KAPLANSKY TEST PROBLEM FOR R-MODULES

BY
SAHARON SHELAH \dagger
Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel; and Department of Mathematics, Rutgers University, New Brunswick, New Jersey, USA

ABSTRACT

We prove that every ring R without strong decomposition theorem has a strong non-decomposition theorem. We use diamonds (but this will be eliminated in a subsequent paper).

§1. Introduction

R will be a ring, not necessarily commutative, with $1 ; R$-module is a left R-module unless stated otherwise. In $[\mathrm{Sh} 54]=[\mathrm{Sh} 54 \mathrm{a}] 8.7$ we proved
1.A. Theorem. For every ring R, either:
(1) all R-modules are the direct sum of countably generated R-modules (such rings are called left pure semisimple rings)
or
(2) for every cardinal $\lambda>|R|$,
(2) λ_{λ} there is an R-module M of power λ such that for no $\mu<\lambda$ is M the direct sum of R-modules of power $\leq \mu$.
In fact $(1) \Leftrightarrow \neg(2) \Leftrightarrow$ the class of R-modules is superstable $\Leftrightarrow a$ condition on equations in R.

Subsequently, Garavaglia [Gr] and then Ziegler [Z] much improve the results concerning (1) (e.g., unique decomposition to indecomposable modules). See more in Prest [P1] and [P2] about the history of this and other equivalent conditions.

But here we want to strengthen possibility (2); more specifically, we want to
\dagger Publication number 381.
The author would like to thank the BSF for partially supporting this research and Alice Leonhardt for the beautiful typing. The research was conducted in Spring '87 and Spring '88.

Received August 6, 1989 and in revised form October 16, 1990
show for case (2) there are R-modules which have few endomorphisms, are "rigid like", and, moreover, that the decomposition theory for R-modules is "bad"; e.g., that the answer to:

$$
M \cong N \oplus M_{1}, \quad N \cong M \oplus N_{1} \Rightarrow N \cong M ?
$$

(Kaplansky's first test problem) is negative.
In a classical way we do it by giving a ring S (the ring of endomorphisms we want) and try to build an R-module which "has the endomorphisms for $s \in S$ but not many more".
The literature on the endomorphism of modules (including the restriction to indecomposability or rigidity, and to abelian groups which are exactly the \mathbf{Z}-modules) is quite large.
Kaplansky in $[\mathrm{K}]$ suggested test problems for having a satisfactory decomposition theory.

Fuchs, with some help of Corner, proved the existence of an indecomposable abelian group in many cardinals λ (e.g., up to the first strongly inaccessible) [Fu], and even of a system of 2^{λ} rigid abelian groups of power λ (the proof was by induction on λ). In fact it seems at the time reasonable that for some "large cardinal" (e.g., supercompact) this fails. Corner [C2] reduced the number of primes to five.

Shelah [Sh44] proved the existence in every λ (using stationary sets). Lately, Gobel and Ziegler generalized this to R-modules for " R with five ideals". Shelah [Sh45], answering a question of Pierce, constructed reduced separable (abelian) p-groups with only "small" $+p$-adic endomorphism but has to use λ strong limit of uncountable cofinality.

Eklof and Mekler [EM], using diamond on $\lambda \dagger$ (and a non-reflecting stationary set) got a λ-free indecomposable abelian group of power λ; continuing this, in [Sh140] the diamond was replaced by weak diamond on a non-reflecting stationary subset of $S=\left\{\delta<\lambda\right.$: cf $\left.\delta=\aleph_{0}\right\}$ (so for $\lambda=\aleph_{1}, 2^{\aleph_{0}}<2^{\aleph_{1}}$ suffices).
Much earlier Corner [C] proved that we can realize any torsion-free reduced countable ring as an endomorphism ring of a torsion-free abelian group and deduce by it a negative answer to, e.g., the Kaplansky problem cited above.

Dugas [D1] continuing [EM] proved the existence of a strongly κ-free abelian group with endomorphism ring Z (if, e.g., $V=L$) and then Gobel [G1] realized a larger family of rings; he used p-adic rings.

Dugas and Gobel [DG1], continuing [D1], [G1] and [Sh140] (but [DG1] used one
\dagger It is a consequence of $V=L$ but not provable in ZFC.
prime), for λ as in [Sh140], proved: for a ring R of cardinality $<\lambda$, which is cotorsion free, i.e. $(R,+$) (an additive group) is torsion free, reduced and contain no direct summands isomorphic to I_{p} (p-adic completion of \mathbf{Z}) for all primes p. Dugas and Gobel [DG2] characterize the rings which can be represented as End M modulo "the small endomorphism" for some abelian p-group, but as it continues [Sh45] (which dealt with the case when we want the smallest such ring) the representation of a ring R is by an abelian group M of a power strong limit cardinal of cofinality $>|R|$. The situation is similar in Dugas and Gobel [DG3] where the results of [GD1] and more are obtained in such cardinals.

In [Sh172] + [Sh227] we introduce a principle "black box", which follows from ZFC, that enables us to get the results of [DG2], [DG3] in more and smaller cardinals, e.g., $\lambda=\left(|R|^{\mathrm{K}_{0}}\right)^{+}$.

Corner and Gobel [CG] continue this; see there and in [EM1] for additional references.

In 2.1-2.5 we give the algebraic setting and choose specific bimodules which we will use.

Next, 2.6 is the diamond construction (with a non-reflecting stationary set $\delta \subseteq$ $\left\{\delta<\lambda: \operatorname{cf} \delta=\aleph_{0}\right\}$, with $\left.\delta_{\delta}\right)$. The construction is phrased such that its existence is immediate.

Main fact 2.7 tells us that every R-endomorphism of M_{λ} (the bimodule constructed in 2.6) is somewhat definable.

However, we later use an even slightly weaker variant defined in 2.8(3), $\left(\operatorname{Pr}^{-}\right)_{\alpha}^{n(*)}[F]$ (some $\alpha<\lambda, n(*)<\omega$). In 2.10 we show that it implies a stronger version $\left((\operatorname{Pr} 1)_{\alpha, z}^{n(*)}\right)$. The rest of the section explicates the result: in M_{λ} every endomorphism is in some sense equal to one in a ring $d E$. The ring $d E$ depends on R and S (but not on λ); the "in some sense equal" means: for each n we restrict F to a sub-abelian group $\varphi_{n}\left(M_{\lambda}\right)$ (closed under F), divide by another ($\bigcap_{i} \varphi_{l}\left(M_{\lambda}\right)$) and take the direct limit; on top of this we have an "error term": we have to divide by a "small" submodule of M_{λ}, which means of cardinality $<\lambda$. An alternative presentation is: we divide the ring of such endomorphisms by the ideal of those with "small" range.

In section 3 we try to make the "error term" smaller. We have to avoid a "large member" of \mathscr{K} (e.g., projectives). So we fix a family of bimodules \mathscr{K} (e.g., those which are finitely generated, finitely presented). Then we ask M_{λ} to be λ-free in a sense; i.e., where $M_{\lambda}=\bigcup_{\alpha<\lambda} M_{\alpha}, M_{\alpha}$ increasing continuous of power $<\lambda$, demand that every M_{α} is the direct sum of members of \mathcal{K}. We get this time a smaller error term-its power is $\leq|R|+|S|+\aleph_{0}$ and, if R, S are countable, it disappears.

In section 4 we draw specific consequences of our representation theorem.
In a subsequent paper [Sh421] we get the main results in ZFC (without any extra axioms); this is as done originally. We lose the λ-freeness (this is unavoidable, even for abelian groups - see Magidor and Shelah [MgSh204]). We also get, for each $m(*)$, an R-module M such that $M \cong M^{n}$ iff n divides $m(*)$ and the other Kaplanksy test problems. We shall also point out that the theorems apply to elementary (= first order) classes of modules which are not totally transcendental.

We thank Gobel and Ziegler for helpful questions on an earlier version of the work.
1.B. Remark. We use $\left\langle N_{n}, N_{n}^{\prime}, N_{n}^{\mathrm{tr}}, g_{n}: n\langle\omega\rangle\right.$ (see 2.5) totally determined by $\left\langle\varphi_{n}: n\langle\omega\rangle\right.$ (and T, R, S). However, we do not use all their specific properties, just:
(a) N_{n} a bimodule with a distinguished element $x^{[n]}$.
(b) g_{n} is a (bimodule) homomorphism from N_{n} to N_{n+1} mapping $x^{[n]}$ to $x^{[n+1]}$.
(c) Let $\varphi_{n}(M)$ be defined as

$$
\left\{h\left(x^{[n]}\right): h \text { an } R \text {-homomorphism from } N_{n} \text { to } M\right\} .
$$

(d) There is no R-homomorphism h from N_{n+1} to $N_{n}, x^{[n+1]} h=x^{[n]}$.
(e) f_{n}^{1}, f_{n}^{2} are R-homomorphisms from N_{n} to $N_{n}^{\prime}, x^{[n]} f_{n}^{1}=x^{[n]} f_{n}^{2}, N_{n}^{\prime}=\operatorname{Rang} f_{n}^{\prime}$ and

$$
N_{n}^{\mathrm{tr}}=\left\{y f_{n}^{1}: y \in N_{n}, y f_{n}^{1}-y f_{n}^{2} \text { belongs to } \bigcap_{m<\omega} \varphi_{m}\left(N_{n}^{\prime}\right)\right\} .
$$

§2. The diamond construction

2.1. Remark. If you want to deal with many $\bar{\varphi}$'s simultaneously, no change is required.
2.2. Context and Fact. (a) R, S rings with unit $1, T$ a commutative subring of Cent R and of Cent S (Cent-the center). A bimodule M is a left R-module, right S-module such that $(r x) s=r(x s), t x=x t$ for $x \in M, t \in T, r \in R, s \in S$ (really we should say an (R, S)-bimodule). T, R and S are fixed here (except in $\S 4$). K, M, N denote bimodules (or left R-modules).

Homomorphisms (f, g, h, F), particularly of R-modules, should be written from the right (so composition is accordingly). They are homomorphism of bimodules if not said otherwise; an R-homomorphism has the obvious meaning.
(b) The class of (R, S)-bimodules is a variety. For a homomorphism $M_{1} \stackrel{F}{\rightarrow} M_{2}$,
the kernel $\operatorname{Ker} F=\left\{x \in M_{0}: x F=0\right\}$ is a sub-bimodule of M_{1}, and the image, Rang $F=\left\{x F: x \in M_{1}\right\}$, is a sub-bimodule of $M_{2} ; F$ preserves the satisfaction of p.e. (= positive existential) formulas.
(c) If $M_{1} \subseteq M_{2}\left(M_{1}\right.$ a sub-bimodule of $\left.M_{2}\right)$ then $M_{2} / M_{1}=\left\{x+m_{1}: x \in M_{1}\right\}$ is a homomorphic image of $M_{2}, x \mapsto x+M_{1}$ a homomorphism, with kernel M_{1}.
2.3. Assumption. For some bimodule M^{*} and sequence $\bar{\varphi}=\left\langle\varphi_{n}(x): n<\omega\right\rangle$ of conjunctive positive existential formulas (in the language of left R-modules, see below):

$$
\left\langle\varphi_{n}\left(M^{*}\right): n<\omega\right\rangle \text { is strictly decreasing } \quad \text { where } \varphi_{n}(M)=\left\{x \in M: M \vDash \varphi_{n}[x]\right\}
$$

[By [Sh54] 8.7 it exists if possibility (1) of Theorem 1.A fails.]
2.3A. Observation. $\quad \varphi_{n}\left(M^{*}\right)$ is a subgroup of M^{*} as an (additive) group and even a sub-right S-module, but not necessarily a sub-bimodule.
2.4. Trivial Derivations from the Assumption. Let

$$
\varphi_{n}(x)=\left(\exists y_{0}, \cdots, y_{q_{n}-1}\right)\left(\bigwedge_{l=0}^{m_{n}-1} a_{l}^{n} x=\sum_{i<k_{l}^{n}} b_{l, i}^{n} y_{i}\right),
$$

so $a_{l}^{n}, b_{l, i}^{n}$ are members of R.
As we can replace φ_{n} by $\Lambda_{l \leq n} \varphi_{l}$, interchange order of \exists and Λ and change names of variables without loss of generality: $k_{l}^{n}=k_{l}, a_{l}^{n}=a_{l}, b_{l, i}^{n}=b_{l, i}, k_{l}<$ $k_{l+1}, m_{n}<m_{n+1}$, and also without loss of generality $m_{0}=1, a_{0}=1_{R}, k_{0}=1$, $b_{0,0}=1$; i.e., $\varphi_{0}(x)=\Xi y_{0}\left(x=y_{0}\right)$ and $q_{n}=k_{m_{n}-1}$.
2.5. Definition and Claim. (a) Let N_{n} be the bimodule generated freely by $\{x\} \cup\left\{y_{i}: 0 \leq i<k_{m_{n}-1}\right\}$ subject only to the equations $\left\{a_{l} x=\sum_{i<k_{l}} b_{l, i} y_{i}: l<\right.$ $\left.m_{n}\right\}$. When confusion may arise we write $x^{[n]}, y_{i}^{[n]}$.
(b) Trivially: $x \in \varphi_{n}\left(N_{n}\right)$.
(c) Trivially: if M is a bimodule, then $x^{*} \in \varphi_{n}(M)$ iff for some homomorphism h from N_{n} into M as bimodules, $x h=x^{*}$.
(d) By the choice of M^{*} and $\bar{\varphi}$ (and 2.5(c) above): $x \notin \varphi_{n+1}\left(N_{n}\right)$.
(e) Let N_{n}^{\prime} be freely generated by $x, y_{i}^{\prime}, y_{i}^{\prime \prime}$ for $i<k_{m_{n}-1}$ subject only to the relations:

$$
\begin{aligned}
& a_{l} x=\sum_{i<k_{l}} b_{l, i} y_{i}^{\prime} \\
& a_{l} x=\sum_{i<k_{n}} b_{l, i} y_{i}^{\prime \prime}
\end{aligned}
$$

Let N_{n}^{ζ} for $\zeta=1,2$ be the sub-bimodule of N_{n}^{\prime} generated by:

$$
\begin{array}{ll}
\{x\} \cup\left\{y_{i}^{\prime}: i<k_{m_{n}-1}\right\} & \text { for } \zeta=1, \\
\{x\} \cup\left\{y_{i}^{\prime \prime}: i<k_{m_{n}-1}\right\} & \text { for } \zeta=2 .
\end{array}
$$

Let $f_{n}^{\zeta}: N_{n} \xrightarrow{f_{n}^{\zeta}} N_{n}^{\zeta}$ be the bimodule homomorphism defined by: $x f_{n}^{\zeta}=x ; y_{i} f_{n}^{1}=$ $y_{i}^{\prime}, y_{i} f_{n}^{2}=y_{i}^{\prime \prime}$.
(f) $N_{n}^{\mathrm{tr}}=\left\{z \in \varphi_{n}\left(N_{n}\right): z f_{n}^{1}-z f_{n}^{2} \in \bigcap_{l} \varphi_{l}\left(N_{n}^{\prime}\right)\right\}$ is an abelian subgroup of N_{n} (and S-submodule, as $\bigcap_{l} \varphi_{l}\left(N_{n}^{\prime \prime}\right)$ is).
2.6. The Construction. Here we give the simpler variant, under diamond, sufficient for Kaplansky test problems.

We let $|R|+|S|+\aleph_{0}<\lambda=\mathrm{cf} \lambda, S \subseteq\left\{\delta<\lambda: \operatorname{cf} \delta=\mathcal{X}_{0}\right\}$ is stationary but does not reflect, ∇_{S}, without loss of generality $S^{*}=\left\{\delta<\lambda: \operatorname{cf} \delta=\kappa_{0}, \delta \notin S\right\}$ is stationary too. We define, by induction on $\alpha \leq \lambda, M_{\alpha}$ such that:
(A) M_{α} is a bimodule and has universe $\gamma_{\alpha} \leq \lambda$ and $\alpha<\lambda \Leftrightarrow \gamma_{\alpha}<\lambda$ [e.g., $\gamma_{\alpha}=$ $\lambda^{-}(1+\alpha)$ where $\lambda=\left(\lambda^{-}\right)^{+}$] and $\alpha<\beta \Rightarrow \gamma_{\alpha}<\gamma_{\beta}$.
(B) $\alpha<\beta \Rightarrow M_{\alpha} \subseteq M_{\beta}$.
(C) $\alpha<\beta \& \alpha \notin S \Rightarrow M_{\alpha}$ is a direct summand of M_{β}.
(D) For limit $\delta \leq \lambda, M_{\delta}=\bigcup_{\alpha<\delta} M_{\alpha}$.
(E) M_{0} is the zero bimodule.
(F) If α is successor ordinal or $\alpha \notin S: M_{\alpha+1}$ is the direct sum of M_{α} and $\left\|M_{\alpha}\right\|$ copies of N_{n}, N_{n}^{\prime} for each n and some others; each bimodule of power $<\lambda$ appears as a direct summand of $M_{\alpha+1} / M_{\alpha}$ for a stationary set of such α 's.
(G) If $\alpha=\gamma_{\alpha} \in S, \diamond_{S}$ gives us F_{α}, an endomorphism of M_{α}, as an R-module and there is P satisfying
$\bigotimes_{P}^{\alpha}\left[P\right.$ is a bimodule of cardinality $<\lambda$ extending M_{α} such that: $]$
(i) if $\beta<\alpha, \beta \notin S$ then M_{β} is a direct summand of P,
(ii) F_{α} cannot be extended to an R-endomorphism of P.

