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Abstract. We investigate whatExt(A,Z) can be whenA is torsion-free and
Hom(A,Z) = 0. We thereby give an answer to a question of Golasiński
and Gonc¸alves which asks for the divisible Abelian groups which can be
the type of a co-Moore space.
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0. Introduction

Marek Golasínski and Daciberg Lima Gonc¸alves have asked which divisible
abelian groupsD can be the type of a co-Moore space [6, Problem 2.6]. In
other words, for whichD is there a topological spaceX such that for some
n ≥ 2, the integral cohomology ofX satisfies

H i(X,Z) =
{
D i = n
0 otherwise

(cf. [8, pp. 48f]).
This translates, by means of the Universal Coefficient Theorem, into

an algebraic question which is of interest in itself: what is the possible
structure ofExt(A, Z) (= D) whenA is a torsion-free abelian group such
thatHom(A,Z) = 0?
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144 P.C. Eklof, S. Shelah

Previous work of Hiller, Huber and Shelah [8] has answered this question
under the very strong assumption of Gödel’s Axiom of Constructibility (V
= L). Here we consider the question under the milder assumption of the
Generalized Continuum Hypothesis, GCH, and find weaker restrictions and
matching new possibilities.

WhenA is torsion-free,Ext(A,Z) is a divisible group and hence iso-
morphic to

Q(ν0(A)) ⊕
⊕
p∈P

Z(p∞)(νp(A))

for some cardinalsν0(A), νp(A) (p ∈ P, the set of primes) which are
uniquely determined byA (cf. [5, Chaps. IV, IX]). We want to know what
cardinals are possible under the assumption thatHom(A,Z) = 0. With
regard to theνp(A), we have the following lemma of Hiller-Huber-Shelah
[8, Prop. 2] (provable in ZFC).

Lemma 0.1. If A is torsion-free andHom(A,Z) = 0, then for every prime
p, νp(A) is finite or of the form2µp for some infinite cardinalµp.

Regardingν0(A), in [8] the following is proved assuming V = L. (The
same result is proved in [2] under the weaker hypothesis that every White-
head group is free). For countableA, the result is true in ZFC (see [3,
X11.2.1]).

Proposition 0.2. AssumeV= L (or just that everyWhitehead group is free).
If A is torsion-free andHom(A,Z) = 0, thenν0(A) = 2|A| .

Notice that it follows that, under the hypothesis of the Proposition,
νp(A) ≤ ν0(A) for every primep. Conversely, Hiller-Huber-Shelah prove
(in ZFC) that for any cardinalsν0, νp (p ∈ P) satisfying the conditions that
eachνp is ≤ ν0 and is either finite or2µp for some infiniteµp, and that
ν0 = 2µ0 for some infiniteµ0, there is a torsion-free groupA of cardinal-
ity µ0 such thatHom(A,Z) = 0, ν0(A) = ν0 andνp(A) = νp for every
p ∈ P. (See [8, Thm. 3(b)].) So the problem of Golasiński and Gonc¸alves
is completely solved under a strong assumption such as V = L.

Here we are interested in what is possible under the weaker assumption
GCH. Our main results are the following two theorems. The first says that
if ν0(A), the (torsion-free) rank ofExt(A,Z), is less than the value given
in Proposition 0.2, then all theνp(A) must be as large as possible. (The
assumption of GCH is used in the form of the diamond or weak diamond
principles it implies.) The second says that all possibilities (for groupsA of
cardinalityℵ1) allowed by the first theorem are realized in some model of
GCH.
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The structure of Ext(A, Z) and GCH: possible co-Moore spaces 145

Theorem 0.3. Assume GCH. For any torsion-free groupA of uncountable
cardinality, ifHom(A,Z) = 0 and the rank,ν0(A), ofExt(A,Z) is< 2|A|,
then for each primep, thep-rank,νp(A), ofExt(A,Z) is 2|A|.

We note that, by [10], it is consistent with ZFC + GCH that there are
torsion-free groupsA of cardinalityℵ1 such that the rank ofExt(A,Z) is
< 2ℵ1 but thep-rank ofExt(A,Z) is also< 2ℵ1 for some, or all, primes
p. Of course, in this case (by Theorem 0.3)Hom(A,Z) must be non-zero.
Interestingly, however, the method of [10] can be used to prove the following:

Theorem 0.4. It is consistent with ZFC + GCH that for any cardinalρ
≤ ℵ1, there is a stronglyℵ1-free groupA of cardinality ℵ1 such that
Hom(A,Z) = 0 and the rank ofExt(A,Z) is ρ (and, by Theorem 0.3,
thep-rank ofExt(A,Z) is 2ℵ1 for each primep).

Putting together our results with those proved in [6] and [8], we can
give a complete answer (assuming GCH) to the question of which divisible
groups

D = Q(ν0) ⊕
⊕
p∈P

Z(p∞)(νp)

of cardinality≤ ℵ2 are of the formExt(A,Z) for someA withHom(A,Z)
= 0:

– D cannot have cardinalityℵ0 (cf. [6, Cor. 1.5], [9, Lemma 5]);
– for D of cardinalityℵ1(= 2ℵ0), they are precisely those for whichν0 =

ℵ1 and eachνp is either finite orℵ1;
– thoseD of cardinalityℵ2 (= 2ℵ1) which can be proved in ZFC to be of

this form are those withν0 = ℵ2 and eachνp is either finite orℵ1 or ℵ2;
– the only other divisible groupsD of cardinalityℵ2 for which it is con-

sistent with ZFC + GCH that they are of this form are those for which
ν0 ≤ ℵ1 and eachνp equalsℵ2; on the other hand, it is consistent with
ZFC + GCH (in particular true in a model of V = L) that none of these
D are of the formExt(A,Z) whereHom(A,Z) = 0.

