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Abstract. A group homomorphism h: H ! G is called a localization of H if every
homomorphism j: H ! G can be ‘extended uniquely’ to a homomorphism F: G ! G in
the sense that Fh ¼ j.

Libman showed that a localization of a finite group need not be finite. This is exem-
plified by a well-known representation An ! SOn�1ðRÞ of the alternating group An, which
turns out to be a localization for n even and n f 10. Emmanuel Farjoun asked if there is
any upper bound in cardinality for localizations of An. In this paper we answer this ques-
tion and prove, under the generalized continuum hypothesis, that every non abelian finite
simple group H, has arbitrarily large localizations. This shows that there is a proper class of
distinct homotopy types which are localizations of a given Eilenberg-Mac Lane space
KðH; 1Þ for any non abelian finite simple group H.

0. Introduction

One of the current problems in localization of groups is to decide what algebraic
properties of H can be transferred to G by a localization h: H ! G. Recall that h: H ! G

is a localization if every homomorphism j: H ! G in the diagram

H ���!h G

j

???y F

G

ð0:1Þ

������!

can be extended to a unique homomorphism F: G ! G such that Fh ¼ j. This in other
words says that GGLhH where Lh is the localization functor with respect to h; see e.g. [2],
[13], [4], [3]. For example, the properties of being an abelian group or a commutative ring
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with 1 are preserved. Casacuberta, Rodrı́guez and Tai [4] have found consequences of these
facts for homotopical localizations of abelian Eilenberg-Mac Lane spaces, see also Casa-
cuberta [3].

A further step leads to nilpotent groups. Dwyer and Farjoun showed that every
localization of a nilpotent group of class 2 is nilpotent of class 2 or less. A proof is given
by Libman in [13] (see also [3]). However, it is unknown if nilpotent groups are preserved
under localizations in general.

Another interesting problem is to find an upper bound for the cardinalities of the
localizations of a fixed group H. It is easy to see that, if H is finite abelian, then every
localization h: H ! G is an epimorphism, hence jGje jHj. More generally, Libman has
shown in [13] that if H is torsion abelian then jGje jHj@0 . However, if H is not torsion,
this can fail. Indeed, the localizations of Z are precisely the E-rings, and we know by
Dugas, Mader and Vinsonhaler [9] that there exist E-rings of arbitrarily large cardinality.
Strüngmann sharpened this result in [22] for almost free E-rings.

The first example observing that a localization of a finite group need not be finite is
due to Libman [14]. He showed that the alternating group An has an ðn � 1Þ-dimensional
irreducible representation h: An ! SOn�1ðRÞ which is a localization for any even natural
number n f 10. In the proof he uses that On�1ðRÞ is complete, SOn�1ðRÞ is simple, and the
fact that all automorphisms of SOn�1ðRÞ are conjugation by some element in On�1ðRÞ. This
also motivates our Definition 1. Thus, Emmanuel Farjoun asked about the existence of an
upper bound for the cardinality of localizations of An. We give an answer to this question
in Corollary 3, which is a direct consequence of our Main Theorem and Proposition 2.

In fact our result also holds for many other finite groups which we will call suitable

groups, see Definition 1. We shall assume the generalized continuum hypothesis. GCH will
be needed to apply a new combinatorial principle which is similar to ‘Shelah’s black box’ or
the diamond principleG. But rather than applying some game with a winning strategy for
some player we will apply the outcome directly as stated in Proposition 5.3. The proof of
this combinatorial result will appear in Chapter 8 of the book by Shelah [21]. The proof can
also be recovered from [11], the result is stated for cardinality @1 in [20] and applied to
boolean algebras, moreover see [19]. Accordingly, the group G being constructed will have
cardinality jGj ¼ lþ, the successor of a regular cardinal l.

The group theoretical techniques derive from combinatorial group theory and can be
found in the book by Lyndon and Schupp [15]. Some aspects are inspired from the solution
of Kurosh’s problem about Jonsson groups [18]. But unlike there, in this updated version
we will not apply cancellation theory which simplifies proofs about certain centralizers of
subgroups.

Main Theorem (ZFCþGCH). Let l be the successor of an uncountable, regular

cardinal and let lþ be its successor cardinal. Then any suitable group H is a subgroup of a

group G of size lþ with the following properties:

(a) Any monomorphism f: H ! G is the restriction of an inner automorphism of G.

(b) H has trivial centralizer in G: if ½H; x� ¼ 1 for some x A G then x ¼ 1.
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(c) Any monomorphism G ! G is an inner automorphism of G.

(d) G is simple.

It is interesting to note that we can also require that G ¼ G½H�, this is to say that the
following holds:

(e) The group G is generated by copies of H.

This strong demand can be established if we add G½H� ¼ G to the Definition 3.2 of
K�. It is then easy to see from Lemma 3.11 that the new class K� is still large enough
to provide G as in the Main Theorem. We see that the group G in the Main Theorem is
complete, i.e. has trivial center ZðGÞ and AutðGÞ ¼ InnðGÞ, where AutðGÞ denotes the
automorphism group of G and InnðGÞ is the normal subgroup InnðGÞ ¼ fg�: g A Gg which
consists of all conjugations

g�: G ! G ðx ! g�1xgÞ:

It is also obvious that G from the Main Theorem is co-hopfian in the sense that any mono-
morphism is an automorphism of G.

Definition 1. Let H be any group with trivial center and view H eAutðHÞ as inner
automorphisms of H. Then H is called suitable if the following conditions hold:

1. H is finite and AutðHÞ is complete.

2. If H1 eAutðHÞ and H1GH then H1 ¼ H.

Note that AutðHÞ has trivial center because H has trivial center. Hence the first
condition only requires that AutðHÞ ¼ InnðHÞ, so H has no outer automorphisms. We
want to show that all non abelian finite simple groups are suitable. As a consequence of the
classification of finite simple groups the Schreier conjecture holds for all finite groups H,
hence the outer automorphism group OutðHÞGAutðHÞ=InnðHÞ is always soluble. As H is
also simple and non abelian then H identified with InnðHÞ is a characteristic subgroup of
AutðHÞ. Hence, looking at the solvable group AutðHÞ=H any copy of H in AutðHÞ must
be H. Moreover AutðHÞ is complete by Burnside, see [16], p. 399. This shows part (a) of the
following

Proposition 2. (a) All non abelian finite simple groups are suitable.

(b) The non abelian, finite, simple and complete groups are precisely the following

sporadic groups: M11, M23, M24, Co3, Co2, Co1, Fi23, Th, B, M, J1, Ly, Ru, J4 and the fol-

lowing Chevalley groups for primes p and natural numbers n f 3

S2nð2Þ; G2ðpÞ ðp3 2; 3Þ; F4ðpÞ ðp3 2Þ; E7ð2Þ; E8ðpÞ:

Part (b) follows by inspection of the list of finite simple groups. It is interesting to
know when H ¼ AutðHÞ because in this case our proof becomes visibly simpler.
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We finally obtain an answer to Emmanuel Farjoun’s question concerning alternating
groups An for all finite simple non abelian groups.

Corollary 3 (Assume ZFCþGCH). Any finite simple non abelian group has local-

izations of arbitrarily large cardinality.

The localization An ! SOn�1ðRÞ for any even n f 10 induces a map between Eilen-
berg-Mac Lane spaces KðAn; 1Þ ! K

�
SOn�1ðRÞ; 1

�
which turns out to be a localization in

the homotopy category. This is the first example of a space with a finite fundamental group
which admits localizations with an infinite fundamental group. Corollary 3 yields then the
following extension.

Corollary 4 (Assume ZFCþGCH). Let H be a finite simple non abelian group. Then

KðH; 1Þ has localizations with arbitrarily large fundamental group.

Constructions in homotopy theory based on large-cardinal principles were used in
Casacuberta, Scevenels and Smith [5].

Acknowledgements. We would like to thank Emmanuel Farjoun for explaining the
above problem to us and pointing out further interesting connections between group theory
and homotopy theory.