Then $M_{\alpha+1}$ satisfies $\bigotimes_{M_{\alpha+1}}^{\alpha}$.
Otherwise, act as in clause (F).
Note. There is no problem in carrying out the construction: for condition (C) we use " $\$$ does not reflect".

Now let $M_{\lambda}=: \bigcup_{\alpha<\lambda} M_{\alpha}$, so M_{λ} is a bimodule with universe λ.
2.7. Main Fact. Suppose $M_{\lambda} \xrightarrow{F} M_{\lambda}$ is an R-endomorphism of M_{λ} (i.e., endomorphism as an R-module). Then for some $\alpha<\lambda, \alpha \notin S$ and $n(*)<\omega$, we have:
$(\operatorname{Pr})_{\alpha}^{n(*)}[F] \quad$ if h is a homomorphism from $N_{n(*)}$ to M_{λ} (as bimodules), then for every $l<\omega$ we have:

$$
(x h) F \in M_{\alpha}+\varphi_{l}\left(M_{\lambda}\right)+\operatorname{Rang}(h)
$$

Proof of 2.7. Suppose that the conclusion fails. So for every $\alpha<\lambda$ and $n<$ ω there is a counterexample $h_{\alpha, n}: N_{n} \rightarrow M_{\lambda}$ to $(\operatorname{Pr})_{\alpha}^{n}[F]$, the failure involving $l(\alpha, n)<\omega$. Now

$$
\begin{gathered}
C=:\left\{\delta<\lambda: F \text { maps } M_{\delta} \text { into } M_{\delta}, M_{\delta} \text { has universe } \delta \text { and, for every } \alpha<\delta,\right. \\
\left.n<\omega, \text { we have: } \operatorname{Rang}\left(h_{\alpha, n}\right) \subseteq M_{\delta}\right\}
\end{gathered}
$$

is a club of λ.
So for some $\alpha \in S, \alpha$ is an accumulation point of $C \backslash S$ and ∇_{S} gives us, for α, $F_{\alpha}=F \upharpoonright \alpha$ (remember $\left\{\delta<\lambda: \delta \notin \delta, \operatorname{cf} \delta=\aleph_{0}\right\}$ is stationary).

We shall construct P satisfying \bigotimes_{P}^{α}.
This suffices; why? By clause (G) of 2.6 we know that $\bigotimes_{M_{\alpha+1}}^{\alpha}$ holds; on the other hand there is $\beta, \alpha<\beta<\lambda$ such that F maps M_{β} into M_{β}, so (by condition (C) from 2.6) there is a projection F^{\prime} from M_{β} onto $M_{\alpha+1}$ and $\left(F \upharpoonright M_{\alpha+1}\right) \circ F^{\prime}$ is an R-homomorphism from $M_{\alpha+1}$ to $M_{\alpha+1}$, contradicting $\otimes_{M_{\alpha+1}}^{\alpha}$.

Construction of P. Choose α_{n} such that

$$
\begin{gathered}
0=\alpha_{0}<\alpha_{1}<\alpha_{2}<\cdots, \\
\alpha_{n} \in C \backslash S \quad \text { for } n>0, \\
\operatorname{Rang}\left(h_{\alpha_{n}, n}\right) \subseteq M_{\alpha_{n+1}} \\
\alpha=\bigcup_{n<\omega} \alpha_{n}
\end{gathered}
$$

For $n>0$, as $\alpha_{n} \in C \backslash \oint$ we know that $M_{\alpha_{n}}$ is a direct summand of $M_{\alpha_{n+1}}$, so let $M_{\alpha_{n+1}}=M_{\alpha_{n}} \oplus K_{n}$. Let $K_{0}=M_{\alpha_{1}}$. So M_{α} is the direct sum of $\left\{K_{n}: n<\omega\right\}$. Let $P^{0}=\Pi_{n<\omega} K_{n}$; i.e., the set of elements of P^{0} is $\left\{\left\langle z_{n}: n\langle\omega\rangle: z_{n} \in K_{n}\right\}\right.$, addition and multiplication-coordinatewise, but we identify $\left\langle z_{n}: n<\omega\right\rangle$ with $\sum_{n<k} z_{n}$ if $\bigwedge_{n \geq k} z_{n}=0$; so M_{α} is a sub-bimodule of P^{0}. For each $n>0$ we know that (as $h_{\alpha_{n}, n}$ is a homomorphism from the bi-module N_{n} to the bi-module $M_{\alpha_{n+1}}$ and by the definition of N_{n}-see 2.5(a)):
(α) $a_{l} x h_{\alpha_{n}, n}=\sum_{i<k_{n}} b_{l, i}\left(y_{i}\right) h_{\alpha_{n}, n}$ for $l<m_{n}$,
$(\beta) x h_{\alpha_{n}, n} F \notin M_{\alpha_{n}}+\operatorname{Rang}\left(h_{\alpha_{n}, n}\right)+\varphi_{l\left(\alpha_{n}, n\right)}\left(M_{\alpha_{n+1}}\right)$ [note: the first two summands are sub-bimodules; the third, not necessarily, but is an additive subgroup].

Let g_{n}^{*} be the projection from $M_{\alpha_{n+1}}$ onto K_{n}, so

$$
g_{n}^{*} \upharpoonright K_{n}=\text { identity }_{K_{n}}, \quad g_{n}^{*} \upharpoonright M_{\alpha_{n}}=\text { zero }
$$

(note: g_{n}^{*} is a homomorphism of bimodules).
Clearly by (α):
$(\alpha)^{\prime} a_{l} x h_{\alpha_{n}, n} g_{n}^{*}=\sum_{i<k_{n}} b_{l, i} y_{i} h_{\alpha_{n}, n} g_{n}^{*}$ for $l<m_{n}$.
Now by the choice of g_{n}^{*}, as Rang $h_{\alpha_{n}, n} \in M_{\alpha_{n+1}}$:
(γ) $x h_{\alpha_{n}, n}-x h_{\alpha_{n}, n} g_{n}^{*} \in M_{\alpha_{n}}$ and
($\delta) y_{i} h_{\alpha_{n}, n}-y_{i} h_{\alpha_{n}, n} g_{n}^{*} \in M_{\alpha_{n}}$,
($\epsilon) M_{\alpha_{n}}+\operatorname{Rang}\left(h_{\alpha_{n}, n}\right)=M_{\alpha_{n}}+\operatorname{Rang}\left(h_{\alpha_{n}, n} g_{n}^{*}\right)$,
hence clearly by (β) (and the choice of g_{n}^{*}):
$\left(\beta^{\prime}\right) x h_{\alpha_{n}, n} g_{n}^{*} \notin M_{\alpha_{n}}+\operatorname{Rang}\left(h_{\alpha_{n}, n} g_{n}^{*}\right)+\varphi_{l\left(\alpha_{n}, n\right)}\left(M_{\alpha_{n+1}}\right)$.
Let $U \subseteq \omega$ be infinite such that:

$$
\left[n<m \& n \in \mathcal{U} \& m \in \mathcal{U} \Rightarrow l\left(\alpha_{n}, n\right)<m\right], \quad 0 \notin \mathcal{U} .
$$

We define $x^{n}, y_{i}^{n}(n, i<\omega)$:

$$
\begin{array}{ll}
\text { for } n \notin \mathcal{U}: & y_{i}^{n}=0 \in K_{n}, \\
& x^{n}=0 \in K_{n} ; \\
\text { for } n \in \mathcal{U}: & y_{i}^{n}=y_{i} h_{\alpha_{n}, n} g_{n}^{*} \quad \text { for } i<k_{m_{n}-1} \\
& y_{i}^{n}=0 \quad \text { for } i \geq k_{m_{n}-1} \quad(\text { but }<\omega), \\
& x^{n}=x h_{\alpha_{n}, n} g_{n}^{*} .
\end{array}
$$

Now we define in P^{0} some elements:

$$
\begin{aligned}
& x^{*}=\left\langle x^{n}: n \leq \omega\right\rangle, \\
& y_{i}^{*}=\left\langle y_{i}^{n}: n\langle\omega\rangle,\right. \\
& x^{*, j}=x^{*}-\sum_{n<j} x^{n} ; \text { i.e., } x^{*, j}=\underbrace{\langle 0,0, \ldots, 0}_{0, \ldots, j-1}, x^{j}, x^{j+1}, \ldots\rangle, \\
& y_{i}^{*, j}=y_{i}^{*}-\sum_{n<j} y_{i}^{n} ; \text { i.e., } y_{i}^{*, j}=\underbrace{\left\langle 0,0, \ldots, 0, y_{i}^{j}\right.}_{0, \ldots, j-1}, y_{i}^{j+1}, \ldots\rangle .
\end{aligned}
$$

We can check that by $(\alpha)^{\prime}$ [and for $n \notin \mathcal{U}$ trivially]:

$$
(\alpha)^{\prime \prime} K_{n} \vDash\left[a_{l} x^{n}=\sum_{i<k_{l}} b_{l, i} y_{i}^{n}\right] \text { when } l<m_{n} ;
$$

hence
$(\alpha)^{\prime \prime \prime} P^{0} \vDash a_{l} x^{*, j}=\sum_{i<k_{l}} b_{l, i} y_{i}^{*, j}$ when $l<m_{j}$.
Now we define P :
P is the sub-bimodule of P^{0} generated by $M_{\alpha} \cup\left\{x^{*}, y_{i}^{*}: i<\omega\right\}$.
Note that for $i, j<\omega, x^{*, j}, y_{i}^{*, j}$ belongs to P.
Suppose F^{+}is an extension of $F_{\alpha}=F \backslash M_{\alpha}$ (which is an endomorphism of M_{α} as an R-module) to an endomorphism of P (as an R-module). Therefore $\left(x^{*}\right) F^{+} \in P$, so for some $i(*)<\omega,\left\langle r_{i}: i<i(*)\right\rangle$ from $R,\left\langle s_{i}: i<i(*)\right\rangle$ from S :
(1) $x^{*} F^{+}-\sum_{i<i(*)} r_{i} y_{i}^{*} s_{i} \in M_{\alpha}$ (remember $y_{0}^{*}=x^{*}$).

As $M_{\alpha}=\sum_{l<\omega} K_{l}$, for some $n(*)<\omega$ and some $z \in \sum_{l<n(*)} K_{l}=M_{\alpha_{n(*)}}$ we have
(2) $x^{*} F^{+}-\sum_{i<i(*)} r_{i} y_{i}^{*} s_{i}=z$.

Without loss of generality $n(*) \in \mathcal{U}$ (as we can increase $n(*)$, $\cup \subseteq \omega$ infinite). Let $m(*)=\operatorname{Min}[U \backslash(n(*)+1)]$. We know that
(3) $x^{*,(n(*)+1)}=x^{*}-\Sigma\left\{x^{n}: n<n(*)+1\right\}=x^{*}-\sum_{n<m(*)} x^{n}$ (as $n \notin \mathcal{U} \Rightarrow$ $x^{n}=0$) satisfies $\varphi_{m(*)}(-)$ (in $P!$, by $\left.(\alpha)^{\prime \prime \prime}\right)$ hence also $x^{*,(n(*)+1)} F^{+}=$ $x^{*} F^{+}-\sum\left\{x^{n} F: n<n(*)+1\right\}$ satisfies it in P.
Let $Z_{n(*)}$ be the natural projection of P^{0} onto $K_{n(*)}:\left(\left\langle v_{0}, v_{1}, v_{2}, \ldots,\right\rangle\right) Z_{n(*)}=$ $v_{n(*)}$; so $Z_{n(*)}$ extends $g_{n(*)}^{*}$ and
(4) $x^{*,(n(*)+1)}\left(F^{+} Z_{n(*)}\right)=\left(x^{*} F^{+}\right) Z_{n(*)}-\sum\left\{\left(x^{n} F\right) Z_{n(*)}: n<n(*)+1\right\}$.

The left-hand side satisfies $\varphi_{m(*)}(-)$ as an R-endomorphism preserves such satisfaction, hence also the right-hand side satisfies $\varphi_{m(*)}(-)$. Now for $n<n(*)$, $x^{n} \in M_{\alpha_{n+1}}$ hence (as $\left.\alpha_{n+1} \in C\right) x^{n} F \in M_{\alpha_{n+1}} \subseteq M_{\alpha_{n(*)}} \subseteq$ Ker $Z_{n(*)}$, therefore $x^{n} F Z_{n(*)}=0$. So the right-hand side of (4) is equal to $\left(x^{*} F^{+}\right) Z_{n(*)}-\left(x^{n(*)} F\right) Z_{n(*)}$. Now as $Z_{n(*)}$ extends $g_{n(*)}^{*}$ and $x^{n(*)} F \in M_{\alpha_{n(*)+1}}$, clearly
(5) $\left(x^{n(*)} F\right) Z_{n(*)}=\left(x^{n(*)} F\right) g_{n(*)}^{*}$.

So the right-hand side of the equation (5) is equal to $\left(x^{*} F^{+}\right) Z_{n(*)}-\left(x^{n(*)} F\right) g_{n(*)}^{*}$, hence (see line after (4) and remember Z is a homomorphism into $K_{n(*)}$):
(6) $K_{n(*)} \vDash \varphi_{m(*)}\left[\left(x^{*} F^{+}\right) Z_{n(*)}-\left(x^{n(*)} F\right) g_{n(*)}^{*}\right]$. So
(7) $x^{*} F^{+} Z_{n(*)}-\left(x^{n(*)} F\right) g_{n(*)}^{*} \in \varphi_{m(*)}\left(K_{n(*)}\right) \subseteq \varphi_{m(*)}\left(M_{\alpha_{n(*)+1}}\right)$.

By choice of $g_{n(*)}^{*}$ we have
(8) $x^{n(*)} F-\left(x^{n(*)} F\right) g_{n(*)}^{*} \in M_{\alpha_{n(*)}}$
and by the choice of $n(*)$ (and as $Z_{n(*)}$ is a homomorphism of bimodules and $z \in M_{\alpha_{n(*)}}$, hence $z F^{+}=z F \in M_{\alpha_{n(*)}}$):
(9) $\left(x^{*} F^{+}\right) Z_{n(*)}=\left(x^{*} F^{+}-0\right) Z_{n(*)}=\left(x^{*} F^{+}-z\right) Z_{n(*)}=\left(\sum_{i<i(*)} r_{i} y_{i}^{*} s_{i}\right) Z_{n(*)}$ $=\sum_{i<i(*)} r_{i}\left(y_{i}^{*} Z_{n(*)}\right) s_{i}=\sum_{i<i(*)}\left(r_{i} y_{i}^{n(*)}\right) s_{i}$

$$
=\sum_{i<i(*)} r_{i} y_{i}\left(h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*}\right) s_{i} \in \operatorname{Rang}\left(h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*}\right)
$$

[for the second equality note that $z \in M_{\alpha_{n(*)}}$ hence $z Z_{n(*)}=0$ as $Z \upharpoonright M_{\alpha_{n(*)}}$ is zero].

As $g_{n(*)}^{*}$ is a homomorphism with domain $M_{\alpha_{n(*)+1}}$ such that $\left(\forall y \in M_{\alpha_{n(*)+1}}\right)$ $\left[y-y g_{n(*)}^{*} \in M_{\alpha_{n(*)}}\right]$ we have (remember: $x \in N_{n(*)}$ and $x^{n}=x h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*}-$ see choice of the x^{n} 's):
(10) $x h_{\alpha_{n(*)}, n(*)} F-x h_{\alpha_{n(*)}, n(*)} F g_{n(*)}^{*} \in M_{\alpha_{n(*)}}$
and (as F maps $M_{\alpha_{n(*)}}$ into itself)
(11) $x h_{\alpha_{n(*)}, n(*)} F g_{n(*)}^{*}-x h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*} F \in M_{\alpha_{n(*)}}$,
and by the choice of the x^{n} s
(12) $x^{n(*)}=x h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*}$; hence

$$
x^{n(*)} F=x h_{\alpha_{n(*)}, n(*)} g_{n(*)}^{*} F
$$

By the last equations [first (10), (11), (12), then (8) and then (7) $+(9)$]:

$$
\begin{aligned}
x h_{\alpha_{n(*)}, n(*)} F & \in\left(x^{n(*)}\right) F+M_{\alpha_{n(*)}}=\left(x^{n(*)} F\right) g_{n(*)}^{*} \\
& \subseteq M_{\alpha_{n(*)}}+\operatorname{Rang}\left(h_{\alpha_{n(*)}, n(*)}\right)+\varphi_{m(*)}\left(M_{\alpha_{n(*)+1}}\right)
\end{aligned}
$$

so we get a contradiction to the choice of $h_{\alpha_{n(*)}, n(*)}$.
Hence we have proved 2.7.
2.8. Definition. (1) $\operatorname{HDS}_{M_{1}}^{M_{2}}(h, N)$ means: M_{1}, M_{2}, N are bimodules, $M_{1} \subseteq M_{2}$, h a (bimodule) homomorphism from N into M_{2} and, for some bimodule $K, M_{2}=$ $M_{1} \oplus($ Rang $h) \oplus K$.
(2) $\operatorname{IDS}_{M_{1}}^{M_{2}}(h, N)$ is defined similarly but h is one to one.
(3) $\left(\operatorname{Pr}^{-}\right)_{\alpha}^{n(*)}[F]$ is the following apparent weakening of $(\operatorname{Pr})_{\alpha}^{n(*)}[F]$ (speaking on $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$):
if $\operatorname{IDS}_{M_{\alpha}}^{M_{\beta}}\left(h, N_{n(*)}\right), \alpha<\beta<\lambda, \beta \notin S$
then for each $l<\omega$ we have:

$$
(x h) F \in M_{\alpha}+(\operatorname{Rang} h)+\varphi_{l}\left(M_{\lambda}\right)
$$

2.9. Fact. (1) If $\operatorname{IDS}_{M_{1}}^{M_{2}}\left(h_{1}, N\right)$ and h_{0} is a bimodule homomorphism from N into M_{1}, and $h=: h_{0}+h_{1}$, then $\operatorname{IDS}_{M_{1}}^{M_{2}}(h, N)$.
(2) If $M_{0} \subseteq M_{1} \subseteq M_{2}$ are bimodules, M_{0} a direct summand of $M_{1}, \operatorname{IDS}_{M_{1}}^{M_{2}}(h, N)$ then $\operatorname{IDS}_{M_{0}}^{M_{2}}(h, N)$.
(3) If $\left(\operatorname{Pr}^{-}\right)_{\alpha}^{n(*)}[F], \alpha \leq \beta<\lambda, F$ maps M_{α} into itself, $\alpha \notin S, \beta \notin S$ then $\left(\operatorname{Pr}^{-}\right)_{\beta}^{n(*)}[F]$.
(4) If $(\operatorname{Pr})_{\alpha}^{n(*)}[F]$ then $\left(\operatorname{Pr}^{-}\right)_{\alpha}^{n(*)}[F]$.