By modifying the forcing we can also prove:

Theorem 0.5. It is consistent with ZFC + GCH that there is a non-free
stronglyℵ1-free groupA of cardinalityℵ1 such thatExt(A,Z) = 0 and
Hom(A,Z) is free. In particularA is a non-reflexive Whitehead group.

In [4] the consistency with ZFC of the existence of such a group was
proved using a different forcing (making2ℵ0 > ℵ1), and a weak version of
Theorem 0.4 (the caseρ = 0) was also shown consistent with ZFC +¬CH.
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146 P.C. Eklof, S. Shelah

1. The p-rank of Ext

In this section we will prove Theorem 0.3. Throughout,A will denote a
torsion-free group of uncountable cardinalityκ. We will denote the torsion-
free rank (resp.p-rank) ofExt(A,Z) byν0(A) (resp.νp(A)). The proof will
be given in a series of lemmas.

Lemma 1.1. If A ∼= F/K whereF is a free group andK = ⊕α<κKα

where for allα < κ, Ext(F/Kα,Z) 	= 0, thenν0(A) = 2κ.

Proof. See [2, Lemma 1.1] or [3, Lemma XII.2.3]. 
�
Gregory [7] and Shelah [11] showed that GCH implies diamond for

successor cardinals larger thanℵ1. Devlin and Shelah [1] proved that weak
CH (2ℵ0 < 2ℵ1) implies a weak form of diamond atℵ1. In the following,
the notationΦλ(E) means that the weak diamond principle holds for the
subsetE of λ (cf. [3, VI.1.6]).

The invariantΓλ,Z(A) of a groupA of cardinalityλ is defined in [3, p.
352]. We use

∐
to denote disjoint union.

Lemma 1.2. (a) Assume GCH. For any infinite successor cardinalλ, λ =∐
α<λEα where for eachα < λ, Φλ(Eα) holds.
(b) If Γλ,Z(A) ⊇ Ẽ andΦλ(E) holds, thenExt(A,Z) 	= 0.

Proof. (a) See [7], [11], [1] and [3, VI.1.10]. (b) See [1] and [3, XII.1.7].

�
Lemma 1.3. Assume GCH. Suppose thatA is the union of a continuous
chain of subgroups(Aµ : µ < κ) of cardinality< κ such that for allµ < κ,
Aµ+1/Aµ is countable and not free. Thenν0(κ) = 2κ.

Proof. (cf. [2, Thm. 2.14]) By [3, XII.1.4] we can assume thatA = F/K
whereF = ⊕β<κFβ is a free group andK = ⊕β<κKβ such that for ev-
eryµ < κ, Aµ = ⊕β<µFβ/ ⊕β<µ Kβ, and henceAµ+1/Aµ

∼= ⊕β≤µFβ/
(⊕β<µFβ+Kµ). Let us consider first the case whereκ is a successor cardi-
nal. By Lemma 1.2(a),κ =

∐
α<κEα where for eachα < κ,Φκ(Eα) holds.

Now writeK = ⊕α<κK
′
α whereK ′

α = ⊕β∈EαKβ. Then for allα < κ,
Γκ,Z(F/K ′

α) ⊇ Ẽα becauseF/K ′
α =

⋃
µ<κHµ whereHµ = (⊕β<µFβ +

K ′
α)/K

′
α and hence forµ ∈ Eα,Hµ+1/Hµ

∼= ⊕β≤µFβ/(⊕β<µFβ+Kµ) ∼=
Aµ+1/Aµ which is countable and non-free, and hence not a Whitehead
group. Therefore, by Lemma 1.2(b),Ext(F/K ′

α,Z) 	= 0. Finally, apply
Lemma 1.1.

Now supposeκ is a limit cardinal; thenκ = sup{κi : i < cof(κ)} where
for eachi < cof(κ), κi is a successor cardinal> sup{κj : j < i}. LetSi =
κi − ⋃{κj : j < i}; soSi is a set of cardinalityκi andκ =

∐
i<cof(κ) Si.
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The structure of Ext(A, Z) and GCH: possible co-Moore spaces 147

By Lemma 1.2(a),Si =
∐

α<κi
Ei

α where for eachα < κi,Φκi(E
i
α) holds.

Let Ki
α = ⊕{Kβ : β ∈ Ei

α}, soK =
⊕

i<cof(κ) ⊕α<κiK
i
α. If we can

show thatExt(F/Ki
α,Z) 	= 0 for all α and i, then we will be done by

Lemma 1.1. SinceF/Ki
α contains(⊕β∈Si

Fβ)/Ki
α it is enough to prove that

Ext((⊕β∈Si
Fβ)/Ki

α,Z) 	= 0. But this is the case by Lemma 1.2(b) because
(⊕β∈Si

Fβ)/Ki
α is a group of cardinalityκi satisfyingΓκi,Z((⊕β∈Si

Fβ)/
Ki

α) ⊇ Ẽi
α andΦκ(Ei

α) holds. 
�
Lemma 1.4. If A contains a pure free subgroupB of cardinality κ and
Hom(A,Z) = 0, then for every primep, νp(A) = 2κ.

