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0. Introduction

Marek Golagnski and Daciberg Lima Gqadves have asked which divisible
abelian group® can be the type of a co-Moore space [6, Problem 2.6]. In
other words, for whiclD is there a topological space such that for some

n > 2, the integral conomology oX satisfies

D i=n
0 otherwise

HY(X,Z) = {

(cf. [8, pp. 48f]).

This translates, by means of the Universal Coefficient Theorem, into
an algebraic question which is of interest in itself: what is the possible
structure ofExt(A, Z) (= D) when A is a torsion-free abelian group such
thatHom(A,Z) = 0?
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Previous work of Hiller, Huber and Shelah [8] has answered this question
under the very strong assumption op@I’'s Axiom of Constructibility (V
= L). Here we consider the question under the milder assumption of the
Generalized Continuum Hypothesis, GCH, and find weaker restrictions and
matching new possibilities.

When A is torsion-free Ext(A, Z) is a divisible group and hence iso-
morphic to

Qo) g @ Z(pOO)(Vp(A))

peEP

for some cardinals(A), v,(A) (p € P, the set of primes) which are
uniquely determined by (cf. [5, Chaps. IV, 1X]). We want to know what
cardinals are possible under the assumption Hat(A,Z) = 0. With
regard to thes,(A), we have the following lemma of Hiller-Huber-Shelah
[8, Prop. 2] (provable in ZFC).

Lemma 0.1. If Ais torsion-free andlom(A,Z) = 0, then for every prime
p, Vp(A) is finite or of the forn2#» for some infinite cardina,,.

Regarding/(A), in [8] the following is proved assuming V = L. (The
same result is proved in [2] under the weaker hypothesis that every White-
head group is free). For countablg the result is true in ZFC (see [3,
X11.2.1]).

Proposition 0.2. Assume V =L (or just that every Whitehead group is free).
If Ais torsion-free andlom(A,Z) = 0, thenuy(A) = 2141,

Notice that it follows that, under the hypothesis of the Proposition,
vp(A) < 1p(A) for every primep. Conversely, Hiller-Huber-Shelah prove
(in ZFC) that for any cardinalsy, v, (p € P) satisfying the conditions that
eachy, is < 1 and is either finite o2#» for some infinitey,, and that
vy = 2+0 for some infiniteu, there is a torsion-free group of cardinal-
ity po such thatHom(A,Z) = 0, v9(A) = vy andy,(A) = v, for every
p € P. (See [8, Thm. 3(b)].) So the problem of Gofeski and Gonalves
is completely solved under a strong assumption sscia L.

Here we are interested in what is possible under the weaker assumption
GCH. Our main results are the following two theorems. The first says that
if v9(A), the (torsion-free) rank dfxt(A, Z), is less than the value given
in Proposition 0.2, then all the,(A) must be as large as possible. (The
assumption of GCH is used in the form of the diamond or weak diamond
principles it implies.) The second says that all possibilities (for groip$
cardinalityX;) allowed by the first theorem are realized in some model of
GCH.
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Theorem 0.3. Assume GCH. For any torsion-free grodpof uncountable
cardinality, if Hom(A, Z) = 0 and the rankyo(A), of Ext(A, Z) is < 2141,
then for each prime, thep-rank, v,(A), of Ext(A, Z) is 2!4.

We note that, by [10], it is consistent with ZFC + GCH that there are
torsion-free groups! of cardinalityX; such that the rank dfxt(A,Z) is
< 2% put thep-rank of Ext(A, Z) is also< 2™ for some, or all, primes
p. Of course, in this case (by Theorem OEB)m(A, Z) must be non-zero.
Interestingly, however, the method of [10] can be used to prove the following:

Theorem 0.4. It is consistent with ZFC + GCH that for any cardinal
< Ny, there is a stronglyR;-free group A of cardinality ¥; such that
Hom(A,Z) = 0 and the rank oftxt(A,Z) is p (and, by Theorem 0.3,
thep-rank of Ext (A, Z) is 2% for each primep).