Proof. Direct checking.
2.10. Claim. Suppose $\left\langle M_{\alpha}: \alpha \leq \lambda\right.$) and S satisfy (A)-(F) of 2.6 (but not necessarily (G)!) and $F: M_{\lambda} \rightarrow M_{\lambda}$ is an endomorphism of M_{λ} as an R-module and $\left(\operatorname{Pr}^{-}\right)_{\alpha}^{n(*)}[F]$ holds (see 2.8(3)) and $\alpha \notin \mathcal{S}$.

Then for some $z \in N_{n(*)}^{\mathrm{tr}}$ (on $N_{n(*)}^{\mathrm{tr}}$ see $2.5(\mathrm{f})$) we have:
$(\operatorname{Pr} 1)_{\alpha, z}^{n(*)}[F] \quad$ if h is a homomorphism from $N_{n(*)}$ to M_{λ}

$$
\text { then }(x h) F-z h \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{I}\left(M_{\lambda}\right)
$$

Proof of 2.10.
Step a. We shall prove: if $\operatorname{IDS}_{M_{\alpha}}^{M_{\beta}}\left(h, N_{n(*)}\right)$ for some $\beta \in(\alpha, \lambda) \backslash S$ then $x h F \in$ $M_{\alpha}+h(N)+\bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)$.

Assume $\alpha<\beta \notin S, M_{\beta}=M_{\alpha} \oplus N \oplus K$ (bimodules direct sum), h an isomorphism from $N_{n(*)}$ onto N (i.e., $\operatorname{IDS}_{M_{\alpha}}^{M_{\beta}}\left(h, N_{n(*)}\right)$. Choose $\gamma>\beta$ such that F maps M_{γ} into itself and $\gamma \notin \mathcal{S}$, so M_{β} is a direct summand of M_{γ} hence $M_{\gamma}=M_{\alpha} \oplus$ $N \oplus K^{\prime}$. Let Z be the projection from M_{γ} onto K^{\prime} with kernel $M_{\alpha} \oplus N$ (as bimodules); we know that for each l

$$
(x h) F \in M_{\alpha}+N+\varphi_{i}\left(M_{\gamma}\right)
$$

Clearly for some $v \in M_{\alpha}, u \in N$ and $w \in \varphi_{l}\left(M_{\gamma}\right)$ we have $x h F=v+u+w$, hence

$$
x h F Z=v Z+u Z+w Z=0+0+w Z=w Z
$$

so

$$
x h F Z \in\left(\varphi_{l}\left(M_{\gamma}\right)\right) Z \subseteq \varphi_{I}\left(M_{\gamma}\right)
$$

As this holds for each l

$$
x h F Z \in \bigcap_{l} \varphi_{l}\left(M_{\gamma}\right) \subseteq \bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)
$$

So $(x h) F=[(x h) F-((x h) F) Z]+(x h F) Z \in\left(M_{\alpha} \oplus N\right)+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)=M_{\alpha}+$ $($ Rang $h)+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)$.

Step b. Assume that for $\zeta=1,2, \alpha<\beta_{\zeta} \notin S, \beta_{\zeta}<\lambda, M_{\beta_{\zeta}}=M_{\alpha} \oplus N_{\zeta}^{*} \oplus K_{\zeta}$ (bimodule direct sum), h_{ζ} is an isomorphism from $N_{n(*)}$ onto $N_{\zeta}^{*}, z_{\zeta} \in N_{n(*)}$ such that $\left[x h_{\zeta} F-z_{\zeta} h_{\zeta} \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)\right]$. Then (in $\left.N_{n(*)}\right)$:

$$
z_{1} \equiv z_{2} \bmod \bigcap_{l<\omega} \varphi_{l}\left(N_{n(*)}\right)
$$

We choose $\beta \notin \mathrm{S}, \beta>\beta_{1}, \beta>\beta_{2}, \beta<\lambda$ such that F maps M_{β} into M_{β}. Let N_{3}^{*} be isomorphic to $N_{n(*)}$ such that $M_{\beta+1}$ is the direct sum of M_{β}, N_{3}^{*} and some others (just remember (F) of 2.6).

Let h_{3} be an isomorphism from $N_{n(*)}$ onto N_{3}^{*} and $z_{3} \in N_{n(*)}$ be such that

$$
x h_{3} F-z_{3} h_{3} \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)
$$

(exists by stage a).
It is enough to prove $z_{3} \equiv z_{1}$ and $z_{3} \equiv z_{2} \bmod \left[\bigcap_{l} \varphi_{l}\left(N_{n(*)}\right)\right]$ in $N_{n(*)}$; and by symmetry it is enough to prove $z_{3} \equiv z_{1}$. Clearly for some $K, M_{\beta+1}=M_{\alpha} \oplus N_{1}^{*} \oplus$ $N_{3}^{*} \oplus K$. Let $N_{4}^{*}=\left\{v h_{1}-v h_{3}: v \in N_{n(*)}\right\}$ and define $h_{4}: N_{n(*)} \rightarrow M_{\beta+1}$ by

$$
v h_{4}=v h_{1}-v h_{3} .
$$

Clearly N_{4}^{*} is a sub-bimodule of M_{λ}, h_{4} an isomorphism from $N_{n(*)}$ onto N_{4}^{*} and $M_{\gamma+1}=M_{\alpha} \oplus N_{1}^{*} \oplus N_{4}^{*} \oplus K$. Now modulo $M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right):$

$$
\begin{equation*}
\left(x h_{4}\right) F=\left(x h_{1}-x h_{3}\right) F=x h_{1} F-x h_{3} F \equiv z_{1} h_{1}-z_{3} h_{3} \tag{*}
\end{equation*}
$$

Now by step a:

$$
\begin{equation*}
\left(x h_{4}\right) F \in \operatorname{Rang}\left(h_{4}\right)+\left(M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)\right) \tag{*}
\end{equation*}
$$

So
$(*)_{2}$

$$
z_{1} h_{1}-z_{3} h_{3} \in \operatorname{Rang} h_{4}+\left(M_{\alpha}+\bigcap_{i<\omega} \varphi_{l}\left(M_{\lambda}\right)\right)
$$

By $(*)_{2}$ and the definitions of h_{4}, for some $v \in N_{n(*)}$,

$$
\left(z_{1} h_{1}-z_{3} h_{3}\right)-\left(v h_{1}-v h_{3}\right) \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)
$$

i.e., $\left(z_{1}-v\right) h_{1}-\left(z_{3}-v\right) h_{3} \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)$. So for some $y \in M_{\alpha}$ we have $\left(z_{1}-v\right) h_{1}-\left(z_{3}-v\right) h_{3}-y \in \bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)$.

But $M_{\gamma+1}=M_{\alpha} \oplus N_{1}^{*} \oplus N_{3}^{*} \oplus K$ and $\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right) \cap M_{\gamma+1}=\bigcap_{l<\omega} \varphi_{l}\left(M_{\gamma+1}\right)$, so as $\left(z_{1}-v\right) h_{1}-\left(z_{3}-v\right) h_{3} \in N_{1}^{*} \oplus N_{3}^{*}$, without loss of generality $y=0$. Also

$$
\begin{aligned}
\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right) \cap\left(N_{1}^{*} \oplus N_{3}^{*}\right) & =\bigcap_{l<\omega} \varphi_{I}\left(N_{1}^{*} \oplus N_{3}^{*}\right) \\
& =h_{1}^{\prime \prime}\left(\bigcap_{l<\omega} \varphi_{l}\left(N_{n(*)}\right)\right)+h_{3}^{\prime \prime}\left(\bigcap_{l<\omega} \varphi_{l}\left(N_{n(*)}\right)\right) ;
\end{aligned}
$$

we have

$$
\left(z_{3}-v\right) h_{1}-\left(z_{1}-v\right) h_{3} \in h_{1}^{\prime \prime}\left(\bigcap_{l<\omega} \varphi_{l}\left(N_{n(*)}\right)\right)+h_{3}^{\prime \prime}\left(\bigcap_{l<\omega} \varphi_{l}\left(N_{n(*)}\right)\right)
$$

Now in $N_{1}^{*} \oplus N_{3}^{*}$ this implies for $\zeta=1,3$

$$
\left(z_{\zeta}-\dot{v}\right) h_{\zeta} \in h_{\zeta}^{\prime \prime}\left(\bigcap_{l} \varphi_{l}\left(N_{n(*)}\right)\right)
$$

i.e., $z_{\zeta}-v \in \bigcap_{l} \varphi_{l}\left(N_{n(*)}\right)$. Hence also (in $\left.N_{n(*)}\right)$

$$
z_{1}-z_{3}=\left(z_{1}-v\right)-\left(z_{3}-v\right) \in \bigcap_{k \omega \omega} \varphi_{l}\left(N_{n(*)}\right)
$$

So $z_{1}-z_{3} \in \bigcap_{l} \varphi_{l}\left(N_{n(*)}\right)$; i.e., we finish step b.
Step c. There is $z \in N_{n(*)}$ such that, if h is a homomorphism from $N_{n(*)}$ into M_{λ}, then

$$
x h F-z h \in M_{\alpha}+\bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)
$$

By stage b there is $z \in N_{n(*)}$ which satisfies the above requirement when h is as there. Suppose h_{0} is a counterexample. Choose $\beta \notin \mathbb{S}, \beta>\alpha, F$ maps M_{β} into M_{β} and Rang $\left(h_{0}\right) \subseteq M_{\beta}$. Let h_{1} be an isomorphism from $N_{n(*)}$ onto some N_{1}^{*} such that $M_{\beta+1}=M_{\beta} \oplus N_{1}^{*} \oplus K$ for some K. So

$$
x h_{1} F-z h_{1} \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)
$$

Let $N_{n(*)} \xrightarrow{h_{2}} M_{\lambda}$ be defined by

$$
v h_{2}=v h_{1}-v h_{0}
$$

Easily h_{2} is a bimodule homomorphism and, by the assumptions on N_{1}^{*}, h_{1} (direct sum isomorphism), h_{2} is an isomorphism from $N_{n(*)}$ onto $N_{2}^{*}=: \operatorname{Rang}\left(h_{2}\right)$, and

$$
M_{\beta+1}=M_{\beta} \oplus N_{2}^{*} \oplus K
$$

So by step $\mathrm{b}, x h_{2} F-z h_{2} \in M_{\alpha}+\bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)$. But

$$
\begin{aligned}
\left(x h_{0}\right) F=\left(x h_{1}-x h_{2}\right) F & =x h_{1} F-x h_{2} F \in z h_{1}-z h_{2}+\left(M_{\alpha}+\bigcap_{n<\omega} \varphi_{n}\left(M_{\lambda}\right)\right) \\
& =z h_{0}+\left(M_{\alpha}+\bigcap_{n<\omega} \varphi_{n}\left(M_{\lambda}\right)\right)
\end{aligned}
$$

as required, so we have proved z as required exists.

Step d. $z \in N_{n(*)}^{\mathrm{tr}}\left(z\right.$ from step c). ($N_{n(*)}^{\mathrm{tr}}$ is defined in (f) of 2.5.)
Proof. $z \in \varphi_{n(*)}\left(N_{n(*)}\right)$ is very easy.
Let $h: N_{n(*)}^{\prime} \rightarrow N_{1}^{*} \subseteq M_{\alpha+1}$ be an isomorphism (onto) such that, for some subbimodule $K, M_{\alpha+1}=M_{\alpha} \oplus N_{1}^{*} \oplus K$ [see $2.5(\mathrm{e})$ for definition of $N_{n(*)}^{\prime}, f_{n(*)}^{\xi}$ and condition (F) of 2.6]. So

$$
N_{n(*)} \xrightarrow{f_{n(*)}^{1} h} M_{\lambda}, \quad N_{n(*)} \xrightarrow{f_{n(*)}^{2} h} M_{\lambda}
$$

are homomorphisms, so for $\zeta=1,2$

$$
\left(x\left(f_{n(*)}^{\zeta} h\right)\right) F-z\left(f_{n(*)}^{\zeta} h\right) \in M_{\alpha}+\bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)
$$

and the conclusion follows.
2.11. Discussion. (a) Now $(\operatorname{Pr} 1)_{\alpha, 2}^{n(*)}[F]$ (from 2.10) is almost what is required, only the "error term" M_{α} is too large.
(b) However, before we do this, we note that for the solution of the Kaplansky test problem this improvement is immaterial: we just divide by a stronger ideal, i.e., we allow one to divide by a submodule of bigger cardinality. We phrase our conclusion more clearly before we proceed.
2.12. Definition. (1) For any $n<\omega, z \in N_{n}^{\mathrm{tr}}$ and bi-module M, we define $H_{M}^{z}={ }^{n} H_{M}^{z}$.
H_{M}^{z} is the function from the abelian group $\varphi_{n}(M) / \bigcap_{l<\omega} \varphi_{l}(M)$ to itself defined by:
if h is a homomorphism from N_{n} to M, then

$$
\left(x h+\bigcap_{l} \varphi_{l}(M)\right) H_{M}^{z}=z h+\bigcap_{l<\omega} \varphi_{l}(M)
$$

(2) z is called n-nice if ($z \in N_{n}^{\mathrm{tr}}$ and), when $h: N_{n} \rightarrow M$ is a homomorphism, $m>n, M \vDash \varphi_{m}(x h)$, then $M \vDash \varphi_{m}(z h)$.
2.13. Claim. (1) For n, z, M as in $2.12,{ }^{n} H_{M}^{z}$ is really a single-valued function and an endomorphism of the abelian group $\varphi_{n}(M) / \bigcap_{l<\omega} \varphi_{1}(M)$, so the value depends just on $z+\bigcap_{l} \varphi_{l}\left(N_{n}\right)$. Also if $z_{1}, z_{2} \in N_{n}^{\mathrm{tr}}, z_{1}-z_{2} \notin \bigcap_{l<\omega} \varphi_{l}\left(N_{n}\right) \Rightarrow$ for some R-module $M,{ }^{n} H_{M}^{z_{1}} \neq{ }^{n} H_{M}^{z_{2}}$ (e.g., $M=N_{n}$).
(2) If M_{1}, M_{2} are R-modules, $h: M_{1} \rightarrow M_{2}$ a homomorphism, then:
(i) $\quad\left(\varphi_{l}\left(M_{1}\right)\right) h \subseteq \varphi_{l}\left(M_{2}\right)$.
(ii) For $n<\omega$, we define \hat{h} : for $x \in \varphi_{n}(M)$ we let

$$
\left(x+\bigcap_{l<\omega} \varphi_{l}\left(M_{1}\right)\right) \hat{h}=: x h+\bigcap_{l<\omega} \varphi_{l}\left(M_{2}\right)
$$

\hat{h} is a homomorphism from $\varphi_{n}\left(M_{1}\right) / \bigcap_{l} \varphi_{l}\left(M_{1}\right)$ into $\varphi_{n}\left(M_{2}\right) / \bigcap_{l} \varphi_{l}\left(M_{2}\right)$ (as abelian groups). We denote \hat{h} by $h \upharpoonright \varphi_{n}\left(M_{1}\right) / \bigcap_{l<\omega} \varphi_{l}\left(M_{1}\right)$.
(iii) If $n<\omega, z \in N_{n}^{\mathrm{tr}}, M_{1}$ and M_{2} are bi-modules, then

$$
{ }^{n} H_{M_{1}}^{z} \circ \hat{h}=\hat{h} \circ{ }^{n} H_{M_{2}}^{z} .
$$

(3) If $n<m, z \in N_{n}^{\mathrm{tr}}$ is n-nice, then for some $y \in N_{m}^{\mathrm{tr}}$ for every bi-module M :

$$
{ }^{m} H_{M}^{y}={ }^{n} H_{M}^{2} \upharpoonright\left(\varphi_{m}(M) / \bigcap_{l<\omega} \varphi_{l}(M)\right) .
$$

(4) Suppose:
(i) $\psi(x, y)$ is a p.e. formula in the language of bi-modules, logic $-\mathscr{L}_{\lambda, \omega}$.
(ii) $\varphi_{n}(x) \rightarrow(\exists y) \psi(x, y)$, i.e., this holds for every x in every bimodules.
(iii) $\psi(x, y) \rightarrow \varphi_{n}(x) \& \varphi_{n}(y)$ (i.e., as in (ii)).
(iv) $\psi\left(x, y_{1}\right) \& \psi\left(x, y_{1}\right) \rightarrow \varphi_{l}\left(y_{1}-y_{2}\right)$ for $l<\omega$ (i.e., as in (ii)).