Proof. SinceB/pB is isomorphic to a subgroup ofA/pA, the dimension
of A/pA as a vector space overZ/pZ is κ. From the exact sequence

0 = Hom(A,Z) → Hom(A,Z/pZ) → Ext(A,Z)
p∗→ Ext(A,Z)

it follows thatνp(A) equals the dimension of the kernel ofp∗; but this kernel
isHom(A,Z/pZ) ∼= Hom(A/pA,Z/pZ), which clearly has dimension 2κ.

�

Finally we have

Lemma 1.5. Assume GCH. Ifν0(A) < 2κ, thenA contains a pure free
subgroupB of cardinalityκ.

Proof. First we claim that every subset ofA of cardinality< κ is contained
in a subgroupC of cardinality< κ such thatA/C is ℵ1-free. If not, then
A contains a subgroupA0 of cardinality< κ such that for every subgroup
C of cardinality< κ containingA0, there is a subgroupC ′ of A containing
C such thatC ′/C is countable and not free. It follow easily thatA is the
union of a continuous chain of subgroups(Aα : α < κ) each of cardinality
< κ such that for allα < κ, Aα+1/Aα is countable and not free. But then
by Lemma 1.3,ν0(A) = 2κ, which is a contradiction.

Now let Y ⊆ A be maximal with respect to the property thatY is a
basis of a pure free subgroup ofA. By Lemma 1.4, it suffices to show that
Y has cardinalityκ. If not, letC be a subgroup ofA containingY and of
cardinality< κ such thatA/C is ℵ1-free. IfC ′/C is a countable, pure and
non-zero subgroup ofA/C; thenC ′/C is free,C ′ is pure inA andC ′ =
C ⊕D whereD is countable, free and non-zero. Choosing an elementd of
a basis ofD, we see thatY ∪ {d} contradicts the maximality ofY . 
�

2. Theorem 0.4: the basics

We now embark on the proof of Theorem 0.4, which will occupy this and
the next two sections. Throughoutρwill be a fixed cardinal≤ ℵ1 andS will
be a stationary and co-stationary subset ofω1 consisting of limit ordinals.
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148 P.C. Eklof, S. Shelah

We begin by defining a groupA = A(e, a) which depends on two
parameters, functionse anda. The functione is a function fromS×ω to the
primes such that for allδ ∈ S,e(δ, ·) is a strictly increasing function ofω. The
functiona is a function onS×ω such that for everyδ ∈ S andn ∈ ω,a(δ, n)
is a finite non-empty subset ofδ such thatmax a(δ, n + 1) > max a(δ, n)
andsup{max a(δ, n) : n ∈ ω} = δ. The functionse anda that we will use
will be generic, soA will be defined in a generic extension of the universe;
we will then construct a further forcing extension in whichA has the desired
properties.

LetF be the free abelian group with basis

{xν : ν ∈ ω1} ∪ {zδ,n : δ ∈ S, n ∈ ω}.

LetK be the subgroup ofF generated by{wδ,n : δ ∈ S, n ∈ ω} where

wδ,n = e(δ, n)zδ,n+1 − zδ,0 +
∑

ν∈a(δ,n)

xν .(2.1)

In fact, {wδ,n : δ ∈ S, n ∈ ω} is easily seen to be a basis ofK. Let
A = F/K. Then clearlyA is an abelian group of cardinalityℵ1. Notice that
because the right-hand side of (2.1) is 0 inA, we have for eachδ ∈ S and
n ∈ ω the following relations inA:

e(δ, n)zδ,n+1 = zδ,0 −
∑

ν∈a(δ,n)

xν(2.2)

Here, and occasionally in what follows, we abuse notation and write, for
example,z

δ,n
instead ofz

δ,n
+K for an element ofA. For eachα < ω1, let

Aα be the subgroup ofA generated by

{xν : ν < α} ∪ {zδ,n : δ ∈ S ∩ α, n ∈ ω}.(2.3)

Then, by (2.2), for eachδ ∈ S, zδ,0 + Aδ is non-zero and divisible in
Aδ+1/Aδ by inf initely many primes. ThusAδ+1/Aδ is not free. Moreover,
becauseAδ+1/Aδ is not free for stationarily manyδ ∈ ω1,A is not free (cf.
[3, IV.1.7]).

The definition ofExt(A,Z) that is most convenient for our purposes
is that it isHom(K,Z)/Hom(F,Z) whereHom(F,Z) stands for the sub-
group ofHom(K,Z) consisting of those homomorphisms which extend to
F . We shall abuse notation and refer to homomorphisms fromK to Z as
elements ofExt(A,Z) when, strictly speaking, we should refer to the coset
modHom(F,Z) of the homomorphism. A homomorphismϕ : K → Z is
a torsion element of the groupExt(A,Z) if and only if there is a homo-
morphismψ : F → Z and a non-zero integerd such thatϕ = dψ � K.
Otherwise,ϕ is a torsion-free element ofExt(A,Z).
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The structure of Ext(A, Z) and GCH: possible co-Moore spaces 149