Putting together our results with those proved in [6] and [8], we can
give a complete answer (assuming GCH) to the question of which divisible
groups

D =Q™) g @ Z(pOO)(Vp)

peEP

of cardinality< R, are of the fornExt(A, Z) for someA with Hom(A, Z)
=0:

— D cannot have cardinality, (cf. [6, Cor. 1.5], [9, Lemma 5]);

— for D of cardinality®X; (= 2%°), they are precisely those for which =
N; and eachy, is either finite omy;

— thoseD of cardinalityX, (= 281) which can be proved in ZFC to be of
this form are those witlyy = X, and eachy, is either finite oy or Ny;

— the only other divisible group® of cardinality®s for which it is con-
sistent with ZFC + GCH that they are of this form are those for which
1o < N; and eachy, equalsky; on the other hand, it is consistent with
ZFC + GCH (in particular true in a modef & = L) that none of these
D are of the formExt(A, Z) whereHom(A,Z) = 0.

By modifying the forcing we can also prove:

Theorem 0.5. It is consistent with ZFC + GCH that there is a non-free
strongly &, -free group A of cardinality ®; such thatExt(A4,Z) = 0 and
Hom(A,Z) is free. In particularA is a non-reflexive Whitehead group.

In [4] the consistency with ZFC of the existence of such a group was
proved using a different forcing (makiro > X,), and a weak version of
Theorem 0.4 (the cage= 0) was also shown consistent with ZFC-€H.
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1. The p-rank of Ext

In this section we will prove Theorem 0.3. Throughodtwill denote a
torsion-free group of uncountable cardinaktyWe will denote the torsion-
free rank (respp-rank) ofExt(A, Z) by v (A) (resp,(A)). The proof will
be given in a series of lemmas.

Lemmal.l.If A = F/K whereF is a free group andk’ = @, K,
where for alla < k, Ext(F/Ka,Z) # 0, thenyy(A) = 2.

Proof. See [2, Lemma 1.1] or [3, Lemma XI1.2.3]. O

Gregory [7] and Shelah [11] showed that GCH implies diamond for
successor cardinals larger than Devlin and Shelah [1] proved that weak
CH (2% < 2%1) implies a weak form of diamond &Y;. In the following,
the notation®) (E) means that the weak diamond principle holds for the
subsett of \ (cf. [3, VI.1.6]).

The invariantl’y 7(A) of a groupA of cardinality A is defined in [3, p.
352]. We us{ | to denote disjoint union.

Lemma 1.2. (a) Assume GCH. For any infinite successor cardihah =
[l Ea where for eachy < A, @, (E,) holds

(b) If I’y z(A) D E and®,(E) holds, therExt (A, Z) # 0.

Proof. (a) See [7], [11], [1] and [3, VI.1.10]. (b) See [1] and [3, XII.1.7].
ad

Lemma 1.3. Assume GCH. Suppose thatis the union of a continuous
chain of subgroup$A,, : 1 < ) of cardinality < « such that for allu < x,
A, 11/A, is countable and not free. Theg(x) = 2"~.

Proof. (cf. [2, Thm. 2.14]) By [3, XIl.1.4] we can assume that= F/K
whereF = @3 Fj is a free group and’ = ®3.,. Kz such that for ev-
eryu < r, Ay = ®p<pF3/ <y K, and henced, 1 /A, = ®p<, F3/
(®p<ukp+ K,). Letus consider first the case whers a successor cardi-
nal. By Lemmal.2(ay =[], ., E. whereforeach < x, . (£, ) holds.
Now write K = @q<. K], WwhereK), = &pcp,Kp. Then for alla < &,
Iwz(F/K}) 2 E, because/ K/, = U, .. H, whereH,, = (®3,,Fj +
K!)/K/ andhencefor € E,, H,11/H, = ®p<, F3/(Bp<pFp+K,) =
A, 41/A, which is countable and non-free, and hence not a Whitehead
group. Therefore, by Lemma 1.2(Hjxt(F/K.,Z) # 0. Finally, apply
Lemma 1.1.

Now suppose is a limit cardinal; them = sup{x; : i < cof(x)} where
for eachi < cof(k), k; is a successor cardinal sup{x; : j < i}. LetS; =
ki —U{k; 1 j < i}; so0S;is a set of cardinality:; andr = [T, of(x) Si-
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By Lemma 1.2(a)5; = [ [, E., where for eacly < ;, @, (E}) holds.

Let K, = ®{Kp : B € E.}, SOK = @, cof(s) Pa<r; K- If we can
show thatkExt(F/K,,,Z) # 0 for all a andi, then we will be done by
Lemmal.1. Sincé’/ K, containg ®ses, F3)/ Ky, itis enough to prove that
Ext((©pes, Fp)/ K, Z) # 0. Butthis is the case by Lemma 1.2(b) because
(Dpes; Fp)/ K. is a group of cardinalitys; satisfyingl ., z((®ges, F)/
K!) D E! and®,(E:) holds. O

Lemma 1.4. If A contains a pure free subgroup of cardinality x and
Hom(A,Z) = 0, then for every prime, v,(A) = 2~.