1. Proof of corollaries

Assuming GCH, Proposition 5.3 applies for any cardinal lþ with l uncountable and
regular, henceG in theMain Theorem can have cardinality lþ. In order to prove Corollary 3,
we next show that the inclusion h: H ,! G in the Main Theorem is a localization. Suppose
that j: H ! G is a homomorphism. We have to show that there is a unique homo-
morphism F: G ! G such that Fh ¼ j. If j ¼ 0 then F ¼ 0 makes the diagram (0.1) com-
mutative. To see that it is unique, we note that H is in the kernel K of F and K ¼ G by
simplicity, hence F ¼ 0. Now suppose that j3 0. Since H is simple we have that j is
a monomorphism thus by (a) of the Main Theorem there is an element y A G such that
j ¼ y�ZH where y�ZH denotes the restriction of the map y� on H. Hence F ¼ y� satisfies
Fh ¼ j. Suppose that F 0: G ! G is another homomorphism such that F 0h ¼ j. Then
F 0 3 0 and since G is simple by (d), the map F 0 is a monomorphism of G, hence an inner
automorphism by (c). Now ðg�1yÞ�: G ! G fixes all elements of H. From (b), we obtain
g�1y ¼ 1 and thus F ¼ F 0 as desired.

Recall from [7] or [4] that a map f : X ! Y between two connected spaces is a
homotopical localization if Y is f -local, i.e. if the map of pointed function spaces

map�ðY ;Y Þ ! map�ðX ;YÞ

induced by composition by f is a weak homotopy equivalence. As in the case of groups this
says that Y FLf X , where Lf is the localization functor with respect to f .

It turns out that the homotopical localizations of the circle S1 ¼ KðZ; 1Þ are precisely
Eilenberg-Mac Lane spaces KðA; 1Þ where A ranges over the class of all E-rings [4], Theo-
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rem 5.11. And therefore this is proper class (not a set) in view of the result in [9]. Recall that
an E-ring is a commutative ring A with identity which is canonically isomorphic to its
own ring of additive endomorphisms. Corollary 4 claims that a similar situation holds for
KðH; 1Þ if H is a finite, simple non abelian group. However, in this case, other localizations
of KðH; 1Þ which are not of the form KðG; 1Þ may exist, see [7], Section 1.E.

Corollary 4 follows from the fact that every localization of groups H ! G gives rise
to a localization of spaces KðH; 1Þ ! KðG; 1Þ. This holds because, for arbitrary groups A

and B, the space map�
�
KðA; 1Þ;KðB; 1Þ

�
is homotopically discrete and equivalent to the set

HomðA;BÞ.

Basic facts on homotopy theory can be seen in [23], the monograph by Aubry [1]
(lectures of a DMV seminar by Baues, Halperin and Lemaire) as well as in Farjoun’s ex-
position [7] for homotopical localizations.

2. On free products with amalgamation and HNN extensions

If G is a group and a; b A G then ½a; b� ¼ a�1b�1ab denotes the commutator of a and
b, and this naturally extends to subset ½A;B�. Compare Theorem 2.7, p. 187, Theorem 6.6,
p. 212 and Theorem 2.4, p. 185 in [15] for the notion of free products with amalgamation
and HNN extension. We will need a lemma describing finite subgroups of free products
with amalgamations and HNN extensions.

Lemma 2.1. Let G� ¼ G1 �G0
G2 be the free product of G1 and G2 amalgamating a

common subgroup G0 ¼ G1XG2 and let H be a finite subgroup of G�. Then there exist

i A f1; 2g and y A G� such that H y e Gi.

Proof. Let

H G � ¼ fH x: x A G�g

be the conjugacy class of H in G�. If g A G� ¼ G1 �G0
G2 then jgj denotes the length of g,

which is an invariant of g, see [15]. We now choose H 0 A H G �
subject to the following two

conditions.

jH 0 X ðG1WG2Þj is maximal ðsee also ð2:5ÞÞð2:1Þ

and among those let

minfjhj: h A H 0nG1nG2g be minimal; also say min j ¼ 0:ð2:2Þ

So there is such an H 0 which we rename H. If h A H, then h is torsion and by the
Torsion Theorem for free products with amalgamation there are g A G� and i A f0; 1g such
that hg ¼ y A Gi, see [15] or [16]. Hence any h A H has the form

h ¼ gyg�1 ¼ g1 � � � gnyg�1n � � � g�11ð2:3Þ

and we may assume that n is minimal with (2.3). If y A G0, then we can replace y by
gn yg�1n , which is in G1WG2 and g1 � � � gn�1 has shorter length, contradicting minimality of n.
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Hence y A G1WG2nG0 and say y A G1 without any restriction. By the same argument we
can not have that gn A G1, hence gn A G2 and h ¼ g1 � � � gn yg�1n � � � g�11 is in normal form and
its length jhj ¼ 2n þ 1 is odd. We have shown that

jhj is odd for all elements h A H:ð2:4Þ

If hi A H XGinG0 for i ¼ 1; 2 then visibly h ¼ h1h2 has length jhj ¼ 2 which contra-
dicts (2.4). We conclude

H X ðG1WG2Þ ¼ H XGi for some i A f1; 2g;ð2:5Þ

hence in (2.1) either jH XG1j or jH XG2j is the maximal integer. By symmetry we may
assume that

H X ðG1WG2Þ ¼ H XG1 and hence jH XG2je jH XG1j:ð2:6Þ

In order to say more about H XG1 we fix a left coset representation of G0 e Gi

and let 1 A Zi e Gi be a fixed left transversal of G0 in Gi, i.e. Gi is the disjoint union of
fzG0: z A Zig and Z ¼ Z1WZ2 is a transversal of G� over G0. Following standard notation
if g A zG0 we also write g ¼ z for the representative of the coset. We will use the following
well-known fact about normal forms with respect to transversals; see [16], pp. 179–181 or
[15], pp. 205–206. Any

g A G� can uniquely be expressed as a reduced word g ¼ g1 � � � gng0ð2:7Þ

with g0 A G0 and gk A G1WG2nG0 alternating in G1 and G2 respectively, e.g. by using [16],
p. 179. If we apply this to (2.3) then (after renaming y as g0yg�10 ) then (2.3) becomes an
expression with unique gi A Z

h ¼ g1 � � � gn yg�1
n � � � g�1

1 with gi A Z:ð2:8Þ

Next we claim that

H XG1Oj G0:ð2:9Þ

Assume H XG1OG0 and also assume that the lemma does not hold. Hence there is
h A HnG1nG2, which can be expressed as in (2.8). Now we claim that the subgroup

H 0 ¼ Hg1 A H G �

violates the maximality (2.1) for H. We may assume by symmetry that g1 A G1WG2 be-
longs to G1. Hence

G
g1
0 e G1; ðG0XHÞg1 e G1XH 0 and jG0XHje jG1XH 0j:

However H XG0 ¼ H XG1 by assumption on H, hence jH XG1je jH 0XG1j. By max-
imality (2.1) with (2.6) follows

jH XG0j ¼ jH XG1j ¼ jH 0 XG1j:ð2:10Þ
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We now consider hg1 A H 0 with h A H subject to (2.2). Such an h A H exists as we as-
sume that the lemma does not hold. Obviously

hg1 ¼ g2 � � � gn yg�1
n � � � g�12

from (2.8). We get that jhg1 j ¼ jhj � 2 < jhj has shorter length. Hence hg1 A H 0nG1nG2 by
(2.2) is impossible, so necessarily hg1 A G1WG2. On the other hand h B H XG0 by (2.2),
hence hg1 A H 0 X ðG1WG2Þ is a ‘new’ element when compared with

ðH XG0Þg1 OH 0 X ðG1WG2Þ;

so

jH XG0j ¼ jH X ðG1WG2Þj < jH 0 X ðG1WG2Þj

which contradicts (2.10), and (2.9) follows.