Then for some $z \in N_{n}^{\mathrm{tr}}$:
(*) ${ }_{\psi, z}^{n}$ for every bimodule M :

$$
\begin{aligned}
\{\langle x+ & \left.\left.\bigcap_{l} \varphi_{l}(M), y+\bigcap_{l} \varphi_{l}(M)\right\rangle: M \vDash \psi[x, y]\right\} \\
= & \left\{\left\langle x+\bigcap_{l} \varphi_{l}(M), y+\bigcap_{l} \varphi_{l}(M)\right\rangle:\left(x+\bigcap_{l} \varphi_{l}(M)\right) H_{M}^{2}=y+\bigcap_{l} \varphi_{l}(M)\right. \\
& \left.\left(\text { so } x, y \in \varphi_{n}(M)\right)\right\} .
\end{aligned}
$$

(5) For every $z \in N_{n}^{\text {tr }}$ for some $\psi(x, y)$, (i), (ii), (iii), (iv) and (*) $)_{\psi, z}^{n}$ holds. (In fact, the formula is first order conjunctive positive existential.)
(6) For every $n<\omega$ and $z_{1}, z_{2} \in N_{n}^{\mathrm{tr}}$ for some $z_{3} \in N_{n}^{\mathrm{tr}}$: for every $M,{ }^{n} H_{M}^{z_{3}}=$ ${ }^{n} H_{M}^{z_{1}} \circ{ }^{n} H_{M}^{z_{2}}$; and $z_{4}=z_{1} \neq z_{2}$ is in N_{n}^{tr} and satisfies, for every R-module M, ${ }^{n} H_{M}^{z_{4}}={ }^{n} H_{M}^{z_{1}} \circ-{ }^{n} H_{M}^{z_{2}}$.
(7) If $z \in N_{n}^{\mathrm{tr}}$ and ${ }^{n} H_{N_{n}}^{2}$ is one to one and onto (i.e., from $\varphi_{n}\left(N_{n}\right) / \bigcap_{1} \varphi_{l}\left(N_{n}\right)$ onto itself) then for some $z^{\prime} \in N_{n}^{\mathrm{tr}}$ for every R-module $M,{ }^{n} H_{M}^{z^{\prime}}$ is the inverse of ${ }^{n} H_{M}^{z}$.
(8) In (4), (5), (6), (7) we can start with $S=T=\operatorname{Cent} R$ so ψ is the language of R-modules, and the parallel result holds.

Proof. Left to the reader. [For (6) and for (7) use (5) and then (4).]
2.14. Defintion. For an R-module M let:
(1) End $(M)=$ ring of endomorphisms of M.
$\operatorname{End}^{\bar{\varphi}, n}(M)=\left\{\left[h \mid \varphi_{n}(M)\right] / \bigcap_{l} \varphi_{l}(M): h \in \operatorname{End}(M)\right\}$.

$$
\begin{aligned}
\operatorname{End}_{<\lambda}^{\bar{\varphi}, n}(M)= & \left\{\left[h \upharpoonright \varphi_{n}(M)\right] / \bigcap_{l<\omega} \varphi_{l}(M) \in \operatorname{End}^{\bar{\varphi}, n}(M): \text { for some } A \subseteq M\right. \\
& |A|<\lambda \\
& \text { and Rang } \left.\hat{h} \subseteq\left\{x+\bigcap_{l} \varphi_{l}(M): x \in \varphi_{n}\left(\langle A\rangle_{M}\right)\right\}\right\}
\end{aligned}
$$

$\operatorname{End}_{(<\lambda)}^{\bar{\varphi}, \omega}(M)$ is the direct limit of $\left\langle\operatorname{End}_{\substack{\bar{\varphi}, n \\(<\lambda)}}^{(M): n<\omega\rangle \text { with the natural }, ~}\right.$ mappings $\Phi_{(<\lambda)}^{n, m}[M]$ from $\operatorname{End}_{(<\lambda)}^{\bar{\varphi}, n}(M)$ to $\operatorname{End}_{(<\lambda)}^{\bar{\phi}, m}(M)$.
(2) $B_{\bar{\varphi}}^{n}(M)$ is $\varphi_{n}(M) / \bigcap_{l} \varphi_{l}(M)$ expanded by the finitary relations definable by p.e. formulas (say in $\mathscr{L}=\mathscr{L}_{\left(2^{|R|+|s|+\kappa_{0}}{ }^{+}, \omega\right.}$) in ${ }_{R} M$ (so actually even if we use this for a bimodule M, it counts only as an R-module).
(3) ${ }^{+} \boldsymbol{B}_{\bar{\varphi}}^{n}(M)$ is defined similarly, but p.e. is replaced by: preserved by direct sums.
2.15. Fact. (1) In 2.14(1) all are rings into which (if M is a bimodule) S is mapped naturally \dagger; End $<_{\lambda}^{\bar{\varphi}, n}$ is a two-sided ideal of End $_{<\mu}^{\bar{\varphi}, n}$ if $\lambda<\mu$, $\operatorname{End}_{<|M|^{+}}^{\bar{\varphi}, n}(M)=$ End $^{\bar{\varphi}, n}(M)$.
(2) If M_{1}, M_{2} are R-modules, h a homomorphism from M_{1} to M_{2} as R-module, then h induces a homomorphism from $B_{\bar{\varphi}}^{n}\left(M_{1}\right)$ into $B_{\bar{\varphi}}^{n}\left(M_{2}\right)$ naturally.
(3) For a bimodule $M, z \in N_{n}^{\mathrm{tr}}$, the function ${ }^{n} H_{M}^{z}$ is definable by a p.e. formula (this is 2.13(5)). If (in N_{n}) $z \in \sum_{i<k_{m_{n}-1}} R y_{i}$, the p.e. formula is in the language of R-modules.

The rings $d E^{n}(d E)$ defined below are derived from the ring of R-endomorphisms of bimodules which we have not discarded. Note 2.13.
2.16. Definition. (1) Let $D E^{n}$ be the following ring; its elements are the (formal) operators ${ }^{n} H^{z}$ for $z \in N_{n}^{\mathrm{tr}}$:
(a) ${ }^{n} H^{z_{1}}={ }^{n} H^{z_{2}}$ iff $z_{1}-z_{2} \in \bigcap_{1} \varphi_{l}\left(N_{n}\right)$.
(b) ${ }^{n} H^{z_{1}} \pm{ }^{n} H^{z_{2}}={ }^{n} H^{z_{1} \pm z_{2}}$.
(c) ${ }^{n} H^{z_{1}} \circ{ }^{n} H^{z_{2}}={ }^{n} H^{z_{3}}$, if for each bimodule this holds (z_{3} exists, by 2.13(6); unique $\left(\bmod \bigcap_{l} \varphi_{l}\left(N_{n}\right)\right)$, by 2.13(1)).
(d) The zero is ${ }^{n} H^{0}$, the one is ${ }^{n} H^{x}$ ($D E^{n}$ is a ring - as it is embedded into the endomorphism ring of the $\varphi_{n}\left(N_{n}\right) / \bigcap_{l} \varphi_{l}\left(N_{n}\right)$ as an abelian group).
(2) $D e^{n}=\left\{{ }^{n} H^{z} \in D E^{n}: z \in \sum_{i} R y_{i}\right\}$ is a subring of $D E^{n}$.
(3) $d E^{n}=\left\{{ }^{n} H^{z} \in D E^{n}:{ }^{n} H_{M}^{z}\right.$ is an endomorphism of $B_{\bar{\varphi}}^{n}(M)$ for every bimodule M).
$d E_{1}^{n}=\left\{{ }^{n} H^{z}: z \in N_{n}^{\mathrm{tr}}\right.$ and z is n-nice $\}$.
(4) $d e^{n}=: D e^{n} \cap d E^{n}, d e_{1}^{n} \stackrel{\text { def }}{=} D e^{n} \cap d E_{1}^{n}$.
(5) $d e^{n}(R)$ is $d e^{n}$ when we choose $S=T=\operatorname{Cent}(R)$; similarly for the others.

[^0]2.17. Claim. (1) $D E^{n}$ is a ring, $D e^{n}, d E^{n}$ subrings, $d E_{1}^{n}$ is a subring of $D E^{n}$ extending $d E^{n}$ (all have the unit $1={ }^{n} H^{x}$ and zero ${ }^{n} H^{0}$, and extending T).
(2) $D e^{n}, d E^{n}$ commute, hence $d e^{n}$ is commutative.
(3) There is a natural homomorphism from $d E^{n}$ to $d E^{n+1}(n<\omega)$, the direct limit is denoted by $d E$. Similarly for $d E_{1}^{n}, d E_{1}$. Also S is naturally mapped into $d E^{n}$ which is naturally embedded (i.e., by the identity map) into $d E_{1}^{n}$; the diagram commutes. Similarly $d e^{n}$ is naturally embedded into $d e_{1}^{n}$.
(4) $\varphi_{n}(M) / \bigcap_{l} \varphi_{l}(M)$ is naturally a module over $D E^{n}$ and it is naturally a ($D e^{n}, d E^{n}$)-bimodule (with $d e^{n}$ playing the role of T).

The following lemma says that, e.g., in the module we constructed in 2.7 (see 2.10) we have some control over End $\left(M_{\lambda}\right)$; note that it only says it is not too large, but we have the freedom to choose the ring S in order to make $\operatorname{End}\left(M_{\lambda}\right)$ have some elements with desirable properties.
2.18. Lemma. Suppose $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$ satisfies (A)-(F) of $2.6, M=M_{\lambda}$ and
(*) for every endomorphism $F: M_{\lambda} \rightarrow M_{\lambda}$ for some $n<\omega, z \in N_{n}^{\mathrm{tr}}, \alpha \in \lambda \backslash$ S we have $(\operatorname{Pr} 1)_{\alpha, z}^{n}[F]$.

Then:

(i) If $(\operatorname{Prl})_{\alpha, z}^{n}[F]$ then ${ }^{n} H_{M}^{z}$ is an endomorphism of $B_{\bar{\varphi}}^{n}(M)$. So as each N_{n} is isomorphic to a direct summand of M_{β} complimentary to M_{α} for $\alpha<\beta$ in $\lambda \backslash S, z$ is n-nice; i.e. ${ }^{n} H^{z} \in d E_{1}^{n}$. Also as, e.g., "every $\varphi(\bar{x})$, a p.e. formula in $£$ which has a model, has a model which is a direct summand of $M^{\prime \prime}$, clearly necessarily ${ }^{n} H^{z} \in d E^{n}$.
(ii) If $(\operatorname{Pr} 1)_{\alpha, z}^{n}[F]$ and F is an automorphism of M then ${ }^{n} H_{M}^{z}$ is an automorphism of $B_{\bar{\varphi}}^{n}(M)$ and even of ${ }^{+} B_{\bar{\varphi}}^{n}(M)$ [we can use 2.13(7)].
(iii) End ${ }^{\bar{\varphi}, \omega}\left(M_{\lambda}\right) / \operatorname{End}_{<\lambda}^{\bar{\varphi}, \omega}\left(M_{\lambda}\right)$ can be embedded into the ring $d E$ (see 2.15, 2.16(3)); moreover for every subring © of End ${ }^{\bar{\varphi}, \omega}\left(M_{\lambda}\right) / \operatorname{End}_{<\lambda}^{\bar{\varphi}, \omega}\left(M_{\lambda}\right)$ of power $<\lambda$, for some club C of λ, if $\alpha \in C \backslash S$ is large enough, then \mathbb{C} is embedded into End ${ }^{\bar{\varphi}, \omega}\left(M_{\lambda} / M_{\alpha}\right)$
(iv) Moreover, End ${ }^{\bar{\varphi}, \omega}\left(M_{\lambda}\right)=\bigcup_{n<\omega} E_{n}, E_{n} \subseteq E_{n+1}$,

$$
\begin{array}{r}
E_{n}=\left\{\Phi^{n, \omega}\left(F \upharpoonright \varphi_{n} / \bigcap_{l} \varphi_{l}\right): F \in \operatorname{End}(M), \text { and there are } z_{n}(F) \in N_{n}^{\mathrm{tr}}\right. \\
\left.\alpha_{n}(F)<\lambda \text { such that }(\operatorname{Pr} 1)_{\alpha_{n}(F), z_{n}(F)}^{n}(F)\right\},
\end{array}
$$

let $n(F)=\operatorname{Min}\left\{n \cdot F \in E_{n}\right\} ;$

$$
z_{n}(F) \text { is unique modulo } \bigcap_{i<\omega} \varphi_{l}\left(N_{n}\right)
$$

(v) E_{n} is a subring of $\operatorname{End}^{\bar{\varphi}, \omega}(M)$ and the mapping $F \mapsto{ }^{n} H^{2_{n}(F)}$ is a homomorphism from

$$
\begin{array}{r}
\left\{F \upharpoonright \varphi_{n} / \bigcap_{l} \varphi_{l}: F \in \operatorname{End}(M) \text { and }(\operatorname{Pr} 1)_{\alpha_{n}(F), z_{n}(F)}^{n}\right. \\
\text { for some } \alpha_{n}(F)<\lambda, z_{n}(F) \in N_{n}^{\mathrm{tr}}
\end{array}
$$

into $d E^{n}$ with kernel $\operatorname{End}_{<\lambda}^{\bar{\varphi}, n}(M) ;$ i.e. $\left\{F \in \operatorname{End}^{\bar{\varphi}, n}(M): z_{n}(F) \in \bigcap_{l} \varphi_{l}\left(N_{n}\right)\right\}$.
(vi) The ring S is naturally mapped into $\operatorname{End}_{R}\left(M_{\lambda}\right)$, for each $\alpha \leq \omega$, there is a natural homomorphism from $\operatorname{End}_{R}\left(M_{\lambda}\right)$ to $\operatorname{End}^{\bar{\varphi}, \alpha}\left(M_{\lambda}\right)$ which, for $\alpha<\omega$, has a natural mapping to $d E$. (So S is naturally mapped into $d E$.)

§3. Reducing the error term

3.1. Revised Context. (1) Let $g_{n}: N_{n} \rightarrow N_{n+1}$ be the homomorphism with $x^{[n]} g=x^{[n+1]}, y_{i}^{[n]} g=y_{i}^{[n+1]}$ for $i<k_{m_{n}-1}$. Let $g_{n, m}=g_{n} g_{n+1} \cdots g_{m+1}$ for $n \leq$ $m<\omega$.
(2) Let \mathcal{K} be a family of bimodules, each of power $<\lambda$, and \mathcal{K} has $\leq \lambda$ members, and $N_{n}, N_{n}^{\prime} \in \mathcal{K}$ for each $n<\omega$. We call \mathcal{K} trivial if $\mathcal{K}=\left\{N_{n}, N_{n}^{\prime}: n<\omega\right\}$. Let $\mathrm{cl}_{\mathrm{is}}(\mathcal{K})$ be the class of bimodules isomorphic to some $K \in \mathcal{K}$. Let $\mathrm{cl}(\mathcal{K})=$ $\mathrm{cl}_{\mathrm{ds}}(\mathcal{K})$ be the class of bimodules isomorphic to a direct sum of bimodules from
 We say M_{1} is a K-direct summand of M_{2} if $M_{2}=M_{1} \oplus K, K \in \operatorname{cl}(\mathcal{K})$.
(3) We now redo $\S 2$. A bimodule of cardinality $<\lambda$ is usually replaced by a $\mathrm{cl}(\varkappa)$-bimodule. In particular, in 2.6:

In (A), $M_{\alpha} \in \operatorname{cl}(\mathcal{K})$ for $\alpha<\lambda$.
In (C), M_{α} is a $\mathrm{cl}(\mathcal{K})$-direct summand of M_{β}.
In (F), the other bimodules are from \mathcal{K}, and "each bimodule" is replaced by "each bimodule from \mathfrak{K} " (so we have $\leq \lambda$ assignments).

