(f, \mathscr{D}) \leqq$ $r \kappa(h, E)$.

Proof. See [Sh 4] Def. 5.1, 3.1
13B. Remark. (1) Note that: if

$$
(\exists \kappa)(\exists \mu)\left[\mu>2^{2 \pi \lambda} \wedge \mu^{\kappa}>(\mu+\kappa)^{+}\right], \quad \operatorname{cf} \lambda>\aleph_{0}
$$

then there is a nice filter \mathscr{D} on $\operatorname{cf}(\lambda)$ (see [Sh 4] 4.14, 4.15) and also on $I=\{a \subseteq \lambda:|a|<\theta\}$ if $\theta=\operatorname{cf} \theta>\mathcal{K}_{0}, \lambda^{\theta}=\lambda$.
(2) In fact, in (1) the club filter is nice (on λ and on $\{a \subseteq \lambda:|a|<\theta\}$).
(3) If $\lambda^{\theta}=\lambda, \aleph_{0}<\sigma=\operatorname{cf} \sigma \leqq \theta$, and the club filter on $\{a \subseteq \lambda:|a|<\theta\}$ is nice, then every normal fine filter on $\{a \subseteq \theta:|a|<\sigma\}$ is nice.

§2. Good stationary sets and existence of lub's

14. Lemma. (1) If λ is singular, $S \subseteq \lambda^{+}$is a stationary subset of λ^{+}which is good (see below) and $\delta \in S \Rightarrow \operatorname{cf}(\delta)>\kappa \stackrel{\text { def }}{=} \mathrm{cf} \lambda$, then for some $\lambda_{i}<\lambda$ (for $i<\kappa$), and a uniform ultrafilter \mathscr{D} on $\kappa, \Pi_{i<\kappa} \lambda_{i} / \mathscr{D}$ has cofinality λ^{+}.
(2) Suppose λ_{i} is regular $<\lambda$ for $i<\kappa$, λ is regular, \mathscr{D} a filter on $\kappa, \kappa<\lambda$, $f_{\alpha} \in \Pi_{i<x} \lambda_{i},\left[\alpha<\beta \Rightarrow f_{\alpha}<_{g} f_{\beta}\right]$. Then one of the following occurs:
(a) $\left\langle f_{\alpha}:<\lambda\right\rangle$ has $a w<{ }_{g}$-lub f_{λ} (hence for some filter \mathscr{D}_{1} extending \mathscr{D} $\left[f<{ }_{\mathscr{g}} f_{\lambda} \Rightarrow(\exists \alpha<\lambda) f<_{\mathscr{g}_{1}} f_{\alpha}\right]$).
(b) In $\mathscr{P}(\kappa) / \mathscr{D}$ there is a strictly increasing sequence $\left\langle a_{\alpha} / \mathscr{D}: \alpha<\lambda\right\rangle$ of length λ (in particular, \mathscr{D} is not an ultrafilter).
(c) There is a club $B \subseteq \lambda$ and functions $g_{\alpha} \in \Pi_{i<\kappa} \lambda_{i}$ for $\alpha \in B$ such that (a) $f_{\alpha} \leqq_{\mathscr{g}} g_{\alpha} \leqq_{\mathscr{T}} f_{\beta}$ for $\alpha<\beta$ in B (so you can get $f_{\alpha}<_{\mathscr{G}} g_{\alpha}<_{\mathscr{g}} f_{\beta}$), (β) $\bigcup_{\alpha \in \beta}$ rang g_{α} has cardinality $\leqq \kappa$.
(3) If there is a good stationary set

$$
S \subseteq\left\{\delta<\lambda: \kappa<\operatorname{cf} \delta<\operatorname{Min}\left\{\lambda_{i}: i<\kappa\right\}\right\}
$$

$\lambda, \lambda_{i}, \kappa, f_{\alpha}(i<\kappa, \alpha<\lambda)$ as in (2), $\left(A_{\alpha}: \alpha<\lambda\right\rangle$ witnesses " S is good" and $\left[\alpha \in A_{\beta} \Rightarrow \Lambda_{i} f_{a}(i)<f_{\beta}(i)\right]$, then in (2) above (c) and (b) do not occur.
(4) In (3) (using of) we can conclude $\lambda \rightarrow\left\{\lambda_{i}: i<\kappa\right\}$ ([Sh 1]), so, e.g., if $\lambda=\kappa_{\omega+1}$ there is on λ a Jonsson algebra.
(5) In (1), if $\kappa<\lambda,\{\delta \in S: \operatorname{cf}(\delta) \geqq \kappa\}$ is stationary, then

$$
(\exists i<\operatorname{cf} \lambda) \forall j\left[i<j<\operatorname{cf}(\lambda) \Rightarrow \lambda_{i}>\kappa\right] .
$$

Remark. On good sets see [Sh 8] and Appendix of [Sh 9]; they are defined in 15 below.
15. Definition. For a regular $\lambda, S \subseteq \lambda$ is good if there is a sequence $\left\langle A_{\alpha}: \alpha<\lambda\right\rangle, A_{\alpha} \subseteq \alpha$ and for some closed unbounded $C \subseteq \lambda$ for every $\delta \in C \cap S$ there is an unbounded $A \subseteq \delta$ of order type $\operatorname{cf} \delta$ such that ($\forall \alpha<\delta)$ $\left[A \cap \alpha \in\left\{A_{\beta}: \beta<\alpha\right\}\right]$.

Proof. (1) Let $\left\langle A_{\alpha}: \alpha<\lambda\right\rangle$ be as in Definition 15. W.l.o.g. for each limit α $\left\{A_{\alpha} \cap \gamma: \gamma \in A_{\alpha}\right\} \subseteq\left\{A_{\beta}: \beta<\alpha\right\}$. Note that w.l.o.g. $\left|A_{\alpha}\right|<\lambda$ for every α. Let ($\left.\lambda_{i}: i<\kappa\right\rangle$ be an increasing continuous sequence of cardinals $<\lambda$ with $\lambda=\bigcup_{i<\kappa} \lambda_{i}$. We can define, by induction on $\alpha<\lambda^{+}$, a function f_{α} such that
(i) $f_{\alpha} \in \Pi_{i<x} \lambda_{i}^{+}$;
(ii) for $\beta<\alpha$, for every large enough $i<\kappa, f_{\beta}(i)<f_{\alpha}(i)$;
(iii) if $\beta \in A_{\alpha}, i<\kappa,\left|A_{\alpha}\right| \leqq \lambda_{i}$ then $f_{\beta}(i)<f_{\alpha}(i)$.

Now $\left\langle f_{\alpha}: \alpha<\lambda^{+}\right\rangle$has a lub $f_{\lambda^{+}}$[as otherwise use part 3 of 14 , i.e., for (c) find a closed unbounded $C \subseteq \lambda^{+}$and $\left\langle g_{\alpha}: \alpha \in C\right\rangle, g_{\alpha} \in \Pi_{i<k} A_{i},\left|A_{i}\right| \leqq \kappa$, $f_{\alpha}<_{\mathscr{g}} g_{\alpha}<_{\mathscr{g}} f_{\beta}$ for $\alpha<\beta$ from C; choose $\delta \in S$ a limit point of C, and get easy contradiction by (iii) above]. By 4(1),(3), $9(1)$ we get the conclusion.
(2) We define, by induction on $\zeta<\kappa^{+}$, a function $g_{\zeta} \in \Pi_{i<x}\left(\lambda_{i}+1\right)$ such that $\left[\xi<\zeta \Rightarrow g_{\zeta} \leqq_{\mathscr{g}} g_{\xi}\right],\left[\zeta=\xi+1 \Rightarrow g_{\xi} \neq{ }_{\mathscr{T}} g_{\xi}\right]$ and $\left[\alpha<\lambda \Rightarrow f_{\alpha} \leqq_{\mathscr{F}} g_{\xi}\right]$. We let g_{0} be defined by $g_{0}(i)=\lambda_{i}$. If $\left\langle g_{\xi}: \xi \leqq \zeta\right\rangle$ are defined, and there is $g, g \in$ $\Pi_{i<x}\left(\lambda_{i}+1\right), f_{\alpha} \leqq_{\mathscr{g}} g$ for $\alpha<\lambda, g \neq \mathscr{g} g_{\zeta}$ and $g \leqq_{\mathscr{g}} g_{\zeta}$, then choose such a function g as $g_{\zeta+1}$; if we cannot, we have gotten " $\left\langle f_{i}: i<\lambda\right\rangle$ has a $w<{ }_{g}$-lub", hence (a) holds. If ζ is limit ordinal, $\zeta \leqq \kappa^{+}$, let $A_{i}^{\zeta}=\left\{g_{\xi}(i): \xi<\zeta\right\} \cup\left\{\lambda_{i}\right\}$, so A_{ζ}^{i} is a set of $\leqq|\zeta|+1$ ordinals. For $\alpha<\lambda$, let $f_{\alpha}^{\zeta} \in \Pi_{i<\kappa}\left(\lambda_{i}+1\right)$ be defined by

$$
f_{\alpha}^{\zeta}(i)=\operatorname{Min}\left\{\gamma \in A_{i}: f_{\alpha}(i) \leqq \gamma\right\}
$$

(well defined as $f_{\alpha}(i)<\lambda_{i} \in A_{i}^{\xi}$). Clearly $\alpha<\lambda \Rightarrow f_{\alpha} \leqq{ }_{\mathscr{D}} f_{\alpha}^{\zeta}$ and also $\left[\alpha<\beta<\lambda \Rightarrow f_{\alpha}^{\zeta} \leqq_{\mathscr{A}} f_{\xi}^{\xi}\right]$.

Case I: $\zeta<\kappa^{+}$and $(\forall \alpha<\lambda)(\exists \beta<\lambda)\left[\alpha<\beta \wedge f_{\alpha}^{\zeta}<g{ }_{g} f_{\xi}\right]$ then conclusion (c) holds. ${ }^{(5)}$

Case II: $\zeta<\kappa^{+}$and for some $\alpha=\alpha_{\zeta}^{0}$,

$$
(\forall \beta<\lambda)\left[f_{\alpha}^{\zeta} K_{\mathscr{D}} f_{\beta}\right] \text { but }(\forall \alpha<\lambda)(\exists \beta<\lambda)\left[\alpha<\beta \wedge f_{\beta}^{\xi} K_{\mathscr{D}} f_{\alpha}^{\zeta}\right] \text {. }
$$

Then some closed unbounded subsequence of $\left\langle a_{\beta}: \beta<\lambda\right\rangle$ exemplifies (b) where

$$
a_{\beta}=\left\{i: f_{\beta}^{\zeta}\left(\lambda_{i}\right)>f_{\alpha_{q}}^{\zeta_{i}}\left(\lambda_{i}\right)\right\} .
$$

Case III: $\zeta<\kappa^{+}$and both previous cases fail, then for some $\alpha=\alpha_{\zeta}$ $(\forall \beta<\lambda)\left[\alpha \leqq \beta \Rightarrow f_{\alpha}^{\zeta}={ }_{\boldsymbol{Q}} f_{\xi}^{\xi}\right]$.

We let g_{ζ} be $f_{\alpha_{l}}^{\zeta}$.
Case IV: Suppose $\zeta=\kappa^{+}$[so $\left\langle g_{\xi}: \xi<\kappa^{+}\right\rangle$are defined and for $\alpha<\lambda$ and limit $\xi<\kappa^{+}, \alpha_{\xi}$ and f_{α}^{ξ} are defined].

Note that $\alpha^{*} \stackrel{\text { def }^{\prime}}{=} \bigcup\left\{\alpha_{\xi}: \xi<\kappa^{+}\right\}$is $<\lambda$.
Note that for each $\alpha<\lambda, i<\kappa, f_{\alpha}^{\zeta}(i) \in A_{i}^{\xi}=\bigcup_{\xi<\kappa^{+}} A_{i}^{\xi}$, so for some $\xi=$ $\xi(\alpha, i)<\kappa^{+}, f_{\alpha}^{\zeta}(i) \in A_{i}^{\xi(\alpha, i)}$. Let $\xi(\alpha)=\sup _{i<x} \xi(\alpha, i)$, it is $<\kappa^{+}$, and as $\left\langle A_{i}^{\xi}: \xi<\kappa^{+}\right\rangle$is increasing, $f_{\alpha}^{\zeta}(i) \in A_{i}^{\xi(\alpha)}$. Clearly then, e.g., $f_{\alpha}^{\xi(\alpha)+\omega}=f_{\alpha}^{\xi(\alpha)+\omega+\omega}$
${ }^{(5)}$ Note that $f_{\alpha}^{\zeta}<_{g} f_{\beta}$ implies $f_{\alpha}^{\zeta}<_{g} f_{\beta}$.
hence using $\alpha \geqq \alpha^{*}, g_{\xi(\alpha)+\omega}={ }_{\mathscr{g}} g_{\xi(\alpha)+\omega+\omega}$ hence $g_{\xi(\alpha)+\omega+1} \leqq_{\mathscr{g}} g_{\xi(\alpha)+\omega}$, contradiction to the choice of $g_{\{(\alpha)+\omega+1}$.
(3), (4), (5) Left to the reader.

§3. More on cofinalities

16. Lemma. Let $a \in I^{\kappa, 2}, \lambda \in R^{\kappa, 2}$.
(1) For some set $b \subseteq a, J_{<\lambda^{+}}^{k, a}=\left(J_{<\lambda}^{k, a}\right)+b$ [we choose such a set b and call it

(2) $J_{<\lambda}^{x, a}$ is the ideal (of subsets of a) generated by $\left\{b_{\mu}^{\kappa, a}: \mu \in R^{\kappa, 2}, \mu<\lambda\right\}$.
(3) $\operatorname{pcf}(a)$ has cardinality $\leqq 2^{\kappa}$ and has a maximal element, which is equal to cf(Пa, §).
(4) For $b=b_{\lambda}^{\kappa, a} \neq \varnothing$ there are functions $f_{\lambda, \alpha}^{x, a}(\alpha<\lambda)$ which witness "tcf($\left.\Pi b, \leqq \leqq_{f_{1}^{\infty}}\right)=\lambda$ " (though the choice of $f_{\lambda, \alpha}^{k, a}$ is not unique, we choose such functions). W.l.o.g. if $\left\langle f_{\lambda, \alpha}^{a} \upharpoonleft b_{\lambda}^{\kappa, a}: \alpha<\delta<\lambda\right\rangle$ has a least upper bound $\bmod J_{<\lambda}^{\kappa, a}$, then $\left(f_{\lambda, \delta}^{\kappa, a} \mid b_{\lambda}^{\kappa, a}\right) / J_{<\lambda}^{\kappa, a}$ is such a least upper bound.
(5) For every $f \in \Pi a$ there are $n>0, \lambda_{0}>\lambda_{1}>\cdots>\lambda_{n}$ from $\operatorname{pcf}(a), \alpha_{0}<\lambda_{0}$, $\alpha_{1}<\lambda_{1}, \ldots, \alpha_{n}<\lambda_{n}$, and $b_{l} \subseteq a$ for $l \leqq n$ such that $\left\langle b_{l}: l \leqq n\right\rangle$ is a partition of a, and

$$
b_{0} \equiv b_{\lambda_{0}, a}^{\kappa, a} \bmod J_{<\lambda_{0}}^{\kappa, a}, \quad b_{l} \equiv b_{\lambda_{l}}^{\kappa, a} \bmod J_{<\lambda_{l}}^{\kappa, a}, \quad f \upharpoonright b_{l} \leqq f_{\lambda_{b}, \alpha_{l}}^{\kappa, a} \upharpoonright b_{l}
$$

(note: $a-b_{0} \in J_{\lambda_{0}}^{\kappa, a}, a-b_{0} \cup \cdots \cup b_{l} \in J_{<\lambda_{1}}^{k, a}, a-b_{0} \cup \cdots \cup b_{n}=\varnothing$).
(6) Let \mathscr{D} be an ultrafilter on a : $\operatorname{cf}(\Pi a,<\mathscr{g})=\lambda$ iff $\lambda \in R^{\kappa, 2}$ and $b_{\lambda}^{\kappa, a} \in \mathscr{D}$, $J_{<\lambda}^{\kappa \kappa, a} \cap \mathscr{D}=\varnothing$.

Proof. By [Sh 5] Ch. XIII, §5, §6.
17. Claim. (1) $a \subseteq \operatorname{pcf}(a),[a \subseteq b \Rightarrow \operatorname{pcf}(a) \subseteq \operatorname{pcf}(b)]$;
(2) $\mu \in \operatorname{pcf}(a) \Rightarrow \mu \in \operatorname{pcf}\left(a \cap \mu^{+}\right)$;
(3) for $\mu>2^{|a|}, \mu \in \operatorname{pcf}(\operatorname{pcf}(a)) \Leftrightarrow \mu \in \operatorname{pcf}(a)$;
(4) $\operatorname{pcf}(a-\{\theta\}) \supseteq \operatorname{pcf}(a)-\{\theta\}$;
(5) if $\lambda \in \operatorname{pcf}(a), \lambda>2^{\kappa}, a \in I^{\kappa, 2}$ then $\lambda \in \operatorname{pcf}\left(a-\left(2^{\kappa}\right)^{+}\right)$(we can use any $\mu=\mu^{\kappa}$ instead of $\left.2^{\kappa}\right)$ and $\lambda=\max \operatorname{pcf}\left(b_{\lambda}^{\kappa, \alpha}\right)$;
(6) if $\theta \in \operatorname{pcf}(a), a \in I^{x, 2}$ and $(\forall \alpha<\theta)\left[|\alpha|^{<\sigma}<\theta\right]$ then $J_{<\theta}^{x, b}$ is σ-complete for $b=b_{\theta}^{k, a}$.

Proof. (1) Easy (see Definition 6(1)).
(2) If \mathscr{D} is an ultrafilter on a, and $\{\theta \in a: \theta>\mu\} \in \mathscr{D}$, then easily $\operatorname{tcf}\left(\Pi a,<_{\mathscr{G}}\right)>\mu$. Now as $\mu \in \operatorname{pcf}(a)$, for some ultrafilter \mathscr{D} on a, $\operatorname{tcf}(\Pi a,<\mathscr{O})=\mu$ hence $\left(a-\mu^{+}\right) \notin \mathscr{D}$ hence $a \cap \mu^{+} \in \mathscr{D}$, hence $\mathscr{D}_{1}=$
$\mathscr{D} \upharpoonright\left(a \cap \mu^{+}\right)$is an ultrafilter on $a \cap \mu^{+}$and $\operatorname{cf}\left(\Pi\left(a \cap \mu^{+}\right),{<\mathscr{g}_{1}}\right)=\mu$, so $\mu \in \operatorname{pcf}\left(a \cap \mu^{+}\right)$.
(3) By $17(1), \mu \in \operatorname{pcf}(a) \Rightarrow \mu \in \operatorname{pcf}(\operatorname{pcf}(a))$. So assume $\mu \in \operatorname{pcf}(\operatorname{pcf}(a))$. Let $\operatorname{pcf}(a)=\left\{\mu_{i}: i<i(*)\right\}$, so $i(*)<\left(2^{|a|}\right)^{+}$, for each i there is an ultrafilter \mathscr{D}_{i} on a such that $\mu_{i}=\operatorname{tcf}\left(\Pi a,<_{\mathscr{Q}_{i}}\right)$. So $\mu=\operatorname{tcf}\left(\Pi \mu_{i}, \leqq \leqq_{\mathscr{Q}}\right)$, \mathscr{D} an ultrafilter on $i(*)$. By the theorem of ultraproducts of ultraproducts

$$
\mu=\operatorname{tcf}\left(\Pi\left\{\theta_{j}:(j, i\rangle \in j(*) \times i(*)\right\}, \leqq_{g^{*}}\right)
$$

where

$$
\mathscr{D}^{*}=\left\{A \subseteq j(*) \times i(*):\left\{j<j(*):\{i: i<i(*) \text { and }\langle j, i\rangle \in A\} \in \mathscr{D}_{j}\right\} \in \mathscr{D}\right\} .
$$

By 4(3)(c) we finish.
(4), (5) Left to the reader.
(6) Suppose $b_{i} \in J_{<\theta}^{\alpha, b}$ for $i<i(*), i(*)<\sigma, \bigcup_{i} b_{i} \notin J_{<\theta}^{\alpha, b}$; w.l.o.g. $b=\bigcup_{i} b_{i}$ and the b_{i} 's are pairwise disjoint. Let $F_{i} \subseteq \Pi\left(b_{i}\right)$ be a cover of cardinality $<\lambda$ (exists as we know $\operatorname{cf}\left(\Pi b_{i}\right)<\theta$ as $b_{i} \in I_{<\theta}^{\kappa, b}$ by 16(3)). Now

$$
F=\left\{\bigcup_{i<i(*)} f_{i}: f_{i} \in F_{i} \text { for } i<i(*)\right\}
$$

has cardinality $\leqq \Pi_{i<i(\cdot)}\left|F_{i}\right|<\theta$ by our assumptions and F is a cover of Πb, contradiction.