We continue assuming that the lemma does not hold. Now we want to exploit the
fact (2.9) that H XG1 is relatively large. Let h A HnG1nG2 still be expressed as in (2.8) in
normal form. If x A H XG1 then also hx A H can be represented like h as

hx ¼ g1x � � � gmx yxg
�1
mx � � � g�1

1x ¼ gx yxg
�1
x with gix A Zð2:11Þ

for some yx A G1WG2 and gx ¼ g1x � � � gmx with factors which are representatives alternat-
ing from G1 and G2, respectively.

Hence

g1 � � � gn yg�1
n � � � g�1

1 x ¼ g1x � � � gmx yxg
�1
mx � � � g�1

1x

and by uniqueness of factors from the left of the reduced normal forms for transversals
follows element-wise g1 ¼ g1x; . . . ; gn ¼ gmx, hence m ¼ n and g ¼ gx for all x A H XG1. By
(2.11) this is to say that all elements in the coset hðH XG1Þ of H XG1 are conjugate by the
same element g. Accordingly, if

X ¼ H X ðG1WG2Þg�1

then hðH XG1ÞOX OH and hence jH XG1je jX j.

We now considerH 0 ¼ H g and note that X g OH 0X ðG1WG2Þ. Cosets have the same
size, hence using (2.6) and (2.1) for H we get

jH XG1j ¼ jhðH XG1Þje jX j ¼ jX gje jH 0 X ðG1WG2Þje jH X ðG1WG2Þj ¼ jH XG1j

and equality holds. Hence

hðH XG1Þ ¼ H 0XG1 or hðH XG1Þ ¼ H 0XG2;

the coset is a subgroup which is only possible if h A H XG1 or h A H XG2, which however
contradicts our choice of h. The lemma holds. r
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Note that HNN extensions are obtained by particular successive free products with
amalgamation, see [16], p. 182 or [15]. From Lemma 2.1 we have the immediate

Corollary 2.2. Let G be any group, and f: G0 ! G1 be an isomorphism between two

subgroups of G. Consider the HNN extension G� ¼ hG; t: t�1ht ¼ fðhÞ; h A G0i. If H is a

finite subgroup of G�, then there exists a y A G� such that H y is contained in G.

The following lemma describes centralizers of finite subgroups in free products with
amalgamation.

Lemma 2.3. Let G� ¼ G1 �G0
G2 be the free product of G1 and G2 amalgamating a

common subgroup G0. Let H e G1 be a non trivial finite subgroup and let x A G� be an ele-

ment which commutes with all elements of H. Then either x A G1 or H g e G0 for some g A G�.

Proof. Suppose ½x;H� ¼ 1 and x B G1. Express x in a reduced normal form

x ¼ g1g
0
1 � � � gng

0
n;

that is, gi A G1nG0 ð1 < i e nÞ and g 0
i A G2nG0 ð1e i < nÞ. The relation h�1x�1hx ¼ 1 yields

the following

h�1g 0�1
n g�1n � � � g 0�1

1 ðg�11 hg1Þg 0
1 � � � gng

0
n ¼ 1:

By the normal form theorem for free products with amalgamation [15], Theorem 2.6, p. 187,
this is only possible if g�11 hg1 A G0 for all h A H 0. This concludes the proof. r

By similar arguments we have

Lemma 2.4. Let G be any group, and f: G0 ! G1 be an isomorphism between two

subgroups of G. Consider the HNN extension G� ¼ hG; t: t�1ht ¼ fðhÞ; h A G0i. If H is a

non trivial finite subgroup of G� and x A G� such that ½x;H� ¼ 1, then x A G.

3. Group theoretic approximations of G

We fix a suitable group H and write ĤH ¼ AutðHÞ. Moreover, view H e ĤH as sub-
group. We also fix an uncountable regular cardinal l. As usual CG 0 ðGÞ and NG 0 ðGÞ denote,
respectively, the centralizer and the normalizer of a subgroup G in a group G 0.

Let pInnðGÞ denote the set of partial inner automorphisms, which are the isomorphisms
f: G1 ! G2 where G1;G2 e G such that f can be extended to an inner automorphism of G.
Hence pInnðGÞ are all restrictions of conjugations to subgroups of G. In addition we will
use the following

Definition 3.1. Let M e N be groups, then x A N is nice over M in N if for any
s; t A M with x ¼ sxt it follows s ¼ t�1.

Obviously nice elements over M in N as in the Definition 3.1 are also nice over M in
G if M e N e G. This will be used very often in Sections 4 and 5. We next consider two

Göbel, Rodrı́guez and Shelah, Localizations of groups8

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/24/15 10:22 PM

Sh:701



particular families K�OK of groups which will be used to approximate our group G
group theoretically. An ordering will follow in the next section. The class of groups K�

will be dense in K in the sense that for any group G A K is the subgroup of some group
G 0 A K�. Moreover we will show that jGj � @0 ¼ jG 0j.

Definition 3.2. 1. K consists of all groups G with jGj < l such that H e ĤH e G,
and any isomorphic copy of H in G has trivial centralizer in G. That is,

K ¼ fG: ĤH e G; jGj < l; if H GH 0
e G; x A G with ½H 0; x� ¼ 1; then x ¼ 1g:

2. K� is the class of all groups G in K such that any isomorphism between H and a
subgroup of G is induced by conjugation with an element in G.

As H is suitable, we have ĤH A K�.

Lemma 3.3. If G and G 0 are in K then G � G 0 A K. Moreover, all elements in G are

nice over G 0 in G � G 0.

Proof. Suppose that H 0 e G � G 0 with H 0GH and x A G � G 0 such that ½H 0; x� ¼ 1.
By Lemma 2.1, we can suppose that ðH 0Þy

e G. Hence ½H 0; x� ¼ 1 implies ½ðH 0Þy; xy� ¼ 1
and we may assume that H 0 e G and ½x;H 0� ¼ 1. If x B G, then express x in reduced form
and consider the commutator h�1x�1hx ¼ 1 for any h A H. Replace a first choice h3 1 by
a di¤erent one if the first G-factor of x�1 is cancelled by h�1. Hence the normal form of the
commutator shows non-trivial factors and the commutator can not be 1 by the normal
form theorem for free products [15], p. 175. This is impossible, hence x A G A K and
H 0 e G implies x ¼ 1.

The second statement of the lemma follows by an immediate length argument. r

If G is any group in K and f: A ! B is an isomorphism between two subgroups of
G isomorphic to H, we want that f is an partially inner automorphism in some extension
G e G2 A K. This follows by using HNN extensions as we next show.

Lemma 3.4. Let G A K and Be G be a subgroup isomorphic to H. Then there is

G e G1 A K such that AutðBÞe G1.

Proof. Let B̂B ¼ AutðBÞ and N ¼ NGðBÞ. If B̂Be G then let G1 ¼ G. Suppose that

B̂B2G. Note that N ¼ GX B̂B, so we can consider the free product with amalgamation
G1 :¼ G �N B̂B. We shall show that G1 A K. Let H 0 e G1 be a subgroup isomorphic to H

and 13 x A G1 such that ½H 0; x� ¼ 1. By Lemma 2.1 we can suppose that H 0 e G or
H 0 e B̂B. Suppose that H 0 e G, the other case is easier. Let x ¼ g1g2 � � � gn be written in a
reduced normal form. If x ¼ g1 A G then x ¼ 1 since G A K, and this is a contradiction.
Hence x ¼ g1 A B̂BnN. As in Lemma 2.3 we deduce that H 0 ¼ ðH 0Þg1 e N, thus H 0 ¼ B

since B is suitable. Hence g1 A N is a contradiction. If n ¼ 2, then we obtain

ðH 0Þg1 ¼ ðH 0Þg2 ¼ B ¼ H 0:

So both g1 and g2 are in N, which is a contradiction. Similarly, if n f 3 we have that g2 and
g3 are in N. This is again impossible. This concludes the proof. r
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By the previous lemma we can suppose that if B e G A K, and if BGH, then B̂Be G

as well. If A;B e G, AGBGH and ÂA, B̂B are conjugate in G then A and B are also con-
jugate. Indeed, if g A G such that g�: ÂA ! B̂B, then Ag e B̂B is a subgroup isomorphic to B,
hence Ag ¼ B by Definition 1.