Proof. SinceB/pB is isomorphic to a subgroup of/pA, the dimension
of A/pA as a vector space ovE&r/pZ is . From the exact sequence

0 = Hom(A, Z) — Hom(A, Z/pZ) — Ext(A,Z) & Ext(A,Z)

it follows thatw, (A) equals the dimension of the kernelof but this kernel
isHom(A,Z/pZ) = Hom(A/pA, Z/pZ), which clearly has dimensiorf2
O

Finally we have

Lemma 1.5. Assume GCH. Iin(A) < 2%, then A contains a pure free
subgroupB of cardinality .

Proof. Firstwe claim that every subset dfof cardinality< « is contained
in a subgroup” of cardinality < ~ such thatAd/C' is X;-free. If not, then
A contains a subgrougdy of cardinality< x such that for every subgroup
C of cardinality< x containingA, there is a subgroup’ of A containing
C such thatC”/C is countable and not free. It follow easily thatis the
union of a continuous chain of subgroups, : o < ) each of cardinality
< k such that for alv < k, A,+1/A, is countable and not free. But then
by Lemma 1.3y (A4) = 2%, which is a contradiction.

Now letY C A be maximal with respect to the property thatis a
basis of a pure free subgroup 4f By Lemma 1.4, it suffices to show that
Y has cardinality<. If not, let C' be a subgroup oft containingY” and of
cardinality< x such thatd/C is N;-free. If C’/C is a countable, pure and
non-zero subgroup ol /C; thenC’/C is free,C’ is pure inA andC’ =
C @ D whereD is countable, free and non-zero. Choosing an elerieit
a basis ofD, we see that” U {d} contradicts the maximality df. O

2. Theorem 0.4: the basics

We now embark on the proof of Theorem 0.4, which will occupy this and
the next two sections. Throughquivill be a fixed cardinak X; and.S will
be a stationary and co-stationary subsetptonsisting of limit ordinals.
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We begin by defining a grougl = A(e,a) which depends on two
parameters, functionsanda. The functiore is a function fromS x w to the
primes suchthatforadl € S, e(d, -) isastrictlyincreasing function of. The
functiona is a function orS x w such that for every € S andn € w, a(d,n)
is a finite non-empty subset 6fsuch thatnax a(d,n + 1) > maxa(d, n)
andsup{maxa(d,n) : n € w} = §. The functions: anda that we will use
will be generic, s will be defined in a generic extension of the universe;
we will then construct a further forcing extension in whiéhas the desired
properties.

Let F' be the free abelian group with basis

{zv:vew}U{zsn:d €S new}

Let K be the subgroup of generated byw;,, : 6 € S,n € w} where

(21) Wsn = 6(5’ n)zd,n—H — 250 + Z Ty.
v€a(d,n)

In fact, {ws,, : 6 € S,n € w} is easily seen to be a basis ff. Let
A = F/K.Then clearlyA is an abelian group of cardinality; . Notice that
because the right-hand side of (2.1) is Qdnwe have for each € S and
n € w the following relations inA:

(22) 6(57 n)z(s,n—i-l =250 — Z Ty
vea(d,n)

Here, and occasionally in what follows, we abuse notation and write, for
exampleg;  instead ot , + K for an element ofd. For eachy < wy, let
A, be the subgroup oft generated by

(2.3) {z,:v<a}lU{z,:6€SNa,necw}

Then, by (2.2), for eacld € S, z59 + As is non-zero and divisible in
As+1/As by infinitely many primes. Thusls;/A;s is not free. Moreover,
becausels 1 /As is not free for stationarily many € w;, A is not free (cf.

[3, IV.1.7]).