We now define the forcing extension in whichA will be defined using
generic data. Besides the generic functionse anda we are going to define
genericallyρ homomorphismsϕs(s < ρ) fromK toZ which will guarantee
that the (torsion-free) rank ofExt(A,Z) is at leastρ. We begin with a model
V of ZFC where GCH holds, chooseS ∈ V to be a stationary and co-
stationary subset ofω1, and define a poset as follows:

Definition 2.1. LetQ0 be the set of all tuplesq such that for someδ0 < ω1,
q = 〈eq, aq, f q

s : s < ρ ∩ δ0〉and for all δ ∈ δ0 ∩ S:

– eq(δ, ·) : ω → {p ∈ Z : p is prime} and is strictly increasing;
– aq(δ, ·) is a function onω such that for alln ∈ ω, aq(δ, n) is a finite
non-empty subset ofδ such thatmax aq(δ, n) < max a(δ, n + 1) and
sup{max aq(δ, n) : n ∈ ω} = δ;

– for eachs < ρ ∩ δ0, f
q
s is a function from{wδ,n : δ ∈ δ0 ∩ S, n ∈ ω}

toZ.

We shall refer toδ0 asdom(q). The partial ordering ofQ0 is defined
by: q1 ≤ q2 if and only if q1 ⊆ q2; note that we follow the convention that
stronger conditions are larger. It is easy to see that for anyγ ∈ ω1, {q ∈ Q0 :
γ ⊆ dom(q)} is dense inQ0. ClearlyQ0 is ω-closed and satisfies theℵ2-
chain condition, so GCH is preserved.

Let G1 be Q0-generic and inV [G1] let A = A(e, a) be the group
constructed as above with the generic datae = ∪{eq : q ∈ G1} and
a = ∪{aq : q ∈ G1}. Letϕs be the homomorphism: K → Z which on the
basis{wδ,n : δ ∈ S,n ∈ ω} is given by∪{f q

s : q ∈ G1}; then{ϕs : s < ρ}
is a linearly independent subset ofExt(A,Z). Thus the torsion-free rank of
Ext(A,Z) is at leastρ (i.e.,ν0(A) ≥ ρ). However, inV [G1] the rank will
be larger; so we do an iterated forcing to eliminate torsion-free elements of
Ext(A,Z) which are not in theQ-vector space generated by{ϕs : s < ρ}.

We begin by defining the basic forcing that we will iterate.

Definition 2.2. Given a homomorphismψ : K → Z, letQψ be the poset
of all functionsq into Z such that for some successor ordinalα ∈ ω1, the
domain ofq is {zδ,k : δ ∈ α ∩ S, k ∈ ω} ∪ {xν : ν < α} and for all
δ ∈ α ∩ S andk ∈ ω

ψ(wδ,k) = e(δ, k)q(zδ,k+1)− q(zδ,0) +
∑

ν∈a(δ,k)

q(xν).(2.4)

(Compare with (2.1)). The partial ordering onQψ is inclusion.

In an abuse of notation, if the domain ofq is {zδ,n : δ ∈ α ∩ S, n ∈
ω} ∪ {xν : ν < α}, we shall writedom(q) = α.
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150 P.C. Eklof, S. Shelah

Lemma 2.3. For everyα ∈ ω1 and everyq ∈ Qψ, there existsq′ ∈ Q such
that q ≤ q′ anddom(q′) ≥ α.

Proof. Let dom(q) = β; without loss of generality,β < α. Enumerate
{δ ∈ S : β ≤ δ < α} in an ω-sequence〈δk : k ∈ ω〉 and define by
induction onk the valuesq(zδk,n) andq(xν) so that (2.4) holds; in fact,
we can do this so thatq(zδk,n) = 0 for sufficiently largen because for
sufficiently largen, q(xmax(a(δk,n))) has not previously been defined, so we
can choose it to make (2.4) true.
�

Now P =
〈
Pi, Q̇i : 0 ≤ i < ω2

〉
is defined to be a countable support

iteration of lengthω2 so that for everyi ≥ 1, �Pi Q̇i = Qψ̇i
whenever

�Pi“ ψ̇i : K → Z is a torsion-free element ofExt(A,Z) independent of
{ϕs : s < ρ}”; otherwise,�Pi Q̇i = 0. The enumeration of names{ψ̇i :
1 ≤ i < ω2} is chosen so that ifG is P -generic andψ ∈ V [G] is a
homomorphism: K → Z, then for somei ≥ 1, ψ̇i is a name forψ in V Pi .

ThenP is proper,(ω1 − S)-complete (so adds no newω-sequences)
and satisfies theℵ2-chain condition. Moreover, inV [G] every torsion-free
element ofExt(A,Z) is dependent on{ϕs : s < ρ} so ν0(A) ≤ ρ. The
proof thatν0(A) ≥ ρ is the same as the main argument in [10]: note that
though the first forcing,Q0, is not quite the same here (because of the needs
of the following lemma), the proof in [10] is still valid.