17A. Lemma. Suppose $\sigma=\operatorname{cf} \mu>\mathcal{K}_{0},(\forall \theta<\mu)\left[\theta^{\sigma} \leqq \mu\right], \mu<\lambda=\operatorname{cf} \lambda \leqq$ $\mu^{\sigma}, 2^{\sigma}<\mu$.
(1) If $\lambda=\operatorname{cf} \lambda<\mu^{+\sigma^{+}}$then we can have $\left\langle\theta_{i}: i<\sigma\right\rangle$ strictly increasing and

$$
\theta_{i}<\mu, \quad \operatorname{tcf}\left(\Pi \theta_{i},<\mu_{0}^{4}\right)=\lambda .
$$

(2) If $\left[a \in R^{\sigma, 2}, a \subseteq \mu \Rightarrow|\operatorname{pcf}(a)| \leqq \sigma\right]$ then the conclusion of (2) holds.
(3) We can allow $\sigma=\operatorname{cf} \mu=\kappa_{0}$ if we add $\lambda \in \operatorname{pcf}(a), a \in \mu, a \in R^{\sigma, 2}$.

Proof. (1) By the proof of (2).
(2) As in 12(1), we can find $\left\langle\lambda_{i}: i<\sigma\right\rangle$, \mathscr{D} s.t.: $\left\langle\lambda_{i}: i\langle\sigma\rangle\right.$ is strictly increasing, \mathscr{D} a normal filter on $\sigma, \lambda_{i}<\mu$ and $\operatorname{tcf}\left(\Pi_{i<\sigma} \lambda_{i}, \leqq_{\mathscr{D}}\right)=\lambda$. Let $a=$ $\left\{\lambda_{i}: i<\sigma\right\}$, clearly $J_{<\mu^{+}}^{a, \sigma}=J_{a}^{\text {bd }}$, let $\operatorname{pcf}(a)-\mu=\left\{\mu_{\alpha}: \alpha \leqq \alpha(*)\right\}$ (μ_{α} increasing), so for some $\gamma, \lambda=\mu_{\gamma}$, and necessarily $\wedge_{a<p}\left(a-b_{\mu_{4}}^{x_{a}}\right) \in \mathscr{D}$. As $\gamma<\sigma^{+}$(by an assumption) and \mathscr{D} is normal, there is $a^{*} \in \mathscr{D}$ such that $a^{*} \subseteq b_{\mu}^{k, c}$ and $\left[\alpha<\gamma \Rightarrow\left|a^{*} \cap b_{\mu_{e}}^{\kappa, a}\right|<\sigma\right]$.

17B. Lemma. If $\lambda<\mu$ belongs to $\operatorname{pcf}(a), 2^{x}<\lambda, a \in R^{\kappa, 2}$ and $\operatorname{pcf}(a) \cap$ $[\lambda, \mu)=\operatorname{pcf}(\operatorname{pcf}(a) \cap[\lambda, \mu))$ then for some b

$$
J_{<\mu}^{a, \kappa}=\left(J_{<}^{a, \kappa}\right)+b .
$$

Proof. Easy.
Remark. Below, ac stands for "accessible", ia stands for "inaccessible".
18. Definition. (1) $R_{\mathrm{ac}, \sigma}^{\kappa, 2}=\left\{\theta \in R^{\kappa, 2}\right.$: for some $a \in I^{\kappa, 2}, \theta \in \operatorname{pcf}_{\sigma}(a)$ and $\theta>\sup (a)\}$.
(2) $R_{\mathrm{i}, \sigma}^{\kappa, 2}=R^{\kappa, 2}-R_{\mathrm{a}, \sigma}^{\kappa, 2}$.
(3) If $\sigma=\kappa_{0}$ we omit it.
(4) Instead of σ we can use Γ (see $6(1)(\mathrm{b})$).
19. Definition. (1) $R_{\mathrm{ac} ; \Gamma}^{\kappa, l}=\left\{\theta \in R^{\kappa, l}\right.$: for some $\bar{\lambda} \in \mathscr{I}^{k, l}, \theta \in \operatorname{pcf}_{\Gamma}(a)$ and ($\left.\forall i \in \operatorname{dom} \bar{\lambda}) \lambda_{i}<\theta\right\}$
(2) $R_{i \mathrm{ia}, \Gamma}^{x, l}=R^{x, l}-R_{\mathrm{ac}, \Gamma}^{x, l}$.
(3) If Γ is being σ-complete we write σ.
(4) If $\sigma=\aleph_{0}$ we omit it.
20. Remark. A disturbing point of $R^{\kappa, 1}$ is that $17(5)$ is not known.
21. Fact. Definitions 18 and 19 are compatible.
22. Lemma. If $\theta \in R_{\mathrm{ac}}^{\kappa, 2}$ then for some $a \in I^{\kappa, 2}: \theta \in \operatorname{pcf}(a)$ and $a \subseteq R_{\mathrm{ia}}^{\kappa, 2}$.

Proof. We define by induction on $n<\omega$ the following T_{n}, and $a_{\eta}, \mathscr{D}_{\eta}$ (for $\eta \in T_{n}$) such that:
(i) $T_{0}=\{\langle\theta\rangle\}$.
(ii) T_{n} is a set of decreasing sequences of cardinals from $R^{\kappa, 2}$, each sequence has length $n+1$ and $\left|T_{n}\right| \leqq \kappa$.
(iii) $\eta \in T_{n+1}$ implies $\eta \upharpoonright(n+1) \in T_{n}$.
(iv) For $\eta \in T_{n}, a_{\eta}=\left\{\mu: \eta^{\wedge}\langle\mu\rangle\right.$ belongs to $\left.T_{n+1}\right\}$.
(v) If $\eta \in T_{n}, a_{\eta} \neq \varnothing$ then \mathscr{D}_{η} is an ultrafilter on $a_{\eta}, \operatorname{cf}\left(\Pi a_{\eta}, \leqq_{\mathscr{Q}_{\eta}}\right)=\eta(n)$.
(vi) For $\eta \in T_{n}, a_{\eta}=\varnothing$ then $\eta(n) \in R_{\text {ia }}^{\text {к, }, l}$.

There is no problem to carry the definition.
Also letting $a^{*}=\left\{\eta(n): n<\omega, \eta \in T_{n}, a_{\eta}=\varnothing\right\}$ easily $\left|a^{*}\right| \leqq \kappa, a^{*} \in I^{\kappa, 2}$ and $\theta \in \operatorname{pcf}\left(a^{*}\right)$.
23. Remark. The same proof gives 24 below (we can even replace $R^{\text {x,2 }}$ by any $R \subseteq R^{0}$ [interestingly Γ may be " σ-complete", "nice"; note they are closed under the sum operation below].
24. Lemma. Let Γ be a property of filters, $\theta \in R_{\mathrm{a}, \Gamma}^{\kappa, I}$. Then there is $\bar{\lambda}=$ $\left\langle\lambda_{i}: i \in u\right\rangle$ and filter \mathscr{D} on u such that
(a) $\theta=\operatorname{tcf}\left(\Pi_{i \in u} \lambda_{i},<_{\mathscr{g}}\right)$,
(b) $\lambda_{i}<\lambda, \lambda_{i} \in R_{i, 1}^{k, l}$,
(c) there is a set Y of finite sequences of cardinality $\leqq \kappa$, closed under initial segments, $\rangle \in Y$, which is well founded, $u=\{\eta \in Y$: for no $v \in Y, \eta$ is a proper initial segment of $v\}$, $(\rangle \notin u$, and there are filters \mathscr{D}_{η} on $Y_{\eta}=$ $\left\{\eta^{\wedge}\langle x\rangle: \eta^{\wedge}\langle x\rangle \in Y\right\}$ for $\eta \in Y-u$ such that $\vDash \Gamma\left(\mathscr{D}_{\eta}\right)$ and for $X \subseteq u: X \in \mathscr{D}$ iff for some $X^{\prime} \subseteq Y, X^{\prime} \cap u=X,\langle\quad\rangle \in X^{\prime}$ and

$$
\left[\eta \in X^{\prime} \Rightarrow\left\{\eta^{\wedge}\langle x\rangle: \eta^{\wedge}\langle x\rangle \in X^{\prime}\right\} \in \mathscr{D}_{\eta}\right] .
$$

§4. Representation by nice products

25. Main Lemma. Suppose $a \in I^{\kappa, 2}, a \subseteq R_{\mathrm{ia}}^{\mathrm{\kappa}, 2}, \lambda=\max \operatorname{pcf}(a), \lambda>\sup (a)$, and for $\mu<\sup (a), \sup \operatorname{pcf}(a \cap \mu)<\lambda$. Then there are $f_{\alpha} \in \Pi a$ for $\alpha<\lambda$ which witness $\operatorname{tcf}\left(\Pi a, \leqq_{\operatorname{mex}_{1}^{2}}\right)=\lambda$ and

$$
\begin{equation*}
\text { for } \mu \in a,\left\{f_{\alpha} \upharpoonleft(a \cap \mu): \alpha<\lambda\right\} \text { has cardinality }<\mu \tag{*}
\end{equation*}
$$

(and f_{δ} is $<{ }_{j \in \mathcal{A}}$-lub of $\left\{f_{\alpha}: \alpha<\delta\right\}$ when $\mathrm{cf} \delta>2^{\kappa}$).
Remark. Note that a has no last element.
Proof. Let $a=\left\{\mu_{i}: i<\delta(*)\right\}, \mu_{i}$ increasing with $i, a(\zeta)=a_{\zeta}=\left\{\mu_{i}: i<\zeta\right\}$ for $\zeta<\delta(*)(\delta(*)$ is a limit ordinal as sup $\operatorname{pcf}(a \cap \mu)<\lambda$ for $\mu<\sup (a))$. Let F_{ζ} be the set of functions of the form $f_{0} \upharpoonright b_{0} \cup \cdots \cup f_{n} \upharpoonright b_{n}$ where $\left\langle b_{l}: l \leqq n\right\rangle$ is a partition of a_{ζ} and $b_{l} \equiv b_{b_{i}}^{a, k} \bmod J_{<\theta_{l}}^{x_{i}, a_{l}}$ and

$$
f_{l} \in\left\{f_{\theta_{l} \alpha}^{\kappa_{j}, a(\xi)}: \xi \leqq \zeta, \theta_{l} \in \operatorname{pcf}\left(a_{\xi}\right), \alpha<\theta_{l}\right\} .
$$

Clearly $\left|F_{\zeta}\right| \leqq 2^{\kappa}+\Sigma_{\xi \leqq \zeta} \sup \operatorname{pcf}\left(a_{\xi}\right)=2^{\kappa}+\max \operatorname{pcf}\left(a_{\zeta}\right)$ which is $<\mu_{\zeta}$ as $\left[a \subseteq R^{\kappa, 2} \Rightarrow 2^{\kappa}<\min (a)\right]$ and as $a \subseteq R_{i \mathrm{i}}^{\kappa, 2}$ by
26. FACt. If $\lambda \in R_{\text {ia }}^{\kappa, 2}, a \subseteq R^{\kappa, 2}$ (or even $\left.a \subseteq R^{\kappa, 0}\right),(\forall \mu \in a)[\mu<\lambda]$, then $\lambda>\max \operatorname{pcf}(a)$.
[Proof. If $\lambda \leqq \max \operatorname{pcf}(a), a \subseteq R^{\kappa, 0}$ then there is an ultrafilter \mathscr{D} on a, and in Πa, a $<_{\mathscr{R}}$-increasing sequence $\left\langle f_{\alpha}: \alpha<\max \operatorname{pcf}(a)\right\rangle$, so by $4(1), 5(2)$ for some $b \subseteq R^{\kappa, 0},|b| \leqq \kappa, \sup (b) \leqq \sup (a)(<\lambda)$ and $\lambda \in \operatorname{pcf}(b)$. By 4(6) w.l.o.g. $b \subseteq R^{\kappa, 2}$, so we get a contradiction to $\lambda \in R_{\mathrm{ia}}^{\kappa, 2}$.]

Now it is enough to show
(*)
for every $\alpha<\lambda$ for some $f_{\alpha}^{*} \in \Pi_{\zeta<\delta(*)} \mu_{\zeta}$:
(i) $f_{\lambda, \alpha}^{\kappa, a} \leqq J_{J_{\lambda}^{* \lambda}} f_{\alpha}^{*} \in \prod_{\zeta<\delta(\Delta)} \mu_{\zeta}$:
(ii) for every $\zeta<\delta(*), f_{\alpha}^{*} \upharpoonright a_{\zeta} \in F_{\zeta}$.
[Why is (*) enough? We then can choose by induction on $\alpha, \beta_{\alpha}, f_{\alpha}^{*}$ such that
(a) $\beta_{\alpha}<\lambda$ is such that $(\forall \gamma<\alpha) f_{\gamma}^{*}<_{J_{k \lambda}, ~} f_{\lambda, \beta_{\beta}}^{\kappa, a}$,
(b) $f_{\alpha}^{*} \in \Pi_{\zeta<\delta(*)} \mu_{\zeta}$ is such that $f_{\lambda_{1}, \beta_{a}}^{k, a} \leqq J_{<\lambda}^{*} f_{\alpha}^{*}$ and f_{α}^{*} satisfies (ii),
the first step by the choice of $\left\langle f_{\lambda, \alpha}^{\kappa, \alpha}: \alpha<\lambda\right\rangle$, the second by (*). Clearly ($f_{\alpha}^{*}: \alpha<\lambda$) satisfies the conclusion. More accurately, when α is limit of cofinality $>2^{\kappa}$ we want also that f_{δ}^{*} is $<_{\mathrm{r}_{<\lambda \lambda}}$-lub of $\left\{f_{\beta}^{*}: \beta<\delta\right\}$, but the proof of this is by 27 (i.e., 27 say this holds for a clus of δ 's and now rename).]

Proof of (*). W.l.o.g. $\left[\theta \in a \Rightarrow \theta>\left(2^{\kappa}\right)^{+}\right]$. Let χ be a regular cardinal, large enough. We choose by inductions on $i<\left(2^{\kappa}\right)^{+}$a model N_{i} such that:
(a) N_{i} is an elementary submodel of $(H(\chi), \Theta)$,
(b) $\left\|N_{i}\right\| \leqq 2^{\kappa}$ but $\left\{j: j<2^{\kappa}+i\right\} \subseteq N_{i}$,
(c) $\bigcup_{j<i} N_{j} \subseteq N_{i}$,
(d) the following belongs to N_{i+1} :
(i) $\left\langle N_{j}: j \leqq i\right\rangle$,
(ii) $\operatorname{pcf}(a)$ (hence $\left.\operatorname{pcf}(a) \subseteq N_{i+1}\right)$,
(iii) $\left\langle\left\langle f_{\theta, \alpha}^{\kappa, b}: \alpha<\theta\right\rangle: \theta \in \operatorname{pcf}(b), b \in R^{\kappa, 2}, b \subseteq \lambda\right\rangle$,
(iv) $\alpha(\operatorname{see}(*))$,
(e) for i limit, $N_{i}=\bigcup_{j<i} N_{j}$.

We now define $g_{\gamma} \in \Pi a$ for $\gamma \leqq\left(2^{\kappa}\right)^{+}$by

$$
g_{\gamma}\left(\mu_{\zeta}\right)=\sup \left(\mu_{\zeta} \cap\left(\bigcup_{i<y} N_{i}\right)\right)
$$

and for each $\theta \in R^{\kappa, 2} \cap N_{\gamma}$ let $\delta_{\theta}^{\gamma}=\sup \left(\theta \cap\left(\cup_{i<\gamma} N_{i}\right)\right)$. As we have assumed $\left[\theta \in a \Rightarrow \theta>\left(2^{\kappa}\right)^{+}\right]$clearly $g_{y}\left(\mu_{\zeta}\right)<\mu_{\zeta}$ for $\zeta<\delta(*)$ and $\delta_{\xi}<\theta$ for $\theta \in R^{\kappa, 2} \cap$ N_{γ}.