In Definition 2.8(1), $K \in \mathrm{cl}(\mathcal{K})$.
In $2.9(2), M_{0}$ is a $\operatorname{cl}(\mathcal{K})$-direct summand of M_{1}.
In the proof of 2.10: check no harm is done.
In 2.16(3), "for every \mathfrak{K}-bimodule".
In 2.18(i), ${ }^{n} H^{z} \in d E^{n}$ remains; ${ }^{n} H^{z} \in d E^{n}=$ we use the new definition of $d E^{n}$.
3.2. Claim. For any unbounded $\mathcal{U} \subseteq \omega$, letting $i(n)=i_{u}(n)=$ the nth member of \mathcal{U}, there are bimodules $P_{\mathcal{U}}, P_{\mathcal{U}, n}$ and $h_{n}^{*}: N_{i(n)} \rightarrow P_{\mathcal{U}}$ embeddings for $n<\omega$ and $x \in P_{u}$ such that:
(a) Rang $h_{n}^{*} \cap \Sigma_{m \neq n} \operatorname{Rang} h_{m}^{*}=\{0\}$.
(b) For each $n<\omega$ we have: $P_{u}=\left(\sum_{l<n}\right.$ Rang $\left.h_{l}^{*}\right) \oplus K_{n}, K_{n}$ is a direct sum of copies of N_{m} 's (and really of $\left.N_{i(l)}, l \geq n\right)$; let $P_{u, n}=: \Sigma_{l<n}$ Rang h_{l}^{*}.
(c) $\sum_{n<\omega} \operatorname{Rang} h_{n}^{*}$ is not a direct summand of P_{u}; moreover, there are $x \in P_{\mathrm{u}}$, $x \notin \sum_{n<\omega}$ Rang $h_{n}^{*}+\bigcap_{n} \varphi_{n}\left(P_{\mathcal{U}}\right)$ and $f: N_{i(0)} \rightarrow P_{\mathcal{U}}$ a homomorphism, $x^{[i(0)]} f=x$, such that, for each n for some

$$
\begin{gathered}
x_{n}=: \sum_{l<n}\left(x^{[i(l)]}\right) h_{l}^{*} \in \sum_{l<n} \operatorname{Rang} h_{l}^{*}, \\
x-x_{n} \in \varphi_{i(n)}\left(P_{\mathrm{U}}\right) \quad \text { and } \quad\left(x^{[i(0)]}\right) f=x, \\
P_{\mathfrak{U}}=\left\langle\bigcup_{n} \operatorname{Rang} h_{n}^{*} \cup \operatorname{Rang} f\right\rangle .
\end{gathered}
$$

(d) P_{u} is the direct sum of copies of the N_{n} 's.

Proof. Let $P_{\mathcal{U}}$ be $\oplus_{i<\omega}$ Rang $f_{i}^{*}, f_{n}^{*}: N_{i(n)} \rightarrow P_{\mathcal{U}}$ an embedding, $i(n)$ the nth member of \mathcal{U} (i.e., $P_{\mathcal{U}}$ is the direct sum of the N_{n} 's for $n \in \mathcal{U}$ so (d) holds). We define $h_{n}^{*}: N_{i(n)} \rightarrow M$ by induction on n (on $g_{n, n+1}$, see $3.1(1)$):

$$
t h_{n}^{*}=: t f_{n}^{*}-t g_{i(n), i(n+1)} f_{n+1}^{*}
$$

Clearly h_{n}^{*} is a homomorphism. As $P_{u}=\operatorname{Rang} f_{n}^{*} \oplus\left(\oplus_{l \neq n} \operatorname{Rang} f_{l}^{*}\right)$, clearly h_{n}^{*} is an embedding.

Now we shall show that for each n, P_{u} is $\oplus_{l<n} \operatorname{Rang} h_{n}^{*} \oplus \oplus_{l \geq n} \operatorname{Rang} f_{l}^{*}$. Why? Because for each n,

$$
\operatorname{Rang} f_{n}^{*} \oplus \operatorname{Rang} f_{n+1}^{*}=\operatorname{Rang} h_{n}^{*} \oplus \operatorname{Rang} f_{n+1}^{*}
$$

(so 3.2(b) holds as well as 3.2(a)). Next we shall show that $x=:\left(x^{[i(0)]}\right) f_{0}^{*}$ is as required in (c) (this implies the first clause of (c)):

$$
\begin{aligned}
x & =\left(x^{[i(0)]}\right) f_{0}^{*}=\left(x^{[i(0)]}\right) h_{0}^{*}+x^{[i(0)]} g_{i(0), i(1)} f_{1}^{*} \\
& =\left(x^{[i(0)]}\right) h_{0}^{*}+\left(x^{[i(1)]}\right) f_{1}^{*} \\
& =\left(x^{[i(0)]}\right) h_{0}+\left(x^{[i(1)]}\right) h_{1}^{*}+\left(x^{[i(2)]}\right) f_{2}^{*} \\
& =\sum_{i<n}\left(x^{[i(l)]}\right) h_{l}^{*}+\left(x^{[i(n)]}\right) f_{n}^{*}
\end{aligned}
$$

The first term is in $\oplus_{l<\omega}$ Rang h_{l}^{*} and the second is in $\varphi_{i(n)}\left(P_{\mathcal{U}}\right)$.
3.3. Definition. Suppose $\lambda=\operatorname{cf} \lambda>|R|+|S|+\aleph_{0}$ ($>$ and not \geq, just for simplicity), $\mathcal{S} \subseteq\left\{\delta<\lambda: \operatorname{cf} \delta=\aleph_{0}\right\}$ stationary and non-reflecting, $\left\{\delta<\lambda: \operatorname{cf} \delta=\aleph_{0}\right.$, $\delta \notin S\}$ stationary.

We say $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$ is very nicely constructed for \S and \mathcal{K} (or for (δ, \mathcal{K})) if: (A)-(F) of 2.6 ; only in (C) is M_{α} a cl(K)-direct summand of M_{β} and in (F) the
direct summands are from $\mathrm{cl}_{\mathrm{is}} \mathcal{K}$, and for each $M \in \mathcal{K}$, for stationarily many $\alpha \in$ $\lambda \backslash \delta, M$ appears as one of those direct summands; (G) for $\delta \in \delta, M_{\delta+1}$ is defined either as in (F) or as in $(* *)$ of (H) below:
(H) if $(*) A \subseteq \lambda \backslash S$ is unbounded, for $\alpha \in A$ and $n \in \mathcal{U}$ we have $\alpha<\beta_{n}(\alpha) \in$ $\lambda \backslash S, \operatorname{IDS}_{M_{\alpha}}^{M_{\beta_{n}(\alpha)}}\left(h_{\alpha, n}, N_{n}\right)$ (see Definition 2.8) and $\mathcal{U} \subseteq \omega$ is infinite, then ($* *$) for some $\delta \in S$, we have $\left\langle\alpha_{n}: n<\omega\right\rangle$ such that:
(i) $\alpha_{n} \in A, \beta_{n}\left(\alpha_{n}\right)<\alpha_{n+1}, \delta=U_{n<\omega} \alpha_{n+1}$.
(ii) $M_{\delta+1}$ is defined as in the proof of 2.6, i.e., $M_{\delta+1}$ is $P_{\delta} \underset{N_{\delta}^{*}}{+} M_{\delta}, N_{\delta}^{*}=$ $\Sigma_{n \in \mathcal{U}} h_{\alpha_{n}, n}\left(N_{n}\right)$, where (using 3.2 's notation) P_{δ} is isomorphic to $P_{\mathfrak{U}}$ by an isomorphism h_{δ} such that the diagram $(n=i(m)=m$ th member of \mathcal{U})

commutes and $P_{\delta, n}=\left(P_{u, n}\right) h$.
So in $M_{\delta+1}, P_{\delta} \cap M_{\delta}=N_{\delta}^{*}$.
Now 3.4, 3.5 below tell us we do not lose in comparison with §2 (and 2.13-2.18 apply), only the error term is smaller; for, e.g., countable R, S it disappears (see 3.6).
3.4. Lemma. (1) If $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$ is very nicely constructed for $§$ and \mathfrak{K} then for every R-endomorphism F of M_{λ}, for some $n(*)<\omega, \alpha(*) \in \lambda \backslash S$, we have $\left(\operatorname{Pr}^{-}\right)_{\alpha(*)}^{n(*)}[F]$ (see 2.8(3)).
(2) In (1) in addition: for some $z \in N_{n(*)}^{\mathrm{tr}},(\operatorname{Pr} 1)_{\alpha(*), z}^{n(*)}[F]$ (see 2.10).
(3) In (1) in addition: for some $\bar{L}^{*}=\left\langle L_{n}^{*}: n \geq n(*)\right\rangle$, a decreasing sequence of abelian subgroups of $\varphi_{n(*)}\left(M_{\lambda}\right), L_{n}^{*} \subseteq \varphi_{n}\left(M_{\lambda}\right)$ (depending on F, of course), we have:
(i) for every $n \geq n(*)$ and (bi-)homomorphism $h: N_{n} \rightarrow M_{\lambda}$, we have (xh)F$z_{n} h \in L_{n}^{*}+\bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)$ where $z_{n}=z g_{n(*), n}$, and $L_{n}^{*} \subseteq \varphi_{n}\left(M_{\lambda}\right) ;$
(ii) \bar{L}^{*} is compact for $(\bar{\varphi}, n(*))$ in M_{λ}; i.e., if $v_{l} \in L_{l}^{*}$ for $l \geq n(*)($ but $l<\omega)$ then for some $v^{*} \in L_{n(*)}^{*}$:

$$
\text { for every } n \geq n(*) \quad v^{*}-\sum_{l=n(*)}^{n} v_{l} \in \varphi_{n+1}\left(M_{\lambda}\right)
$$

(4) In (3) in addition we can have: \bar{L}^{*} is $(\mathcal{K}, \bar{\varphi})$-finitary in M_{λ}; which means for some $m \geq n(*), L_{m}^{*}$ is $(\mathcal{K}, \bar{\varphi})$-finitary in M_{λ}, which means $L_{m}^{*} \subseteq \sum_{i<n} K_{i}+$ $\cap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)$, each K_{i} isomorphic to a member of \mathcal{K}, and $\sum_{i<n} K_{i}$ a \mathcal{K}-direct summand of M_{α} for α large enough $\in \lambda \backslash \delta$.
(5) If, for $N \in \mathcal{K}$, there is no non-trivial \bar{L} (which means $\wedge_{m} L_{m} \nsubseteq \bigcap_{l} \varphi_{l}(N)$) compact for $(\bar{\varphi}, n(*))$ in N, then we can use $L^{*}=0$, i.e., $\wedge_{n} L_{n}^{*}=\{0\} \dagger[$ occurs for countable R, S and usually].
(6) In (2) we can add the parallel of 2.18 , replacing $\operatorname{End}_{<\lambda}^{\bar{\phi}, n}(M)$ by
$\operatorname{End}_{\mathrm{cpt}}^{\bar{\varphi}, n}(M)=\left\{h \in \operatorname{End}^{\bar{\varphi}, n}:\right.$ the range of h is compact for $(\bar{\varphi}, n)$ in $\left.M_{\lambda}\right\} ;$
similarly End ${ }_{\text {cpt }}^{\bar{\varphi}, \omega}$.
Proof. (1) Same proof as for 2.7 (using 3.2, of course).
(2) By 2.10's proof (the change in the definition of IDS causes no problem).
(3) Using $n(*), \alpha(*), z$ of (2) we let, for every $n \geq n(*)$ (but $<\omega$),
$L_{n}^{*}=:\left\{x h F-z g_{n(*), n} h: h\right.$ is a bimodule homomorphism from N_{n} into $\left.M_{\lambda}\right\}$.
Let $z_{l}=z g_{n(*), l} \in N_{l}$ when $n(*) \leq l<\omega$. By $(\operatorname{Pr} 1)_{\alpha(*), z}^{n(*)}[F]$ we know that

$$
L_{n}^{*} \subseteq M_{\alpha(*)}+\bigcap_{l} \varphi_{l}\left(M_{\lambda}\right)
$$

and easily $L_{n(*)}^{*}$ is an additive subgroup of $\varphi_{n(*)}\left(M_{\lambda}\right)$.
Clearly (i) holds (by definition of L_{n}^{*}), and let us prove (ii). Suppose $v_{l}^{*} \in L_{l}^{*}$ for $n(*) \leq l<\omega$, so for some $h_{l}: N_{l} \rightarrow M_{\lambda}$ a bimodule homomorphism, $v_{l}^{*}=$ $\left(x h_{l}\right) F-z_{l} h_{l}$ and let $\alpha(0)<\lambda$ be such that $\alpha(0) \notin \mathcal{S}, F^{\prime \prime}\left(M_{\alpha(0)}\right) \subseteq M_{\alpha(0)}$, Rang $h_{I} \subseteq M_{\alpha(0)}$ and $\alpha(0)>\alpha(*)$.

Now note:
(*) for each $n \in(n(*), \omega)$ and $\beta \in \lambda \backslash \delta$ for some $\gamma, \beta<\gamma \in \lambda \backslash S$, some K and some embedding $h_{\beta, n}: N_{n} \rightarrow M_{\gamma}$ we have:

$$
M_{\gamma}=M_{\beta} \oplus \operatorname{Rang} h_{\beta, n} \oplus K, \quad K \in \operatorname{cl}(\mathcal{K}), \quad F^{\prime \prime}\left(M_{\gamma}\right) \subseteq M_{\gamma}
$$

and $x^{[n]} h_{\gamma, n} F \in\left(\right.$ Rang $\left.h_{\gamma, n}\right) \oplus K$.
So by choice of $\alpha(*), x^{[n]} h_{\gamma, n} F-z_{n} h_{\gamma, n} \in \bigcap_{l<\omega} \varphi_{l}\left(M_{\lambda}\right)$.
[Proof of (*). For every $\gamma, \gamma>\beta, \gamma \in \lambda \backslash S \backslash \alpha(0)$, let $h_{\gamma}: N_{n} \rightarrow M_{\gamma+1}$ and K_{γ}^{0} be such that: h_{γ} is an embedding and $M_{\gamma+1}=M_{\gamma} \oplus \operatorname{Rang} h_{\gamma} \oplus K_{\gamma}^{0}$; let $\epsilon_{\gamma}>\gamma$ be in $\lambda \backslash S$ such that F maps $M_{\epsilon_{\gamma}}$ into $M_{\epsilon_{\gamma}}$; and let, for $\epsilon(1)<\epsilon(2)<\lambda, \epsilon(1) \notin S$,

$$
M_{\epsilon(2)}=M_{\epsilon(1)} \oplus K_{\epsilon(1), \epsilon(2)}
$$

so $M_{\epsilon_{\gamma}}=M_{\gamma} \oplus \operatorname{Rang} h_{\gamma} \oplus K_{\gamma}^{0} \oplus K_{\gamma+1, \epsilon_{\gamma}}$, and let $x^{[n]} h_{\gamma} F=v_{\gamma}+u_{\gamma}+w_{\gamma}$ where $v_{\gamma} \in M_{\gamma}, u_{\gamma} \in \operatorname{Rang} h_{\gamma}$ and $w_{\gamma} \in K_{\gamma}^{0} \oplus K_{\gamma+1, \epsilon_{\gamma}}$. By Fodor's lemma for some v
for a stationary set of $\gamma \in \lambda \backslash S \backslash \beta \backslash \alpha(0), v_{\gamma}=v$; choose $\gamma(1), \gamma(2)$ such that: $\epsilon_{\gamma(1)}<\gamma(2)$, and $\gamma(1), \gamma(2)$ are in this set. Let $\gamma=\epsilon_{\gamma(2)}, h_{\beta, n}=h_{\gamma(2)}-h_{\gamma(1)}$,

$$
\begin{aligned}
K= & K_{\beta, \gamma(1)} \oplus K_{\gamma(1)}^{0} \oplus K_{\gamma(1)+1, \epsilon_{\gamma(1)}} \oplus K_{\epsilon_{\gamma(1)}, \gamma(2)} \\
& \oplus K_{\gamma(2)}^{0} \oplus \operatorname{Rang} h_{\gamma(1)} \oplus K_{\gamma(2)+1, \epsilon_{\gamma(2)}}
\end{aligned}
$$

Now the $\gamma, h_{\beta, n}, K$ we have just defined are as required.]
Let $A=\left\{\beta: \alpha(0)<\beta \notin S, \beta<\lambda, F^{\prime \prime}\left(M_{\beta}\right) \subseteq M_{\beta}\right\}$. We know that for each $\beta \in A$ for some $\gamma_{\beta}>\beta$ and embedding $h_{\beta, n}: N_{n} \rightarrow M_{\gamma_{\beta}},(*)$ above holds. Let $h_{\beta, l}^{\prime}=$ $h_{\beta, l}+h_{l}$ for $\beta \in A, l \in \mathcal{U} \stackrel{\text { def }}{=}\{l: n(*) \leq l<\omega\}$. By $2.9(1), \operatorname{lDS}_{M_{\beta}^{\gamma}}^{\gamma_{\theta}}\left(h_{\beta, l}^{\prime}, N_{l}, \mathcal{K}\right)$ for $\beta \in A, n(*) \leq l<\omega$. Now apply $3.3(\mathrm{H})$ and get $\delta \in S$ (and $h_{\delta}: P_{u} \rightarrow P_{\delta}$, etc.) as there; let $\gamma<\lambda$ be such that $F^{\prime \prime}\left(M_{\gamma}\right) \subseteq M_{\gamma}, \gamma>\delta$. Clearly $M_{\gamma}=M_{\alpha(0)} \oplus P_{\delta} \oplus K$ for some bimodule $K \in \operatorname{cl}(\mathcal{K})$ and (h_{l}^{*} - from 3.2) by chasing the arrows:

$$
\begin{equation*}
x^{[l]} h_{l}^{*} h_{\delta} F=x^{[l]} h_{\alpha_{l}, l}^{\prime} F \quad \text { and } \quad z_{l} h_{l}^{*} h_{\delta}=z_{l} h_{\alpha_{l}, l}^{\prime} \tag{**}
\end{equation*}
$$

and (by the choice of $h_{\beta, l}^{\prime}$ and by the choice of $h_{\beta, l}$):
$(* * *) \quad x^{[/]} h_{\alpha_{l}, l}^{\prime} F-z_{l} h_{\alpha_{l}, l}^{\prime} \in\left(x^{[l]} h_{\alpha_{l}, l} F-z_{l} h_{\alpha_{l}, l}\right)+\left(x^{[l]} h_{l} F-z_{l} h_{l}\right)$

$$
=\left(x^{[l]} h_{\alpha_{l}, l} F-z_{l} h_{\alpha_{l}, l}\right)+v_{l}^{*} \in v_{l}^{*}+\bigcap_{i<\lambda} \varphi_{i}\left(M_{\lambda}\right)
$$