Lemma 3.5. Let G A K and Be B̂B e G. Suppose that H and B are not conjugate in G.
Let f: ĤH ! B̂B be any isomorphism. Then the HNN extension

G1 ¼ hG; t: t�1ht ¼ fðhÞ for all h A ĤHi

is also in K.

Proof. Let H 0 e G1 be a subgroup isomorphic to H and 13 x A G1 such that
½H 0; x� ¼ 1. By Corollary 2.2 we can suppose that H 0 e G already. Let

x ¼ g0t
e1g1t

e2 � � � gn�1t
engn

be written in a reduced form in G1, where gi A G and there is no subword t�1git with gi A ĤH

or tgit
�1 with gi A B̂B (see [15], p. 181).

If x ¼ g0 A G then x ¼ 1, since G A K. This yields a contradiction. Thus n f 1. We
have ½h; x� ¼ h�1x�1hx ¼ 1 for every h A H 0. In other words, for a fixed h3 1, the follow-
ing holds:

h�1g�1n t�en � � � t�e1ðg�10 hg0Þte1 � � � tengn ¼ 1:ð3:1Þ

By the normal form theorem for HNN extensions ([15], p. 182), either e1 ¼ 1 and
g�10 hg0 A ĤH, or e1 ¼ �1 and g�10 hg0 A B̂B. Suppose that e1 ¼ 1, the other case is analogous.
Then ðH 0Þg0 e ĤH, thus ðH 0Þg0 ¼ H from ‘suitable’, and we can replace in (3.1) the subword
t�1ðg�10 hg0Þt by fðg�10 hg0Þ A B. Repeating the same argument we obtain that ei ¼ 1 or �1.
Hence one of the two possibilities holds depending on e2 ¼ 1 or e2 ¼ �1. We have either

id: H1 !
g�
0

ĤH !f B̂B !
g�
1

ĤH !f � � � !
g�

n
H1

or

id: H1 !
g�
0

ĤH !f B̂B !
g�
1

B̂B !f
�1

� � � !
g�

n
H1:

In the first case we have an isomorphism g�
1f: ĤH !f B̂B !

g�
1

ĤH. Since ĤH is complete there is
g A ĤH such that g�

1f ¼ g�. This yields f ¼ ðg�11 gÞ�, i.e. ĤH and B̂B are conjugate, and thus H

and B are conjugate, but this is impossible by hypothesis. In the second case we have g1 A B̂B

by completeness. But, on the other hand g1 B B̂B since x is written in a reduced form. We
conclude that G1 is in K. r

Lemma 3.6. Let A e ÂA e G A K and Be B̂B e G. If f: A ! B is any isomorphism,
then there is G e G2 A K such that f A pInnðG2Þ. Moreover, G2 can be obtained from G by

at most two successive HNN extensions.
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Proof. If f A pInnðGÞ we take G2 ¼ G. Suppose that f B pInnðGÞ. If ĤH and ÂA are
conjugate, we take G1 ¼ G. Otherwise, we consider the HNN extension

G1 ¼ hG; t1: t
�1
1 ht1 ¼ f1ðhÞ for all h A ĤHi

where f1 is any isomorphism between ĤH and ÂA. By Lemma 3.5 we know that G1 A K.
Now, if H and B are conjugate in G1, we take G2 ¼ G1. It follows automatically that
f A pInnðG1Þ, since ĤH is complete. If ĤH and B̂B are not conjugate in G1, we consider a new
HNN extension

G2 ¼ hG1; t2: t
�1
2 ht2 ¼ f2ðhÞ for all h A ĤHi

where f2 is any isomorphism between ĤH and B̂B. Again G2 A K by Lemma 3.5. In that case
we have an isomorphism ðt�12 Þ�ft�1 : ĤH ! ĤH, which equals g� for some g A ĤH by complete-
ness. Thus f ¼ ðt2gt�11 Þ�ZA. This shows that f A pInnðG2Þ. r

Lemma 3.7. Let G A K and suppose that G 0 A K or G 0 does not contain any sub-

group isomorphic to H. Let g A G and g 0 A G 0 with oðgÞ ¼ oðg 0Þ. Then ðG � G 0Þ=N A K where

N is the normal subgroup of G � G 0 generated by g�1g 0 A G � G 0.

Proof. The groupG ¼ ðG � G 0Þ=N is a free product with amalgamation, hence G and
G 0 can be seen as subgroups of G respectively. Suppose that we have a subgroup H 0 e G

isomorphic to H and x A G such that ½H 0; x� ¼ 1. By Lemma 2.1 we can assume that H 0 is
already contained in G. Suppose that x3 1. By Lemma 2.3 it follows that either x A G or a
conjugate of H 0 is contained in hgi. In the first case x ¼ 1 from G A K is a contradiction.
The second case is obviously impossible. Thus G A K. r

The proof of the next lemma is obvious.

Lemma 3.8. (a) Let g < l and fGi: i < gg be an ascending continuous chain of groups

in K. Then the union G ¼
S
i<g

Gi also belongs to K.

(b) Let g < l and let fGi: i < gg be an ascending continuous chain of groups in K�.
Then the union G ¼

S
i<g

Gi also belongs to K�.

(c) K� is dense in K.

Using Lemma 3.3 and Lemma 3.8 we obtain that, for every cardinal k < l, the free
product [

a Ak
ĤHa belongs to K, where ĤHa is an isomorphic copy of ĤH for every a A k. Now

we can apply the following lemma to obtain a group G 0 A K�, such that [
a A k

ĤHa e G 0.

Lemma 3.9. Let G� ¼ G �G0
G 0 be the free product of G and G 0 amalgamating a com-

mon subgroup G0. If G, G 0 and G0 are in K�, then G� A K.

Proof. Let H 0 e G� be a subgroup isomorphic to H, and 13 x A G� such that
½H 0; x� ¼ 1. By Lemma 2.1 we can assume that H 0 e G0 and x ¼ g1g2 � � � gn, is written in a
reduced form of length bigger than two. Then we have g�

1 : H
0 ! ðH 0Þg1 both of them inside

G0. Since G0 A K� there exists g A G0 such that g�: H 0 ! ðH 0Þg1 . We can also suppose that
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the automorphism group ĤH 0 is already in G0 by Lemma 3.4. Hence the composition
ðg�11 gÞ�: H 0 ! H 0 is an automorphism, which is inner by completeness. Thus, g�11 g A G0

and g1 A G0. This is a contradiction, since x was written in a reduced form. r

In order to show that our final group G is simple we only must consider normal sub-
groups N of G which are cyclically generated, i.e. there is an 13 x A G with N ¼ hxGi. We
need that N ¼ G. There are two natural cases depending on the order of x. The case that x

has infinite order is taken care by the next Proposition 3.10. Hence assuming that all ele-
ments of infinite order are conjugate, a consequence of Proposition 3.10, we only need to
note that any element g of finite order can be written as a product of two elements of infi-
nite order, just take y from a di¤erent factor then g ¼ ðgyÞy�1. Hence G ¼ N. If x has finite
order, then there is a conjugate y of x such that xy has infinite order. Hence xy A N and the
first case applies.

Proposition 3.10. Let G be a group in K. Let g; f A G, where oð f Þ ¼ oðgÞ ¼ y and g

does not belong to the normal subgroup generated by f . Then there is a group G A K such

that G e G and g is conjugate to f in G.