From Fact 27 below we can prove (*), as $f_{\lambda, \alpha}^{\kappa, a} \in N_{0}$ and, e.g., $g_{\left(2^{\top}\right)^{+}}$is an f_{α}^{*} as required. (Really for a closed unbounded set of $\gamma<\left(2^{\kappa}\right)^{+}$, cf $\gamma>\kappa$ implies g_{γ} is as required.)
27. Fact. Suppose $\left\langle N_{i}: i \leqq \delta\right\rangle$ is an increasing continuous sequence of elementary submodels of $(H(\chi), \in), N_{i} \in N_{i+1}$. Define a function g_{i} : dom $g_{i}=$ $R^{0} \cap N_{i}-\left\|N_{i}\right\|^{+}, g_{i}(\theta)=\sup \left(\theta \cap N_{i}\right) ;$ note that necessarily $g(\theta)<\theta$ as θ
is regular $>\left\|N_{i}\right\|$. Let $g=g_{\delta}$. Suppose further that $a \subseteq R^{0} \cap N_{\delta}-|a|^{+}$, $a \in N_{\delta},|a| \leqq \kappa$,

$$
\left\langle\left\langle f_{\hat{\lambda}, \alpha}^{\kappa, a}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(a)\right\rangle \in N_{\delta}, \quad\left\langle b_{\theta}^{\kappa, a}: \theta \in \operatorname{pcf}(a)\right\rangle \in N_{\delta} .
$$

Then:
(1) If $\theta \in \operatorname{pcf}(a), \theta \in N_{\delta}, \operatorname{cf}(\delta)>2^{x}$ then

$$
\left.\bigoplus_{\theta} g \upharpoonright b_{\theta}^{\kappa, a}=f_{\theta, \beta}^{\kappa, a}(\theta)\right\rangle b_{\theta}^{\kappa, a} \bmod I_{<\theta}^{\kappa, 2} .
$$

(2) If $\theta \in \operatorname{pcf}(a), \theta \in N_{\delta}, I_{<\lambda}^{\kappa_{<}^{2}} \upharpoonright b_{\lambda}^{\kappa, a}$ is σ-complete and $\sigma>\operatorname{cf}(\delta)$ then \bigoplus_{θ}.
(3) If $I_{<\lambda}^{\kappa, 2} \upharpoonright b_{\lambda}^{\kappa, a}$ is generated by $\leqq \sigma$ sets (as an ideal) and $\operatorname{cf}(\delta)>\sigma$ then \bigoplus_{θ}.
(4) If $\operatorname{cf}(\delta)>2^{x}$ (or for each $\theta \in N_{\delta}$, the assumptions of (2) or (3) hold) then for some $n<\omega, \theta_{0}>\theta_{1}>\cdots>\theta_{n}$ from $\operatorname{pcf}(a), \theta_{0}=\max \operatorname{pcf}(a)$ and for some partition $\left\langle b_{l}: l \leqq n\right\rangle$ of a,

$$
\left.g \upharpoonright a=\bigcup_{l=0}^{n}\left(f_{\theta_{i}, \alpha_{d}\left(\theta_{i}\right)}^{x_{i}}\right\rangle b_{\theta_{i}}^{x, a}\right) .
$$

(5) If the assumptions of (1) or (2) or (3) hold, $\operatorname{cf}(\delta)>\mathcal{K}_{0}$, then for a closed unbounded set of $\delta_{1}<\delta, \operatorname{cf}\left(\delta_{1}\right)>\kappa$ implies

$$
g_{\delta_{1}} \upharpoonright b_{\theta}^{\kappa, a}=f_{\left.\theta, \delta_{1} \theta\right)}^{\kappa, a} \upharpoonright b_{\theta}^{\kappa, a} \bmod I_{<\theta \theta}^{\kappa, 2} .
$$

Proof. (1) W.l.o.g. $a \cup\left\{a,\left\langle\left\langle f_{\lambda, \alpha}^{x, a}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(a)\right\rangle, \theta\right\} \subseteq N_{0}$ so $a \subseteq$ $\operatorname{dom}\left(g_{i}\right)$ for each i. Also as $N_{i} \in N_{i+1}, g_{i} \upharpoonright a \in N_{i+1}$. So for $i<j<\delta, g_{i} \upharpoonright a \in N_{j}$, hence $g_{i}(\mu) \in N_{j}$ for $\mu \in a$ hence $g_{i} \upharpoonright a<g_{j} \upharpoonright a$. Also $f_{\theta, b(\theta)}^{x, a} \in N_{j}$ hence $f_{\theta, k \theta)}^{x, a}(\mu) \in$ N_{j} for $\mu \in a$ hence $f_{\theta, k \phi(\theta)}^{\chi, a}<g_{j} \upharpoonright a$. Lastly, as $g_{i} \upharpoonright a \in N_{j}$ and for some $\alpha<\theta$,

$$
g_{i} \upharpoonleft b_{\theta}^{\kappa, a}<f_{\theta, \alpha}^{\kappa, a} \backslash b_{\theta}^{\kappa, a} \bmod I_{<\theta}^{\kappa, 2}
$$

this holds for some $\alpha \in N_{j}$ too, hence it holds for $\alpha=g_{j}(\theta)$. Now for each $i<\delta$, there is $c_{i} \subseteq b_{\theta}^{\kappa, a}, c_{i} \equiv b_{\theta}^{\kappa, a} \bmod I_{<\theta}^{\kappa, 2}$, and

$$
g_{i} \upharpoonright c_{i} \leqq f_{\theta, \xi_{1+1}(\theta)}^{\kappa, a} \upharpoonright c_{i}<g_{i+2} \upharpoonright c_{i} .
$$

So for some $c, A=\left\{i<\delta: c_{i}=c\right\}$ is unbounded, and now by 4(7) $\left\{f_{\theta, \alpha}^{\kappa, a} \upharpoonright b_{\theta}^{\kappa, a}: \alpha<g_{\delta}(\theta)\right\}$ has a least upper bound $\bmod \left(I_{<\theta}^{K, 2} \upharpoonright b_{\theta}^{\kappa, a}\right): g \upharpoonright b_{\theta}^{\kappa, a}$ so we can finish.
(2), (3) Similar.
(4) Like the proof of $16(5)$.
(5) Left to the reader.
28. Main Lemma. If $\lambda=\max \operatorname{pcf}(a)>\sup (a), a \in R^{\kappa, 2},\left\langle a_{i}: i<\sigma\right\rangle$ is a partition of a, and $(\forall i<\sigma) a_{i} \in J_{<\lambda}^{k, a}$, then for some $n_{i}<\omega$ and $\theta_{i, 0,}, \ldots, \theta_{i, n(i)-1}$ from $\operatorname{pcf}\left(a_{i}\right)($ for $i<\sigma)$,

$$
\lambda \in \operatorname{pcf}\left(\left\{\theta_{i, l}: i<\sigma, l<n(i)\right\}\right) .
$$

Proof. Let $\lambda(0)=\sup (\lambda \cap \operatorname{pcf}(a))$. As $|\operatorname{pcf}(a)| \leqq 2^{\kappa}<\lambda$ (as $\lambda>\sup (a)$, $a \in I^{\kappa, 2}$) clearly $\lambda(0)$ is $<\lambda$. (We could obtain $\lambda(0) \notin \operatorname{pcf}(a)$ but have no need.) Let χ be a regular cardinal large enough and M an elementary submodel of ($H(\chi), E)$ such that:

$$
\begin{gathered}
a \in M, \quad\{i: i \leqq \lambda(0)\} \subseteq M, \quad \text { and } \quad\|M\|=\lambda(0), \\
\left\langle\left\langle f_{\theta, \alpha}^{\kappa, b}: \alpha<\theta\right\rangle: b \subseteq a, \theta \in \operatorname{pcf}(b)\right\rangle \in M .
\end{gathered}
$$

We now assume that the conclusion fails, and eventually we shall get a contradiction.

It is enough to show that for every $f \in \Pi a$ for some $g \in(\Pi a) \cap M, f \leqq$ $g \bmod J_{<\lambda}^{\kappa, a}$. So let $f \in \Pi a$ be fixed.

We let $\gamma(*)=\left(2^{\kappa}\right)^{+}$, and $\left\langle N_{i}: i \leqq \gamma(*)\right\rangle$ be an increasing continuous sequence of elementary submodels of $(H(\alpha), \in)$, such that:
(i) $\lambda, a, M,\left\langle\left\langle f_{\mu, \alpha}^{\kappa, b}: \alpha<\mu\right\rangle: \mu \in \operatorname{pcf}(b), b \subseteq a\right\rangle$ belong to N_{0},
(ii) $\left\langle N_{j}: j \leqq i\right\rangle \in N_{i+1}$,
(iii) $\left\|N_{i}\right\|=2^{\kappa}+|i|$,
(iv) $\left\{\alpha: \alpha<2^{\kappa}+i\right\} \subseteq N_{i}$.

Clearly $a \subseteq \operatorname{pcf}(a) \subseteq N_{0}$ and every subset of $\operatorname{pcf}(a)$ of cardinality $\leqq \kappa$ belongs to N_{0}. Let for each $b \subseteq \operatorname{pcf}(a)$ of cardinality $\leqq \kappa, g_{b} \in \Pi b$ be defined by

$$
g_{b}(\theta)=\sup \left(\theta \cap N_{\gamma(\theta)}\right) .
$$

Let $g=\bigcup\left\{g_{b}: b \subseteq \operatorname{pcf}(a),|b| \leqq \kappa\right\}$. By Fact 27(1)

$$
g_{a} \equiv f_{\lambda, g(\lambda)}^{x, a} \bmod J_{<\lambda}^{\kappa, a}
$$

We shall show that $g_{a} \in M$ thus deriving the desired contradiction [as $f \in N_{y(*)}$, clearly $f \leqq g_{a}$].

For each $i<\sigma$, by Fact 27(4) there are $\theta_{i}(l) \in \operatorname{pcf}\left(a_{i}\right)$,

$$
b_{i}(l) \subseteq a_{i}-\bigcup_{m<1} b_{i}(m), \quad b_{i}(l) \equiv b_{\left.\theta_{i}, i\right)}^{x, a} \bmod J_{\left\langle\theta_{l}(l)\right.}^{x_{i}, a},
$$

$$
g_{a} \upharpoonright b_{i}(l)=f_{\theta_{i}^{\prime}(,), s(\theta(l))}^{\kappa .} \upharpoonright b_{i}(l), \quad \text { and } \quad \theta_{i}(0)=\max \operatorname{pcf}\left(a_{i}\right), \quad \theta_{i}(l+1)<\theta_{i}(l),
$$

and $\theta_{i}(l), b_{i}(l)$ are defined just for $l \leqq n(i)$, and lastly

$$
a_{i}=\bigcup_{l \leq n(i)} b_{i}(l) .
$$

As $\mathscr{P}(\kappa) \subseteq M,\left\{\left\langle i, l, \theta_{i}(l)\right\rangle: i<\sigma, l<n(i)\right\} \in M$, it is enough to show that

$$
\left\langle f_{\theta(l), s(\theta(l))}^{, ~, a a_{i}}: l \leqq n(i), i<\sigma\right\rangle \in M .
$$

As $\left\langle\left\langle f_{\theta, \alpha}^{\kappa, b}: \alpha<\theta\right\rangle: b \subseteq a, \theta \in \operatorname{pcf}(b)\right\rangle \in M$ it is enough to have $g_{c}=g \uparrow c \in M$ where $c=\left\{\theta_{i}(l): i<\sigma, l<n(i)\right\}$. Now $|c| \leqq \sigma \leqq \kappa, c \subseteq \operatorname{pcf}(a)$ hence $c \in M$ and $\operatorname{pcf}(c) \subseteq \operatorname{pcf}(a)$ (so $c \subseteq R^{\kappa, 2}$), therefore $\max \operatorname{pcf}(c) \leqq \max \operatorname{pcf}(a)=\lambda$. If $\max \operatorname{pcf}(c)=\lambda$ we finish. Otherwise (as $\operatorname{pcf}(c) \subseteq \operatorname{pcf}(a)) \max \operatorname{pcf}(c) \leqq \lambda(0)$, and as $c \in M$, by 27 easily $g_{c} \in M$, and as we said above, we finish.
29. Conclusion. (1) If $\lambda \in R_{\mathrm{ac}}^{\kappa, 2}, \kappa$ minimal, then
(i) for some a

$$
\lambda=\max \operatorname{pcf}(a), \quad \sup a<\lambda, \quad a \in I^{\kappa, 2},
$$

(ii) for any such $a, J_{<\lambda}^{\kappa, a}$ is a κ-complete ideal on a, hence [$\left.b \subseteq a \wedge|b|<\kappa \Rightarrow b \in J_{<\lambda}^{a, k}\right]$ (and $\lambda=\operatorname{tcf}\left(\Pi a\right.$, $\left.\leqq ر_{<k \lambda}\right)$ and necessarily is regular.
(2) If $(\forall \alpha<\delta)\left(\aleph_{\alpha}^{\alpha}<\mathcal{K}_{\delta}\right), \aleph_{\delta}$ is singular, $a \subseteq R^{\kappa, 2} \cap \aleph_{\delta}, \kappa<\aleph_{\delta}, \mu \in \operatorname{pcf}(a) \cap$ $\left[\aleph_{\delta}, \aleph_{\delta}^{\kappa}\right)$, then there is $a \subseteq R^{\mathrm{cf} \delta, 2} \cap \aleph_{\delta},|a| \leqq \operatorname{cf} \delta$ such that $\mu \in \operatorname{pcf}(a)$ (even a has order type $\leqq \mathrm{cf} \delta$).

Proof. (1) (i) This holds by the definition of $R_{a c}^{\kappa, 2}$ and 17(5).
(ii) If $J_{<\lambda}^{\kappa, a}$ is not κ-complete, we can find $\sigma<\kappa, a_{i} \in J_{<\lambda}^{k, a}$ for $i<\sigma$,

$$
\bigcup_{i<\sigma} a_{i} \notin J_{<\lambda}^{x, a}
$$

W.l.o.g. the a_{i} 's are pairwise disjoint (otherwise use $a_{i} \stackrel{\text { def }}{=} a_{i}-\bigcup_{j<1} a_{j}$) and $a=\bigcup_{i<\sigma} a_{i}$ (otherwise replace a by $a^{\prime} \stackrel{\text { def }}{=} \bigcup_{i<\sigma} a_{i}$).
By 28 we get a contradiction to minimality of κ.
(2) Easy (by 12 and 29(1)).
30. Main Lemma. Suppose $\lambda \in R_{a c}^{x, 2}, \sigma$ is minimal such that $\lambda \in R_{a c}^{\sigma, 2}$.
(1) For some $a \in I^{x, 2}: a \subseteq \lambda$ and $\lambda \in \operatorname{pcf}(a)$.
(2) For a as above for some $b \subseteq a, \lambda=\max \operatorname{pcf}(b)$ and $\lambda>\max \operatorname{pcf}(b \cap \mu)$ for $\mu \in b$ (take first $b=b_{\lambda}^{\kappa, a}$ and then $b \cap \mu$ for the minimal $\mu \in b$ such that $\lambda \in \operatorname{pcf}(b \cap \mu)$).
(3) For b as above $J_{<\lambda}^{x_{<}^{\prime},}$ is σ-complete.
(4) For b as above for some $c \subseteq b$, letting $d_{1} \stackrel{\text { def }}{=} \operatorname{pcf}(c), \lambda=\max d_{1}, d \stackrel{\text { def }}{=}$ $d_{1}-\{\lambda\}$ has no last element; in fact

$$
d-\theta=\operatorname{pcf}(b)-\{\mu: \mu \in \operatorname{pcf}(b), \mu<\lambda, \operatorname{pcf}(b)-\mu \text { is finite }\}-\theta
$$

for some $\theta \in d\left(\right.$ so $\operatorname{pcf}(b)-\operatorname{pcf}(c)$ is finite and $J_{<\lambda}^{\alpha, c}$ is σ-complete by (3)).
(5) For c as above, the order type of the sets c, d has cofinality $\geqq \sigma$.
(6) Letting J ${ }_{d}^{\text {bd }}$ be the ideal of bounded subsets of d, then $\operatorname{tcf}\left(\Pi d,<{ }_{J_{d}}\right)=\lambda$.
(7) For some $d_{2} \subseteq d$ of order type $\operatorname{cf}(\operatorname{otp} d), \operatorname{pcf}_{\left|d_{2}\right|}\left(d_{2}\right)=\{\lambda\}$.

Remark. The main conclusion here is part (6).
Proof. (1) By definition of $R_{\mathrm{ac}}^{\kappa, 2}$.
(2) Clear.
(3) By the assumption on σ and 28.
(4) Clearly $\{\mu \in \operatorname{pcf}(b): \mu<\lambda, \operatorname{pcf}(b)=\mu$ is finite $\}$ is finite. So by 16

$$
c \stackrel{\text { def }}{=} b-\bigcup\left\{b_{\mu, b}^{\kappa, b}: \mu \in \operatorname{pcf}(b), \mu<\lambda,|\operatorname{pcf}(b)-\mu|<\mathcal{K}_{0}\right\}
$$

is as required.
(5) By (3) $J_{<\lambda}^{\alpha_{<}^{c}}$ is σ-complete. If $\mu_{i} \in d$ for $i<\delta<\sigma$, then $b_{\mu_{i}}^{k, c} \in J_{<\lambda}^{\alpha_{<\lambda}, c}$, so $\bigcup_{i<\delta} b_{\mu_{i}}^{\kappa, c} \in J_{<i}^{x_{<i}, c}$ hence by 16 for some $n<\omega$,

$$
\theta_{0}, \ldots, \theta_{n-1} \in d_{1}=\operatorname{pcf}(c)-\{\lambda\}, \quad \bigcup_{i<\delta} b_{\mu_{i}}^{\kappa, c} \subseteq \bigcup_{1<n} b_{\theta_{i}, c}^{x, c}
$$

So necessarily each μ_{i} is $\leqq \operatorname{Max}\left\{\theta_{l}: l<n\right\}$, so (as d has no last element by 30(4)) $\sup _{i<\delta} \mu_{i}<\sup d$, as required.

As for $\operatorname{cf}(\operatorname{totp}(c))$, use $30(2)$ and σ-completeness of the ideal.
(6) For each $\alpha<\lambda$, choose, if possible, a function $g=g_{\infty} g \in \Pi d$ such that: for every $\theta \in \operatorname{pcf}(c)$ (for $\theta=\lambda$ stipulating $g(\theta)=\alpha$)

$$
g \upharpoonright b_{\theta}^{\kappa, c} \equiv f_{\theta, \beta(\theta)}^{\kappa, c} \bmod J_{<\theta}^{K, c}
$$

Let $A=\left\{\alpha<\lambda: g_{\alpha}\right.$ is well defined $\}$. Now
FACT α. A is an unbounded subset of λ.
Proof. By 27.
FACT β. For $\alpha<\beta$ in $A, g_{\alpha}<g_{\beta} \bmod J_{d}^{\text {bd }}$.
Proof of Fact β. Clearly $f_{\lambda, \alpha}^{\kappa, c}<f_{\lambda, \beta}^{\alpha, c} \bmod J_{<\lambda}^{x, c}$ hence

$$
c_{1}=\left\{\theta \in c: f_{\lambda, \alpha}^{K, c}(\theta) \geqq f_{\lambda, \beta}^{\kappa, c}(\theta)\right\} \in J_{<\lambda}^{K, c} .
$$

Now $\quad J_{<\lambda}^{\kappa_{<\lambda}}=\bigcup\left\{J_{\leq \mu}^{x_{s}, c}: \mu \in \operatorname{pcf}(c), \mu \neq \lambda\right\}=\bigcup\left\{J_{<\mu}^{c_{<\mu}, c}: \mu \in \operatorname{pcf}(c), \mu \neq \lambda\right\}$ $\operatorname{pcf}(c)-\{\lambda\}$ has no last element). So for some $\theta(*) \in \operatorname{pcf}(c)-\{\lambda\}, c_{1} \in J_{<\theta(*)}^{k, c}$. Also

$$
\begin{aligned}
& c_{2}=\left\{\mu \in c: f_{\lambda, \alpha}^{\kappa, c}(\mu) \neq g_{\alpha}(\mu)\right\} \in J_{<\lambda}^{\kappa, c}, \\
& c_{3}=\left\{\mu \in c: f_{\lambda, \beta}^{\kappa, \alpha}(\mu) \neq g_{\beta}(\mu)\right\} \in J_{\lambda, c}^{\kappa, c} .
\end{aligned}
$$

So w.l.o.g. also $c_{2}, c_{3} \in J_{\langle\theta,(\cdot)}^{x_{2}, c}$. Now

$$
\begin{aligned}
g_{\alpha} \upharpoonleft\left(c-c_{1} \cup c_{2} \cup c_{3}\right) & =f_{\lambda, \alpha}^{\kappa, c} \upharpoonright\left(c-c_{1} \cup c_{2} \cup c_{3}\right) \\
& <f_{\lambda, \beta}^{\kappa, c} \upharpoonright\left(c-c_{1} \cup c_{2} \cup c_{3}\right)=g_{\beta} \upharpoonleft\left(c-c_{1} \cup c_{2} \cup c_{3}\right) .
\end{aligned}
$$

Hence for every $\theta \in d$, if $\theta \geqq \theta(*)\left(\right.$ as $\left.c_{1} \cup c_{2} \cup c_{3} \in J_{<\theta(*)}^{\kappa_{<, ~}^{c}} \subseteq J_{<\theta \theta}^{\alpha_{8}^{c},}\right)$ then

$$
f_{\theta, s_{a}(\theta)}^{\kappa_{\theta}^{c} \upharpoonright b_{\theta}^{\kappa, c} \equiv g_{\alpha} \upharpoonright b_{\theta}^{\kappa, c}<g_{\beta} \upharpoonright b_{\theta}^{\kappa, c} \equiv f_{\theta, g_{\beta}(\theta)}^{\kappa, c} \bmod J_{<\theta}^{\kappa, c} .}
$$

Hence by the choice of $\left\langle f_{\theta, \gamma}^{\kappa, c}: \gamma<\theta\right\rangle$ necessarily $g_{\alpha}(\theta)<g_{\beta}(\theta)$ as required.
Fact γ. If $g \in \Pi d$, then for some $\alpha \in A, g<g_{\alpha} \bmod J_{d}^{\text {bd }}$ [use 27 with $\left.g \in N_{0}\right]$.