Remember $x=x^{[n(*)]} f \in P_{u}$ (notation of 3.2's proof, so for $i(l)$ there we use $n(*)+l)$.
Let $z^{\prime}=z f \in P_{\mathcal{U}}$ (remember $z_{l}=z g_{n(*), l}($ for $l \in[n(*), \omega)$)) so noting z is $n(*)$-nice and the construction of $P_{\mathfrak{u}}$ for any $m \in[n(*), \omega)$ we have:

$$
\begin{aligned}
& x-\sum_{l=n(*)}^{m-1} x^{[l]} h_{l}^{*} \in \varphi_{m}\left(P_{\mathrm{U}}\right) \\
& z^{\prime}-\sum_{l=n(*)}^{m-1} z_{l} h_{l}^{*} \in \varphi_{m}\left(P_{\mathrm{U}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x h_{\delta}-\sum_{l=n(*)}^{m-1} x^{[l]} h_{l}^{*} h_{\delta} \in \varphi_{m}\left(P_{\delta}\right) \subseteq \varphi_{m}\left(M_{\lambda}\right) \\
& z^{\prime} h_{\delta}-\sum_{l=n(*)}^{m-1} z_{l} h_{l}^{*} h_{\delta} \in \varphi_{m}\left(P_{\delta}\right) \subseteq \varphi_{m}\left(M_{\lambda}\right)
\end{aligned}
$$

As F is an R-endomorphism

$$
x h_{\delta} F-\sum_{l=n(*)}^{m-1} x^{[l]} h_{l}^{*} h_{\delta} F \in \varphi_{m}\left(M_{\lambda}\right)
$$

so

$$
\left(x h_{\delta} F-z^{\prime} h_{\delta}\right)-\sum_{l=n(*)}^{m-1}\left(x^{[/]} h_{l}^{*} h_{\delta} F-z_{l} h_{l}^{*} h_{\delta}\right) \in \varphi_{m}\left(M_{\lambda}\right)
$$

Using a projection Z which is the identity on $M_{\alpha(0)}$ and zero on $K \oplus P_{\delta}$, by (**) we have $\left(x^{[/]} h_{l}^{*} h_{\delta} F-z_{l} h_{l}^{*} h_{\delta}\right) Z=v_{l}^{*}$, so

$$
\left(x h_{\delta} F-z^{\prime} h_{\delta}\right) Z-\sum_{l=n(*)}^{m-1} v_{l}^{*} \in \varphi_{m}\left(M_{\lambda}\right)
$$

Hence $\left(x h_{\delta} F-z^{\prime} h_{\delta}\right) Z$ is as required.
(4) By (2) above we can have $L_{n(*)}^{*} \subseteq M_{\alpha(*)}$ for some $\alpha(*)<\lambda$ (without loss of generality $\notin S$). Now $M_{\alpha} \in \operatorname{cl}(\mathcal{K})$ and use 3.4A below.
(5) By 3.4B below (and part (4) of 3.4).
(6) Easy, too.
3.4A. Subfact. If $K=\oplus_{i \in I} K_{i}$ (for R-modules), $L_{n} \subseteq \varphi_{n}(K)$ (additive subgroup), $\bar{L}=\left\langle L_{n}: n(*) \leq n<\omega\right\rangle$ is decreasing and compact for $(\bar{\varphi}, n(*))$ in K, then for some finite $J \subseteq I$ and $m<\omega$:

$$
L_{m} \subseteq \bigoplus_{i \in J} K_{i}+\bigcap_{k<\omega} \varphi_{l}(K)
$$

Proof of 3.4A. If not, choose by induction on $l \geq n(*), v_{l}, J_{l}, n_{l}$ such that: J_{l} is a finite subset of $I, J_{l} \subseteq J_{l+1}$,

$$
v_{l} \in L_{n_{l}} \backslash\left(\bigoplus_{i \in J_{l}} K_{i}+\bigcap_{l} \varphi_{l}(K)\right) \quad \text { and } \quad v_{l} \in \underset{i \in J_{l+1}}{\oplus} K_{i} ;
$$

as in the proof of 2.10 it follows that for some n_{l+1},

$$
v_{l} \notin \bigoplus_{i \in J_{l}} K_{i}+\varphi_{n_{l+1}}(K)
$$

Then find $v^{*} \in K$ as in 3.4(3)(ii); so for some finite $J \subseteq I, v^{*} \in \oplus_{i \in J} K_{i}$, and an easy contradiction.
3.4B. SubFact. If \bar{L} is compact for $(\bar{\varphi}, n(*))$ in K (R-modules), $h: K \rightarrow K^{\prime}$ is a homomorphism (as R-modules) and

$$
\left[x h \in \varphi_{l}\left(K^{\prime}\right) \backslash \varphi_{l+1}\left(K^{\prime}\right) \Rightarrow(\exists y \in K)\left[x y=y h \wedge y \in \varphi_{l}(K) \backslash \varphi_{l+1}(K)\right]\right]
$$

then $h^{\prime \prime}(\bar{L})=\left\langle h^{\prime \prime}\left(L_{n}\right): n\right\rangle$ is compact for $(\bar{\varphi}, n(*))$ in K^{\prime}.
3.4C. Remark. (1) We can weaken the assumption to: for some $H: \omega \rightarrow \omega \mathrm{di}$ verging to infinity

$$
\begin{gathered}
l \geq n(*) \& x h \in \varphi_{l}(K) \backslash \varphi_{l+1}(K) \Rightarrow(\exists y \in K) \\
{\left[x h=y \& y \in \varphi_{n(*)}(K) \& y \notin \varphi_{H(l)}(K)\right]}
\end{gathered}
$$

(2) If h is a projection the above condition holds.

Proof of 3.4B. Straightforward.
3.4D. Subfact. If $L \subseteq K, K=\oplus_{i=1}^{n} K^{i}$ and the projection of L to each K^{i} is ($\mathcal{K}, \bar{\varphi})$-finitary, then so is L in K.
3.5. Claim. If $\lambda=\operatorname{cf} \lambda>|R|+|S|, \delta \subseteq\left\{\delta<\lambda: \operatorname{cf} \delta+\mathcal{N}_{0}\right\}$ does not reflect, ∇_{S} then there is $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$ very nicely constructed.

Proof. Like 2.6.
3.6. Claim. If R, S and every $N \in \mathcal{K}$ has cardinality $<2^{\mathrm{K}_{0}}$, then
(*) for every \mathcal{K}-bimodule M and $L_{n} \subseteq M$ (for $n<\omega$), if $\left\langle L_{n}: n_{0} \leq n<\omega\right\rangle$ is $(\bar{\varphi}, \omega)$-compact in M, then for some $m, L_{m} \subseteq \bigcap_{l<\omega} \varphi_{l}(M)$.
3.7. Remark. If (*) of 3.6 holds, then in $3.4(3)$ we can choose $L_{n(*)}=0$; so the "error term" disappears, i.e., for every endomorphism F of M_{λ} as an R-module, for some $m, F \upharpoonright \varphi_{m} / \bigcap_{l<\omega} \varphi_{l}$ is equal to ${ }^{m} H_{M_{\lambda}}^{z}$.
3.8. Remark. If R, S has cardinality $<2^{\mathrm{X}_{\mathrm{O}}}$, we have interesting such \mathfrak{K} 's, e.g., \mathcal{K} the family of finitely generated, finitely presented bimodules.

Proof of 3.6, 3.7. Easy.

§4. The first Kaplansky test problem

For this section we make:
4.1. Hypothesis. (1) R is a ring, each φ_{n} a p.e. formula for R-modules (see 2.4) and, for some R-module M^{*},

$$
\left\langle\varphi_{n}(M): n\langle\omega\rangle\right. \text { is strictly decreasing, }
$$

(2) λ as in 2.5 for some δ.
4.1A. Remark. We could use the ZFC version of our theorem from [Sh421], only.
4.2. Conclusion. Let λ, S and R, T, S and $\bar{\varphi}$ be as in 2.6, 2.2 and 2.3, respectively. There is a bi-module M,

$$
\|M\|=\lambda=\left|\varphi_{n}(M) / \bigcap_{k \omega} \varphi_{l}(M)\right| \quad(\text { for each } n)
$$

which has few direct decompositions in the following sense:
(i) If $M=\oplus_{i \in J} M_{i}$, then for all but finitely many $i \in J$,

$$
\bigvee_{n}\left[\varphi_{n}\left(M_{i}\right)=\bigcap_{l<\omega} \varphi_{l}\left(M_{i}\right)\right]
$$

(ii) Assume $|R|+|S|<2^{\aleph_{0}}$; if $M=K_{\alpha} \oplus L_{\alpha}$ for $\alpha<\left(|R|+|S|+\aleph_{0}\right)^{+}$then for some $\alpha<\beta$ and n

$$
\varphi_{n}\left(K_{\alpha}\right)+\bigcap_{l} \varphi_{l}(M)=\varphi_{n}\left(K_{\beta}\right)+\bigcap_{l} \varphi_{l}(M),
$$

(iii) $\operatorname{End}^{\bar{\varphi}, \omega}(M) / \operatorname{End}_{\left(|R|+|S|+\aleph_{0}\right)}^{\bar{\varphi}, \omega}(M)$ has cardinality $\leq|R|+|S|+\aleph_{0}$.

Proof. (i) By 3.5 , there is $\left\langle M_{i}: i \leq \lambda\right\rangle$ which is very nicely constructed. Let $M=M_{\lambda}$ as an R-module. Assume $M=\oplus_{i \in J} M_{i}$ is a counterexample. By regrouping without loss of generality $J=\omega$, and $\varphi_{n}\left(M_{n}\right) \neq \bigcap_{l<\omega} \varphi_{l}\left(M_{n}\right)$. Let F be the R-endomorphism of M defined by: $F \backslash M_{i}$ is zero for i even, and the identity on M_{i} for i odd. Apply 3.4; by $3.4(2)$ for some $z(\operatorname{Pr} 1)_{\alpha(*), z}^{n(*)}[F]$. By 3.4(3) we get $\bar{L}^{*}=\left\langle L_{n}: n(*) \leq n<\omega\right\rangle$ a decreasing sequence of abelian subgroups of $\varphi_{n(*)}(M), L_{n}^{*} \subseteq \varphi_{n}(M), \bar{L}^{*}$ is $(\bar{\varphi}, n(*))$-compact. By 3.4A for some $k<\omega$ and $m<\omega$:
(a) for every $n \geq k, L_{n}^{*} \subseteq \sum_{i<n} M_{i}+\bigcap_{l<\omega} \varphi_{l}(M)$,
(b) if $n \geq n(*), h: N_{n} \rightarrow M$ then $x h F-z_{n} h \in L_{n}^{*}+\bigcap_{l} \varphi_{l}(M)$ where $z_{n}=$ $z g_{n(*), n}$ (on $g-$ see 2.5).
Now choose n large enough and compare what we get for M_{n} and M_{n+1} to get a contradiction.
(ii) Remember 3.6.
(iii) Should be easy.
4.2A. Remark. (1) For any T, S as in 2.1 , we get the same conclusion (M a bimodule) if we replace $|R|$ by $|R|+|S|$.
(2) If we omit " $|R|+|S|<2^{\aleph_{0} ", ~ w e ~ g e t ~ b y ~ t h e ~ s a m e ~ p r o o f ~ w e a k e r ~ c o n c l u-~}$ sions: with an "error term" which is included in a finitely generated bimodule.
4.3. Conclusion. (1) There are R-modules M, M_{1}, M_{2} of power λ such that $M \oplus M_{1} \cong M \oplus M_{2}, M_{1} \not \equiv M_{2}$.
(2) Moreover, $M_{1} \equiv_{L_{\infty, \lambda}} M_{2}$ (note $\left\|M_{1}\right\|=\left\|M_{2}\right\|=\lambda$).
4.3A. Remark. (1) Note conclusion (1) is trivial if we omit the "of power λ "take M_{1}, M_{2}, M_{3} free R-modules $\|M\|>\left\|M_{2}\right\|>\left\|M_{1}\right\| \geq|R|+\aleph_{0}$. So the "moreover" in (2) makes it more interesting.
(2) We can ask more of M in 4.3 (and similarly for the other conclusion). It is obtained as in 4.2 for suitable S.

Proof. (1) A Stage: Let T be the subring of R which 1 (the unit) generates. Let S be the ring freely generated by $T \cup\left\{X, W_{1}, Y, W_{2}\right\}$ except

$$
\begin{gathered}
X X=X \\
Y Y=Y \\
X W_{1} W_{2}=X \\
Y W_{2} W_{1}=Y \\
X W_{1} Y=X W_{1}, \quad(1-X)(1-Y)=1-X, \quad Y X=Y, \\
Y W_{2} X=Y W_{2}
\end{gathered}
$$

(to understand these equations see the definition of M^{a} as a bimodule below).
B Stage: Let M^{*} be an R-module such that $\left\langle\varphi_{n}\left(M^{*}\right): n\langle\omega\rangle\right.$ is strictly decreasing; let $M^{*} \stackrel{h_{j}}{=} M_{i}^{*}(R$-module $), M^{a}=\bigoplus_{i<\mu} M_{i}^{*}, \mu=\kappa^{+2}, \kappa=\left(|R|+|S|+\aleph_{0}\right)$. We expand M^{a} to a bimodule by (for $x \in M^{*}$)

$$
\begin{aligned}
& \left(x h_{i}\right) X= \begin{cases}x h_{i}, & i \geq \kappa, \\
0, & i<\kappa ;\end{cases} \\
& \left(x h_{i}\right) Y= \begin{cases}x h_{i}, & i \geq \kappa^{+}, \\
0, & i<\kappa^{+} ;\end{cases} \\
& \left(x h_{i}\right) W_{1}= \begin{cases}x h_{j} & \text { if for some } \alpha, i=\kappa+\alpha, j=\kappa^{+}+\alpha \\
0 & \text { otherwise; }\end{cases} \\
& \left(x h_{i}\right) W_{2}= \begin{cases}x h_{j} & \text { if for some } \alpha, i=\kappa^{+}+\alpha, j=\kappa+\alpha \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

So assumption 2.3 holds. Let, e.g., \mathcal{K} be from 3.7; hence 3.5 applies and we get a bimodule, $\mathfrak{H}=M_{\lambda}$. Let $R^{\mathfrak{H}}$ be \mathfrak{A} as an R-module.
C Stage: So every member of S is an endomorphism of ${ }_{R} \mathfrak{2}$. As $X X=X$ we have ${ }_{R} \mathfrak{U}={ }_{R} M^{1} \oplus_{R} M_{1}$ where ${ }_{R} M^{1}=\left({ }_{R} \mathfrak{H}\right) X,{ }_{R} M_{1}=\left({ }_{R} \mathfrak{H}\right)(1-X)$. Similarly ${ }_{R} \mathfrak{H}={ }_{R} M^{2} \oplus{ }_{R} M_{2}$ where ${ }_{R} M^{2}=\left({ }_{R} \mathfrak{U}\right) Y,{ }_{R} M_{2}=\left({ }_{R} \mathfrak{U}\right)(1-Y)$.

Now W_{1}, W_{2} provide isomorphisms from M^{1} onto M^{2}, so let ${ }_{R} M=:{ }_{R} M^{1} \cong$ ${ }_{R} M^{2}$.