Proof. Let a: h f i ! hgi be the isomorphism mapping f to g. By hypothesis
a B pInnG. As in Lemma 3.6 consider the HNN extension G ¼ hG; t: t�1 ft ¼ gi. We must
show that G A K. Clearly jGj < l and consider any H 0 with H GH 0 e G and any x A G

with ½H 0; x� ¼ 1. As above we may assume that H 0 e G and x A G with ½H 0; x� ¼ 1. Now
we apply Lemma 2.3. r

The last lemma of this section is not needed for proving the Main Theorem but it is
used to show the additional property (e) of the group G in Section 1 mentioned after the
Main Theorem.

Lemma 3.11. If g A G A K, then there is a group G A K, such that G e G, with

jGj ¼ jGj � @0 and g A G½H�.

Proof. Suppose that oðgÞ ¼ y and that g B G½H�. Let H1 and H2 be two isomorphic
copies of H. Choose a non trivial element h A H and let h1 and h2 be its copies in H1 and H2

respectively. Now define

G ¼ ðG � H1 � H2Þ=N

where N is the normal subgroup generated by g�1h1h2. Then G A K by Lemma 3.7 and
moreover g A G½H�.

If oðgÞ ¼ n < y we first embed G e ðG � KÞ=N where K ¼ hx1; x2: ðx1x2Þn ¼ 1i and
N is the normal closure of g�1x1x2. Then by the Lemma 3.7, ðG � KÞ=N A K. Now, since
oðx1Þ ¼ oðx2Þ ¼ y, we can apply the first case. r

4. Approximations of G as a lB-uniform poset

We recall some basic notions of set theory from [12]. In particular cfðaÞ denotes
the cofinality of an ordinal infinite cardinal a and a cardinal l is regular if cfðlÞ ¼ l.
Throughout let l be a fixed uncountable regular cardinal and lþ it successor. We will
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write P<lðlÞ for the set of all subsets of l of cardinality < l. From GCH we have
jP<lðlÞj ¼ l<l ¼ l.

In this section we have to fit the group extensions of the last sections into a poset P

defined in the appendix A of the paper. Let l and H be as in Main Theorem, and H e ĤH as
before. Write

flþlþ :¼ fða; iÞ: a A lþ; i < lgð4:1Þ

with the lexicographical ordering. Hence flþlþ is a well-ordered set of cardinality lþ, an
ordinal < lþþ. Hence

p: lþ ! flþlþ ða ! ða; 0ÞÞ is a canonical embedding:

If x ¼ ða; iÞ A flþlþ with i < l, we write kxk ¼ a and call a the norm of x. We define the

domain of a subset X of flþlþ as the set domX ¼ fkxk: x A Xg.

The following picture illustrates how we can embed for instance H � Ha in
flþlþ, with

domðH � HaÞ ¼ f0; ag.

0 ð1; 0Þ � � � ða; 0Þ ðaþ 1; iÞ � � � flþlþ
H Hanf1g k � k

0 1 � � � a aþ 1 � � � lþ

Definition 4.1. Let uH lþ be a subset of cardinality < l with 0 A u. Then a group G

of size jGj < l is called a u-group if the following holds:

(a) DomGHflþlþ and domG ¼ u, where DomG denotes the underlying set of elements
of the group G. We will identify DomG ¼ G.

(b) For every 03 d A lþ the subset GXpðdÞ is a subgroup of G. Moreover GXpðdÞ
belongs to K� given in Section 3.

We will rewrite the elements p ¼ ða; uÞ A P (see the Appendix A) in the form
p ¼ ðGp; upÞ or simply p ¼ ðG; uÞ where G is a u-group. If u is fixed, then G runs through
all u-groups of cardinality < l. By GCH this is a set of cardinality l, hence this modifica-
tion of P agrees with the requirement that (only) a < l (codes these algebraic structures).
Next we define an ordering on P which will use ‘nice’ elements from Definition 3.1. Now
we say that

p e q in P, which is the case if and only if the following two conditions hold:

1. Gp e Gq.

2. If d A lþ and x A Gp is nice over Gp X pðdÞ in Gp, then x A Gq is nice over Gq XpðdÞ
in Gq.
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Theorem 4.2. ðP;eÞ is a lþ-uniform partially ordered set.

Proof. We must define elements in P and have to check the conditions listed in Defi-
nition A.1:

First we trade ĤH into a 0-set for example, as indicated by the diagram. Hence ðĤH; f0gÞ
is our first element in P.

Suppose Gi is a ui-group for each i ¼ 0; 1; 2 such that G0 ¼ G1XG2. We turn the free
product G� ¼ G1 �G0

G2 into a ‘weak’ u-group for u ¼ u1W u2 which is a u-group except that
the subgroups G� X pðdÞ ðd < lþÞ may not be in K�.

If g A G� ¼ G1 �G0
G2nG1nG2 then choose a transversal of G� as in (2.7) and write g

uniquely as indicated there. Turn g into an unused ordinal g A flþlþ such that its norm kgk is
the maximum of the norms of those factors. With HNN extension we can deal similarly,
which is left as an exercise. In order to satisfy (b) of the Definition 4.1, we apply Lemma 3.8
extending G� XpðdÞ accordingly and identifying with unused ordinals of the intervals

related to u. We see that G� becomes a subgroup of the set flþlþ with domG� ¼ u and G� is a
subgroup of some u-group G obtained by iterated applications of free products with amal-
gamation and unions of such chains. Hence it follows from Definition 3.1 that nice ele-
ments in G0 over G0X pðdÞ remain nice in GX pðdÞ, which we will use silently to check
1:; . . . ; 8: in Definition A.1:

1. Let p; q A P such that p e q and p ¼ ðGp; upÞ and q ¼ ðGq; uqÞ. Then Gp e Gq

and domGp O domGq, or equivalently dom pO dom q.

2. Let p; q; r A P such that p; q e r. With the same notation as above we have that
Gp, Gq are subgroups of Gr and all of them belong toK�. Consider G 0 e Gr generated by
Gp and Gq. It is clear that u ¼ domG 0 ¼ dom pW dom q. Using the fact that Gr is in K�,
we can add to G 0 the elements of Gr, with norm in u and obtain a new group G 00 A K� such
that G 0 e G 00 e Gr. Hence r0 ¼ ðG 00; uÞ is the required element in P.

Condition 4. can be shown similarly, 3., 5. and 6. are obvious in view of the previous
remarks.

7. (Indiscernibility) Suppose that p ¼ ðGp; upÞ A P and j: up ! u 0 is an order-
isomorphism in lþ. We define a set

G 0 ¼
��

jðaÞ; i
�
A flþlþ: a A up; ða; iÞ A G

	
Oflþlþ

and give to G 0 multiplication canonically induced by G. The map j induces a map of p to
some jðpÞ ¼ ðG 0; u 0Þ A P which we also denote by j; it is order preserving on up ! u 0 and a
group isomorphism on G ! G 0. The fact that q e p implies jðqÞe jðpÞ is also clear.

8. (Amalgamation property) Using the same notations let be Gp and Gq from p

and q respectively and let r ¼ ðGr; urÞ be such that Gr ¼ Gp XGq. The free product
G� ¼ Gp �Gr Gq with amalgamated subgroupGr byLemma 3.9 belongs toK. By Lemma 3.8
there is a group G A K� such that G� e G. Using the remarks at the beginning we can
trade G into an (isomorphic) u-group which we also call G with

Göbel, Rodrı́guez and Shelah, Localizations of groups14

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/24/15 10:22 PM

Sh:701



domG ¼ u ¼ domGp WdomGq:

Hence s ¼ ðG; uÞ is as required for 8. r

It may help to make the following

Definition 4.3. Let Gi be ui-groups for i ¼ 1; 2. A map c: G1 ! G2 is a strong iso-
morphism if c: G1 ! G2 is a group isomorphism which preserves the order on domGi, this
is to say that

domG1 ! domG2 ðkxk ! kcðxÞkÞ ðx A G1Þ

is an order isomorphism.

The map defined in 7. is such a strong isomorphism.

Below we will introduce certain density systems on P which will ensure the require-
ments stated in the Main Theorem.