By Facts α, β, γ we finish.
(7) Follows by 30(6).

§5. Applications

31. Definition. $\operatorname{Pr}_{0}(\lambda, \kappa, \theta)$ where $\lambda \geqq \kappa+\theta, \lambda$ an infinite cardinal, means that there is a two place function c from λ to κ which witnesses it, which means:
(*) if $\xi<\theta$ and for $i<\lambda,\left\langle\alpha_{i, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq i,<\lambda$ and h is a two place function from $\xi=\{\zeta: \zeta<\xi\}$ to κ, then there are $i<j<\lambda$, such that $\bigcup_{\zeta<\xi} \alpha_{i, \zeta}<\alpha_{j, 0}$ and

$$
\left[\zeta_{1}<\xi \wedge \zeta_{2}<\xi \Rightarrow c\left(\alpha_{i, \zeta, 1}, \alpha_{j, \zeta}\right)=h\left(\zeta_{1}, \zeta_{2}\right)\right] .
$$

32. Definition. (1) $\operatorname{Pr}_{1}(\lambda, \kappa, \theta)$ where $\lambda \geqq \kappa+\theta, \lambda$ an infinite cardinal, means that there is a two place function c from λ to κ which witnesses it, which means:
(*) if $\xi<\theta$ and for $i<\lambda,\left\langle\alpha_{i, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq i,<\lambda$ and $\gamma<\kappa$, then there are $i<j<\lambda$ such that $\bigcup_{\zeta<\xi} \alpha_{i, \zeta}<\alpha_{j, 0}$ and

$$
\left[\zeta_{1}<\xi \wedge \zeta_{2}<\xi \Rightarrow c\left(\alpha_{i, \zeta_{1},}, \alpha_{j, \zeta_{2}}\right)=\gamma\right]
$$

(2) $\mathrm{Pr}_{1}^{-}(\lambda, \kappa, \theta)$ is defined similarly but we add to the assumption of (*):

$$
\left[i<\lambda, \zeta_{1}<\zeta_{2}<\xi \Rightarrow c\left(\alpha_{\left.\left.i, \frac{1}{}, \alpha_{i, \zeta_{2}}\right)=\gamma\right] . . . ~}^{\text {. }}\right.\right.
$$

33. Definition. (1) $\operatorname{Pr}_{2}(\lambda, \kappa, \theta)$ where $\lambda \geqq \kappa+\theta, \lambda$ an infinite cardinal, means that there is a symmetric two place function c from λ to κ which witnesses it, which means:
(*) if $\xi<\theta$ and for $i<\lambda,\left\langle\alpha_{i, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq i$ and $<\lambda$ and $\gamma<\kappa$, then there are $i<j<\lambda$, such that $\bigcup_{\zeta<\xi} \alpha_{i, \zeta}<$ $\alpha_{j, 0}$ and for $\zeta_{1}, \zeta_{2}<\xi$
(i) $\zeta_{1}=\zeta_{2} \Rightarrow c\left(\alpha_{i, \zeta}, \alpha_{j, \zeta_{2}}\right)=\gamma$,
(ii) $\zeta_{1} \neq \zeta_{2} \Rightarrow c\left(\alpha_{i, \zeta_{1}}, \alpha_{j, \zeta_{2}}\right)=c\left(\alpha_{i, \zeta_{p}} \alpha_{i, \zeta_{2}}\right)$.
(2) $\operatorname{Pr}_{2}^{a}(\lambda, \kappa, \theta)$ is defined similarly, replacing (i), (ii) by
(i) $\quad \xi>\zeta_{1}>\zeta_{2} \Rightarrow c\left(\alpha_{i, \zeta_{1}}, \alpha_{j, \zeta_{2}}\right)=2 \gamma$,
(ii) $\zeta_{1}<\zeta_{2}<\xi \Rightarrow c\left(\alpha_{i, \zeta_{1}}, \alpha_{j, \zeta_{2}}\right)=c\left(\alpha_{i, \zeta_{\nu}} \alpha_{i, \zeta_{2}}\right)$
(iii) $\zeta<\xi \Rightarrow c\left(\alpha_{i, \zeta}, \alpha_{j, \zeta}\right)=2 \gamma+1$.
(3) $\operatorname{Pr}_{2}^{b}(\lambda, \kappa, \theta)$ is defined similarly, interchanging the conclusions of (i)', (ii)'.
(4) $\operatorname{Pr}_{2}(\lambda, \kappa, \theta, \mu)$ is defined as in (1), but we add to the assumption of (*) an ordinal $\gamma_{0}<\mu$ and get a set $u \subseteq \lambda$ of order type γ_{0} such that any $i<j$ from u satisfies the conclusion of (*).
34. Definition. (1) $\operatorname{Pr}_{3}^{5}(\lambda, \kappa, \theta)$ where $\lambda \geqq \kappa+\theta, \lambda$ an infinite cardinal, means that there is a two place function c from λ to κ which witnesses it, which means:
(*) if $\xi<\theta$ and for $i<\lambda,\left\langle\alpha_{i, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq i$ and $<\lambda$ and $2 \gamma+1<\kappa$ and $\zeta(*)<\xi$, then there are $i<j<\lambda$ such that $\bigcup_{\zeta<\xi} \alpha_{i, \zeta}<\alpha_{j, 0}$ and
(i) $\zeta<\zeta(*) \Rightarrow c\left(\alpha_{i, \zeta(*)} \alpha_{j, \zeta}\right)=2 \gamma$,
(ii) $\zeta(*)<\zeta<\xi \Rightarrow c\left(\alpha_{i, \zeta(*)}, \alpha_{j, \zeta}\right)=c\left(\alpha_{i, \zeta(*)}, \alpha_{j, \zeta}\right)$,
(iii) $c\left(\alpha_{i, \zeta(*)}, \alpha_{j, \zeta(*)}\right)=2 \gamma+1$.
(2) $\operatorname{Pr}_{3}^{L}(\lambda, \kappa, \theta)$ is defined similarly replacing (i), (ii), (iii) by:
(i) $\zeta<\zeta(*) \Rightarrow c\left(\alpha_{i, \zeta}, \alpha_{j, \zeta(*)}\right)=c\left(\alpha_{i, \zeta}, \alpha_{i, \zeta(*)}\right)$,
(ii) $\zeta(*)<\zeta<\xi \Rightarrow c\left(\alpha_{i, \zeta}, \alpha_{j, \zeta(*)}\right)=2 \gamma$,
(iii) $c\left(\alpha_{i, \zeta(*)}, \alpha_{j, \zeta(*)}\right)=2 \gamma+1$.
35. Definition. In Definitions 31-34, omitting θ means that it is \aleph_{0}.
36. Observation. (1) $\operatorname{Pr}_{0}(\lambda, \kappa, \theta)$ implies $\operatorname{Pr}_{1}(\lambda, \kappa, \theta), \operatorname{Pr}_{2}(\lambda, \kappa, \theta)$.
(2) $\operatorname{Pr}_{2}^{y}(\lambda, \kappa, \theta)$ implies $\operatorname{Pr}_{3}^{x}(\lambda, \kappa, \theta)$ when $y=a, x=S$ or $y=b, x=L$.
(3) $\mathrm{Pr}_{1}(\lambda, \kappa, \theta)$ implies $\operatorname{Pr}_{1}^{-}(\lambda, \kappa, \theta)$.
(4) $\operatorname{Pr}_{2}(\lambda, \kappa, \theta)$ implies $\operatorname{Pr}_{1}^{-}(\lambda, \kappa, \theta)$.
(5) $\operatorname{Pr}_{2}(\lambda, \kappa, \theta, 2)$ is equivalent to $\operatorname{Pr}_{2}(\lambda, \kappa, \theta)$.
(6) If $\quad \kappa_{1} \leqq \kappa_{2}, \quad \theta_{1} \leqq \theta_{2}, \quad \mu_{1} \leqq \mu_{2} \quad$ then $\quad \operatorname{Pr}_{0}\left(\lambda, \kappa_{2}, \theta_{2}\right) \Rightarrow \operatorname{Pr}_{0}\left(\lambda, \kappa_{1}, \theta_{1}\right)$, $\operatorname{Pr}_{1}\left(\lambda, \kappa_{2}, \theta_{2}\right) \Rightarrow \operatorname{Pr}_{1}\left(\lambda, \kappa_{1}, \theta_{1}\right), \operatorname{Pr}_{1}^{-}\left(\lambda, \kappa_{2}, \theta_{2}\right) \Rightarrow \operatorname{Pr}_{1}^{-}\left(\lambda, \kappa_{1}, \theta_{1}\right), \quad \operatorname{Pr}_{2}\left(\lambda, \kappa_{2}, \theta_{2}, \mu_{2}\right) \Rightarrow$ $\operatorname{Pr}_{2}\left(\lambda, \kappa_{1}, \theta_{1}, \mu_{1}\right), \operatorname{Pr}_{3}\left(\lambda, \kappa_{2}, \theta_{2}\right) \Rightarrow \operatorname{Pr}_{3}\left(\lambda, \kappa_{1}, \theta_{1}\right)$.
(7) $\operatorname{Pr}_{1}^{-}(\lambda, 2)$ implies that the λ-c.c. is not productive for Boolean algebras (see [Sh 7] proof of 1.10).
(8) $\operatorname{Pr}_{3}^{X}(\lambda, 2)$ implies that there are $\lambda-X$ spaces for $X=L, S$ (Hausdorf with a basis of clopen sets). (See [Sh 7] proof of 1.10.)
(9) $\operatorname{Pr}_{1}^{-}(\lambda, n)$ implies that there are Boolean algebras $B_{l}(l<n) \cdot \Pi_{l<n} B_{l}$ does not satisfy the λ-c.c. but $\Pi_{l<n, l * m} B_{l}$ satisfies it for $m<n$. (See [Sh 7] proof of 1.10.)
37. Diagram. (For $\kappa \geqq 2, \theta \geqq 2$.)

38. Lemma. (1) Suppose $c \subseteq R^{0}, \operatorname{tcf}\left(\Pi c\right.$, $\left.\leqq{ }_{j_{c}^{c}}\right)=\lambda$ (c has no last element $)$ $(\forall \mu \in c)(\mu<\lambda) \quad$ and \quad let $\quad \chi=\operatorname{Min}\{|c-\mu|: \mu \in c\}<\sup c$. Then $\operatorname{Pr}_{1}(\lambda, \chi, \operatorname{cf}(c))$.
(2) If in addition for arbitrarily large $\theta \in c, \operatorname{Pr}_{l}\left(\theta, \chi^{\prime}, 2 \sigma\right), \theta^{<\sigma}<$ $\operatorname{Min}\left(c-\theta^{+}\right), l \in\{0,1\}, \sup (c \cap \theta) \in c, \sigma \leqq \operatorname{cf}(c)$ then $\operatorname{Pr}_{l}\left(\lambda, \chi^{\prime}, \sigma\right)$.
39. Remark. (1) Every unbounded $c^{\prime} \subseteq c$ satisfies all the assumptions (though: maybe with a smaller χ). So w.l.o.g. $|c|=\chi$.
(2) If in $38(2)$ we want to interpret σ as order type, 2σ should be replaced by σ.
(3) In 38(1) we can have $\operatorname{Pr}_{i}\left(\theta, \chi_{\theta}^{\prime}, 2 \sigma_{\theta}\right)$ for $\theta \in c$, such that

$$
\left[\mathrm{v}(1) \leqq \theta(2) \Rightarrow \chi_{\theta(1)}^{\prime} \leqq \chi_{\theta(2)}^{\prime} \wedge \sigma_{\theta(1)} \leqq \sigma_{\theta(2)}\right]
$$

and get $\operatorname{Pr}_{i}\left(\lambda, \Sigma_{\theta} \chi_{\theta}^{\prime}, \Sigma_{\theta} \sigma_{\theta}\right)$.
(4) $\operatorname{cf}(c)$ is the cofinality of the order type of c.

Proof. (1) Let $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ exemplify $\operatorname{tcf}\left(\Pi c\right.$, $\left.\leqq j_{c}^{\alpha}\right)=\lambda,\left\langle c_{i}: i<\chi\right\rangle$ a partition of c to χ sets, each c_{i} is an unbounded subset of c. Let $h: c \rightarrow \chi$ be such that $\theta \in c_{h(\theta)}$.
Let us define two two-place functions, θ, e from λ with range of power χ : for $\alpha<\beta<\lambda, \theta(\alpha, \beta)=\sup \left\{\theta: f_{\alpha}(\theta) \geqq f_{\beta}(\theta)\right\}$ (so if there is a maximal θ for which $f_{a}(\theta) \geqq f_{\beta}(\theta)$, it is $\theta(\alpha, \beta)$) and

$$
e(\alpha, \beta)=h(\theta(\alpha, \beta)) .
$$

Suppose $\xi<\operatorname{cf}(c),\left\langle\alpha_{\beta, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq \beta$ but $<\lambda$ for each $\beta<\lambda$. Now for any given $i(*)<\chi$ we should find $\beta<\gamma<\lambda$ such that $\bigcup_{\zeta} \alpha_{\beta, \zeta}<\alpha_{\gamma, 0}$ and for every $\zeta_{1}, \zeta_{2}<\xi, \theta\left(\alpha_{\beta, \zeta,} \alpha_{\gamma, \zeta}\right)$ belongs to $c_{i(0)}$.
Let χ^{*} be a regular large enough cardinal. Let M_{0} be an elementary submodel of ($H\left(\chi^{*}\right), \in,<^{*}$) where $<^{*}$ is a well ordering of $H\left(\chi^{*}\right.$), to which λ, c, ξ, $\left\langle\left\langle\alpha_{\beta, \zeta}: \zeta<\xi\right\rangle: \beta<\lambda\right\rangle,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$ belongs, $\xi \cup c \subseteq M$, and $\left\|M_{0}\right\|<\sup c$.

Let $c^{\prime}=\left\{\theta \in c: \sup \left(M_{0} \cap \theta\right)<\theta\right\}$, so $c^{\prime} \equiv c \bmod J_{c}^{\text {bd }}$. Define a function $g \in \prod_{c}: g(\theta)$ is $\sup \left(M_{0} \cap \theta\right)$ for $\theta \in c^{\prime}$ and zero otherwise. As $\left\langle f_{\beta}: \beta<\lambda\right\rangle$ exemplify $\operatorname{tcf}\left(\Pi c,<\mu_{c}^{m}\right)=\lambda$ for some $\beta(0)<\lambda, g<f_{\beta(0)} \bmod J_{c}^{\text {bd }}$, and $\beta(0)>$ $\sup \left(M_{0} \cap \lambda\right)$:
As $\alpha_{\beta(0), \zeta} \geqq \beta(0)$ for each $\zeta<\xi$ for some $\theta_{\zeta}^{0} \in c$,

$$
\left[\theta_{\zeta}^{0}<\theta \in c \Rightarrow g(\theta)<f_{a_{\text {aposk }}}(\theta)\right] .
$$

Let $\theta(0)=\sup \left\{\theta_{\xi}^{0}: \zeta<\xi\right\}$ so as $\operatorname{cf}(c)>\xi$ clearly $\theta(0)<\sup (c)$. Let $\theta(1) \in$ $c_{i(\theta)}$ be $>\theta(0)$. Let for $\beta<\lambda, f_{\beta}^{*} \in \Pi c$ be defined by

$$
f_{\beta}^{*}(\theta)=\operatorname{Min}\left\{f_{\alpha_{\alpha, 6}}(\theta): \zeta<\xi\right\} .
$$

Easily $f_{\beta} \leqq f_{\beta}^{*} \bmod J_{c}^{\text {bd }}(\operatorname{ascf}(\operatorname{otp} c)>\xi)$. Let

$$
c^{*}=\left\{\theta \in c: \sup \left\{f_{\beta}^{*}(\theta): \beta<\lambda\right\}=\theta\right\} .
$$

So $c^{*}=c \bmod J_{c}^{\text {bd }}$ [otherwise define $g^{*} \in \Pi c: g^{*}(\theta)=\sup \left\{f_{\beta}^{*}(\theta): \beta<\lambda\right\}$ if $\theta \in c-c^{*}$, and zero otherwise. So for some $\beta<\lambda, g^{*}<f_{\beta} \bmod J_{c}^{\text {bd }}$, and we get a contradiction easily].
So we could have chosen $\theta(1) \in c^{*}$, such that $\theta(1)>\left\|M_{0}\right\|$ and for some β (1),

$$
\gamma \stackrel{\text { def }}{=} f_{\beta(1)}^{*}(\theta(1))>\sup \left\{f_{a_{\text {aposs }}}(\theta(1)): \zeta<\xi\right\} .
$$

Let M_{1} be the Skolem Hull of $M \cup\{\gamma\}$ (in $\left(H\left(\chi^{*}\right), \in,<^{*}\right)$). Now clearly $\left(H\left(\chi^{*}\right), \in,<^{*}\right) \vDash(\exists \beta<\lambda) f_{\beta}^{*}(\theta(1))=\gamma ;$ as $\lambda,\left\langle f_{\beta}^{*}, \beta<\lambda\right\rangle, \theta(1), \gamma$ are in M_{1} there is $\beta(2) \in M_{1} \cap \lambda, f_{\beta(2)}^{*}(\theta(1))=\gamma$. So

$$
\left[\zeta_{1}, \zeta_{2}<\xi \Rightarrow f_{a_{\text {gox }} x_{1}}^{*}(\theta(1))<f_{\alpha_{1,2 x_{2}}}^{*}(\theta(1))\right] .
$$

Easily, for every regular cardinal $\sigma \in M_{0}$, if $\sigma>\theta(1)$, then $\sup \left(M_{0} \cap \sigma\right)=$ $\sup \left(M_{1} \cap \sigma\right)$.
As $\beta(0)>\sup \left(M_{0} \cap \lambda\right)$, also $\beta(0)>\sup \left(M_{1} \cap \lambda\right)$, but $\beta(2) \in M_{1}$, so $\beta(0)>$ $\beta(2)$, and similarly $\alpha_{\beta(2), \zeta_{1}}<\alpha_{\beta(0), \zeta_{2}}$ (for $\zeta_{1}, \zeta_{2}<\xi$). Also for every $\theta \in c$, if $\theta>\theta(1), \zeta_{1}, \zeta_{2}<\xi$, then $f_{\alpha_{\rho_{2}\left(2, S_{1}\right.}}(\theta) \in M_{1}$ hence $f_{a_{\text {ge2 } 21_{1}}}(\theta)<\sup \left(M_{0} \cap \theta\right)$ hence
 $i(*)$, so we finish.
(2) Let c_{θ} be a two place function from θ to χ^{\prime}, which exemplifies our hypothesis when possible. Let

$$
c^{*}(\alpha, \beta)=c_{\theta(\alpha, \beta)}\left(f_{\alpha}(\theta(\alpha, \beta)), f_{\beta}(\theta(\alpha, \beta))\right) .
$$

The rest is left to the reader.

§6. Additional information

40. Lemma. Suppose $a \in I^{\kappa, 2}, \lambda=\max \operatorname{pcf}(a), c=\operatorname{pcf}(a)-\{\lambda\}, c$ has no last element, $\chi=\min \{|c-\mu|: \mu \in c\}$. Then $\operatorname{Pr}_{2}\left(\lambda, \chi, \mathcal{N}_{0}\right)$.