It remains to prove that, inV [G], Hom(A,Z) = 0. LetGν = {p � ν :
p ∈ G}, so thatGν is Pν-generic. First we prove:

Lemma 2.4. Hom(A,Z)V [G1] = 0

Proof. By equation (2.2), ifh ∈ Hom(A,Z) andh(xµ) = 0 for all µ ∈ ω1,
thenh is identically zero. So suppose, to obtain a contradiction, that there
exists aQ0-nameḣ andr0 ∈ G1 such that

r0 � ḣ ∈ Hom(A,Z) ∧ ḣ(xµ) = m

for someµ ∈ ω1 and some non-zero integerm. Choose a strictly increasing
sequence of primes(dn : n ∈ ω) all larger thanm. Choose recursively
an increasing chain{rν : ν ∈ ω1} of elements ofQ0 such that ifαν =
dom(rν), thenµ < α1 and for all ν, ν ≤ αν < αν+1 and for some
cν ∈ Z, rν+1 � ḣ(xαν ) = cν . Moreover, for all limitσ, rσ is the union of
{rτ : τ < σ}, sodom(rσ) = sup{ατ : τ < σ}.

Then, sinceS is stationary and{σ : ασ = σ} is a club, there is a limit
ordinal δ such thatdom(rδ) = αδ = δ ∈ S. Choose a strictly increasing
sequence(ανn : n ∈ ω) whose supremum isδ. Choose a bijectiong :
ω → Z. For eachn ∈ ω, let an = {ανn} if dn � g(n) − cνn and otherwise
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The structure of Ext(A, Z) and GCH: possible co-Moore spaces 151

an = {ανn , µ}, in which casedn � g(n) − cνn −m. There existsr∗ ∈ Q0
such thatr∗ ≥ rδ and for alln ∈ ω

r∗ � e(δ, n) = dn ∧ a(δ, n) = an.

We obtain a contradiction by considering any genericG∗ with r∗ ∈ G∗:
indeed, inV [G] we haveh(zδ,0) = g(n) for somen ∈ ω but alsoe(δ, n)h
×(zδ,n+1) = h(zδ,0)−

∑
j∈an

h(xj), which is a contradiction of the choice
of an. 
�

We conclude this section with a simple lemma.

Lemma 2.5. Any homomorphismf fromF to Z is completely determined
byf � {xν : ν ∈ ω1} ∪K.

Proof. This follows from (2.1), since for anyδ and any integers〈cn : n ∈ ω〉,
there is at most one integral solution to the equations

{e(δ, n)f(zδ,n+1)− f(zδ,0) = cn : n ∈ ω}
in the unknownsf(zδ,n) (n ∈ ω). 
�

3. Hom(A, Z) = 0

In this section and the next we will prove thatHom(A,Z) remains zero
even after our iterated forcing. Leth ∈ Hom(A,Z)V [G]; thenh ∈ V [Gi]
for somei < ω2 sinceP satisfies theℵ2-chain condition. We shall prove by
induction oni that anyh ∈ Hom(A,Z)V [Gi] belongs toV [G1] and hence
is zero. Letq∗ ∈ Gi such thatq∗ � ḣ ∈ Hom(A,Z). Throughout this and
the next section, we fix the notationsh, i, andq∗. Let P̃i denote the dense
subset ofPi consisting of conditionsq such that there is an ordinalδ such
that for allα ∈ dom(q), q(α) belongs toV anddom(q(α)) = δ. If q ∈ P̃i,
we will write dom(q) = δ if dom(q(α)) = δ for all α ∈ dom(q).

Definition 3.1. For anyq ∈ P̃i and any0 < α < i, letPosα(q) be the set of
all sequences of integers

〈
c0, c1, ..., c2m−2, c2m−1

〉
such that for arbitrarily

largeζ ∈ ω1 there arer0, ..., rm−1 ∈ P̃i each stronger thanq and such that
r0 � α = ... = rm−1 � α and for : = 0, ...,m − 1, r�(α)(xζ) = c2� and
r� �Pi ḣ(xζ) = c2�+1.

SincePosα(q) decreases asq increases, we can assume thatq∗ is such
that: if i has cofinalityω1 or i is a successor, then there isα∗ < i such that

Posα∗(q∗) = Posα(q)
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152 P.C. Eklof, S. Shelah

wheneverα∗ ≤ α < i and q ≥ q∗, and if i has cofinalityω, then for
arbitrarily largeα < i

Posα(q∗) = Posα(q)

wheneverq ≥ q∗ (cf. [10, E1, p. 77]). (Note that ifi has cofinalityω, we
can recursively defineq∗(αn) on a sequence(αn : n ∈ ω) approachingi so
that the second displayed identity holds.)

We shall say thatα isgoodif the appropriate (depending on the cofinality
of i) displayed identity holds forα. We assert:

Claim 3.There is a goodα such that:
(a) for any

〈
c0, c1, c0, c2

〉 ∈ Posα(q∗), c1 = c2;
(b) for any

〈
c0, c1, c2, c3, c4, c5

〉 ∈ Posα(q∗), (c0, c1), (c2, c3), and
(c4, c5) lie on a straight line, i.e., there are rational numbersd1, d2 such
thatc2�+1 = d1c

2� + d2 for : = 0, 1, 2;
(c) for any

〈
c0, c1, c2, c3

〉
,
〈
c4, c5, c6, c7

〉 ∈ Posα(q∗) with c2 	= c0 and
c6 	= c4, we have

c3 − c1

c2 − c0
=
c7 − c5

c6 − c4
.

Assuming the Claim we will finish the proof. As motivation for the
following argument, consider a simple example.