It suffices to show ${ }_{R} M_{1} \not \equiv{ }_{R} M_{2}$.
D Stage: Suppose ${ }_{R} M_{1} \cong_{R} M_{2}$; then there are endomorphisms Z_{1}, Z_{2} of ${ }_{R} \mathfrak{U}, Z_{1}$ mapping ${ }_{R} M_{1}$ onto ${ }_{R} M_{2}$, and ${ }_{R} M^{1}$ onto ${ }_{R} M^{2}$, and $Z_{1} Z_{2}=Z_{2} Z_{1}=1$. It is easy to check that:

$$
\begin{array}{cl}
X Z_{1}=X Z_{1} Y, & Y Z_{2}=Y Z_{2} X \\
(1-X) Z_{1}=(1-X) Z_{1}(1-Y), & (1-Y) Z_{2}=(1-Y) Z_{2}(1-X)
\end{array}
$$

So by 3.4 there are $n(*)<\omega, z_{1}, z_{2} \in N_{n(*)}^{\mathrm{tr}}$, such that the equations above hold in the endomorphism ring of the abelian group $\varphi_{n(*)}(M) / \bigcap_{1} \varphi_{l}(M)$ for any bimodule M when we replace Z_{1}, Z_{2} by ${ }^{n(*)} H_{M}^{z_{1}},{ }^{n(*)} H_{M}^{z_{2}}$ respectively (and interpret $X, Y \in S$ naturally). This holds in particular for the bimodule M^{a} we have defined in stage B. But by the equations above we get a one-to-one mapping from $\varphi_{n(*)}\left(\sum_{i<k}+M_{i}^{*}\right) / \bigcap_{i} \varphi_{l}\left(\sum_{i<k}+M_{i}^{*}\right)$ onto $\varphi_{n(*)}\left(\sum_{i<k} M_{i}^{*}\right) / \bigcap_{i} \varphi_{l}\left(\sum_{i<k} M_{i}^{*}\right)$, an easy contradiction (as they have different cardinalities).
(2) We assume the reader knows about $L_{\infty, \lambda}$ and proof of $\equiv_{\infty, \lambda}$ by a hence and forth argument. In the construction we just use \mathcal{K} such that, for each $\alpha<\lambda$, the following bimodule belongs to \mathcal{K} : as an R-module it is $M_{\alpha} \times M_{\alpha}$, with X, Y, W_{1}, W_{2} interpreted as the identity. (So we construct in 3.5 and extend \mathcal{K} together.)

Note that $X=Y=W_{1}=W_{2}=1$ satisfies all the equations; once we note this the checking does not use anything specific on R, T, S.

We may use more specific properties and then use a fixed \mathfrak{K}; choose it as follows: \mathcal{K}_{0} is the set of $N_{n}, N_{n}^{\prime}(n<\omega) ; \mathcal{K}$ is the set of $N \in K_{0}$ and, for each $N \in K_{0}$, the bimodule N^{*} is in \mathcal{K} where N^{*} is N as an R-module, but multiplication (from the right) by X, Y, W_{1}, W_{2} is zero. So $|\mathcal{K}|<\lambda$ (in fact it is countable). Let $\mathfrak{H}=\bigcup_{\alpha<\lambda} A_{\alpha}$ be the representation of \mathfrak{A} (i.e., in 3.5, we get $\left\langle A_{\alpha}: \alpha<\lambda\right\rangle$).
4.4. Claim. Suppose S, as a T-module, is free, say $\left\{s_{\beta}: \beta<\alpha\right\}$ is a free basis.
(1) Let $N_{n, 0}$ be the R-submodule of N_{n} which $\left\{x, y_{i}: i<k_{m_{n}-1}\right\}$ generates. Then N_{n}, as an R-module, is the direct sum $\sum_{\beta<\alpha} N_{n, \beta}, N_{n, 0} \stackrel{h_{\beta}}{\cong} N_{n, \beta}$ (as R-modules); for
$y \in N_{n, 0}$ we have $y h_{\beta}=y s_{\beta}$ and $N_{n, 0}$ is the R-module generated freely by $\left\{y_{i}: i<\right.$ $k_{m_{n}-1}$ \} except for the equations, and h_{0} is the identity.
(2) Hence $\varphi_{n}\left(N_{n}\right) / \bigcap_{l} \varphi_{l}\left(N_{n}\right)$ (as an additive group and even as a T-module) is the direct sum $\sum_{\beta<\alpha} \varphi_{n}\left(N_{n, \beta}\right) / \bigcap_{l} \varphi_{l}\left(N_{n, \beta}\right)$.
(3) If $z \in N_{n}^{\mathrm{tr}}$, then $z=\sum_{i} z_{i} h_{i}, z_{i} \in N_{n, 0} \cap N_{n}^{\mathrm{tr}} \cap \varphi_{n}\left(N_{n, 0}\right)$, i.e., $z \in$ $\sum_{i<\alpha} \varphi_{n}\left(N_{n, i}\right) \cap N_{n}^{\mathrm{tr}}$; so $z=\sum_{i} z_{i} s_{i}$ and ${ }^{n} H^{z}=\sum_{i}\left({ }^{n} H^{z_{i}}\right) s_{i} ; \mathrm{z}$ is n-nice iff each z_{i} is n-nice.
(4) $d e^{n}, S$ (as subrings of $d E^{n}-$ see $2.15,2.16$) generate $d E^{n}$; moreover, they commute. Each member of $d E^{n}$ has the form $\sum_{i} x_{i} s_{i}\left(x_{i} \in d e^{n}\right)$ and $d E^{n}=$ $d e^{n} \otimes_{T} S$ and $d e^{n}$ is commutative.
(5) Let I_{n} be a maximal ideal of $d e^{n}$ (to which 1 does not belong); $D_{n}=d e^{n} / I_{n}$, $T^{\prime}=T / I_{n} \cap T, S^{\prime}=S / I_{n} \cap T$. So D_{n} is a field (so commutative).

Any set of equations on S which has a solution in $\operatorname{End}(M)$ for M as in 4.2 has a solution in $D_{n} \otimes_{T^{\prime}} S^{\prime}$.

Proof. Straightforward.
4.5. Conclusion. Suppose:
(a) R is a ring satisfying (2) of Theorem 1.A, T the subring 1 generates (so $T \cong \mathbb{Z} / p \mathbf{Z}$, where p is the characteristic of R which is not necessarily prime).
(b) S is a ring, $(S,+)$ is a free T module (so T is a subring of S).
(c) λ is as in 4.2.

Then we can find an R-module M of power λ, and a homomorphism H of S into End (M) such that:
(d) $\operatorname{Ker} H=\{0\}$.
(e) If Γ is a set of equations with parameters in $S, H(\Gamma)$ is solvable in $\operatorname{End}(M)$, then for some field D [$p>0 \Rightarrow D$ of characteristic a prime dividing $p]$, [$p=0 \Rightarrow D$ of characteristic zero, or prime], we have Γ is solvable in $D \otimes S$.
(f) For $s \in S \backslash\{0\}, M(H(s))$, the image of M under $H(s)$ has cardinality λ.

Proof. Left to the reader.
4.6. Conclusion. If S is a ring extending $\mathbb{Z},(\mathrm{S},+)$ free, the assumption 2.3 holds and Γ is a set of equations over S not solvable in $D \otimes_{\mathbf{Z}_{p}}(S / p S)$ when D is a field of characteristic dividing that of $R, \mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ if $p>0$ and \mathbb{Z} if $p=0$; then for M as in $4.2, \Gamma$ is not solvable in $\operatorname{End}(M)$ (with S embedded there naturally).

Proof. Left to the reader.
4.6A. Remark. In $4.5,4.6$, if $(S,+)$ is \boldsymbol{K}_{0}-free (or \boldsymbol{K}_{0}-free T-modules) the conclusions are similar.
4.7. Claim. There are R-modules, M_{1}, M_{2} (as in 4.2), such that:

$$
M_{1}, M_{2} \text { not isomorphic, }
$$

M_{1} is isomorphic to a direct summand of M_{2},
M_{2} is isomorphic to a direct summand of M_{1}.
Proof. A Stage: Let T be the subring of R which 1 generates. Let S be the ring (with 1 , associative but not necessarily commutative) extending T generated by $X_{1}, X_{-1}, W_{1}, W_{-1}, Z_{1}, Z_{-1}$ freely except for the equations (to understand them, see below in stage B).
()$_{1} \tau=0$ if τ is a term, $\dagger M_{D}^{*} \tau=0$ for M_{D}^{*} as defined below in stage B for every field D.
We shall prove S is a free T-module.
Let M be as in 4.2 for T, R, S (and $\lambda, \S)$. Let $M_{1}=M X_{1}, M_{-1}=M X_{-1}$; so M_{1}, M_{-1} are R-modules as in 4.2, also $M=M_{1} \oplus M_{-1}\left(\right.$ as $X_{1}^{2}=X_{1}, X_{-1}^{2}=X_{-1}$, $X_{1}+X_{-1}=1, X_{1} X_{-1}=X_{-1} X_{1}=0$ in S). We shall show that M_{1}, M_{-1} are as required in 4.7 (on M_{1}, M_{2}).

Also $Z_{1}^{2}=Z_{1}, Z_{1} X_{1}=Z_{1}=X_{1} Z_{1}$ so $M_{1}=M_{1}\left(1-Z_{1}\right) \oplus M_{1} Z_{1}$; i.e., $M_{1} Z_{1}$ is a direct summand of M_{1}. On the other hand $M_{-1} \cong M_{1} Z_{1}$ as W_{1} maps M_{-1} into $M_{1} Z_{1}$ (since $X_{-1} W_{1}=X_{-1} W_{1} Z_{1}$) and W_{-1} maps $M_{1} Z_{1}$ into M_{-1} (since $X_{1} Z_{1} W_{-1}=$ $W_{-1} X_{-1}$), and the two maps are inverses of each other because $X_{-1} W_{1} W_{-1}=X_{-1}$ and $X_{1} Z_{1} W_{-1} W_{1}=Z_{1}=X_{1} Z_{1}$.

Similarly $M_{-1}=M_{-1}\left(1-Z_{-1}\right) \oplus M_{-1} Z_{-1}$, so $M_{-1} Z_{-1}$ is a direct summand of M_{-1} and $M_{-1} Z_{-1}$ is isomorphic to M_{1}. Hence

$$
M_{1} \cong M_{1}\left(1-Z_{1}\right) \oplus M_{-1}, \quad M_{-1} \cong M_{-1}\left(1-Z_{-1}\right) \oplus M_{1}
$$

We are left with $M_{1} \neq M_{-1}$; if they are isomorphic, then as $M=M_{1} \oplus M_{-1}$ (for every n large enough) in $d E^{n}$ there is a solution to the set of equations (in the unknown Y):
$(*)_{2} X_{1} Y X_{-1}=X_{1} Y$,
$X_{-1} Y X_{1}=X_{-1} Y$,
$Y Y=1$.
We shall get a contradiction by 4.5 .
\dagger I.e., in the language of rings, in the variables $X_{1}, X_{-1}, W_{1}, W_{-1}, Z_{1}, Z_{-1}$.
B Stage: Let $A_{1}\left[A_{-1}\right]$ be the set of even [odd] integers, F the following function:

$$
F(i)= \begin{cases}i+1, & i \geq 0 \\ i-1, & i<0\end{cases}
$$

So F maps A_{1} into A_{-1} and A_{-1} into $A_{1}, A_{1} \backslash \operatorname{Rang}\left(F \upharpoonright A_{-1}\right)=\{0\}, A_{-1} \backslash$ $\operatorname{Rang}\left(F \backslash A_{1}\right)=\{-1\}$. Let D be a ring and T be the subring 1 generates. Let i vary on the integers. Let S_{0} be the ring generated freely by $\left\{X_{1}, X_{-1}, W_{1}, W_{-1}\right.$, $\left.Z_{1}, Z_{-1}\right\}$.
We define a right ($D \otimes_{T} S_{0}$)-module M_{D}^{*} as a D-module $M=\Sigma D x_{i}$, with ($\sum a_{i} x_{i}$) $b=\sum_{i}\left(a_{i} b\right) x_{i}$ for $a_{i}, b \in D$. To define multiplication $(x \in M, c \in$ $D \otimes_{T} S_{0}$) (as D, S_{0} commute in $D \otimes_{T} S_{0}$) it is enough to define it for $x=x_{i}$, s one of the generators of S; so let

$$
\begin{gathered}
x_{i} X_{1}=\left\{\begin{array}{ll}
x_{i}, & i \in A_{1}, \\
0, & i \in A_{-1} ;
\end{array} \quad x_{i} X_{-1}= \begin{cases}0, & i \in A_{1}, \\
x_{i}, & i \in A_{-1} ;\end{cases} \right. \\
x_{i} W_{1}=x_{F(i)} ; \quad x_{i} W_{-1}= \begin{cases}x_{F^{-1}(i)}, & i \in \operatorname{Rang}(F), \\
0, & i \notin \operatorname{Rang}(F) ;\end{cases} \\
x_{i} Z_{1}=\left\{\begin{array}{ll}
x_{i}, & i \in A_{1} \cap \operatorname{Rang} F, \\
0, & \text { otherwise } ;
\end{array} x_{i} Z_{-1}= \begin{cases}x_{i}, & i \in A_{-1} \cap \operatorname{Rang} F, \\
0, & \text { otherwise } .\end{cases} \right.
\end{gathered}
$$

Of course, it is naturally a ($D \otimes_{T} S$)-module (see definition of S).
C Stage: There is no problem to check that in M_{D}^{*} the equations from (*) hold, so it is enough to prove that:
(a) in $D \otimes_{T} S$ there is no solution to (*) (i.e., no such Y) (making S have the same characteristic as D),
(b) S is a free T-module.

Clearly S is a T-module, generated by the set of monomials in $\left\{X_{1}, X_{-1}, W_{1}\right.$, $\left.W_{-1}, Z_{1}, Z_{-1}\right\}$.

Our aim now is to show S is a free T-module and find a free basis.
Now for $l \in\{1,-1\}, k \in \mathbb{Z}, n \geq 0, n \geq-k$, we define an endomorphism $\mathcal{F}_{k, n}^{l}=$ ${ }_{D} \mathcal{F}_{k, n}^{l}$ of M_{D}^{*} :

$$
x_{i} \mathcal{F}_{k, n}^{\prime}= \begin{cases}x_{F^{k}(i)} & \text { if } F^{-n}(i) \text { is well defined, } x_{i} \in A_{l} \\ 0 & \text { otherwise }\end{cases}
$$

(it is easy to see that it is an endomorphism of M_{D}^{*}) and a monomial $Y_{k, n}^{l}$ (note: for every monomial τ we let τ^{0}, the zeroth power, be $1=\operatorname{id}_{M_{D}^{*}}$) and remember $n \geq-k$, so $n+k \geq 0$:

$$
Y_{k, n}^{\prime}=X_{l}\left(W_{-1}\right)^{n} W_{1}^{n+k}
$$

The reader can check that $Y_{k, n}^{l}$ as an endomorphism of M_{D}^{*} is equal to $\mathcal{F}_{k, n}^{l}$.
We next want to prove that $\left\{Y_{k, n}^{l}: n, k \in \mathbf{Z}, n \geq 0, n \geq-k, l \in\{1,-1\}\right\}$ generates S as a T-module; this is done in the next stage.
D Stage: The set $\left\{Y_{k, n}^{\prime}: n, k \in \mathbb{Z}, n \geq-k\right.$ and $\left.l \in\{1,-1\}\right\}$ generates S as a T-module.
It is enough to show that for every monomial τ, some equation $\tau=\sum a_{n, k}^{l} Y_{k, n}^{l}$ holds in S (where $\left\{(l, n, k): a_{n, k}^{l} \neq 0\right\}$ is finite, $a_{k, n}^{l} \in T$); i.e., it holds in the ring of endomorphism of M_{D}^{*}. We prove this by induction on the length of the monomial.
If the length is zero, τ is 1 ; now $1=X_{1}+X_{-1}\left(\right.$ check in $\left.M^{*}\right)$ and $X_{l}=Y_{0,0}^{l}$. Hence $1=Y_{0,0}^{1}+Y_{0,0}^{-1}$ as required.
If the length is >0, by the induction hypothesis it is enough to prove:
(*) if $\tau \in\left\{X_{1}, X_{-1}, W_{1}, W_{-1}, Z_{1}, Z_{-1}\right\}$
then $Y_{k(*), n(*)}^{I(*)} \tau$ is equal to some $\sum_{l, k, n} a_{k, n}^{l} Y_{k, n}^{l}$.
(Note: it is enough to check equality on the generators of M^{*}-the x_{i} 's.)
Let us check:
Case 1. $Y_{k(*), n(*)}^{l(*)} X_{l}$ is: zero if $[l(*)=l \Leftrightarrow k(*)$ odd $]$,

$$
Y_{k(*), n(*)}^{l(*)} \text { if }[l(*)=l \Leftrightarrow k(*) \text { even }] .
$$

Case 2. $Y_{k(*), n(*)}^{l(*)} W_{l}$ is: $Y_{k(*)+1, n(*)}^{l(*)} \quad$ if $l=1$,

$$
\begin{array}{ll}
Y_{k(*)-1, n(*)}^{k(*)} & \text { if } l=-1, k(*)+n(*)>0, \\
Y_{k(*)-1, n(*)+1}^{k(*)} & \text { if } l=-1, k(*)+n(*)=0 .
\end{array}
$$

Case 3. $Y_{k(*), n(*)}^{K(*)} Z_{l}$ is: $Y_{k(*), n(*)}^{(* *)} \quad$ if $n(*)+k(*)>0$ and

$$
[l(*)=l \Leftrightarrow k(*) \text { odd }],
$$

$$
Y_{k(*), n(*)+1}^{\prime(*)} \text { if } n(*)+k(*)=0 \text { and }
$$

$$
[l(*)=l \Leftrightarrow k(*) \text { odd }],
$$

$$
\text { zero } \quad \text { if }[l(*)=l \Leftrightarrow k(*) \text { even }] \text {. }
$$

E Stage: $\left\{Y_{k, n}^{l}:(l, k, n) \in \theta\right\}$ generate S freely as a T-module where

$$
\theta=\{(l, k, n): l \in\{1,-1\}, k \in \mathbb{Z}, n \geq 0, k+n \geq 0\} .
$$