The group G at the end will be

G ¼
S

a<lþ
Ga;ð4:2Þ

where each Ga is the union of all groups in the directed system Ga over Pa (see Definition
A.2), where

Pa ¼ fp A P: dom pO ag:

Every Ga has cardinalitye l, so that (4.2) is a lþ-filtration of G. For the rest of this section
we fix the following notation: Let be a < b < lþ, uO vO lþ with jvj < l, and define

E :¼ fp A P=Ga: vO dom pO vW bg:

Recall from Definition A.2 that p A E if and only if pZ a A Ga, in our setting p ¼ ðGp; upÞ
this is to say that

�
Gp X pðaÞ; up X a

�
A Ga. Note that this will follow for density systems

(below) from condition 2 of the ordering on P. We define:

The density system for SGSF lB to be the set

Daðu; vÞ :¼ fp A E: uW fagO dom pO vW bg:ð4:3Þ

Proposition 4.4. The collection Da of Daðu; vÞ as in (4.3) is a density system over Ga.

Proof. We will use the notation above and from Definition A.2. It is clear that
Daðu; vÞ is closed upwards in E. To show that Daðu; vÞ is dense in E it is enough to con-
sider the case that a B u and q ¼ ðG; uÞ A E. As in the proof of Theorem 4.2 we can find
a group G 0 A K�, such that G e G 0, which contains a subgroup H 0 isomorphic to H and
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a A domH 0 O vW b: In particular, we have a A domG 0. Moreover, the group G 0

can be constructed in such a way that domG 0 O vW b. By the remarks above
p :¼ ðG 0; domG 0Þ A E, nice elements in G are also nice in G 0, hence q e p A Daðu; vÞ shows
density. The second condition in Definition A.3 can be verified similarly to the proof of 7.
in Theorem 4.2. r

The density systems to make G simple. If x; y A Ga and oðxÞ ¼ oðyÞ ¼ y then let

Dx;yðu; vÞ ¼ fp A E: p ¼ ðGp; upÞ; uO up O vW b; x A hyGp

ig;ð4:4Þ

where hyGp

i ¼ hyz: z A Gpi.

Proposition 4.5. Dx;y as in (4.4) is a density system over Ga.

Proof. If q ¼ ðGq; uqÞ A E we may assume that y; x A Gq. If x B hyGq

i we can con-
struct a v-group G represented by p A E extending q such that x A hyGq

i: Apply Proposition
3.10 and define G1 ¼ hGq; t: x ¼ t�1yti, as an HNN extension, where t is a new element in
v with ktk ¼ kxk. Using again the argument from the proof of Theorem 4.2 we can also
find G1 e G with G A K� and domðGÞH vX b which gives p e q ¼ ðG; uÞ A E and x and y

are conjugate in G, hence q A Dx;y showing density. r

The density systems to trade monomorphisms of G into inner automorphism. For any
subgroup K eGa of cardinality < l and any monomorphism c: Ga ! Ga define the set
DcZKðu; vÞ as

fp ¼ ðGp; upÞ A E: K e Gp and by A Gp with cZK ¼ y�ZK ; dom pO vW bg:ð4:5Þ

Note that the just defined system (running over all c and K) of sets DcZKðu; vÞ has
(only) size l.

We also have a special case of the last density system (4.5) which we state explicitly
because it serves for a di¤erent purpose.

The density system to conjugate copies of H in G. In this case we choose for each
H 0 eGa with isomorphism c: H ! H 0 the set

Dcðu; vÞ ¼ fp ¼ ðGp; upÞ A E: H 0
e Gp and bg A Gp;cZH ¼ g�ZHg:ð4:6Þ

Proposition 4.6. The collection of all DcZKðu; vÞ as in (4.5) [respectively Dcðu; vÞ as in

(4.6)] is a density system over Ga.

Proof. Apply Lemma 3.8 and Definition 3.2: If p A E then we find a group G such
that cZK ¼ y�ZK for some y A G by HNN extension. By Theorem 4.2 we also find
G e G 0 A K� and we trade G 0 into a v-group with kyk ¼ a and v ¼ uW fag as we did be-
fore. Hence Proposition 4.6 follows. r

The density for many nice elements. For a as above we also choose
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Dðu; vÞ ¼ fp ¼ ðGp; upÞ A E: bq A E; bx A Gp torsion-free and hxi � Gq ¼ Gpg:ð4:7Þ

The density can easily be checked as before.

5. Proof of the Main Theorem

We will fix for the rest of this paper a particular word of a free group (i.e. a term in
group theory) tðx1; x2; x3; x4Þ ¼ ½x1x2; x3x4� which is the commutator of products in free
variables x1; . . . ; x4. We will also use the notion of a group isomorphism which is at the
same time ‘level preserving’, the strong isomorphism from Definition 4.3.

The main result for proving the Main Theorem is the following lemma concerning
this word.

Main Lemma 5.1. Let P be the lþ-uniform poset defined in the last section. Assume

that the following three properties hold in P:

1. There are ordinals d1 < d2 < d3 < d4 and approximations pi A Pdiþ1 ði ¼ 1; 2; 3Þ and

p4 A P with piZ di ¼ p0 A P for i ¼ 1; . . . ; 4.

2. There is a nice element x1 A Gp1nGp0 over Gp0 and an element y1 A Gp1nxGp0

1 .

3. Let ji: G
p1 ! Gpi for i ¼ 2; 3; 4 be a strong isomorphism and jiðx1Þ ¼ xi, jiðy1Þ ¼ yi

in Gpi respectively.

Then we can find in P an approximation q f p1; . . . ; p4 such that in the group Gq we

have

tðx1; x2; x3; x4Þ ¼ 1 but tðy1; y2; y3; y4Þ3 1:

Proof. We assume the hypothesis of the lemma, in particular we have elements xi; yi

with ði ¼ 1; 2; 3; 4Þ in the appropriate groups Gpi . From P we can choose an approximation
q ¼ ðG; vÞf p1; p2 such that G ¼ Gp1 �Gp0 Gp2 , hence x ¼: x1x2 A G. First we want to show
that

1. For any word sðx; tÞ ¼ ðx1x2Þn1t1ðx1x2Þn2t2 � � � ¼ 1 for a finite set t ¼ ft1; . . . ; tkg
from Gp0 follows that the ti’s commute with x.

2. x is nice in G over Gp0 .

At the end we want to apply the normal form theorem for free products with amal-
gamation [15] to the equation

1 ¼ ðx1x2Þn1t1ðx1x2Þn2t2 � � � with ti A Gp0 and ni A Zn0:

Naturally we can distinguish four cases, where we use the following notation: Let xe1
i1
be the

last xi-term which appears in ðx1x2Þn1 , similarly let xe2
i2
be the first xi-term which appears

in ðx1x2Þn2 .
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Obviously we have the following possibilities:

1. n1 > 0) ði1 ¼ 2 and e1 ¼ 1Þ.

2. n1 < 0) ði1 ¼ 1 and e1 ¼ �1Þ.

3. n2 > 0) ði2 ¼ 1 and e2 ¼ 1Þ.

4. n2 < 0) ði2 ¼ 2 and e2 ¼ �1Þ.

Hence the displayed equality can only hold if i1 ¼ i2 A f1; 2g. To be definite we take
i1 ¼ i2 ¼ 1 which by the cases implies e1 ¼ �1, e2 ¼ 1, n1 < 0 and n2 > 0. Hence the term
in the last displayed equation connecting xn1 and xn2 is x�1

1 t1x1 and the equality for normal
forms forces s ¼: x�1

1 t1x1 A Gp0 . Hence x1 ¼ t1x1s
�1 which by hypothesis is a nice element,

hence s ¼ t1 and ½x1; t1� ¼ 1. Using j2 also ½x2; t1� ¼ 1 and induction shows that all the ti’s
commute with x1 and x2 and in particular any equation of the form txs ¼ x with s; t A Gp0

implies s ¼ t�1, hence x is nice.