Example 3.2.Suppose that for some forcingP and everyζ ∈ ω1 there are
P -namesṅζ andṁζ for integers such that for no integersc0, c1 andc2 with
c1 	= c2 is it possible to have arbitrarily largeζ ∈ ω1 for which there are
P -generic extensionsV [G1] andV [G2] with V [G�] |=“ ṅζ = c0 ∧ ṁζ =
c�” for : = 1, 2. Then there is a functionf ∈ V andζ∗ ∈ ω1 such that
�P ∀ζ ≥ ζ∗(ṁζ = f(ζ, ṅζ)). Note thatf may be a function ofζ; e.g., we
could have arbitrarily largeζ for which �P ṁζ = f0(ṅζ) and arbitrarily
largeζ for which�P ṁζ = f1(ṅζ).

We work inV [Gα]. Let ϕ̇α be aQα-name for the generic object given
by Qα, if Qα 	= 0, and otherwiseϕ̇α is a name for the zero function. By
assumption (a), there is aζ∗ ∈ ω1 and a functionf ∈ V such that

q∗ �Pi/Gα ∀ζ ≥ ζ∗[ḣ(xζ) = f(ζ, ϕ̇α(xζ)).

Moreover, by (b) and (c), there is aγ∗ ∈ ω1, d1 ∈ Q and a function
d2 : {xζ : ζ ∈ ω1} → Q in V [Gα] such that

q∗ �Pi/Gα ∀ζ ≥ γ∗[f(ζ, ϕ̇α(xζ)) = d1ϕ̇α(xζ) + d2(xζ)].

Thus (working inV [Gi]), (h − d1ϕα) � {xζ : ζ ≥ γ∗} belongs toV [Gα]
since it equalsd2 � {xζ : ζ ≥ γ∗}. But also(h − d1ϕα) � {xζ : ζ <
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γ∗} belongs toV [Gα], sincePα adds no new countable sequences. Hence
(h− d1ϕα) � {xν : ν ∈ ω1} belongs toV [Gα] as does(h− d1ϕα) � K =
−d1ψα, and therefore, by Lemma 2.5, so doesh− d1ϕα.

If d1 = 0, thenh belongs toV [Gα] and we are done by induction. If
d1 	= 0, then since(h− d1ϕα) � K = −d1ψα, we conclude that inV [Gα],
ψα is torsion. But then by definition of the forcingϕα = 0 and hence
h ∈ V [Gα], and again we are done by induction.

4. Proof of Claim 3

The proof of Claim 3 will follow closely along the lines of the proof in
[10], but notice the additional universal quantifiers in Claim 4 (as com-
pared to [10, Fact G]). The notationi, q∗ etc. are as in the previous section.
We will call a sequencēα = 〈α0, ..., αm−1〉 of non-zero ordinalsgood if
max{α0, ..., αm−1} is good in the sense defined after Definition 3.1. (Note
that, in contrast to [10], we do not assume that the sequenceᾱ is increas-
ing.) A sequencēu = 〈〈au

k , p
u
k〉 : k < nu〉 is called acandidateif eachpuk

is a prime and eachau
k is a finite non-empty set of ordinals such that for

all k + 1 < nu, max(au
k) < max(au

k+1). (It is a candidate for initial seg-
ments of the functionsa(δ∗, ·), e(δ∗, ·) for someδ∗.) Given a candidatēu
andk < nu, let τu

k =
∑{xζ : ζ ∈ au

k}.

Definition 4.1. For any goodᾱ and candidateū and any functiong :
rge(ᾱ) → ω, let T (g, ᾱ, ū) be the set of all functionst from {〈α�, k〉 :
: < m, g(α�) ≤ k < nu} to the non-negative integers such that for all:
andk, t(α�, k) < puk .

If ᾱ is good and̄u is a candidate, a familȳq = {qt : t ∈ T (g, ᾱ, ū)} of
conditions inP̃i is called aT (g, ᾱ, ū)-treeif eachqt is stronger thanq∗ and

(a) qt(α�)(τu
k ) = t(α�, k) (modpuk) wheneverg(α�) ≤ k < nu;

(b) qt1 � α� = qt2 � α� whenevert1 � ({αi} ×ω) = t2 � ({αi} ×ω) for
all αi < α�.

We definēq ≤ q̄′ if for all t ∈ T (g, ᾱ, ū), qt ≤ q′
t.

Claim4.For anyT (g, ᾱ, ū)-treeq̄, any integersb∗ andb∗∗, and any countable
ordinal β, there existanu , pnu , and q̄1 such thatpnu > b∗∗, ū1 = ū �
〈anu , pnu〉 is a candidate,̄q1 is aT (g, ᾱ, ū1)-tree,max(anu) > β, and

(i) if s ∈ T (g, ᾱ, ū1), t ∈ T (g, ᾱ, ū) andt ⊆ s, thenqt ≤ q1
s ;

(ii) for everys ∈ T (g, ᾱ, ū1), q1
s �Pi“ ḣ(τu1

nu) 	= b∗ (modpnu)”.

We will prove Claim 4 assuming that Claim 3 is false. Before doing that,
let us see why Claim 4 implies a contradiction, thus proving Claim 3.