The definition ofExt(A, Z) that is most convenient for our purposes
is that it isHom (K, Z)/Hom(F, Z) whereHom(F', Z) stands for the sub-
group ofHom(K, Z) consisting of those homomorphisms which extend to
F. We shall abuse notation and refer to homomorphisms fforo Z as
elements ofxt(A, Z) when, strictly speaking, we should refer to the coset
mod Hom( F', Z) of the homomorphism. A homomorphism: K — Z is
a torsion element of the groupxt(A,7Z) if and only if there is a homo-
morphismy : F — Z and a non-zero integet such thatp = dy | K.
Otherwisep is a torsion-free element &fxt(A, Z).
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We now define the forcing extension in whichwill be defined using
generic data. Besides the generic functiersda we are going to define
genericallyp homomorphisms(s < p) from K to Z which will guarantee
that the (torsion-free) rank &fxt (A, Z) is at leasp. We begin with a model
V of ZFC where GCH holds, choosg € V to be a stationary and co-
stationary subset of;, and define a poset as follows:

Definition 2.1. LetQq be the set of all tuplegsuch that for somé, < w1,
q=(e,a4, fl:s<pndy)andforalls € §oNS:

—¢e9(4,) :w— {p € Z: pis prime} and is strictly increasing;

— a?(4,-) is a function onw such that for alln € w, a%(d,n) is a finite
non-empty subset éfsuch thatmax a?(§,n) < maxa(d,n + 1) and
sup{maxa?(d,n) : n € w} = 4;

— for eachs < p N o, f4 is a function from{ws,, : 6 € 5N S, n € w}
to Z.

We shall refer tady asdom(q). The partial ordering o€)y is defined
by: ¢1 < ¢ ifand only if g1 C ¢9; note that we follow the convention that
stronger conditions are larger. Itis easy to see that fonaayv, {¢ € Qo :
~v C dom(q)} is dense inQy. Clearly @ is w-closed and satisfies the-
chain condition, so GCH is preserved.

Let G1 be Qo-generic and inV[G;] let A = A(e,a) be the group
constructed as above with the generic data= U{e? : ¢ € G;} and
a=U{a?: q € G1}. Lety, be the homomorphisni” — Z which on the
basis{ws, : 6 € S,n € w}isgivenbyu{f{ : ¢ € G1};then{p, : s < p}
is a linearly independent subsettatt(A, Z). Thus the torsion-free rank of
Ext(A,Z) is at leasp (i.e.,v9(A) > p). However, inV[G4] the rank will
be larger; so we do an iterated forcing to eliminate torsion-free elements of
Ext(A,Z) which are not in th&-vector space generated by : s < p}.

We begin by defining the basic forcing that we will iterate.

Definition 2.2. Given a homomorphism : K — Z, let (), be the poset
of all functionsg into Z such that for some successor ordimak w1, the
domain ofg is {z5 : d € anN S,k € w}U{x, : v < o} and for all
0 eanSandk € w

(24)  Plwsk) = e(6,k)q(zsn1) —a(z50) + D aly).
vea(d,k)

(Compare with (2.1)). The partial ordering @, is inclusion.

In an abuse of notation, if the domain @fis {z5,, : 6 € aNS,n €
w}U{z, : v < a}, we shall writedom(q) = «.
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Lemma 2.3. For everya € w; and every; € @y, there existg’ € @ such
thatq < ¢’ anddom(¢’) > a.

Proof. Let dom(gq) = f; without loss of generalityg < «. Enumerate
{6 € §: 08 < < a}inanw-sequencddy : k € w) and define by
induction onk the valuesg(zs, ») andg(z,) so that (2.4) holds; in fact,
we can do this so thaf(z;, ,) = 0 for sufficiently largen because for
sufficiently largen, q(zmax(a(s,,n))) h@s not previously been defined, so we
can choose it to make (2.4) true.O

Now P = <B, Q;:0<i< w2> is defined to be a countable support

iteration of lengthw, so that for everyi > 1, IFp, Q; = qu whenever

p,“; - K — 7 is a torsion-free element dfxt(A,Z) independent of
{ps : s < p}"; otherwise,lFp, Q; = 0. The enumeration of name{gpZ :
1 < i < wo} is chosen so that itz is P-generic andy € VI[G] is a
homomorphismK —s Z, then for some > 1, ¢; is a name for in V7.
Then P is proper,(w; — S)-complete (so adds no newrsequences)
and satisfies th8,-chain condition. Moreover, ifY [G] every torsion-free
element ofExt(A,Z) is dependent oRy, : s < p} sovy(A) < p. The
proof thatvy(A) > p is the same as the main argument in [10]: note that
though the first forcingy, is not quite the same here (because of the needs
of the following lemma), the proof in [10] is still valid.
It remains to prove that, iV [G], Hom(A,Z) = 0. LetG, = {p | v
p € G}, so thatG,, is P,-generic. First we prove:

Lemma 2.4. Hom(4, 7)1 = o

Proof. By equation (2.2), i, € Hom(A,Z) andh(x,) = Oforall u € wy,
thenh is identically zero. So suppose, to obtain a contradiction, that there
exists a)o-nameh andry € (G such that

ro IF b € Hom(A,Z) A h(z,) =m

for someu, € wy and some non-zero integer. Choose a strictly increasing
sequence of prime§l,, : n € w) all larger thanm. Choose recursively
an increasing chaigr, : v € w;} of elements ofQ, such that ifa, =
dom(r,), theny < oy and for allv, v < a, < a,41 and for some
¢y € Zyry41 IF h(zq,) = c,. Moreover, for all limito, r, is the union of
{r; 7 <o}, sodom(r,) =sup{a, : 7 < o}.

Then, sinceS is stationary ando : a, = o} is a club, there is a limit
ordinal § such thatdom(r;) = a5 = § € S. Choose a strictly increasing
sequencea,, : n € w) whose supremum i§. Choose a bijectiory :
w — Z. Foreachm € w, leta,, = {a,, } if dy, + g(n) — ¢,,, and otherwise
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an = {ay,, p}, in which casel,, r g(n) — ¢,,, — m. There exists* € Qo
such that* > r5 and for alln € w

r*IFe(d,n) =dy Aa(d,n) = ay.

We obtain a contradiction by considering any genéffcwith »* € G*:
indeed, inV'[G] we haveh(zso) = g(n) for somen € w but alsoe(d, n)h

X (25m+1) = M250) = D_jeq, I(x;), Which is a contradiction of the choice
ofa,. 0O

We conclude this section with a simple lemma.

Lemma 2.5. Any homomorphisnfi from F' to Z is completely determined
by f [ {z,: v €w} UK.

Proof. Thisfollows from (2.1), since foranyand any integerg:, : n € w),
there is at most one integral solution to the equations

{e(0,n) f(z5n+1) — f(250) = Cn:n €W}

in the unknownsf (zs,) (n € w). O

3.Hom(A,Z) =0

In this section and the next we will prove thHbm(A,Z) remains zero
even after our iterated forcing. Lét € Hom(A,Z)"“); thenh € V(G
for some; < ws sinceP satisfies th&,-chain condition. We shall prove by
induction oni that anyh € Hom(AZZ)V[GJ belongs toV'[G;] and hence
is zero. Letg, € G; such tha, I h € Hom(A, Z). Throughout this and
the next section, we fix the notations, andg.. LetE denote the dense
subset ofP; consisting of conditiong such that there is an ordinélsuch
that for allar € dom(q), ¢(c) belongs toV anddom(g(a)) = 6. If ¢ € P,
we will write dom(q) = ¢ if dom(g(«)) = 6 for all &« € dom(g).

Definition 3.1. Foranyq € P;and any0 < a < 1, letPos,(q) be the set of
all sequences of integefs”, c', ..., ¢*™~2, ¢*™~1) such that for arbitrarily
large ¢ € w, there arery, ..., 7,1 € P; each stronger than and such that
ro | a=..=7rp1 [ aandford =0,...m— 1, 7(a)(z) = 2 and

ro IFP (ze) = AL

SincePos, (q) decreases agincreases, we can assume thats such
that: if i has cofinalityw, ori is a successor, then therens < i such that

Posa, (¢x) = Posa(q)
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whenevera, < a < i andqg > ¢, and ifi has cofinalityw, then for
arbitrarily largea < i

Pos,(q«) = Posa(q)

wheneverg > ¢, (cf. [10, E1, p. 77]). (Note that if has cofinalityw, we
can recursively defing.(«,,) on a sequencgy,, : n € w) approaching so
that the second displayed identity holds.)

We shall say that is goodif the appropriate (depending on the cofinality
of i) displayed identity holds far. We assert:

Claim 3.There is a good: such that:

(a) for any<c0, ct, v, c2> € Posa(qy), ¢t = ¢

(b) for any <co,cl,c2,03,c4,c5> € Posa(qs), (2,ct), (¢2,¢?), and
(c*, %) lie on a straight line, i.e., there are rational numbersd, such
thatc? ! = d; 2 + dy for ¢ = 0,1, 2;

(c) for any<c0, ct, e, c3>, <c4, e, b, c7> € Pos,(q.) with ¢ # ¢? and
b #£ 4, we have

CS—C1 C7—C5

2 _ 0 6 A

Assuming the Claim we will finish the proof. As motivation for the
following argument, consider a simple example.