Next we consider the relationship of the xi’s and the yi’s. We have the following

Claim 5.2. If there are group terms (words) y1 ¼ s1ðx1; tÞ A Gp1 and y1y2 ¼ s2ðx; t 0 Þ
with t; t 0 OGp0 , then there is an s A Gp0 such that y1 ¼ s1ðx1; tÞ ¼ s�1x1s.

Proof. Using the action of j2 we have

s1ðx1; tÞs1ðx2; tÞ ¼ y1y2 ¼ s2ðx1x2; t 0 Þ:

By hypothesis yi A GpinGp0 , hence the displayed element has length 2. Let

s2ðx; t 0 Þ ¼ t1x
n1t2 . . . tkx

nk

be in canonical form as before. Hence the normal form forces k ¼ 1 and if jn1j > 1 then
t1ðx1x2Þn1t2 has length > 2, so also n1 A fG1g. We arrive at two cases

s1ðx1; tÞs1ðx2; tÞ ¼ t1x1x2t2ð5:1Þ

or

s1ðx1; tÞs1ðx2; tÞ ¼ t1x
�1
2 x�1

1 t2:ð5:2Þ

In the first case normal form forces that there is s A Gp0 such that s1ðx1; tÞ ¼ t1x1s as well as
s1ðx2; tÞ ¼ s�1x2t2. Application of j2 also gives s1ðx2; tÞ ¼ t1x2s, hence t1x2s ¼ s�1x2t2.
Recall that x2 (like x1) is nice, hence t1 ¼ s�1 and s ¼ t2, the claim follows (in this case). In
the other case we have an element (5.2) which is written in normal form at the same time as
products from exchanged factors Gp1 and Gp2 which is impossible. r

In order to complete the proof of the Main Lemma 5.1 we define two more extensions
of Gq in P. Let q 0 A P be given by dom q 0 ¼ dom p3W dom p4 such that as groups we have
Gq 0 ¼ Gp3 �Gp0 Gp4 . Recall that Gq ¼ Gp1 �Gp0 Gp2 . Hence we find a strong isomorphism
(which is order preserving on dom . . .) which is
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j: Gq ! Gq 0
extending j3; j4j

�1
0 ;

hence

jðx1Þ ¼ x3; jðx2Þ ¼ x4; jðxÞ ¼ jðx1x2Þ ¼ x3x4; jðy1Þ ¼ y3; jðy2Þ ¼ y4

and we let

x1 ¼ x ¼ x1x2; x2 ¼ x3x4; y1 ¼ y1y2; y2 ¼ y3y4

which are in the appropriate factors Gq respectively Gq 0
but not in Gp0 , moreover

jðx1Þ ¼ x2, jðy1Þ ¼ y2. If there is a group term y1 ¼ sðx1; tÞ with tOGp0 then we can
apply the last Claim 5.2 to see that y1 ¼ s�1x1s A ðx1ÞGp0

which was excluded by hypothe-
sis of the Main Lemma. We conclude that

y1 B hGp0 ; x1ie Gq and similarly y2 B hGp0 ; x2ie Gq 0
:ð5:3Þ

Now we define a final approximation r A P with dom r ¼ dom q 0 W dom q. Group theoreti-
cally we get Gr in several steps:

To easy notation let

K0 ¼ Gp0 ; K1 ¼ Gq; K2 ¼ Gq 0
; K 0

1 ¼ hK0; x
1ie K1; K 0

2 ¼ hK0; x
2ie K2;

and define L 0 ¼ K 0
1 �K0

K 0
2 ¼ hK0; x

1; x2i, and if N ¼ h½x1; x2�L
0
i / L 0 is the normal sub-

group of L 0 generated by the commutator ½x1; x2� then let L ¼ L 0=N. However K0XN ¼ 1
and K0 e L canonically, hence L is the free product of K0 with the free abelian group
hx1N; x2Ni of rank 2. Using only the group operation of Section 4, the group L now ob-
viously can be made into an element in P. Note that also N XK 0

i ¼ 1, we get a canonical
embedding K 0

i e L and can consider Mi ¼ Ki �K 0
i
L for i ¼ 1; 2; finally put Gr ¼ M1 �L M2.

From the normal subgroup N follows in Gr that ½x1; x2� ¼ 1. On the other hand from (5.3)
it follows that yi B K 0

i , yi A Gpi hence y1 ¼ y1y2 A GqnK 0
1 and similarly y2 A Gq 0nK 0

2.
By definition of Mi also yi A MinK 0

i and ½y1; y2� can not cancel in Gr, this is to say that
½y1; y2�3 1. r

Using now directly the Main Theorem 1.11 (which is in terms of model theory) from
the forthcoming book Shelah [21] (or slight modifications in [11], [20] or [19]) we get the
following proposition. Its proof like earlier ‘black boxes’ (see the appendix of [6] for in-
stance), also this case is based on counting arguments but using G on fa A lþ: cfðaÞ ¼ lg
and fa A lþ: cfðaÞ ¼ og as well. The latter explains why the generalized continuum hy-
pothesis gets into the proposition.

The statement of the proposition depends on P, the density systems constructed in
Section 4 and also (substantially) on the Main Lemma 5.1.

Proposition 5.3. 1. Assuming ZFCþGCH, there is an ascending sequence of ordinals

za < lþ and a continuous ascending chain of admissible ideals Ga OPza which meets all den-

sity systems constructed in Section 4.
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2. Let Ga ¼
S

Ga and G ¼
S

a<lþ
Ga.

3. If for all a < lþ there is a nice element xa A GnGa over Ga and there is

ya A GnxGa
a , then there are four ordinals a1 < a2 < a3 < a4 such that ½xa1xa2 ; xa3xa4 � ¼ 1

and ½ya1 ya2 ; ya3 ya4 �3 1.

For simplicity we will say that za ¼ a without loss of generality. We will apply this
black box for proving the Main Theorem stated in the introduction.

Proof. Obviously H eG because any approximation has H as subgroup.

G has cardinality lB: By Proposition 5.3 we have that for every a < lþ, there is a
group G in G such that a A domG. Hence domG ¼ lþ and lþ ¼ jGj follows immediately.

Property (d): Let x; y A G be both of infinite order. We can apply Proposition 4.5
and the density condition from Proposition 5.3 to see that x and y are conjugate in G. If x

has finite order and y has infinite order we can easily find an element x 0 ¼ xz A G of infinite
order such that z�1y has infinite order as well. Hence the first case applies and similarly we
work if also y has finite order. Hence in any case x A hyGi.

Property (a) follows from (4.6) and Proposition 4.6.

Property (b) was carried on inductively by our choice of K�, hence this also holds
for G. Finally we have to show that

Property (c) holds, this is to say that

any monomorphism c: G ! G is an inner automorphism of G.

Suppose c: G ! G is a counterexample, a monomorphism which is not inner. We
first want to show that the following holds.