Let N be a countable elementary submodel of(H(ℵ2),∈, P,�) such
thatN is the union

⋃
n∈ωNn of a chain of elementary submodels such that
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ḣ, q∗ ∈ N0 andNn ∩ ω1 < Nn+1 ∩ ω1 for all n ∈ ω. Let δ∗ = N ∩ ω1,
δn = Nn ∩ ω1. We can define by induction onn ∈ ω, gn, ᾱn = 〈α� : : <
n〉, ūn = 〈〈a�, p�〉 : : < n〉 and q̄n belonging toNn such that for alln:
q̄n is aT (gn, ᾱn, ūn)-tree;gn ⊆ gn+1; ᾱn+1 � n = ᾱn; ūn+1 � n = ūn;
max(an) > δn; and, denotingT (gn, ᾱn, ūn) by Tn:

(i’) if s ∈ Tn+1, t ∈ Tn andt ⊆ s, thenqnt ≤ qn+1
s ;

(ii’) for every s ∈ Tn+1, qn+1
s �Pi“ ḣ(τun+1

n ) 	= n (modpn)”; and
(iii’) for every t ∈ Tn+1 and µ ∈ dom(qn+1

t ), qn+1
t (µ) ∈ V and

dom(qn+1
t (µ)) ≥ δn;

and moreover such that everyζ ∈ N ∩ i equalsαn for somen ∈ ω. It is
possible to do this construction by Claim 4, using an enumeration ofN ∩ i,
since there are arbitrarily large good ordinals< i.

By 4.1(b), for eachn ∈ ω there isqn0 ∈ Q0 such that for allt ∈ Tn,
qn0 = qnt (0). Let qω = ∪n∈ωq

n
0 ∈ Q0, and chooseq′ ≥ qω in Q0 such that

q′ �Q0 a(δ∗, n) = an ∧ e(δ∗, n) = pn.(4.5)

We claim that there is anr ∈ P̃i such thatdom(r) = δ∗ +1, q′ ≤ r and
for everyn ∈ ω, qntn ≤ r for sometn ∈ Tn. If so, we have a contradiction
because in a modelV [G] wherer ∈ G we have:h(zδ∗,0) = no for some
no ∈ ω, but on the other hand, by (ii’),h(

∑{xζ : ζ ∈ a(δ∗, no)) 	= no

(mode(δ∗, no)), thus contradicting (2.2).
We will let r = ∪n∈ωr

n where we define by inductiontn ∈ Tn andrn

such thatrn(α�) ⊇ qntn(α�) for all : < n. Assuming thattn andrn have
been defined for somen, we choose

rn+1(αn) � {zδ∗,k : k < gn+1(αn)} ∪ {xν : ν ∈ a(δ∗, k), k < gn+1(αn)}
so that the equations (2.4) are satisfied forδ = δ∗, k < gn+1(αn) and
q = rn+1(αn). Then we choosetn+1 extendingtn so that for each: ≤ n,
the equations (2.4) are satisfiable forδ = δ∗ andgn+1(α�) ≤ k < n + 1
when

∑{rn+1(α�)(xν) : ν ∈ a(δ∗, k)} = tn+1(α�, k) (modpk). We then
let rn+1(α�) agree withqn+1

tn+1
(α�) on the domain of the latter, for: ≤ n.

There remains the proof of Claim 4 assuming that Claim 3 is false. We
use the notation of Definition 4.1 and Claim 4, and letT = T (g, ᾱ, ū) and
T 1 = T (g, ᾱ, ū1). Let αk = max(ᾱ); then either (a), (b) or (c) of 3 fails
for Posαk

(q∗). Choosepnu larger than previous primes, and, if (a) fails and〈
c0, c1, c0, c2

〉
witnesses the failure, not a divisor ofc1 − c2; if (b) fails and〈

c0, c1, c2, c3, c4, c5
〉

witnesses the failure, choosepnu not a divisor of(c5 −
c3)(c2−c0)−(c3−c1)(c4−c2); if (c) fails and

〈
c0, c1, c2, c3

〉
,
〈
c4, c5, c6, c7

〉
witnesses the failure, choosepnu not a divisor of(c3 − c1)(c6 − c4)− (c7 −
c5)(c2 − c0).

ThenT 1 is defined; we must still defineanu . SinceT 1 is finite and since
it is easy to see that it is possible to choose ananu such that there areT 1-trees
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q̄1, it suffices to show that for any fixed nodet1 of T 1, anybt1 ∈ Z and any
T 1-treeq̄1 it is possible to chooseζ0

t1 < ... < ζs
t1 (for somes = s(t1)) such

thatmax(anu) < ζ0
t1 and aT 1-treeq̄′ ≥ q̄1 such that (writingḣ(ζ) instead

of ḣ(xζ) for clarity of notation) we have:

– for all t ∈ T 1 and all: < nu, q′
t(α�)(

∑{x
ζj
t1
: j = 0, ..., s}) = 0 (mod

pnu);
– for all t 	= t1, q′

t � ḣ(
∑{ζj

t1
: j = 0, ..., s}) = 0 (modpnu); and

– q′
t1 � ḣ(

∑{ζj
t1
: j = 0, ..., s}) = bt1 (modpnu).

For then we let the newanu be the union of the oldanu with {ζj
t : t ∈ T 1,

j = 0, ..., s(t1)}(for the appropriate choices ofbt implying Claim 4(ii)). To
see how to do this, suppose that forαk = max(ᾱ), it is case (a) that fails
in Claim 3. (The other cases are similar.) Suppose that

〈
c0, c1, c0, c2

〉 ∈
Posαk

(q∗) with c1 	= c2. Let

Z = {ζ ∈ ω1 : ∃r1, r2 ∈ P̃i s.t.r1, r2 ≥ q∗, r1 � αk = r2 � αk,
rj(αk)(xζ) = c0 andrj �Pi ḣ(xζ) = cj for j = 1, 2}.