Proof. Let $\left\langle c_{i}: i<\lambda\right\rangle$ be a partition of c such that each c_{i} is an unbounded subset of c. Let $h: c \rightarrow \chi$ be defined by $\theta \in c_{h(\theta)}$. W.l.o.g. $(\forall \mu \in c) \mu>\left(2^{\kappa}\right)^{+}$. Let $f_{\alpha} \xlongequal{\text { def }} f_{\lambda, \alpha}^{k, a}, \sigma=\aleph_{0}$. Let us define two two-place functions θ^{-}, e^{-}from λ to $\operatorname{cf} \chi$ respectively:

$$
\text { for } \alpha<\beta<\lambda, \quad \theta^{-}(\alpha, \beta) \stackrel{\text { def }}{=} \min \left\{\mu:\left\{\theta \in a: f_{\alpha}(\theta)=f_{\beta}(\theta)\right\} \in I_{<\mu^{+}}^{K, 2}\right\}
$$

(so $\theta^{-}(\alpha, \beta) \in \operatorname{pcf}(a)$ and as $f_{\alpha} \neq f_{\beta} \bmod I_{<\lambda}^{\alpha, 2}$ clearly $\theta^{-}(\alpha, \beta) \in c$. Let $e^{-}(\alpha, \beta) \stackrel{\text { def }}{=} h\left(\theta^{-}(\alpha, \beta)\right)$.

Define A as in the proof of 30(6). W.l.o.g. we restrict ourselves to A.
Suppose $\xi<\aleph_{0},\left\langle\alpha_{\beta, \zeta}: \zeta<\xi\right\rangle$ is a strictly increasing sequence of ordinals $\geqq \beta$ but from A, for each $\beta<\lambda$.

Now for any given $i(*)<\chi$ we should find $\beta<\gamma<\lambda$ such that $\bigcup_{\zeta} \alpha_{\beta, \zeta}<\alpha_{\gamma, 0}$ and $\theta\left(\alpha_{\beta, \zeta_{1}}, \alpha_{y, \zeta_{2}}\right)$ belongs to $c_{i(0)}$ if $\zeta_{1}=\zeta_{2}$ and is $\theta^{-}\left(\alpha_{\beta, \zeta_{1}}, \alpha_{\beta, \zeta_{2}}\right)$ if $\zeta_{1} \neq \zeta_{2}$.

Let χ^{*} be regular large enough. Let M_{0} be an elementary submodel of $\left(H\left(\chi^{*}\right), \in,<^{*}\right)$ where $<^{*}$ is a well ordering of $H\left(\chi^{*}\right)$, such that the following belongs to $M_{0}: \lambda, a, c,\left\langle\left\langle\alpha_{\beta, \zeta}: \zeta<\xi\right\rangle: \beta<\lambda\right\rangle,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle, \mu$ for $\mu \in c$, and M has cardinality 2^{κ} and every subset of M_{0} of cardinality $\leqq \kappa$ belongs to M.
Let $g \in \Pi c$ be defined by $g(\theta)=\sup \left(M_{0} \cap \theta\right)$; as $a \subseteq R^{0, \kappa}$, $(\forall \mu \in a)\left[\mu>\left(2^{\kappa}\right)^{+}\right]$, clearly $g \in \Pi c ;$ so for some $\beta(0) \in A, \quad g \upharpoonright a<$ $f_{\beta(0)} \bmod J_{<\lambda}^{k, a}$. But $J_{<\lambda}^{K, a}=\bigcup_{\theta \in c} J_{<\theta,}^{k, a}$, so

$$
a \zeta \stackrel{\text { def }}{=}\left\{\theta \in a: g(\theta) \geqq f_{\alpha_{\text {gows }}}(\theta)\right\}
$$

belongs to $J_{<\sigma_{\zeta}, a_{\xi}}^{k,}$, for some θ_{ζ}. As $J_{<\lambda}^{\kappa, a}$ is σ-complete, $\xi<\sigma$, for some $\theta(0) \in c$, $\bigcup_{\xi<\xi} a \xi \in J_{<\theta(0)}^{x, a}$. Let $\theta(1) \in c_{i(\theta)}, \theta(1)>\theta(0)$.
As $\beta(0) \in A$, for $\zeta<\xi$ we can find $\mu_{\zeta, l}\left(l \leqq n_{\zeta}\right)$ from $c \cap \theta(1)^{+}$and partition $\left\langle a_{\zeta, l}: l \leqq n_{\zeta}\right\rangle$ of $a_{2}=\bigcup_{\zeta<\zeta} a_{\}} \cup b_{\theta(1)}^{\kappa, a} \cup \cup\left\{b_{\theta}^{\kappa}: \theta=\left(\alpha_{\beta(0), \xi}, \alpha_{\beta(0), \xi)}\right)\right\}$ such that:

Let M_{2} be the Skolem Hull of

$$
M_{1} \cup\left\{\left\langle\left\langle\left\langle\mu_{\zeta, l}, f_{a_{\text {pooks }}}\left(\mu_{\zeta, l}\right), a_{\xi, l}\right\rangle: l \leqq n_{\zeta}\right\rangle: \zeta<\xi\right\rangle\right\} .
$$

So there is $\beta(1) \in M_{1}, \beta(1) \in A$, and $f_{\alpha_{\text {Quck }}} \upharpoonright a_{2}=f_{\alpha_{\text {go, }} \backslash} \upharpoonright a_{2}$. As in the proof of 38 , for $\theta \in \operatorname{pcf}(a)-\theta(1)^{+}$,

$$
\sup \left(M_{0} \cap \theta\right)=\sup \left(M_{2} \cap \theta\right)
$$

Easily $\beta(1)<\beta(0)$ are as required.
41. Remark. Can we have $\operatorname{Pr}_{2}\left(\lambda, \chi^{\prime}, \sigma\right)$? Yes, if e.g. for some $\mu_{0} \in c$, $\left[\mu_{0}<\mu \in c \Rightarrow \mu^{\sigma}<\operatorname{Min}\left(c-\mu^{+}\right)\right]$, even replacing c by $c^{\prime} \subseteq c, \sup c=\sup c^{\prime}$, $\chi^{\prime}=\operatorname{Min}\left\{\left|c^{\prime}-\mu\right|: \mu \in c\right\}$.
42. Conclusion. If $\lambda \in R_{\mathrm{ac}}^{\kappa, 2}, \kappa$ minimal, then $\operatorname{Pr}_{1}(\lambda, \kappa, \kappa)$ and $\operatorname{Pr}_{2}\left(\lambda, \kappa, \aleph_{0}\right)$.

Proof. By 30(6), (5) the assumption of 38 and 40 holds. By 38 and 40 we get respectively our two conclusions.
43. Conclusion. (1) If $\lambda>2^{\text {cf } \lambda}$ then for some κ,

$$
\operatorname{Pr}_{1}\left(\lambda^{+}, \kappa, \kappa\right), \quad \operatorname{Pr}_{2}\left(\lambda^{+}, \kappa, \aleph_{0}\right)
$$

(and see 37).
(2) If $\mu<\lambda \leqq \mu^{\kappa}$, cf $\mu>\mathcal{K}_{0},(\forall \theta<\mu) \theta^{\kappa}<\mu$, cf $\lambda=\lambda$, then $\operatorname{Pr}_{1}(\lambda, \kappa, \kappa)$, $\mathrm{Pr}_{2}(\lambda, \kappa, \kappa)$.
44. Lemma. Suppose $a \in I^{x, 2}, a \subseteq R^{\kappa, 2}, \lambda=\max \operatorname{pcf}(a)>\sup (a)$.

$$
[\forall \theta \in a][\forall \mu<\theta]\left[\mu^{<\sigma}<\theta\right],
$$

$a \cap \theta \in J_{<\lambda}^{x, a}$ for $\theta \in a$. Suppose $\mu_{\theta}, \sigma_{\theta}$ are cardinals for each $\theta \in a$, and

$$
\left[\theta_{1}<\theta_{2} \text { from } a \Rightarrow \mu_{\theta(1)} \leqq \mu_{\theta(2)} \wedge \sigma_{\theta(1)} \leqq \sigma_{\theta(2)}\right], \quad \sigma_{\theta} \leqq \sigma .
$$

Then for $l=2, \wedge_{\theta \in a} \operatorname{Pr}_{l}\left(\theta, \mu_{\theta}, \sigma_{\theta}\right)$ implies $\mathrm{Pr}_{l}\left(\lambda, \sup \mu_{\theta}, \sup \sigma_{\theta}\right)$.
Proof. Straightforward.
Remark. The improvement 2σ below enables us to have $\operatorname{Pr}_{2}(\lambda, 2)$ even when $I_{<\lambda}^{k, a}$ is a maximal ideal.
45. Lemma. Suppose $a \in I^{\kappa, 2}, \quad a \subseteq R_{\mathrm{i}^{\kappa, a}}^{x,} \quad \lambda=\max \operatorname{pcf}(a)>\sup (a)$, $\left\langle a_{i}: i<\sigma_{1}\right\rangle$ are pairwise disjoint subsets of $a, a_{i} \notin J_{<\lambda}^{k, a}, J_{<\lambda}^{k, a}$ is σ_{2}-complete and for $\theta \in a,[\forall \mu<\theta] \mu^{<\sigma_{2}}<\theta$. Then
(1) $\operatorname{Pr}_{2}\left(\lambda, \sigma_{1}, \sigma_{2}\right)$.

Moreover

(2) $\operatorname{Pr}_{2}\left(\lambda, 2 \sigma_{1}, \sigma_{2}\right)$.
(3) If for $\theta \in a, \operatorname{Pr}_{2}\left(\theta, \chi_{\theta}, \sigma_{\theta}\right), \sigma_{\theta} \leqq \sigma_{2}$,

$$
\left[\theta(1) \leqq \theta(2) \Rightarrow \chi_{\theta(1)} \leqq \chi_{\theta(2)} \wedge \sigma_{\theta(1)} \leqq \sigma_{\theta(2)}\right]
$$

then $\operatorname{Pr}_{2}\left(\lambda, \Sigma_{\theta \in a} \chi_{\theta}, \Sigma_{\theta \in a} \sigma_{\theta}\right)$.
Proof. (1) Let f_{α} be such that (*) of 25 holds (and the other demands there). We define for $\alpha<\beta<\lambda: \theta(\alpha, \beta)=\operatorname{Min}\left\{\theta \in a: f_{\alpha}(\theta) \neq f_{\beta}(\theta)\right\}$. Now $\left\langle a_{i}: i<\sigma_{1}\right\rangle$ is a partition of a, and let $h: a \rightarrow \sigma_{1}$ be defined by $\theta \in a_{h(\theta)}$.

Let for $\alpha<\beta<\lambda, e(\alpha, \beta)=h(\theta(\alpha, \beta))$. Let $\xi<\sigma_{2}\left\langle\alpha_{\beta, \zeta}: \zeta<\xi\right\rangle$ be a strictly increasing sequence of ordinals $<\lambda, \geqq \beta$, and let $i(*)<\sigma_{1}$. Let us define $f_{B}^{*} \in \Pi a$ by

$$
f_{\beta}^{*}(\theta)=\operatorname{Min}\left\{f_{\alpha a t, ~}(\theta): \zeta<\xi\right\} .
$$

As $\xi<\sigma_{2}, J_{<\lambda}^{k, a}$ is σ_{2}-complete, clearly $f_{\alpha} \leqq f_{\beta}^{*} \bmod J_{<\lambda}^{k, \alpha}$. Let

$$
c^{*}=\left\{\theta \in a: \sup \left\{f_{\beta}^{*}(\theta): \beta<\lambda\right\}=\theta\right\}
$$

Then $c^{*} \equiv c \bmod J_{<\lambda}^{k, a}$.
So we can find $\theta^{*} \in c^{*} \cap c_{i}$ so there are $\beta(i)<\lambda$ for $i<\theta^{*}$ such that $f_{\beta(i)}^{*}\left(\theta^{*}\right) \geqq i$, w.l.o.g. $\left[i<j<\theta^{*} \Rightarrow \beta(i)<\beta(j)\right]$, and (by (*) of 25) w.l.o.g. $\left\langle f_{\alpha_{\rho(2,5},} \upharpoonright\left(a \cap 0^{*}: \zeta<\xi\right\rangle\right.$ is the same for all. The rest should be clear.
(2) What for 2σ colours? Let $\operatorname{pr}(\alpha, \beta)$ be 0 if $\alpha<\beta \equiv f_{\alpha}(\theta(\alpha, \beta))<$ $f_{\beta}(\theta(\alpha, \beta))$, and 1 otherwise, and let $e^{\prime \prime}(\alpha, \beta)=\sigma_{1} \times \operatorname{pr}(\alpha, \beta)+h(\theta(\alpha, \beta))$.
46. Claim. Suppose $\lambda=\max \operatorname{pcf}(a), a \in I^{\alpha^{2},}, J_{\lambda}^{\kappa, a}$ is σ-complete. Then $\operatorname{Pr}_{1}^{-}(\lambda, 2, \sigma)$.

Proof. For $\alpha<\beta$

$$
c(\alpha, \beta)= \begin{cases}0 & (\forall \mu \in a) f_{\lambda, a}^{\kappa, a}(\mu) \leqq f_{\lambda, \beta}^{k, a}(\mu) \\ 1 & \text { otherwise }\end{cases}
$$

For $\gamma=1$, the proof is similar to the proof of 38 (using f_{α}^{*}, but now we get only $c^{*} \neq \varnothing \bmod J_{\lambda}^{K, a}$, which suffice. For $\gamma=0$, take a close enough elementary submodel M of $\left(H(\chi), \in,<_{x}^{*}\right)$ of cardinality χ, choose $\beta(1)<\lambda, \beta(1)<$ $\sup (M \cap \lambda)$ and then choose $\beta(0) \in \lambda \cap M$ such that for $\zeta<\zeta$,

$$
f_{\alpha_{\text {gQQ }} /}(\theta)<\operatorname{Min}\left[M \cap(\theta+1)-f_{\alpha_{\beta, t i M}}(\theta)\right]
$$

and is large enough.
47. Remark. (1) We can analyze $\Pi c / J_{c}^{\text {bc }}$ when $\kappa=|c|<\min c, \sigma=\operatorname{cf}(c)$, $2^{\sigma}<\operatorname{Min}(c)$ define pcf, hence the $f_{\lambda, \alpha}$ etc. This essentially is what is used in proving the bound on $\mathcal{K}_{\delta}^{\text {cif } \delta}$ when $\delta<\aleph_{\delta}, 2^{\text {cf } \delta}<\aleph_{\delta}$.
(2) A conclusion (of 25) is that for singular $\lambda>22^{\mathrm{cf} \delta}$, there is a Kurepa tree for λ.

Note
48. CLaim. If $\operatorname{Pr}_{1}(\lambda, \chi, \sigma)$ and $2^{x} \geqq \lambda$ then $\operatorname{Pr}_{0}(\lambda, \chi, \sigma)$.

Proof. As in [Sh 6] - 3.x (and explicitly in [Sh 11] 1.3).
48A. Remark. Note that our partition relations show that it is quite hard to get positive ones.

A slight strengthening of Todorcevic [T2] is
49. Theorem. If $\lambda \in R_{a c}^{\kappa, 2}, \kappa$ minimal, then there are $a \lambda-L$-space and a $\lambda-S$-space with κ-directed $n b$ basis for each point.

Proof. By the definition there are an $a \in I^{\kappa, 2}, \sup a<\lambda\left(2^{\kappa}<\lambda\right)$ and $f_{\alpha} \in \Pi a(\alpha<\lambda)$ such that for no $\alpha<\beta, f_{\beta} \leqq f_{\alpha}$. For repeating the Todorcevic proof [T2] we seemingly need also

$$
\begin{equation*}
\text { for } \mu \in a, \quad\left|\left\{f_{\alpha} \upharpoonright \mu^{+}: \alpha<\lambda\right\}\right|<\lambda \tag{*}
\end{equation*}
$$

We can get it w.l.o.g. by 22,25 (we get really more).
In his proof a basis of clopen neighbourhoods of α is

$$
u_{\alpha, \mu}^{S}=\left\{\beta<\lambda: f_{\beta} \leqq f_{\alpha}, f_{\beta} \upharpoonright \mu^{+}=f_{\alpha} \upharpoonright \mu^{+}\right\}
$$

for $\mu \in A$ (thus we get a $\lambda-S$-space).
For a $\lambda-L$-space use as a basis of clopen neighbourhoods of α

$$
u_{\alpha, \mu}^{L}=\left\{\beta<\lambda: f_{\alpha} \leqq f_{\beta}, f_{\beta} \upharpoonright \mu^{+}=f_{\alpha} \upharpoonright \mu^{+}\right\}
$$

§7. On $\lambda \rightarrow\left[\mu^{+}\right]_{\theta}^{2}$
50. Lemma. Suppose b is a set of regular cardinals $>2^{\kappa},|b| \leqq \kappa, b$ has no last element, \mathscr{D} is a filter on b to which all cobounded subsets of b belong,

$$
\left(\forall b^{\prime}\right)\left[b^{\prime} \subseteq b \wedge\left|b^{\prime}\right|<|b| \rightarrow b-b^{\prime} \in \mathscr{D}\right]
$$

and $\mu \geqq(\sup b)^{+}, \mu$ regular, $\theta \leqq \kappa$.
Suppose further $\lambda \geqq \mu, f_{\alpha} \in \Pi$ for $\alpha<\lambda$ and $f_{\alpha}<f_{\beta} \bmod \mathscr{D}$ for $\alpha<\beta<\lambda$.
If $a_{i} \subseteq b$ for $i<\theta, b-a_{i} \notin \mathscr{D},\left[i \neq j \Rightarrow a_{i} \cap a_{j}=\varnothing\right]$ then there is a symmetric two place function efrom λ to θ such that:

If $k<\omega, \alpha_{\beta, \zeta}(\beta<\mu, \zeta<k)$ are pairwise distinct ordinals $<\lambda, k<\omega$, $h:\{1, \ldots, k\} \rightarrow \theta$, then we can find $\beta(1)<\cdots<\beta(k)<\mu$ such that:
(i) $\alpha_{\beta(1), \zeta}<\alpha_{\beta(2), \zeta}<\cdots<\alpha_{\beta(k), \zeta}$ for $\zeta<k$;
(ii) for $\zeta(1) \neq \zeta(2)$ one of the following holds:
(a) for $l, m=1, \ldots, k, \alpha_{\beta(l), \zeta(1)}<\alpha_{\beta(m), \zeta(2)}$
(b) for $l, m=1, \ldots, k, \alpha_{\beta(l), \zeta(1)}>\alpha_{\beta(m), \zeta(2)}$;
(c) either

$$
\begin{aligned}
& \alpha_{\beta(1), \zeta(1)}<\alpha_{\beta(1), \zeta(2)}<\alpha_{\beta(2), \zeta(1)}<\alpha_{\beta(2), \zeta(2)} \cdots \\
& \text { or } \\
& \alpha_{\beta(1), \zeta(2)}<\alpha_{\beta(1), \zeta(1)}<\alpha_{\beta(2), \zeta(2)}<\alpha_{\beta(2), \zeta(2)} \cdots
\end{aligned}
$$

(iii) for $l<m, \zeta<k: e\left(\alpha_{\beta(l), \zeta}, \alpha_{\beta(m), \zeta}\right)=h(l)$;
(iv) for $\zeta(1) \neq \zeta(2)<k$,
(a) for $l \neq m, e\left(\alpha_{\beta(1), \zeta(1)}, \alpha_{\beta(m, \zeta(2))}\right)=0$
or
(b) for $l<m, e\left(\alpha_{\beta(1), \zeta(1)}, \alpha_{\beta(m, \zeta(2))}\right)=h(l)$.

50A. Remark. In (iv) there are some restrictions on $\{(\zeta(1), \zeta(2)):$ (iv)(a) occurs); see the proof.