Example 3.2.Suppose that for some forcirfg and every( € w; there are
P-names: andri for integers such that for no integess c; andcs with
c1 # co IS it possible to have arbitrarily large € w; for which there are
P-generic extension¥ [G1] and V' [G>] with VG| ="n¢ = co A e =
¢/” for £ = 1,2. Then there is a functioff € V and(. € w; such that
-2 V¢ > Ce(m¢e = f(¢,ne)). Note thatf may be a function of; e.g., we
could have arbitrarily large for which I i = fo(n¢) and arbitrarily
large¢ for whichIF* rie = f1(n¢).

We work inV[G,]. Let ¢, be aQ,-name for the generic object given
by Q., if @, # 0, and otherwiseb,, is a name for the zero function. By
assumption (a), there is@ € w; and a functionf € V such that

g IFF/Ge e > Ch(ae) = F(C dalac)).

Moreover, by (b) and (c), there is& € wi, di € Q and a function
dy : {z¢ : ( €wi} = Qin V[G,] such that

¢ IFP/Go 0 2 3 [£(C, palz) = dipalz) + dala)):

Thus (working inV[G;]), (h — diwa) | {z¢ : ¢ > ~7*} belongs toV [G,]
since it equalsly | {xz¢ : ¢ > 7*}. Butalso(h — diga) | {z¢ : ( <
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~*} belongs toV |G, ], sinceP, adds no new countable sequences. Hence
(h —dipa) | {zy : v € w1} belongs tdV'[G,] as doesh — dip,) | K =
—dq1, and therefore, by Lemma 2.5, so dées di¢,.

If d; = 0, thenh belongs toV'|G,] and we are done by induction. If
dy # 0, then sincéh — dy¢,) | K = —dy14, we conclude that i [G,],
1, IS torsion. But then by definition of the forcing, = 0 and hence
h € V|G,], and again we are done by induction.

4. Proof of Claim 3

The proof of Claim 3 will follow closely along the lines of the proof in
[10], but notice the additional universal quantifiers in Claim 4 (as com-
pared to [10, Fact G]). The notatiang, etc. are as in the previous section.
We will call a sequence& = («y, ..., amm—1) Of non-zero ordinalgood if
max{ay, ..., um—1} is good in the sense defined after Definition 3.1. (Note
that, in contrast to [10], we do not assume that the sequerisencreas-
ing.) A sequence = ((aj, pjt) : k < n") is called acandidateif eachp}’

is a prime and eachj} is a finite non-empty set of ordinals such that for
all £ +1 < n" max(aj) < max(aj, ). (Itis a candidate for initial seg-
ments of the functiona(d*,-), e(0*, -) for somed*.) Given a candidate
andk < n", letr! =5 {z¢: ¢ € a}l}.

Definition 4.1. For any gooda and candidatez and any functiong :
rge(a) — w, let T'(g,a,u) be the set of all functions from {{ay, k) :
¢ < m,g(ay) < k < n"} to the non-negative integers such that for &ll
andk, t(oy, k) < pj.

If & is good andz is a candidate, a family = {¢; : t € T'(g, &, u)} of
conditions inP; is called aT (g, @, u)-treeif eachq, is stronger thany, and

(@) ge(a) (1) = t(a, k) (modp}) whenevey(ay) < k < n';

() g, T ar = qi, | agwhenever; | ({o;} xw) =t2 [ ({a;} x w) for
all a; < ay.

We defings < ¢ ifforall t € T(g, @, 1), ¢: < q;.

Claim 4.ForanyT (g, a, u)-treeg, any integers, andb..., and any countable
ordinal 3, there exista,«, p,«, andg' such thatp,. > by, @' = @ ~
{(anu, ppe) is a candidatej! is aT'(g, &, u')-tree,max(a,«) > 3, and

() if s € T(g,a,u'),t € T(g,a,u) andt C s, theng; < q;

(ii) for every s € T'(g, &, @), X IFP“h(7%) # b, (MOdpyu)".