There is a� < lþ such that cðxÞ A xGa for all x A GnGa� :ð5:4Þ

Otherwise

for all a < lþ there is xa A GnGa with ya ¼ cðxaÞ B xGa
a :ð5:5Þ

From (4.7) it is easy to see by a change of elements xa that

we may also assume that each xa is nice over Ga in G:ð5:6Þ

By Proposition 5.3, based also on the Main Lemma 5.1 together with (5.5) we can
find four ordinals a1 < a2 < a3 < a4 such that ½xa1xa2 ; xa3xa4 � ¼ 1 and ½ya1ya2 ; ya3ya4 �3 1.
However 1 ¼ cð½xa1xa2 ; xa3xa4 �Þ ¼ ½ya1ya2 ; ya3ya4 �3 1 is a contradiction. Hence we may as-
sume that (5.4) holds. r

First we claim that
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EX OG; jX j ¼ lþ )
�
bX 0OX ; by� A G; jX 0j ¼ lþ;cðxÞ ¼ xy�Ex A X 0�:ð5:7Þ

Let # z ¼ minfa < lþ: z A Gag for any z A G. Let S be the set of all limit ordinals a < lþ

with a� < a. Hence S is a stationary subset of lþ of cardinality lþ and from (5.4) we can
choose a sequence xa A XnGa and ya ¼ cðxaÞ A xGa

a for all a A S. We may assume that
f# ya: a A Sg is bounded in lþ. For otherwise the function f : ðS ! lþÞða ! f ðaÞ ¼ # yaÞ
satisfies f ðaÞ ¼ # ya < a and is regressive. By Fodor’s lemma there is a stationary subset
S 0 of S and b < lþ such that f ðaÞ ¼ b for all a A S 0, see Jech [12], p. 59, Theorem 22.
As jS0j ¼ lþ we can replace S by S 0. We now continue using S and choose the new
X ¼ fxa: a A Sg. From jGbj ¼ l < jX j ¼ lþ we also find an equipotent subset of X, call it
X again, and

y� A Gb such that cðxÞ ¼ xy� for all x A X :

The claim (5.7) is shown.

We now choose a set X ¼ fx1a A GnGa: a < lþg of nice elements over Ga in G with
jX j ¼ lþ and apply (5.7). Hence we may assume that cZX ¼ y�

�ZX for some y� A G. Re-
placing c by cðy�1� Þ� we may assume that y� ¼ 1, hence

cZX ¼ idX :

We now assume for contradiction that c3 idG. There is an x� A G such that cðx�Þ3 x�.
Next we choose a second sequence of nice elements over Ga which is

fx2a A GnGa: cðx2aÞ3 x2a : a < lþg:

If a first choice fails for any subsequence, then we multiply each of these elements by x�.
For a > a� the new elements are obviously nice and do what we want. We apply once more
the claim (5.4) and find some a� and ta A Ga� such that cðx2aÞ ¼ ðx2aÞ

ta for all a� < a < lþ.
By a pigeon hole argument we may assume that t ¼ ta for all a� < a < lþ. Hence we found
a sequence of pairs of nice elements over Ga� :

x1a ; x
2
a A GnGa with y1a ¼ cðx1aÞ ¼ x1a ; y2a ¼ cðx2aÞ ¼ ðx2aÞ

t 3 x2a :

Recall the properties of P: If a� < a < a1 < a2 we can choose p1 A Pa1 such that
xi
a1
; yi

a1
A Gp1npðaÞ, i ¼ 1; 2 and t A Gp1 X pða�Þ. Moreover we find p2 A Pa2 such that

Gp1 XGp2 ¼ Gp1 X pðaÞ and let p0 ¼ p1Z a ¼
�
Gp1 X pðaÞ; dom

�
Gp1 X pðaÞ

��
. There is a

‘level preserving’ strong isomorphism

j: Gp1 ! Gp2 with jZGp0 ¼ idGp0 ;

which carries the xi
a1
; yi

a1
’s to Gp2 . Let jðxi

a1
Þ ¼ xi

a2
which is another nice element over Ga�

and jðyi
a1
Þ ¼ yi

a2
for i ¼ 1; 2. From t A Gp0 , jZGp0 ¼ idGp0 and the above equations we

have x1a2 ¼ y1a2 and ðx2a2Þ
t ¼ y2a2 . We now choose p3 A P with p1; p2 e p3, hence x1a1 ; x

2
a2
are

nice over Gp0 . From t A Gp0 and the last equalities it follows that

y1a1y
2
a2
¼ cðx1a1x

2
a2
Þ ¼ cðx1a1Þcðx

2
a2
Þ ¼ x1a1ðx

2
a2
Þ t B ðx1a1x

2
a2
ÞGa� :
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On the other hand x1a1 ; x
2
a2
A GnGa� , hence

y1a1y
2
a2
¼ cðx1a1x

2
a2
Þ A ðx1a1x

2
a2
ÞGa�

by (5.4) is a contradiction. Hence c ¼ idG is an inner automorphism, which contradicts our
initial hypothesis and property (c) of the Main Theorem follows.

A. The appendix: A standard lB-uniform set

Definition A.1. A standard lþ-uniform partial order is a partial ordere defined
on a subset P of l�P<lðlþÞ. Its elements are pairs p ¼ ða; uÞ A l�P<lðlþÞ. We write
u ¼ dom p and call u the domain of p. [The ordinal a is a code for some algebraic structures
under investigation that u can support, in our case a represents a group on the set u.] These
approximations p A P satisfy the following conditions:

1. (Compatibility of the orders) If p e q then dom pO dom q.

2. For all p; q; r A P with p; q e r there is r 0 A P such that p; q e r 0 e r and
dom r 0 ¼ dom pWdom q.

3. If fpa: a < dg is an increasing sequence in P of length d < l then it has a least
upper bound q A P with dom q ¼

S
a<d

dom pa; we say that q ¼
S
a<d

pa.

4. If p A P and a < lþ then there is q A P such that q e p and dom q ¼ dom pX a

and there is a unique maximal such q for which we write q ¼ pZ a.

5. (Continuity I) If d is a limit then pZ d ¼
S
a<d

pZ a.

6. (Continuity II) If fpa: a < dg is an increasing sequence in P of length d < a then

S
i<d

pi


 �
Z a ¼

S
i<d

ðpiZ aÞ:

7. (Indiscernibility) If p ¼ ða; uÞ A P and j: u ! u 0 is an order-isomorphism in lþ,
then jðpÞ :¼

�
a; jðuÞ

�
A P. Moreover, if q e p then jðqÞe jðpÞ.

8. (Amalgamation property) For every p; q A P and a < lþ with pZ ae q and
dom pX dom q ¼ dom pX a there is an r A P such that p; q e r.

Consider the following filtration of P, where a < lþ,

Pa :¼ fp A P: dom pO ag:

Definition A.2. Let ðP;eÞ be a lþ-uniform partially ordered set and a < lþ. A
subset GOPa is an admissible ideal of Pa if the following holds:

1. G is closed downward, i.e. if p A G and q e p then q A G.
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2. G is l-directed, i.e. if AHG and jAj < l then A has an upper bound in G.

3. (Maximality) If p A P is compatible with all q A G then p A G. (Recall that p is
compatible with q if there is an r A P such that p; q e r.)

For an admissible ideal G of Pa, we define

P=G :¼ fp A P: pZ a A Gg:

This consists of all extensions of elements in G. Note that this notion is compatible with
taking direct limits in the following sense. Let fzb: b < ag be an increasing sequence of
ordinals in lþ converging to z. Suppose that for every b we have an admissible ideal Gb

of Pzb . Then there is a unique minimal admissible ideal containing the set theoretic union
of the Gb’s. With a slight misuse of notation we write

G<a :¼
S
b<a

Gb;

for this admissible ideal of Pz, see Hart, Laflamme and Shelah [11], p. 173, Lemma 1.3.

Definition A.3. Let G be an admissible ideal of Pa and a < b < lþ. An ða; bÞ-density

system over G is a function

D: fðu; vÞ: uO v A P<lðlþÞg ! PðPÞ

such that the following holds:

1. Dðu; vÞO fp A P=G: dom pO vW bg is a dense and upward-closed subset.

2. If ðu; vÞ; ðu 0; v 0Þ and uX b ¼ u 0 X b, vX b ¼ v 0 X b and there is an order-
isomorphism from v onto v 0 which maps u onto u 0, then for any ordinal g we have

ðg; vÞ A Dðu; vÞ , ðg; v 0Þ A Dðu 0; v 0Þ:

An admissible ideal G 0 of Pa 0 for some a 0 < lþ meets the ða; bÞ-density system D

(over G) if a < a 0, GOG 0 and for each u A P<lða 0Þ there is a v A P<lða 0Þ, with uO v and
such that Dðu; vÞXG 0 3j.
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Göbel, Rodrı́guez and Shelah, Localizations of groups24

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/24/15 10:22 PM

Sh:701