Proof. We define the colouring as follows: θ, e are symmetric functions; for $\alpha<\beta$

$$
\theta(\alpha, \beta)=\operatorname{Max}\left\{\theta \in b: f_{\alpha}(\theta)>f_{\beta}(\theta)\right\}
$$

$(\theta(\alpha, \beta)$ is undefined if there is no maximal such as $\theta)$,

$$
e(\alpha, \beta)=\left\{\begin{array}{cc}
i & \text { if } \theta(\alpha, \beta) \in a_{i}, \\
0 & \text { otherwise } .
\end{array}\right.
$$

Suppose $k<\omega,\left\langle\alpha_{\beta, \zeta}: \zeta<k\right\rangle$ is a sequence of ordinals $<\lambda$ for $\beta<\mu$ such that:

$$
\alpha_{\beta(1), \zeta(1)}=\alpha_{\beta(2), \zeta(2)} \Leftrightarrow \beta(1)=\beta(2) \wedge \zeta(1)=\zeta(2) .
$$

Let $\alpha(\beta, \zeta)=\alpha_{\beta, \zeta}$.
Let χ be regular large enough, $<_{x}^{*}$ a well ordering of $H(\chi)$.
Let $\left\langle N_{i}: i<\kappa^{+}\right\rangle$be increasing continuous, $\left\|N_{i}\right\|=2^{\kappa}, N_{i}<(H(\chi)$, $\left.\in,<_{x}^{*}\right),\left\langle N_{j}: j \leqq i\right\rangle \in N_{i+1}$ and every subset of N_{i+1} of cardinality $\leqq \kappa$ belongs to N_{i+1} and $b,\left\langle f_{\alpha}: \alpha<\lambda\right\rangle,\left\langle\left\langle\alpha_{\beta, \zeta}: \zeta<k\right\rangle: \beta<\mu\right\rangle$ belongs to $N_{0 .}$ Let $N_{\kappa^{+}}=$ $\bigcup_{i<\kappa^{+}} N_{i}$.

Choose $\beta(*)<\mu, \beta(*)>\sup \left(\mu \cap \bigcup_{i<\kappa^{+}} N_{i}\right)$. For each $\zeta<k$ let $b_{\zeta}=$ $\left\{\sigma \in b: f_{\alpha \beta(\sigma), \zeta)}(\sigma) \in \cup_{i<x^{+}} N_{i}\right\}, b^{\zeta}=b-b_{\zeta}$, and $f_{\zeta}^{*}, f_{\zeta}^{+}$be defined by:

$$
\begin{aligned}
& \operatorname{dom} f_{\zeta}^{*}=b^{\zeta}, \\
& f_{\zeta}^{*}(\sigma)=\operatorname{Min}\left\{j: j \in \bigcup_{i<\kappa^{+}} N_{i}, j>f_{\alpha \beta(\sigma,), \zeta)}(\sigma)\right\}, \\
& \operatorname{dom} f_{\zeta}^{+}=b, \\
& \left.f_{\zeta}^{+}=f_{\zeta}^{*} \cup\left(f_{\alpha \beta(\sigma,),)}\right\rangle b_{\zeta}\right) .
\end{aligned}
$$

Clearly for some successor $i(*)<\kappa^{+}, \operatorname{rang} f_{\zeta}^{+} \subseteq N_{i(*)}$ for every $\zeta<k$, hence $\left\langle f_{\zeta}^{+}: \zeta<k\right\rangle \in N_{i(0)}$.
Let, for $\zeta(1) \neq \zeta(2)<k, c_{\zeta(1), \zeta(2)}=\left\{\sigma \in b: f_{\alpha(\beta(), \zeta(1))}(\sigma)=f_{\alpha(\beta(0), \zeta(2))}(\sigma)\right\}$. For $\sigma \in b$ let
$N_{i+1}^{\sigma}=$ Skolem Hull in $\left(H(\chi), \in,<_{x}^{*}\right)$ of $N_{i+1} \cup\left\{f_{\alpha \beta(0, \zeta)}(\sigma): \zeta<k\right\}$,

$$
N_{\delta}^{g}=\bigcup_{i<\delta} N_{i+1}^{\sigma}
$$

We can find $\beta(i, \sigma) \in \mu \cap N_{i(0)+i+2}^{\sigma}$ such that
(a) $f_{\alpha \beta(\beta(, \sigma), \zeta)}\left(\sigma_{1}\right)=f_{\alpha \beta(\sigma), \zeta)}(\sigma)$ for $\zeta<k$,
(b) $f_{\alpha \beta(i, \sigma), \zeta)}(\tau)=f_{\alpha(\beta(\sigma), \zeta)}(\tau)$ for $\zeta<k, \tau \in b_{\zeta}$,
(c) $\sup \left(f_{\zeta}^{*}(\tau) \cap N_{i(*)+i+1}\right)<f_{\alpha(\beta(i, \sigma), \delta)}(\tau)<\sup f_{\zeta}^{*}(\tau) \cap N_{i(\theta)+i+2}$ for $\zeta<k$, $\tau \in b-b_{\xi}-\sigma^{+}$.
(d) $f_{\alpha\left(\beta(\theta), \zeta_{1}\right)}\left(\theta_{1}\right)<f_{\alpha\left(\beta(\theta), \zeta_{2}\right)}\left(\theta_{2}\right)$ iff $f_{\alpha\left(\beta(i, \sigma), \zeta_{2}\right)}\left(\theta_{1}\right)<f_{\left.\alpha \beta(i, \sigma), \zeta_{2}\right)}\left(\theta_{2}\right)$ for any $\zeta_{1}, \zeta_{2}<\xi$ and $\theta_{1}, \theta_{2} \in b$.
Now suppose $i_{1}<i_{2}<i(*)$, and $\zeta_{1}, \zeta_{2}<k$ and $\sigma_{2}<\sigma_{1} \in b-\bigcup_{\zeta} b_{\zeta}$ and we shall check the color of $\alpha_{\beta(i, 0), \sigma_{2}, b^{2}}, \alpha_{\beta\left(i, \sigma_{2}\right), \zeta 2}$

Case I: $\zeta_{1}=\zeta_{2}=\zeta$.
Easily

$$
\begin{gathered}
b_{\zeta} \subseteq\left\{\tau: f_{\alpha \beta\left(i_{1}, \sigma_{1}, \zeta\right)}(\tau)=f_{\alpha \beta\left(i_{2} \sigma_{j}, \zeta, \zeta\right)}(\tau)\right\} \subseteq b_{\zeta} \cup\left(b \cap \sigma_{2}^{+}\right), \\
\left\{\sigma_{2}\right\} \subseteq\left\{\tau: f_{\alpha \beta \beta\left(i, \sigma_{1}, \zeta\right), \zeta}(\tau)>f_{\left.\alpha \beta\left(i_{2}, \sigma_{2}\right), \zeta\right)}(\tau)\right\} \subseteq\left\{\sigma_{2}\right\} \cup\left(b \cap \sigma_{2}\right) .
\end{gathered}
$$

So $e\left(\alpha_{\beta\left(i, \sigma_{1}\right), 5,5}, \alpha_{\beta\left(i_{2}, \sigma_{2}, \zeta, k\right.}\right)=h\left(\sigma_{2}\right)$.
Case II: $\zeta_{1} \neq \zeta_{2}$.

$$
\begin{aligned}
& b_{\zeta_{1}} \cap b_{\zeta_{2}} \cap c_{\zeta_{1}, \zeta_{2}} \subseteq\left\{\tau \in b: f_{\alpha \beta \beta\left(i_{1}, \sigma_{1}, \zeta_{1}\right)}(\tau)=f_{\alpha \beta\left(i_{2} \sigma_{2}, \zeta_{2}\right)}(\tau)\right\} \\
& \subseteq\left(b_{\zeta_{1}} \cap b_{\zeta_{2}} \cap c_{\zeta_{1}, \zeta_{2}}\right) \cup\left(b \cap \sigma_{2}\right),
\end{aligned}
$$

$\left\{\tau \in b: f_{\zeta_{1}}^{+}(\tau)>f_{\zeta_{2}}^{+}(\tau)\right\} \cup\left\{\sigma_{2}\right\} \subseteq\left\{\tau: f_{\alpha\left(\beta\left(i_{1}, \sigma_{1}\right), \tau\right)(\tau)}(\tau)>f_{\alpha \beta \beta\left(i_{2} \sigma_{2}, \zeta_{2}\right)}(\tau)\right\}$

$$
\subseteq\left\{\tau \in b: f_{\xi_{1}}^{+}(\tau)>f_{\xi_{2}}^{+}(\tau)\right\} \cup\left\{\sigma_{2}\right\} \cup\left(b \cap \sigma_{2}\right) .
$$

Now choose $i(*)<i_{1}<\cdots i_{k}<\kappa^{+}, \sigma_{1}>\cdots>\sigma_{k}$ in $b-\bigcup_{\zeta} b_{\zeta}$, such that if $\left\{\sigma: f_{\zeta(1)}^{+}(\sigma)>f_{\zeta(2)}^{+}(\sigma)\right\}$ is bounded in b then σ_{k} is a bound. Now $\left\{\alpha_{\beta(i, \sigma), \zeta}: l, \zeta\right\}$ are as required.
51. Lemma. Suppose $b, \kappa, \mathscr{D}, \mu=(\sup b)^{+}, \lambda, f_{\alpha}(\alpha<\lambda)$ are as in Lemma 50 , and suppose further that for $\sigma \in b,\left\{f_{\alpha} \upharpoonright(b \cap \sigma): \alpha<\lambda\right\}$ has cardinality $<\sigma$ (see 22, 25 for such cases), and $\xi<\kappa^{+},(\forall \sigma \in b)(\forall \theta<\sigma)\left[\theta^{|\xi|}<\sigma\right]$.
(1) For every $A \subseteq \lambda,|A|=\mu$, there is $b_{1} \in \mathscr{D}$ such that:
for every $k<\omega, m<\omega$ and one to one functions $h_{l}:\{0, \ldots, k-1\} \rightarrow \omega$ and
$\operatorname{Min} b=\sigma_{0}<\sigma_{2}<\cdots<\sigma_{m}$ from b_{1} there are $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k-1}$ from A such that for $i<j<k$: $p \leqq m$
$\left(\forall \sigma \in b_{1}\right)\left[f_{\alpha_{i}}(\sigma)=f_{\alpha_{j}}(\sigma)\right]$,
$(\forall \sigma)\left[\sigma \in b \wedge \sigma \notin b_{1} \wedge \sigma \in\left[\sigma_{p}, \sigma_{p+1}\right) \rightarrow f_{a_{i}}(\sigma)<f_{\alpha_{j}}(\sigma) \equiv h_{p}(i) \leqq b_{p}(j)\right]$,
$(\forall \sigma)\left[\sigma \in b \wedge \sigma \notin b_{1} \wedge \sigma \geqq \sigma_{m} \rightarrow f_{\alpha_{1}}(\sigma)<f_{\alpha_{j}}(\sigma)\right]$.
(2) For every $\xi<\kappa^{+}, \alpha_{\beta, \zeta}(\beta<\mu, \zeta<\xi)$ distinct ordinals $<\lambda, r(*)<\kappa^{+}$, the following holds:

For some $b_{\zeta} \in \mathscr{Z}, f_{\zeta}^{+}: b \rightarrow \operatorname{ord}(f o r \zeta<\xi)$:
For every sequence $\left\langle k_{r}\left\langle b_{r}^{0}, b_{r}^{1}: r<r\right\rangle\right\rangle$ such that $k_{n}<\omega, b_{r}^{0}$ is a strictly increasing function from $k_{r}=\left\{0, \ldots, k_{i}-1\right\}$ to ordinal $[r \neq s \Rightarrow$ $\operatorname{rang}\left(b_{r}^{0}\right) \cap \operatorname{rang}\left(b_{s}^{0}\right)=\varnothing$], b_{r}^{\prime} a strictly decreasing function from $k_{r}=$ $\left\{0, \ldots, k_{r}-1\right\}$ to b there are $\beta(r)(r<r(*))$, from A, such that:
(a) $r<j<i(0) \Rightarrow p(r)<\beta(s)$.
(b) Let $\zeta(1), \zeta(2)<\xi, i<j<i(*)$,

$$
\begin{aligned}
& \left\{\sigma \in b: f_{\alpha \beta(r), \zeta(1)}(\sigma)=f_{\alpha \beta(s), \zeta(2)}(\sigma)\right\} \\
& \quad=b_{\zeta(1)} \cap b_{\zeta(2)} \cap\left\{\sigma \in b: f_{\zeta(1)}^{+}(\sigma)=f_{\zeta(2)}^{+}(\sigma)\right\}
\end{aligned}
$$

(c) Let $\zeta(1), \zeta(2)<\xi, r<s, \sigma \in b$, if $f_{\zeta(1)}^{+}(\sigma)<f_{\zeta(2)}^{+}(\sigma)$ then $f_{\alpha \beta(\beta), \zeta(1))}(\sigma)<$ $f_{\alpha \beta(s), \zeta(2))}(\sigma)$.
(d) Let $\zeta(1), \zeta(2)<\xi, r<s, \sigma \in b, f_{\zeta(1)}^{+}(\sigma)=f_{\zeta(2)}^{+}(\sigma)$; if $\sigma \in b_{\zeta(2)}-b_{\zeta(1)}$ then $f_{\alpha \beta(r), \zeta(1))}(\sigma)<f_{\alpha \beta(s), \zeta(1))}(\sigma)$ while if $\sigma \in b_{\zeta(1)}-b_{\zeta(2)}$ then $f_{\alpha \beta \beta(r), \zeta(1))}(\sigma)>$ $f_{\alpha \beta(s),(2))}(\sigma)$.
(e) Let $\zeta(1), \zeta(2)<\xi, r<s, \sigma \in b-b_{\zeta(1)} \cup b_{\zeta(2)}$, and $f_{\left.\zeta_{(1)}\right)}^{+}(\sigma)=f_{\zeta_{(2)}}^{+}(\sigma)$.

If $l \leqq k_{r} m \leqq k_{j}, h_{r}^{1}(l) \leqq \sigma<h_{r}^{1}(l+1), h_{s}^{1}(m) \leqq \sigma<h_{s}^{1}(m+1)$ (stipulating $\left.h_{r}^{1}\left(k_{1}\right)=\sup b\right)$, then

$$
f_{\alpha \beta(r), \zeta(1))}(\sigma)<f_{\alpha \beta(s), \zeta(2))}(\sigma) \Leftrightarrow h_{r}^{0}(l) \leqq h_{s}^{0}(m) .
$$

51A. Remark. The proof gives more than stated in the lemma.
Proof. (1) Follows by 2.
(2) Let $\alpha_{\beta, \zeta}(\beta<\mu, \zeta<\xi)$ be distinct ordinals $<\lambda$ (for some $\left.\xi<\kappa^{+}\right)$. As in the proof of Lemma 50 we choose $\chi,<_{x}^{*},\left\langle N_{i}: i<\kappa^{+}\right\rangle$, and then $\beta(*)<\mu, b_{\zeta}$, $g f_{\xi}^{*}, f_{\xi}^{+}$for $\zeta<\xi$ and $i(*)$. Note
(*) if $\sigma \in b, \alpha_{\zeta}<\lambda$ for $\zeta<\xi, f=\left\langle f_{\alpha_{\xi}} \upharpoonright \sigma: \zeta<\xi\right\rangle$;
$N_{r+1}[f]$ is the Skolem Hull of $\left|N_{i+1}\right|\{f\}$, and
$\theta \in b-\bigcup_{1} \sigma^{+}$then $\sup \left(\theta \cap N_{i+1}[f]\right)=\sup \left(\theta \cap N_{i+1}\right)$.

We shall show that $b_{\zeta}, f_{\zeta}^{+}(\zeta<\xi)$ are as required, so let $\left\langle k_{r}, b_{r}^{0}, b_{r}^{1}: r<r(*)\right\rangle$.
W.l.o.g. each b_{r}^{0} is into $\left\{i+1: i(*)<i<\kappa^{+}\right\}$. Now for each $r<r(*)$, we define $\beta(r, l), l=0, \ldots, k_{r}$ by downward induction on l. For $l=k_{r}, \beta(r, l)=$ $\beta(*)$. If $\beta(r, l+1)$ is defined, let: $N_{r, l}$ be Skolem Hull of

$$
N_{\left.h_{r}^{0}()\right)}\left[\left\langle f_{\alpha \beta \beta(, l+1), \zeta)} \uparrow h_{r}^{0}(l): \zeta<\xi\right\rangle\right]
$$

and let: $\beta(r, l) \in N_{r, l} \cap \mu$ be such that

$$
\begin{gathered}
\left\langle f_{\alpha \beta(r, l), \zeta)} \upharpoonright h_{r}^{0}(l): \zeta<\xi\right\rangle=\left\langle f_{\alpha(\beta(r, l+1), \zeta)}\right\rangle h_{r}^{0}(l): \zeta\langle\xi\rangle, \\
\wedge_{\zeta<\xi}\left(\forall \sigma \in b_{\zeta}\right) f_{\alpha \beta(r, l), \zeta)}(\sigma)=f_{\alpha(\beta(r, l+1), \zeta)}(\sigma)=f_{\alpha(\beta(\beta), \zeta),},
\end{gathered}
$$

$$
\wedge_{\zeta<\xi}\left(\forall \sigma \in b-b_{\zeta}\right)\left[f_{\alpha(\beta(r), \zeta)}(\sigma) \notin N_{h_{r}^{q(l)-1}}\right],
$$

$\wedge_{\zeta<\xi}\left(\forall \sigma \in b-b_{\zeta}-h_{r}^{0}(l)\right)\left[\forall \gamma \in o \cap N_{h^{0}(l)}\left(f_{\alpha \beta(r, l), \zeta)}(\sigma) \leqq \gamma \equiv f_{\zeta}^{+}(\sigma) \leqq \gamma\right)\right]$.
There is no problem, and this suffices.
52. Conclusion. Under the assumptions of Lemma $51, \lambda \rightarrow[\mu]_{\theta}^{2}$.
53. Conclusion. If, in Lemma $51, \theta>k, k<\omega, \mu=(\sup b)^{+}$then there are Boolean algebras B_{1}, \ldots, B_{k} such that
(i) each B_{l} satisfies the μ^{+}-c.c., and even

$$
\prod_{\substack{i=1, k \\ i \neq l}} B_{i} \text { satisfies the } \mu^{+} \text {-c.c. }
$$

(ii) $\prod_{i=1}^{k} B_{i}$ does not satisfy the λ^{+}-c.c.

Proof. Let e be a two place function from λ to θ as there. For $l=1, \ldots, k$ let B_{l} be the Boolean algebra generated freely by $\left\{x_{\beta}: \beta<\lambda\right\}$ except that $x_{\beta} \cap x_{y}=0$ when $e(\beta, \gamma)=l$. Also the rest is as in [Sh 7] 1.10.