We will prove Claim 4 assuming that Claim 3 is false. Before doing that,
let us see why Claim 4 implies a contradiction, thus proving Claim 3

Let N be a countable elementary submodel 8f(Xz), €, P,IF) such
that NV is the union J <., N, of a chain of elementary submodels such that
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h,q. € Ny andN, Nw; < Npp1 Nwy foralln € w. Letd* = N Nwy,
9, = N, Nwi. We can define by induction am € w, g™, a" = (ay : £ <
n),u" = ({ag,pe) : ¢ < n) andg” belonging toN,, such that for alln:
g"isaT(g",a" u")-tree;g" C g"tL a"t! | n=a"a"! | n=a"
max(ay,) > d,; and, denoting'(¢g", a", u™) by T":

() if s €Tt t € T" andt C s, thenq” < gt

(ii") for every s € T, g1 -Pis fy (74" £ 1 (modp,,)”; and

(iii") for every ¢ € T’hLl andp e dom( ) gt (u) € V and
dom(q}"™ () > 5.

and moreover such that evefye N N i equalsw,, for somen € w. Itis
possible to do this construction by Claim 4, using an enumeratidvirof;,
since there are arbitrarily large good ordinals.

By 4.1(b), for each € w there isqj € Qo such that for alt € 7™,
a6 = ¢1*(0). Let¢¥ = Upewql € Qo, and choose’ > ¢“ in @ such that

(4.5) ¢ IF90 a(0*,n) = an A e(0*,n) = pp.

We claim that there is ane P; such thatlom(r) = 6* + 1, ¢ < r and
for everyn € w, ¢i' < r for somet,, € T". If so, we have a contradiction
because in a modéf [G] wherer € G we have:h(zs- o) = n, for some
no, € w, but on the other hand, by (i (> _{z¢ : ¢ € a(6*,n0)) # 1o
(mode(d*, n,)), thus contradicting (2.2).

We will let r = U, c,r™ where we define by inductiof, € T™ andr™
such that"(ay) 2 q; (ay) for all £ < n. Assuming that™ andr" have
been defined for some, we choose

) 1 {25 0k < " an)} U{ay v € a(d%, k) k < g™ (an)}

so that the equations (2.4) are satisfied fo= 6*, k¥ < ¢"*!(a,) and
q = r"*(a,). Then we choose, ,; extendingt,, so that for eacli < n,
the equations (2.4) are satisfiable for= 6* andg" ™ (ay) < k < n+1
when> > {r"*(ay)(z,) : v € a(6*,k)} = tnr1(ay, k) (Modpy). We then
letr"*+1(ay) agree Wlthq"'H (ag) on the domain of the latter, fdr< n.

There remains the proof of Claim 4 assuming that Claim 3 is false. We
use the notation of Definition 4.1 and Claim 4, andflet T'(g, @, u) and
T! = T(g,a,u'). Let g, = max(a); then either (a), (b) or (c) of 3 fails
for Posq, (q*). Choosep,,« larger than previous primes, and, if (a) fails and
(e, P, ¢?) witnesses the failure, not a divisor df — ¢?; if (b) fails and
(M, e? 3, e >witnesses the failure, choop@ not a divisor of(c® —
c3)(02—co)—(03—cl)(c4 2);if (c) failsand({c, ', %, ¢*), (¢*, &, 8, )
witnesses the failure, choogg. not a divisor of(c — 1)((;6 - c4) - (c7 —
A)(c? - ).

ThenT! is defined; we must still define,.. SinceT! is finite and since
itis easy to see that it is possible to chooseansuch that there afE!-trees



Sh:717

The structure of Ext(A, Z) and GCH: possible co-Moore spaces 155

L. it suffices to show that for any fixed nodeof T, anyb;, € Z and any
Tl-tree it is possible to choos¢, < . < ¢, (for somes = s(t1)) such
thatmax(a,«) < ¢, and aI''-treeq’ > g* such that (writing(¢) instead
of h(z) for clarity of notation) we have.

— forallt € T' and allZ < n¥, gi(ae) 3 {zy +§ =0,...,5}) = 0(mod
1

pn“); . .
— forallt # t1, ¢; IF h(3-{¢, : 7 =0, ..., s}) = 0 (modpy.); and
- q, IF h(Z{Ct]l :7=0,....,8}) = by, (Modp,u).

For then we let the new,. be the union of the old,,. with {¢/ : t € T,
j =0, ..., s(t1) }(for the appropriate choices bf implying Claim 4(ii)). To
see how to do this, suppose that far = max(a), it is case (a) that fails
in Claim 3 (The other cases are similar.) Suppose t(mﬁtc o 02> €
Posq, (g+) with ¢! # ¢2. Let

Z={(€w: 37“1,7“2613 Str1, 72 > i, 1 [ ap =12 [ oy,
ri(a)(ze) =  andr; IF5 h(ze) = ¢ for j = 1,2}.