DefinePoss(q̄1) to be the set of all tuples
〈
(dt

0, ..., d
t
nu−1, d

t∗) : t ∈ T 1
〉

such that there exist arbitrarily largeζ ∈ Z such that there exists aT 1-tree
r̄ ≥ q̄1with rt(α�)(xζ) = dt

� andrt � ḣ(xζ) = dt∗. As in the argument
following Definition 3.1, we can assume thatPoss(q̄1) is minimal, i.e., not
decreased when̄q1 increases. Then there are tuples〈(dt

0, ..., d
t
nu−1, d

t∗) : t ∈
T 1〉 and

〈
(et0, ..., e

t
nu−1, e

t∗) : t ∈ T 1
〉

in Poss(q̄1) such thatdt
� = et� for all

t, dt∗ = et∗ for all t 	= t1 anddt1∗ = c1, et1∗ = c2. Chooseν ∈ Z such that
(c1 − c2)ν = bt1 (modpnu). (This is possible sincec1 − c2 is non-zero in
Z/pnuZ.) Now we can inductively definērm+1 ≥ r̄m ≥ q̄1 andζm < ζm+1

in Z for m < νpnu such that:

– for t ∈ T 1 and: < nu, rmt (α�)(ζm) = dt
�;

– for t ∈ T 1 − {t1}, rmt � ḣ(ζm) = dt∗;
– for m = 1 (modpnu), rmt1 � ḣ(ζm) = c1; and
– for m 	= 1 (modpnu), rmt1 � ḣ(ζm) = c2.

Let s = νpnu . Fort ∈ T 1, let q′
t = rst and letanu = {ζm : m ≤ s}. We

have:

– q′
t(α�)(

∑{xζj : j ≤ s}) = νpnudt
� = 0 (modpnu);

– for t 	= t1, q′
t � ḣ(

∑{ζj :≤ s}) = νpnudt∗ = 0 (modpnu); and
– q′

t1 � ḣ(
∑{ζj :≤ s}) = (c1 + (pnu − 1)c2)ν = (c1 − c2)ν = bt1(mod

pnu).

Sh:717



156 P.C. Eklof, S. Shelah

5. Proof of Theorem 0.5

To prove Theorem 0.5 we use a variation of the forcing defined in Sect. 1:

P ′ =
〈
P ′

i , Q̇
′
i : 0 ≤ i < ω2

〉
whereQ0 is as before and fori > 0, �P ′

i

Q̇′
i = Q′

ψ̇i
for all i (and the enumeration of the names{ψ̇i : 1 ≤ i < ω2}

is chosen as before). Letϕi ∈ V [Gi+1] denote the generic function forQi;
that is,ϕi is a homomorphism:F → extendingψi : K → , whereψi

is the interpretation inV [Gi] of the nameψ̇i. Suppose thatψi represents
a torsion element ofExt(A,Z) in V [Gi] of ordere ≥ 1; that is, there is
a homomorphismθi : F → Z in V [Gi] such thatθi � K = eψi. Then
eϕi − θi : F → Z and is identically zero onK, so it is a homomorphism
fromA toZ; we denote itgi. (Here, and elsewhere, we shall identify elements
ofHom(A,Z)with homomorphisms fromF toZ which are identically zero
onK.) If ψi does not represent a torsion element ofExt(A,Z), we will let
gi be the zero function.

Let J = {j ∈ ω2 : gj 	= 0}. We will prove thatHom(A,Z) is free by
proving that{gj : j ∈ J} is a basis ofHom(A,Z). It is easy to see that this
set is linearly independent, since otherwise for somej1 < ... < jk in J the
dependency of{jν : ν = 1, ..., k} would imply thatϕjk

∈ V [Gjk
].

To prove that{gj : j ∈ J} generatesHom(A,Z) we prove by induction
on i ∈ ω2 that everyh ∈ Hom(A,Z)V [Gi] is a linear combination of{gj :
j ∈ J , j < i}. (Note that everyh ∈ Hom(A,Z)V [G] belongs toV [Gi] for
somei < ω2 sinceP satisfies theℵ2-chain condition.) The result is true for
i = 0 by Lemma 2.4.

Fix i ∈ ω2 and leth ∈ Hom(A,Z)V [Gi]. Because we proceed by induc-
tion we can suppose thath /∈ V [Gj ] for any j < i; let q∗ ∈ Gi force this
fact. We definePosα(q∗) as before and use Claim 3.

We work inV [Gα]. Let ϕ̇α be aQα-name for the generic object given by
Qα. As in Sect. 3, we can show that there is a rationald1 such thath−d1ϕα

belong toV [Gα]. Note thatd1 	= 0 sinceh does not belong toV [Gα]. Since
(h − d1ϕα) � K = −d1ψα, we conclude that inV [Gα], ψi is torsion, of
ordere dividing−d1; sayd1 = ne. Thusgα is non-zero and equalseϕα−θα
for someθα in V [Gα] such thatθα � K = eψα. Then

h = d1ϕα + (h− d1ϕα) = ngα + nθα + (h− d1ϕα)

soh equalsngα plus a homomorphism inV [Gα] and by induction we are
done.
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