§8. $\mathcal{K}_{\omega_{0}}^{\kappa_{0}}<\aleph_{\left(2^{K_{0}}\right)}+$ revisited

We can generalize the information on Πa to more sets.
54. Definition. (1) $I^{\kappa, 3}=\left\{A: A \subseteq R^{\kappa, 2}, \operatorname{Min} A>|A|^{\kappa}\right\}$ (κ will be fixed below).
(2) $\operatorname{pcf}^{\kappa}(A)=\bigcup\{\operatorname{pcf}(b): b \subseteq a,|b| \leqq \kappa\}=\left\{\operatorname{cf}\left(\Pi A,<_{\mathscr{G}}\right): \mathscr{D} \in u f^{\kappa}(A)\right\}$ where

$$
\begin{gathered}
f f^{\kappa}(A)=\{\mathscr{D}: \mathscr{D} \text { a filter on } A, \operatorname{Min}\{|b|: b \in \mathscr{D}\} \leqq \kappa\}, \\
u f^{\kappa}(A)=\left\{\mathscr{D} \in f f^{\kappa^{\prime}(A)}: \mathscr{D} \text { an ultrafilter on } A\right\} .
\end{gathered}
$$

(3) For $f, g \in \Pi A, A \in I^{\kappa, 3}, f \leqq{ }_{\lambda, \kappa} g$ iff for every $b \in[A]^{\kappa}$,

$$
\left[b \in J_{<\lambda^{+}}^{x, b} \Rightarrow f \upharpoonright b \leqq ر_{k \lambda}^{+2} g \upharpoonright b\right] .
$$

55. Claim. (1) For $A \in I^{\kappa, 3},\left|\operatorname{pcf}^{x}(A)\right| \leqq|A|^{x}+2^{x}$.
(2) For $A \in I^{\kappa, 3}, \lambda \in \operatorname{pcf}(A)$, we can define $\left\langle f_{\lambda, \alpha}^{\kappa, A}: \alpha<\lambda\right\rangle$ such that:
(i) $\alpha<\beta \Rightarrow f_{\lambda, \alpha}^{\kappa, A}<\lambda, \kappa f_{\lambda, \beta}^{\kappa, A}$,
(ii) for every $g \in \Pi A$ for some $\alpha<\lambda$

$$
g<_{\lambda, k} f_{\lambda, \alpha}^{k, A} .
$$

(3) For $A \in I^{\kappa, 3}, \lambda \in \operatorname{pcf}^{\kappa}(A)$ there is $B=B_{\lambda}^{A}$ such that
(i) $B \subseteq A$,
(ii) for every $a \in[A]^{\leq \kappa}$

$$
a \in J_{<\lambda}^{k, a} \Leftrightarrow a-B \subset J_{\Sigma_{\lambda}}^{\alpha_{\Omega}, a} \cap B .
$$

(4) For $A \in I^{\kappa, 3}$, and λ and $a \in[A]^{\leq x}$: $\max \operatorname{pcf}(a)<\lambda \Leftrightarrow a$ is in the ideal of $\mathscr{P}(A)$ generated by $\left\{B_{\mu}^{A}: \mu \in \lambda \cap \operatorname{pcf}^{\kappa}(A)\right\}$.
(5) If $A=\left\{\theta: \aleph_{\alpha} \leqq \theta<\aleph_{\delta}, \theta\right.$ regular $\}, \aleph_{\alpha}^{\kappa}<\aleph_{\delta}$, then $\operatorname{pcf}^{\kappa}(A)$ has the form $\left\{\theta: \aleph_{\alpha} \leq \theta<\mathcal{K}_{\gamma}, \theta\right.$ regular $\}$ for some γ.

Proof. (1) Easy.
(2) We define by induction on $\alpha<\lambda$, a function $f_{\alpha}^{*}=f_{\lambda, \alpha}^{\kappa, A} \in \Pi A$ and $\left\langle\gamma_{\alpha}^{a}: a \in L\right.$) where

$$
L=\left\{a: a \in[A]^{\leq \kappa}, a \in J_{<\lambda^{+}}^{\kappa, a}-J_{<\lambda^{2}}^{\kappa, a}\right\}
$$

such that
(a) $f_{\lambda, f_{6}, \sigma_{d}} \upharpoonright a \leqq f_{\alpha}^{*} \upharpoonright a$ for $a \in L$,
(b) $\alpha \leqq \gamma_{\alpha}^{a}<\lambda$ for $a \in L$,
(c) for $\beta<\alpha, a \in L, f=\frac{*}{*} \upharpoonright a<f_{\lambda, y_{b}}^{x, a} \bmod J_{\langle\lambda}^{k, a}$.

There is no problem to do it [for each α, first choose $\left\langle\gamma_{\alpha}^{a}: a \in L\right\rangle$ such that (b) and (c) are satisfied, next choose f_{α}^{*} such that (a) is satisfied; this is possible as $\operatorname{Min} A>|A|^{\kappa} \geqq|L|$, each $\theta \in A$ regular]. Now $\left\langle f_{\alpha}^{*}: \alpha<\lambda\right\rangle$ is as required.
(3) Let $\left\langle f_{\lambda, \alpha}^{x, A}: \alpha<\lambda\right\rangle$ be from (2). For every $a \in L_{1}=\left\{a \in[A]^{\leq x}: a \notin J_{<\lambda^{\prime}}^{x, \alpha}\right\}$, we can find $h_{a} \in \Pi a$ such that, for every $\alpha<\lambda, h_{a} \neq f_{\lambda, \alpha}^{k, A} \upharpoonright a \bmod J_{<\lambda, ~}^{K, a}$.

We can define $h \in \Pi A$,

$$
h(\theta)=\sup \left[\{0\} \cup\left\{h_{a}(\theta): \theta \in a \in L_{1}\right\}\right] .
$$

Now for every $b \in L$ for some $\gamma_{b}<\lambda, h \upharpoonright b \leqq f_{\lambda, \gamma_{b}}^{\kappa, b} \bmod J_{\langle\lambda, ~}^{x, b}$. Let $\gamma(*)=$

(4) Easy.
(5) By 5(2).
56. Remark. By [Sh 5] $\left(\mathcal{K}_{\delta}\right)^{\text {cf } \delta}<\mathcal{K}_{\left(\mid \delta \sigma^{\alpha}\right)^{+}}$and when $\aleph_{\alpha}^{\text {cif(})}<\aleph_{\alpha+\delta}$, $\left(\aleph_{\alpha+\delta}\right)^{\text {cff } \delta}<\mathcal{K}_{\alpha+\left(1 \delta \delta^{\alpha g}+\right.}$.
57. The Simpler proof of $\left(\aleph_{\alpha+\delta}\right)^{|\delta|}<\aleph_{\alpha+\left(2^{101}\right)}+$ When $\aleph_{\alpha}^{\text {cf } \delta}<\aleph_{\alpha+\delta}$.

Let $\kappa=|\delta|$, and δ a minimal counterexample. The case $\delta=\aleph_{\alpha+\delta}$ is unreal so let $\delta<\aleph_{\alpha+\delta}$. For some $\alpha_{1}, \delta_{1}, \delta=\alpha_{1}+\delta_{1},\left|\delta_{1}\right|<\aleph_{\alpha_{1}+\delta,}, \alpha_{1}$ limit or zero and $\left|\delta_{1}\right|^{\kappa} \leqq K_{\alpha_{1}}$ or $\delta_{1}=\omega$. If $\left(\mathcal{K}_{\alpha+\alpha}\right)^{k} \geqq \aleph_{\alpha+\delta}$ we can finish easily. So w.l.o.g. (remember $\aleph_{\alpha+1}^{\kappa} \leqq \aleph_{\alpha}^{\kappa}+\aleph_{\alpha+1}$) $|\delta|^{\kappa} \leqq \mathcal{K}_{\alpha}^{\kappa}$. Let $\mu=\left(\aleph_{\alpha}\right)^{\kappa}, \quad a=$ $\left\{\lambda: \mu^{+}<\lambda<\aleph_{\delta}, \lambda\right.$ regular $\}$. So $|a| \leqq|\delta|<\aleph_{\alpha} \leqq \mu<\operatorname{Min} a$, so 16 applies.

Let $\left\langle\int_{\lambda, \alpha}^{a, \alpha}: \alpha<\lambda\right\rangle$ be as in Claim 55.
Let χ be regular large enough, $<_{x}^{*}$ a well ordering of $H(\chi)$. For each $x \subseteq \mathcal{K}_{\alpha+\delta},|x| \leqq \kappa$ we define by induction on $\zeta<\mu^{+}, N_{\zeta}^{x}$ such that
(a) $N_{\zeta}^{x}<\left(H(\chi), \in,<_{\zeta}^{*}\right)$,
(b) $\left\|N_{\zeta}^{x}\right\|=\mu, \mu+1 \subseteq N_{\zeta}^{x}, x \in N_{\zeta}^{x},\left(f_{\lambda, \alpha}^{x, a}:<\chi\right): \lambda \in \operatorname{pcf} a \in N_{\zeta}^{\chi}, A \in N_{\zeta}^{x}$,
(c) $\left\langle N_{\zeta}^{x}: \zeta<\mu^{+}\right\rangle$is increasing continuous,
(d) $\left\langle N_{\zeta}^{x}: \zeta \leqq \xi\right\rangle \in N_{\xi+1}^{x}$.

As $\mu+1 \subseteq N_{\zeta}^{x}, \operatorname{pcf}(A) \in N_{\zeta}^{x}$ clearly $\operatorname{pcf}(a) \subseteq N_{\zeta}^{x}$. Let $c h_{\zeta}^{x}$ is the function with domain $a, c_{\zeta}^{x}(\theta)=\sup \left(\theta \cap N_{\zeta}^{\chi}\right)$, it is $<\theta$ as $\left|N_{\zeta}^{x}\right|<\mu^{+}=\operatorname{Min} A$ hence $\operatorname{ch}_{\zeta}^{x} \in \Pi a$. So for each $\lambda \in \operatorname{pcf}(a)$ and ζ, for some $\alpha_{\lambda}(x, \zeta)<\lambda$ (letting $b=b_{\lambda}^{a, x}$)

$$
f_{\lambda, \alpha(x, \zeta)}^{b, \kappa}<c h_{\xi}^{x} \upharpoonright b \leqq f_{\lambda, \alpha \alpha(x, \zeta)}^{b, \kappa} \bmod J_{<\lambda}^{\kappa, b} .
$$

Let

$$
N_{\mu^{+}}^{x}=\bigcup_{\zeta<\mu+} N_{\zeta}^{x}, \quad c h_{\mu^{+}}^{x}(\theta)=\sup _{\zeta} c h_{\zeta}^{x}(\theta)=\sup \left(N_{\mu^{+}}^{x} \cap \theta\right) .
$$

Let $\alpha_{\lambda}(x)=\bigcup_{\zeta} \alpha_{\lambda}(x, \zeta)$. So easily $c h_{\mu^{x}+1}^{x} b=f_{\lambda, \alpha_{\alpha}(x)}^{b, \kappa} \bmod J_{<\lambda}^{K, b}$. So

$$
c h_{\mu^{+}}^{x}=\bigcup_{l=1}^{h} f_{l, l}^{b_{l}, \alpha_{l},(x)} \upharpoonright b_{l} \cap c_{l}
$$

where $\left\langle b_{l}, c_{l}: l=1, \kappa\right\rangle$ depend on x. So the number of possible $c h_{\mu^{+}}^{x}$ is $\leqq \sup$ pcf a which, by $55(5)$, is $\leqq \aleph_{\alpha+\left(2^{(\delta)}\right)^{+}}$. Now $c h_{\mu^{+}}^{x}$ determines $N_{\mu^{x}}^{x} \cap \aleph_{\alpha+\delta}$ as
(*)

$$
\text { if } M_{1}, M_{2}<\left(H(\chi), \in,<_{x}^{*}\right), \quad \mu^{+} \subseteq M_{l}, \quad \delta \in M_{l}
$$

for each $\theta \in A, \sup \left(M_{1} \cap \theta\right)=\sup \left(M_{2} \cap \theta\right)$, it has cofinality $>\kappa_{0}$, and both M_{1} and M_{2} contains a club for it then $M_{1} \cap \aleph_{\delta}=M_{2} \cap \mathcal{K}_{\delta}$, so we finish.
58. Theorem. Suppose $\operatorname{cf}(\delta)=\kappa,(\forall i<\delta)\left(\aleph_{i}^{\kappa}<\aleph_{\delta}\right)$,

$$
\mu \stackrel{\text { def }}{=}\left|\aleph_{\delta} \cap R_{\mathrm{ia}}^{\chi}\right|<\mathcal{K}_{\delta} \quad \text { then } \aleph_{\delta}^{\alpha}<\mathcal{K}_{\delta+(\mu)^{+}}
$$

59. Remark. If κ_{δ} is minimal such that $\kappa_{\delta}=\delta, \kappa=\kappa_{0}$ then $\aleph_{\delta} \cap R_{\text {ia }}^{\kappa}-\left(2^{\aleph_{0}}\right)^{+}=\left\{\theta: \theta=\operatorname{cf} \theta=\theta^{\aleph_{0}}, 2^{\aleph_{0}}<\theta<\aleph_{\delta}\right\}$.
60. Proof. Either imitate proof of the bound or show inductively that $\left|K_{\delta} \cap R_{\mathrm{ia}}^{\alpha}\right|^{\kappa} \leqq|\delta|^{\kappa}$.
61. Theorem. If $S=\left\{\delta<\mathcal{K}_{2}: \operatorname{cf} \delta=\aleph_{0}, \mathcal{\aleph}_{\delta}^{\chi_{0}}<\aleph_{\delta+\omega_{1}}\right\}$ is stationary, $2^{\kappa_{1}}<\mathcal{K}_{\omega_{1}}$ then $\aleph_{\omega_{1}}^{\aleph_{1}}<\aleph_{\omega_{2}}$.

Proof. By 63.
62. Theorem. Suppose $\operatorname{cf}(\delta) \leqq \theta<\kappa$, and for every $a \subseteq R^{\kappa, 2} \cap \aleph_{\delta}$,

$$
\left[|a| \leqq \theta \Rightarrow \max \operatorname{pcf}(a) \leqq \aleph_{\delta+\alpha * *)}\right]
$$

where $\alpha(*)<\theta^{+}$, and $2^{\kappa}<\mathcal{K}_{\delta}$.
Then for some $\gamma<\delta$, every $a \subseteq R^{\kappa, 2} \cap\left[\aleph_{\gamma}, \aleph_{\delta}\right)$,

$$
\left[|a| \leqq \kappa \Rightarrow \max \operatorname{pcf}(a) \leqq \kappa_{\delta+\alpha(+)}\right]
$$

62A. Remark. If $\left(\aleph_{\delta}\right)^{\theta}<\mathcal{K}_{\left(\delta+\theta^{+}\right)}$, the assumption holds. ${ }^{(6)}$
Proof. Now let $A \subseteq R^{\kappa} \cap\left[\left(2^{\kappa}\right)^{++}, \aleph_{\delta}\right]$ be a set of cardinality $\leqq \kappa$, $\left\langle f_{\lambda, \beta}^{A, \theta}: \beta<\lambda\right\rangle \lambda \in c \stackrel{\text { def }}{=}\left\{\mathcal{K}_{\delta+\beta+1}: \beta<\alpha(*)\right\}$ are well defined. Now if $f \in \Pi A$ for each λ for some $\beta(f, \lambda)<\lambda, f<_{\lambda, \theta} f_{\lambda, \beta(f, \lambda)}^{A, \theta}$. If for every finite $w \subseteq c$, $f \not \leq \operatorname{Max}_{\lambda \epsilon_{w}} f_{\lambda, \beta(f, \lambda)}^{A, \theta}$ then there is $\sigma(w) \in A$ which exemplifies it. Now let

$$
b=\bigcup\{\sigma(w): w \subseteq c ; w \text { finite }\} .
$$

For $f \upharpoonright b$ we can find a w, hence we have shown $\operatorname{cf} \Pi A \leqq \aleph_{\delta+\alpha(\lambda)}$; this shows the desired conclusion.
63. Theorem. Suppose cf $\kappa=\kappa>\theta, \mu^{<\kappa}<\kappa_{\mu}$, cf $\mu=\mu$ and

$$
S_{1}=\left\{\delta<\mu:\left(\mathcal{K}_{\delta}\right)^{\theta}<\mathcal{K}_{\left(\delta+\theta^{+}\right)}, \operatorname{cf}(\delta)=\theta\right\}
$$

or
${ }^{(6)}$ We can, in the assumption, restrict ourselves to $\left[\mathrm{K}_{\alpha}, \aleph_{\delta}\right) \supseteq a$ for some fixed $\alpha<\delta$.

$$
\begin{gathered}
S_{2}=\left\{\delta<\mu: \operatorname{cf} \delta=\theta \text { and for some } \alpha<\delta \text { and } \gamma<\mu, \text { for every } a \in R^{\theta, 2}\right. \\
\left.a \subseteq\left[\aleph_{\alpha}, \aleph_{\delta}\right] \Rightarrow \max \text { pcf } a<\aleph_{\gamma}\right\}
\end{gathered}
$$

is stationary.
Then for every $\alpha<\mu,\left(\aleph_{\alpha}\right)^{<\kappa}<\aleph_{\mu}$.
64(1). Remark. In the definition of S we need just the conclusion of the last theorem.

Proof. Let $\alpha(*)$ be minimal such that $\left(\aleph_{a(*)}\right)^{<\kappa} \geqq \aleph_{\mu}$ (assuming that the theorem fails). So $\aleph_{\alpha(*)}>\mu^{<\kappa}$, hence $\alpha(*)$ is limit, $\left[\alpha<\alpha(*) \Rightarrow \aleph_{\alpha}^{<\kappa}<\aleph_{\mu}\right.$]; but $\left(\chi^{<\kappa}\right)^{<\kappa}=\chi^{<\kappa}$ (as κ is regular) so $\left[\alpha<\alpha(*) \Rightarrow \aleph_{\alpha}^{<\kappa}<\aleph_{\alpha(*)}\right]$. So necessarily $\mathrm{cf}(\alpha(*))<\kappa$, and $\left(\aleph_{\alpha(*)}\right)^{\mathrm{ff}(\alpha(\theta))} \geqq \aleph_{\mu}$ so $\kappa>\sigma \stackrel{\text { def }}{=} \mathrm{cf}(\alpha(*))$. By the last theorem and Fodor we know that for some $\delta(*)<\mu,>\alpha(*), S$ is stationary where

$$
S=\left\{\delta<\mu: \operatorname{cf}(\delta)=\theta, \aleph_{\delta}>\mu^{\sigma}, \text { and } \sup \operatorname{pcf}^{\sigma}\left\{\aleph_{\gamma+1}: \delta(*) \leqq \gamma<\delta\right\}<\aleph_{\mu}\right\}
$$

Let for $\delta \leqq \mu, A(\delta)=\left\{\aleph_{\alpha}: \mu^{\sigma}+\aleph_{\delta(\theta)}<\aleph_{\alpha}<\aleph_{\delta}, \aleph_{\alpha}\right.$ regular $\}$. Let χ be regular large enough, $N_{\zeta}<\left(H(\chi), \in,<_{x}^{*}\right)$ for $\zeta<\mu_{0}^{+}, \mu_{0} \stackrel{\text { def }}{=} \mu^{\sigma}+\aleph_{\delta(\rho)}, \mu_{0}^{+} \subseteq N_{\zeta}$, $\left\langle N_{\xi}: \xi \leqq \zeta\right\rangle \in N_{\zeta+1}$, and $\left\langle\left\langle\left\langle f_{\lambda, \alpha}^{A(\delta), \sigma}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}^{\sigma} A(\delta)\right\rangle: \delta \in S\right\rangle$ belongs to N_{0}, as well as letting $B=\left\{\aleph_{\alpha}: \aleph_{\alpha}\right.$ regular $\left.<\aleph_{\alpha(*)}, \aleph_{\alpha}>\mu+2^{\sigma}\right\}$, $\left\langle\left\langle f_{\lambda, \alpha}^{B, \alpha}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf} B\right\rangle$ and $\left\|N_{\zeta}\right\|=\mu_{0}^{+}$.

Now (if $\sigma>\aleph_{0}$ by 12 (holds if S_{1} is stationary) and if $\sigma=\aleph_{0}$ by [Sh 5] Ch XIII (or see 65 below)) we know that, for every $\beta<\alpha(*)$ for some $a_{\beta} \in R^{\sigma, 2}$, $a_{\beta} \subseteq\left(\mu^{\sigma}, \aleph_{\alpha(*)}\right)$ and $\aleph_{\beta+1} \in \operatorname{pcf}\left(a_{\beta}\right)$. Let $W=\{\beta<\mu: \beta \geqq \delta(*)\}$.