DefinePoss(g') to be the set of all tuple§(d}), ..., d%u_y,d) : t € T)
such that there exist arbitrarily largec Z such that there exists&! -tree
7 > g'with o (ay)(z¢) = db andry Ik h(ze) = di As in the argument
following Definition 3.1, we can assume thatss(g") is minimal, i.e., not

decreased wheft increases. Thenthere are tup@@% odbu_ 1,dt) te
) and((ef, ..., eu_q,€l) 1t € T1> in Poss( ) such thatl, = ¢!, for all
t,d. = el forallt # t; anddt1 = ¢!, elt = ¢2. Choosev € Z such that

(c' — 62)1/ = by, (Modp,u). (This is pOSS|bIe since! — ¢? is non-zero in
7./ pnuZ.) Now we can inductively defing” ! > 7 > gt and¢™ < ¢™*!
in Z for m < vpy« such that:

— fort € T* and? < n*, 7™ (ay)(¢™) = db;
—fort e T — {t1}, 7" |- h(¢™) = d';
— form = 1 (modp,«), 7" IF A({™) = ¢!; and
— form # 1 (modpy.), 7 |- h(¢™) = 02-

Lets = vp,u. Fort € T, letq, = r{ and leta,« = {¢™ : m < s}. We
have:

— qt(ag)(Z{xcj j<s})= VpnudZ =0 (modp,u);
— fort #t1,q; - (> {¢7 < s}) = Vpnudt =0 (modpnu) and
- 4 ) W{E < 5)) = (@ + (pu — 2w = (¢! — A)v = by, (mod
Pnu
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5. Proof of Theorem 0.5

To prove Theorem 0.5 we use a variation of the forcing defined in Sect. 1:
P = < P! Q’ 0<i< w2> where @y is as before and foi > 0, I-pr

Q) = Q’ for all i (and the enumeration of the namigs; : 1 < i < wy}

is chosen as before). Let € V[G,1] denote the generic function fay;;
that is, ¢; is @ homomorphism#” — extendingy; : K — , wherey;

is the interpretation i/ [G;] of the namey;. Suppose that); represents

a torsion element oExt(A,Z) in V[G;] of ordere > 1; that is, there is

a homomorphisn®; : ' — Z in V[G;] such that); | K = ey;. Then
ep; —0; : F — 7Z and is identically zero oi, so it is a homomorphism
from AtoZ;we denote iy;. (Here, and elsewhere, we shall identify elements
of Hom( A, Z) with homomorphisms front’ to Z which are identically zero
on K.) If ¢); does not represent a torsion elemenkegf(A, Z), we will let

g; be the zero function.

LetJ = {j € wa : g; # 0}. We will prove thatHom(A, Z) is free by
proving that{g; : j € J} is a basis oHom(A, Z). Itis easy to see that this
set is linearly independent, since otherwise for sgme ... < ji in J the
dependency ofj, : v = 1, ..., k} would imply thaty;, € V[G,,].

To prove that{g; : j € J} generate$lom(A, Z) we prove by induction
on+i € wy that everyh € Hom(A,Z)V[Gf] is a linear combination ofyg; :

j € J,j <i}. (Note that every, € Hom(4,Z)"“ belongs toV[G,] for
somei < wy sinceP satisfies th&l,-chain condition.) The result is true for
i =0byLemma 2.4.

Fix i € wy and leth € Hom(A, Z)V[G"]. Because we proceed by induc-
tion we can suppose that¢ V[G;] for anyj < i; let g, € G; force this
fact. We definéos,,(¢.) as before and use Claim 3.

We work inV[G,]. Lety,, be aQ,-name for the generic object given by
Q.- As in Sect. 3, we can show that there is a ratiehauch that — d; ¢,
belong toV |G, ]. Note thatd; # 0 sinceh does not belong t¥'[G,,]. Since
(h — dipa) | K = —di1,, we conclude that i [G,], ¢ is torsion, of
ordere dividing —dy; sayd; = ne. Thusg,, is hon-zero and equad®, — 0,
for somed,, in V[G,] such thab,, | K = ey,. Then

h= d1§0a + (h - dl@a) = Nga + nea + (h - dl@a)

so h equalsng,, plus a homomorphism i [G,] and by induction we are
done.
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