Let g be the function: $g(\theta)=\sup \left(\theta \cap \bigcup_{\zeta} N_{\zeta}\right)$ for $\theta \in\left[\mu_{0}^{++}, \aleph_{\mu}\right)$. For each $\beta \in W$ let $b_{\beta} \subseteq B$ be maximal s.t.

$$
g \upharpoonright b_{\beta}=f_{K \neq+1, \delta\left(\chi_{\beta+1}\right)}^{a, \kappa} \upharpoonright b_{\beta}
$$

Now there is a set $w_{0} \subseteq W$ of cardinality $\leqq|B| \leqq|\alpha(*)|<\mu$ such that

$$
\bigcup\left\{b_{\beta}: \beta \in w_{0}\right\}=\bigcup\left\{b_{\beta}: \beta \in W\right\}
$$

Choose $\gamma \in S, \gamma>\delta(*), \gamma>\sup \left(w_{0}\right)$ and (note: C is a club of μ as $S \in \mu$ is stationary)

$$
\begin{aligned}
& \gamma \in C \stackrel{\text { def }}{=}\left\{\delta<\mu: \text { if } a \subseteq R \cap\left[\aleph_{\delta(*)}, \aleph_{\delta}\right),|a| \leqq \sigma, \text { sup } a<\mathcal{K}_{\delta},\right. \text { then } \\
&\left.\sup \operatorname{pcf}(a)<\aleph_{\delta}\right\} .
\end{aligned}
$$

So there is $w \subseteq w_{0},|w| \leqq \sigma$, s.t. $b_{\gamma} \subseteq \bigcup_{\beta \in w} b_{\beta}$.

Let $\delta=\sup w, a=\left\{\aleph_{\beta+1}: \beta \in w\right\}, \quad a^{*}=\operatorname{pcf}(a)$. Note that $a \subseteq a^{*} \subseteq$ $\left[\aleph_{\delta(*)}, \aleph_{\mu}\right)$, hence we know that $\operatorname{pcf}(a)$ has a bound $<\aleph_{\gamma}$ (and $\left.|a| \leqq \sigma\right)$ so there $\operatorname{are} \theta(\gamma, 1), \ldots, \theta(\gamma, \eta), b_{\gamma}^{\gamma}, \ldots, b_{\eta}^{\gamma}$ s.t.:
(i) $\theta(\gamma, l) \in a^{*}$,
(ii) $b_{l}^{\gamma} \subseteq a$,
(iii) $\left.g \upharpoonright a^{*}=\bigcup_{l=1}^{\eta} f_{\theta(\gamma, i), s(\theta(\gamma) l)}^{A(\gamma)} \upharpoonright b\right\rangle$.

So from the information in (i), (ii), (iii) we can reconstruct $g \upharpoonright\left(\bigcup\left\{b_{\beta}: \beta \in w\right\}\right)$, hence $g \upharpoonright a_{\gamma}$, hence $g\left(\aleph_{\gamma+1}\right)$. But we could easily choose the N_{ζ} 's so that this fails (for all possible γ 's).

64(2). Remark. An instance of 64 for \aleph_{ω} is: suppose

$$
\begin{aligned}
S=\{ & \delta<\omega_{1}: \text { if } \mathscr{D} \text { is an ultrafilter on }\left\{\aleph_{\alpha+1}: \alpha<\delta\right\} \\
& \text { containing every cobounded subset then } \left.\mathrm{cf}\left(\prod_{\alpha<\delta} \aleph_{\alpha+1} / \mathscr{D}\right)<\aleph_{\omega_{1}}\right\}
\end{aligned}
$$

is stationary and $2^{\aleph_{0}}<\aleph_{\omega}$, then $\aleph_{\omega}^{\aleph_{0}}<\aleph_{\omega_{1}}{ }^{(7)}$ Similarly for 62.
During this proof we have really showed, e.g.,
64(3). FACT. Suppose $a \in R^{\kappa, 2}, \lambda \in \operatorname{pcf}(a), \mu=\sup (\lambda \cap \operatorname{pcf}(a)), \mu$ a limit cardinal, $\operatorname{cf} \mu>|a|$, and let $\mu=\bigcup\left\{\mu_{i}: i<\operatorname{cf} \mu\right\},\left\langle\mu_{i}: i<\operatorname{cf} \mu\right\rangle$ strictly increasing continuous. Then

$$
\left\{\delta<\operatorname{cf} \mu: \text { for some } \chi<\mu_{\delta}, \max \left[\operatorname{pcf}\left(\left[\chi, \mu_{\delta}\right) \cap \operatorname{pcf}(a)\right)\right]<\lambda\right\}
$$

is not stationary
64(4). FACT. Suppose $\mu=\sup (a), a \in R^{\kappa, 2}, \theta<\kappa$, and for every $b \subseteq a$, $|b| \leqq \theta$ we have:
$(*)_{b}\{\lambda$: for some ultrafilter \mathscr{D} on b, [for $\chi<\mu(a-\chi) \in \mathscr{D} \Rightarrow$ $\operatorname{tcf}(\Pi a, \leqq \mathscr{O})=\lambda]\}$ has cardinality $\leqq \theta$,
then $(*)_{a}$.
65. Proof of $\left(\aleph_{\delta}\right)^{\text {cf } \delta}\left(\aleph_{\left(|\delta|^{\text {dj }}+.^{(8)}\right.}\right.$ We shall rely only on $\S 1$ and $\S 3$. Let $\kappa=\mathrm{cf} \delta$,

[^4]the case $|\delta|^{\kappa} \geqq \aleph_{\delta}$ is easy so w.1.o.g. $2^{\kappa}<\mathcal{K}_{\delta},|\delta|^{\kappa}<\mathcal{K}_{\delta}$. Let $\mu \stackrel{\text { def }}{=}\left(|\delta|^{\kappa}\right)^{+}$. Let, for $a \in R^{\kappa, 2}, a \subseteq \aleph_{\delta},\left\langle\left\langle f_{\lambda, \alpha}^{\kappa, a}:<\lambda\right\rangle: \lambda \in \operatorname{pcf}(a)\right\rangle$ as in 16 .

Let, for every limit ordinal $\alpha<\aleph_{\delta}, C_{\alpha}$ be a club of α of order type $\operatorname{cf}(\alpha)$. Let M be a model with universe \aleph_{δ}, and functions f, g s.t. for every $\alpha<\aleph_{\delta}$
(i) $\{\beta: \beta<\alpha\}=\{f(\alpha, i): i<|\alpha|\}$,
(ii) for $i<|\alpha|, g(\alpha, f(\alpha, i))=i$,
(iii) for $\beta<\alpha, f(\alpha, g(\alpha, \beta))=\beta$,
(iv) $f(\alpha, \alpha)=|\alpha|$,
(v) $g(\alpha, \alpha)=\alpha+1$.

Easily

$(*)_{1}$ if $M^{*}<M, Y \subseteq M^{*}$ and for every $\theta \geqq \mathcal{K}_{0},\left[\theta, \theta^{+}\right) \cap M^{*} \neq \varnothing \Rightarrow$ $\sup \left(Y \cap \theta^{+}\right)=\sup \left(M^{*} \cap \theta^{+}\right)$, then M^{*} is the Skolem Hull of Y in M. [Otherwise let α be minimal in M^{*} but not in the Skolem Hull of Y, let $\theta=|\alpha|$, so there is $\beta \in Y \cap \theta^{+} \subseteq M^{*}, \alpha<\beta$ and let $i \stackrel{\text { def }}{=} g(\beta, \alpha)$, so necessarily $i \in M^{*}$ (as $\beta, \alpha \in M^{*}$), but $i<\theta \leqq \alpha$ so by α 's minimality i is in the Skolem Hull of Y; but then so is $\alpha=f(\beta, i)$, contradiction.] We know that for some ordinal $\zeta(*)<$ $\left(|\delta|^{\kappa}\right)^{+}$
$(*)_{2}$ for $a \in R^{\kappa, 2}, a \subseteq\left[\mu^{+}, \aleph_{\delta}\right) \Rightarrow \max \operatorname{pcf}(a) \leqq \mathcal{K}_{\zeta(*)}$ (by $\left.10(4)\right)$.
Let

$$
\begin{aligned}
F= & \left\{f: \operatorname{Dom} f=a \in R^{\kappa, 2} \text { for some } \eta<\omega,\right. \\
& \text { pairwise disjoint } b_{1}, \ldots, b_{n} \in R^{\kappa, 2} \cap\left[\mu^{+}, \aleph_{\delta}\right), \\
& \text { and regular } \lambda_{1}, \ldots, \lambda_{n} \leqq \aleph_{\zeta(*)} \text { and } \alpha_{1}<\lambda_{1}, \ldots, \alpha_{n}<\lambda_{n}: \\
& \left.\bigcup_{l=1}^{n} b_{l}=a, f=\bigcup_{l=1}^{n}\left(f_{\mu_{l}, \alpha_{l}}^{\kappa, a}+b_{l}\right)\right\} .
\end{aligned}
$$

Clearly
$(*)_{3}$

$$
|F| \leqq \kappa_{\zeta(\theta)} .
$$

Let $\chi=\left(2^{2_{\delta}}\right)^{+}$. Now for every $x \subset \aleph_{\delta},|x| \leqq \kappa$, we can choose $\left\langle N_{i}^{x}: i \leqq \mu\right\rangle$ s.t.:
(a) $N_{i}^{x}<(H(\chi), \in)$,
(b) $j<i \Rightarrow N_{j}^{x}<N_{i}^{x}$,
(c) $\left\|N_{i}^{x}\right\|=\mu$,
(d) $\left\langle N_{j}^{x}: j \leqq i\right\rangle \in N_{i}^{x}$,
(e) $\{\alpha: \alpha \leqq \mu\} \subseteq N_{0}^{x}$,
(f) $\left\langle\left\langle f_{\lambda, \alpha}^{\kappa, a}: \alpha<\lambda\right\rangle: \lambda \in \operatorname{pcf}(b)\right.$ and $\left.b \in R^{\kappa, 2} \cap\left[\mu^{+}, \aleph_{\delta}\right),\right| b|\leqq x\rangle \in N_{0}$,
(g) $\left\langle C_{\alpha}: \alpha<\mathcal{K}_{\delta}\right.$ limit $\rangle \in N_{0}^{x}$,
(h) $M \in N_{0}^{x}$,
(i) $x \in N_{0}^{x}$ (hence $x \subseteq N_{0}^{x}$).

Let for $i \leqq\left(|\delta|^{\kappa}\right)^{+}, g_{i}=g_{i}^{x}$ be a function with domain $R^{x, 0} \cap\left(\mu, \aleph_{\delta}\right), g_{i}(\theta)=$ $\sup \left(\theta \cap N_{i}^{x}\right)$. By 27 , for every $a \in R^{\kappa, 2}, a \subseteq\left(\mu, \aleph_{\gamma}\right)$ and $x \in \operatorname{pcf}(a)$ we have $g_{\mu} \backslash b_{\lambda}^{a} \equiv f_{\left.\lambda, g_{\mu}\right)}^{a, k} \backslash b_{\lambda}^{a} \bmod J_{<\lambda}^{x_{<}, b_{k}^{a}}$. Hence (see 27)
$(*)_{4}$ for $a \subseteq R^{\kappa, 2} \cap\left[\mu^{+}, \aleph_{\delta}\right), g_{\mu} \upharpoonright a \in F$ (and $a \in I^{\kappa, 2}$).
It is also quite clear that for $\theta \in R^{\kappa, 2} \cap\left(\mu, \aleph_{\delta}\right),\left\langle g_{i}(\theta): i \leqq \mu\right\rangle$ is strictly increasing continuous, so for i limit $\operatorname{cf}\left(g_{i}(\theta)\right)=\mathrm{cf} i>\aleph_{0}$ so

$$
C_{x, \theta}=C_{\left.g_{k}, \theta\right)} \cap\left\{g_{i}^{x}(\theta): i<\mu\right\}
$$

is a club of $g_{\mu}(\theta)$ and is included in N_{μ}^{x}.
Now we can define M_{n}^{x} by induction on n s.t.
(a) $M_{n}^{x}<M,\left|M_{n}^{x}\right| \subseteq N_{\mu}^{x}$,
(β) $\left\|M_{n}^{x}\right\|=\kappa$,
(γ) $M_{n}^{x}<M_{n+1}^{x}$,
($\delta) x \subseteq M_{0}^{x}$,
(e) if $\mu<\aleph_{\alpha+1}<\aleph_{\delta},\left|M_{n}^{x}\right| \cap\left[\aleph_{\alpha}, \aleph_{\alpha+1}\right) \neq \varnothing$ then for some $\gamma\left(x, \aleph_{\alpha+1}, n\right) \in$ $C_{x, \aleph_{\alpha+1}} \cap M_{n+1}^{x}$

$$
\gamma\left(x, \aleph_{\alpha+1}, n\right)>\sup \left(\aleph_{\alpha+1} \cap M_{n}^{x}\right) .
$$

There is no problem to carry this.
Let $a(x)=\left\{\aleph_{\alpha+1}: \mu<\aleph_{\alpha+1}<\aleph_{\delta}\right.$, and for some $\left.n\left[\aleph_{\alpha}, \aleph_{\alpha+1}\right) \cap M_{n}^{x} \neq \varnothing\right\}$, so $a(x) \subseteq R^{\kappa, 2} \cap\left[\mu^{+}, \aleph_{\delta}\right.$) (there is no weakly inaccessible in $\left[\mu^{+}, \aleph_{\delta}\right.$)! and let

$$
Y_{x}=\left\{\gamma\left(x, \aleph_{\alpha+1}, n\right): n<\omega,\left[\aleph_{a}, \aleph_{\alpha+1}\right) \cap M_{n}^{x} \neq 0\right\}
$$

Now Y_{x} has cardinality κ; it is a subset of $M^{x} \stackrel{\text { def }}{=} \bigcup_{n} M_{n}^{x}$ so by $(*)_{1}$
$(*)_{4} \quad M^{x}$ is the Skolem Hull in M of $\left(M^{x} \cap \mu^{+}\right) \cup Y_{x}$.
Now
(*)

$$
\begin{gathered}
Y_{x} \subseteq \bigcup_{\theta \in a(x)} C_{g \mu \theta)}, \\
\left|\bigcup_{\theta \in a(x)} C_{g_{\mu}(\theta)}\right| \leqq \mu,\left|Y_{x}\right| \leqq \kappa .
\end{gathered}
$$

(*) ${ }_{6}$
Now

$$
\begin{aligned}
& \left|\left\{Y_{x}: x \subset \aleph_{\delta},|x| \leqq \kappa\right\}\right| \\
& \quad \leqq\left|\left\{\left\langle g_{\mu}^{x} \uparrow a(x),\left\{z: z \subseteq \bigcup_{\theta \in a(x)} C_{g_{\mu}(\theta)},|z| \leqq \kappa\right\}\right\rangle: x \subseteq \aleph_{\delta},|x| \leqq \kappa\right\}\right| \\
& \quad \leqq|F| \times \mu^{\kappa} \leqq|F| \times \mu \leqq \aleph_{\zeta(*)} .
\end{aligned}
$$

So if $\aleph_{\delta}^{\kappa}>\aleph_{\zeta(*)}$, necessarily for some Y

$$
\left|\left\{x: Y_{x}=Y\right\}\right|>\mathcal{K}_{\zeta(\theta)}
$$

and easily, for some $A \subseteq \mu$,

$$
\left|\left\{x: Y_{x}=Y, M^{x} \cap \mu=A\right\}\right|>\mathcal{K}_{\zeta(*)} .
$$

But $x \subseteq M^{x},\left\|M^{x}\right\| \leqq \kappa, 2^{\kappa}<\aleph_{\zeta(*)} ;$ contradiction.

References

[B Sh] R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12.
[D M R] C. K. van Dowen, D. Monk and M. Rubin, Some questions alout Boolean Algebras, Algebra Univ. 11 (1980), 220-243.
[G H] F. Galvin and A. Hajnal, Inequalities for cardinal powers, Ann. of Math. 101 (1973), 491-498.
[J] I. Juhasz, in Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984.
[M] D. Monk, in Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984.
[M Sh] M. Magidor and S. Shelah, When does almost free imply free? (for groups, transversals etc.), to appear.
[Sh 1] S. Shelah, Jonsson algebras in successor cardinals, Isr. J. Math. 30 (1978), 57-64.
[Sh 2] S. Shelah, A weak generalization of MA to higher cardinals, Isr. J. Math. 30 (1978), 297-306.
[Sh 3] S. Shelah, A note on cardinal exponentiation, J. Symb. Logic 45 (1980), 56-66.
[Sh 4] S. Shelah, On powers of singular cardinals, Notre Dame J. Formal Logic 27 (1986), 263-299.
[Sh 5] S. Shelah, Proper Forcing, Lecture Notes in Math., Vol. 940, Springer-Verlag, Berlin, 1982.
[Sh 6] S. Shelah, Was Sierpinski right?, Isr. J. Math., to appear.
[Sh 7] S. Shelah, Strong negative partition relations above the continuum, J. Symb. Logic, to appear.
[Sh 8] S. Shelah, On successor of singular cardinals, Proc. of ASL Meeting Mons, Aug. 1978 (M. Boffa, D. van Dalen and K. McAloon, eds.), Studies in Logic and the Foundation of Math. 97, North-Holland Publ. Co., Amsterdam, 1979, pp. 357-386.
[Sh 9] S. Shelah, Classification of nonelementary classes II, Abstract elementary classes, Proc. of the USA-Israel Symp. on Classification Theory (J. Baldwin, ed.), Springer-Verlag, Berlin, 1987.
[Sh 10] S. Shelah, More on power of singulars, Isr. J. Math., 59 (1987), 299-326.
[Sh 11] S. Shelah, Strong negative partition relations below the continuum, Acta Math. Acad. Sci. Hung., to appear.
[Sh 12] S. Shelah, Products of regular cardinals and cardinals in variants of Boolean algebras, manuscript, December 1987.
[T1] S. Todorcevic, Remarks on chain conditions in products, Compositio Math. 5 (1985), 295-302.
[T2] S. Todorcevic, Remarks on cellularity in products, Compositio Math. 57 (1986), 357-372.
[T3] S. Todorcevic, Partition pairs of countable cardinals, Berkeley notes, 1985.

[^0]: ${ }^{\dagger}$ Research partially supported by the United States-Israel Binational Science Foundation. Received June 7, 1987 and in revised form December 31, 1987

[^1]: ${ }^{(1)}$ For further advances, see [Sh 11] on $\lambda^{+}-$c.c is not productive, e.g. for λ regular $>\aleph_{1}$; and [Sh 12] for more information on cofinalities of products of regular cardinals.

[^2]: ${ }^{(2)}$ Remember, if we are using $P=(P, \leqq)$ then $p<q$ means $p \leqq q$ or $p=q$.

[^3]: $\bmod \mathscr{D}+u(*)$.

[^4]: ${ }^{(7)}$ Just let $\mu=\kappa=\aleph_{1}, \theta=\aleph_{0}$ (S_{2} stationary). Note that in the definition of S, we can replace $"<\kappa_{\omega_{1}}{ }^{"}$ by " $<\kappa_{\gamma(\delta)}$ " for some $\gamma(\delta)<\omega_{1}$, as the set of such cofinalities has a last element.
 ${ }^{(8)}$ The proof of $\left(\mathcal{K}_{\alpha+\delta}\right)^{c \text { cf(} \delta)}<\mathcal{K}_{\alpha+(|\delta| \alpha q}+$ when $\mathcal{K}_{\alpha}^{c(\delta)}<\mathcal{K}_{\alpha+\delta}$ is similar.