Suppose $0=\Sigma\left\{a_{k, n}^{l} Y_{k, n}^{l}:(l, k, n) \in \theta\right\}$ as an endomorphism of ($M_{D}^{*},+$), where we even allow $a_{k, n}^{\prime} \in D$. We shall prove that $a_{k, n}^{l}=0$ for every $(l, k, n) \in \theta$.
If $i \in A_{1}, i \geq 0$ then

$$
\begin{aligned}
0 & =x_{i}\left[\sum_{(l, k, n) \in \Theta} a_{k, n}^{\prime} Y_{k, n}^{\prime}\right] \\
& =\sum_{(l, k, n) \in \Theta} a_{k, n}^{\prime}\left(x_{i} Y_{k, n}^{\prime}\right) \\
& =\sum\left\{a_{k, n}^{\prime} x_{i+k}: l=1,(l, k, n) \in \Theta \text { and } n \leq i\right\} \\
& =\sum_{j \geq 0}\left(\sum\left\{a_{k, n}^{1}:(1, k, n) \in \Theta, i \geq n, i+k=j\right\}\right) x_{j} \\
& =\sum_{j \geq 0}\left(\sum\left\{a_{j-i, n}^{1}: i \geq n,(1, j-i, n) \in \Theta\right\}\right) x_{j} .
\end{aligned}
$$

Hence for every $i \in A_{1}, i \geq 0$ and $j \geq 0$
$(*)_{i, j}^{q} \quad 0=\sum\left\{a_{j-i, n}^{1}: n \geq 0, n \leq i\right.$ and $\left.n+(j-i) \geq 0\right\}$.
Similarly, for $i \in A_{-1}, i \geq 0$ (equivalently, $i>0$ as $i \in A_{-1} \Rightarrow i \neq 0$) and $j \geq 0$ we can prove:
$(*)_{i, j}^{b} \quad 0=\sum\left\{a_{j-i, n}^{-1}: n \geq 0, n \leq i\right.$ and $\left.n+(j-i) \geq 0\right\}$.
Similarly, for $i \in A_{1}, i<0$

$$
\begin{aligned}
0 & =x_{i}\left[\sum_{(1, k, n) \in \Theta} a_{k, n}^{l} Y_{k, n}^{l}\right] \\
& =\sum_{(l, k, n) \in \Theta} a_{k, n}^{\prime}\left(x_{i} Y_{k, n}^{l}\right) \\
& =\sum\left\{a_{k, n}^{1} x_{i+k}:(1, k, n) \in \Theta \text { and }-i>n\right\} \\
& =\sum_{j<0}\left[\sum\left\{a_{j-i, n}^{1}:(1, j-i, n) \in \Theta \text { and } n<-i\right\}\right] x_{j} .
\end{aligned}
$$

Hence for every $i \in A_{1}, i<0$ and $j<0$
(*) ${ }_{i, j}$

$$
0=\sum\left\{a_{j-i, n}^{1}: n \geq 0 \text { and } n+(j-i) \geq 0 \text { and } n<-i\right\} .
$$

Similarly, for every $i \in A_{-1}, i<0$ and $j<0$
$(*)_{i, j}^{d}$

$$
0=\sum\left\{a_{j-i, n}^{-1}: n \geq 0 \text { and } n+(j-i) \geq 0 \text { and } i<-n\right\} .
$$

Choose, if possible, (k, m) such that:
(1) $(1, k, m)$ belongs to Θ,
(2) $a_{k, m}^{1} \neq 0$,
(3) under (1) $+(2), m$ is minimal.

First assume that m is even; in any case $m \geq 0$. Let $i=: m, j=: i+k$ so $i \in A_{1}$ (being even), $i \geq 0$ and $j=m+k$ is ≥ 0 as $(1, k, m) \in \Theta$. In the equation (*) $)_{i, j}^{a}$ the term $a_{k, m}^{1}$ appears in the sum, and for every other term $a_{k_{1}, m_{1}}^{1}$ which appears in the sum, we have $m_{1}<m$ (and $k_{1}=k$). Hence by (3) above it is zero. So it follows that $a_{k, m}^{1}$ is zero, contradiction.

If m is odd, we get a similar contradiction using $(*)_{i, j}^{c}$: let $i=-m-1, j=i+k$, note $m \geq 0$, hence $i<0$ and i is even, so $i \in A_{1}$; in the equation $(*)_{i, j}^{c}$ the term $a_{j-i, n}^{1}=a_{k, n}^{1}$ appears in the sum iff $0 \leq n<-i=m+1$, and $n+(j-i)=n+k \geq 0$ (but if the latter fails, $a_{k, m}^{1}$ is not defined), so $a_{k, m}^{1}$ appears, and if another term $a_{k_{1}, m_{1}}^{1}$ appears then $m_{1}<m$ (and $k_{1}=k$), hence $a_{k_{1}, m_{1}}^{1}=0$. Necessarily $a_{k, m}^{1}$ is zero, contradiction.

So $a_{k, n}^{1}=0$ whenever it is defined.
Similarly $a_{k, n}^{-1}=0$ whenever it is defined (use $\left.(*)_{i, j}^{b}+(*)_{i, j}^{d}\right)$. Thus we have finished proviing (b) (i.e. (s, ψ) is a free T-module).

F Stage: In particular, for Y from stage $C(a)$, for some $a_{k, n}^{\prime}$:

$$
Y=\sum\left\{a_{k, n}^{l} Y_{k, n}^{l}: n \geq 0 \text { and } k+n \geq 0 \text { and } l \in\{1,-1\}\right\}
$$

(with only finitely many $a_{k, n}^{\prime}$ being non-zero and $a_{k, n}^{\prime} \in D$). Let $n(*)<\omega$ be such that

$$
a_{k, n}^{l} \neq 0 \Rightarrow|k|, n<n(*)
$$

Let, for $l=1,-1$,
$M_{l}^{\text {pos }}=\left\{\sum_{i \geq 0} d_{i} x_{i}: d_{i} \in D\right.$ and all but finitely many are zero and $\left.d_{i} \neq 0 \Rightarrow i \in A_{l}\right\}$, $M_{l}^{\mathrm{neg}}=\left\{\sum_{i<0} d_{i} x_{i}: d_{i} \in D\right.$ and all but finitely many are zero and $\left.d_{i} \neq 0 \Rightarrow i \in A_{l}\right\}$. Clearly, as a D-module (really, a left one)

$$
M_{D}^{*}=M_{1}^{\mathrm{pos}} \oplus M_{-1}^{\mathrm{pos}} \oplus M_{1}^{\mathrm{neg}} \oplus M_{-1}^{\mathrm{neg}}
$$

Let $Y_{l}^{r}=Y \upharpoonright M_{l}^{r}$ for $r \in\{$ pos, neg $), l \in\{1,-1\}$. By $(*)_{2}$ (in stage A) we know $X_{1} Y X_{-1}=X_{1} Y$, hence Y maps $M_{1}^{\text {pos }}$ into $M_{-1}^{\text {pos }}$ and $M_{1}^{\text {neg }}$ into $M_{-1}^{\text {neg }}$; i.e., $Y_{1}^{\text {pos }}$ is into $M_{-1}^{\text {pos }}, Y_{1}^{\text {neg }}$ is into $M_{-1}^{\text {neg }}$.

Similarly by $(*)_{2}$ we know $X_{-1} Y X_{1}=X_{-1} Y$, hence Y maps $M_{-1}^{\text {pos }}$ into $M_{1}^{\text {pos }}$ and $M_{-1}^{\text {neg }}$ into $M_{1}^{\text {neg }}$. Also, all those mapping $Y_{1}^{\text {pos }}, Y_{-1}^{\text {pos }}, Y_{1}^{\text {neg }}, Y_{-1}^{\text {neg }}$ are endomorphisms of D-modules. As $Y^{2}=1$ (again by $\left.(*)_{2}\right)$ we know on $Y_{1}^{\text {pos }}, Y_{-1}^{\text {pos }}$ that one is the inverse of the other, so both are isomorphisms onto. Similarly for $Y_{1}^{\mathrm{neg}}, Y_{-1}^{\mathrm{neg}}$.

Let $M_{1}^{\text {stp }}=\left\{\sum_{i>0} d_{i} x_{i}: d_{i} \in D\right.$, all but finitely many d_{i} 's are zero and $d_{i} \neq 0 \Rightarrow$ $\left.i \in A_{1}\right\}$. Clearly $M_{1}^{\text {stp }}$ is a sub- D-module of $M_{i}^{\text {pos }}$. (So what is the difference between $M_{1}^{\text {stp }}$ and $M_{1}^{\text {pos }}$? Just $\left.x_{0} \in M_{i}^{\text {pos }}, x_{0} \notin M_{1}^{\text {stp }}\right)$.

Let $N=\left\{\sum_{i>n(*)} d_{i} x_{i}: d_{i} \in D\right.$, all but finitely many are zero and $d_{i} \neq 0 \Rightarrow$ $\left.i \in A_{1}\right\}$.

Let $H^{\text {pos }}: M_{1}^{\text {stp }} \rightarrow M_{1}^{\text {neg }}$ be defined by $x_{i} H^{\text {pos }}=x_{-i}$ and $H^{\text {neg }}: M_{1}^{\mathrm{neg}} \rightarrow M_{1}^{\text {stp }}$ be defined by $x_{i} H=x_{-i}$. Both are isomorphisms onto and endomorphisms of D modules. By now we know $Y_{1}^{\text {neg }}$ is an isomorphism from $M_{1}^{\text {neg }}$ onto $M_{-1}^{\text {neg }}$, and also $H^{\text {pos }} Y_{1}^{\text {neg }} H^{\text {neg }}$ is an isomorphism from $M_{1}^{\text {stp }}$ onto $M_{-1}^{\text {pos }}$. Note

$$
M_{1}^{\text {stp }} \xrightarrow{H^{\text {pos }}} M_{1}^{\text {neg }} \xrightarrow{Y_{1}^{\text {neg }}} M_{-1}^{\text {neg }} \xrightarrow{H^{\text {neg }}} M_{-1}^{\text {pos }}
$$

However, by the choice of $n(*)$ and N, computing directly we see that

$$
Y_{1}^{\mathrm{pos}} \upharpoonright N=\left(H^{\mathrm{pos}} Y_{1}^{\mathrm{neg}} H^{\mathrm{neg}}\right) \upharpoonright N
$$

Let N^{*} be the range of $Y_{1}^{\text {pos }} \upharpoonright N$ and hence also of $\left(H^{\text {pos }} Y_{1}^{\text {neg }} H^{\text {neg }}\right) \upharpoonright N$. So, as $Y_{1}^{\text {pos }}$ is an isomorphism from $M_{1}^{\text {pos }}$ onto $M_{-1}^{\text {pos }}$ and $N \subseteq M_{1}^{\text {pos }}$, we know N^{*} is a sub- D-module of $M_{-1}^{\text {pos }}$ and $M_{-1}^{\text {pos }} / N^{*}$ is isomorphic to $M_{1}^{\text {pos }} / N$ (as D-modules).

But $H^{\text {pos }} Y_{1}^{\mathrm{neg}} H^{\mathrm{neg}}$ is an isomorphism from $M_{1}^{\text {stp }}$ onto $M_{-1}^{\text {pos }}$ and $N \subseteq M_{1}^{\text {stp }}$, and it maps N onto N^{*} (see above), so $M_{1}^{\text {stp }} / N$ is isomorphic to $M_{-1}^{\text {pas }} / N^{*}$. By the previous paragraph we get $M_{1}^{\text {stp }} / N \cong M_{1}^{\text {pos }} / N$.

Now $M_{1}^{\text {pos }} / N$ is a free D-module; $\left\{x_{2 i}+N: 0 \leq 2 i \leq n(*)\right\}$ is a free basis and also $M_{1}^{\text {stp }} / N$ is a free D-module: $\left\{x_{2 i}+N: 0<2 i \leq n(*)\right\}$ is a free basis; but the number of generators differ by 1 .

Appendix: An alternative older proof

On the Proof of 4.7. We can replace the proof from the first equation of stage F as follows:

Let $b_{k}^{l}=\sum_{n} a_{k, n}^{\prime} \in D$; so if $i \in \mathbb{Z},|i|>n(*)+1$ then

$$
x_{i} Y=\sum_{l \in\{1,-1\}, k \in \mathbf{Z}} b_{k}^{l}\left(x_{i} Y_{k, n}^{l}\right)
$$

Checking what is $\left(x_{i} Y\right) Y$ when $i \in A_{l(*)}$ and $F^{-n(*)}(i)$ is well defined (e.g., $|i|>n(*)+1$) (i.e., we know $\left(x_{i} Y\right) Y=x_{i}$ as $Y^{2}=1$, on the one hand, and substituting on the other hand) we see that:
(a) for $l \in\{1,-1\}$ there is a unique $k=k_{l}$ such that:

$$
b_{k}^{l} \stackrel{\text { def }}{=} \sum_{n} a_{k, n}^{l} \neq 0
$$

If k_{1} is even and k_{-1} is odd, choose large enough even $i<\omega$; then

$$
\left(\left(b_{k_{1}}^{1}\right)^{-1} x_{i-k_{1}}\right) Y=x_{i} \quad \text { and } \quad\left(\left(b_{k_{-1}}^{1}\right)^{-1} x_{i-k_{-1}}\right) Y=x_{i}
$$

contradicting " Y is one to one" which follows from $Y^{2}=1$. So " k_{1} is even and k_{-1} is odd" is impossible. Similarly " k_{-1} is even and k_{1} is odd" is impossible. If k_{1}, k_{-1} are even we can get a contradiction using the equation $X_{1} Y X_{-1}=X_{1} Y$ from (*) $)_{2}$. So k_{1}, k_{-1} are odd.

Now as $Y^{2}=1$:
(b) $k_{1}=-k_{-1}$; let $k(*)=k_{1}$ and

$$
\left(\sum_{n} a_{k(*), n}^{1}\right)\left(\sum_{n} a_{k(*), n}^{-1}\right)=1 .
$$

Hence
(c) for some non-zero $d_{i} \in D, d_{i}=d(*)$ for any integer i with $|i|>n(*)+1$, $x_{i} Y=d_{i} x_{F^{k(*)}}^{(i)}$ if i is even, $x_{i} Y=d_{i}^{-1} X_{F^{-k(*)}}^{(i)}$ if i is odd.
Note
(d) Y maps M^{a} and M^{b} into themselves where $M^{a}=\left\{\sum_{i \geq 0} d_{i} x_{i}: d_{i} \in D\right.$ and all but finitely many are zero $\}$,
$M^{b}=\left\{\sum_{i<0} d_{i} x_{i}: d_{i} \in D\right.$ and all but finitely many are zero $\}$
and $M=M^{a} \oplus M^{b}$ (as D-modules).
Now, as $Y^{2}=1, M=\operatorname{Rang}(Y)=M^{a} Y+M^{b} Y$. Hence:
(e) Y maps M^{a} onto M^{a} and M^{b} onto M^{b}.

Note
(f) Y is an automorphism of M as a left D-module.

G Stage: Assume $k(*) \neq 1$. Note also that Y maps M^{a} onto M^{a} and
$M_{n(*)}^{a, 1}=:\left\{\sum_{\substack{i \geq n(*) \\ i \text { even }}} d_{i} x_{i}: d_{i} \in D\right\}$ onto $\quad M_{n(*)+k(*)}^{a,-1}=:\left\{\sum_{\substack{i \geq n(*)+k(*) \\ i \text { odd }}} d_{i} x_{i}: i \in D\right\}$
(check directly by (c)).

By $(*)_{2} X_{1} Y X_{-1}=X_{1} Y$, hence Y maps $M_{0}^{a, 1}$ into $M_{0}^{a,-1}$; similarly, as by $(*)_{2}$ $X_{-1} Y X_{1}=X_{-1} Y$, clearly Y maps $M_{0}^{a,-1}$ into $M_{0}^{a, 1}$. As $Y^{2}=1$, also Y maps $M_{0}^{a, 1}$ onto $M_{0}^{a,-1}$, hence Y is an isomorphism from $M_{0}^{a, 1}$ onto $M_{0}^{a,-1}$ as left D-modules mapping $M_{n(*)}^{a, 1}$ onto $M_{n(*)+k(*)}^{a,-1}$, hence $M_{0}^{a, 1} / M_{n(*)}^{a, 1} \cong M_{0}^{a, 1} / M_{n(*)+k(*)}^{a,-1}$ but we easily get a contradiction by computing the dimensions.

What if $k(*)=1$? Then we use M^{b} and get a similar contradiction if $k(*) \neq-1$.

References

[C] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc. 13 (1963), 687-710.
[C2] A. L. S. Corner, Finite automorphism groups in torsion free abelian groups, to appear.
[CG] A. L. S. Corner and R. Gobel, Prescribing endomorphism algebras, a unified treatment, Proc. Lond. Math. Soc. 50 (1985), 447-479.
[D1] M. Dugas, Fast free abelsche Gruppen mit endomorphismering Z, J. Algebra 7 (1981), 314-321.
[DG1] M. Dugas and R. Gobel, Every cotorsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc. 45 (1982), 319-336.
[DG2] M. Dugas and R. Gobel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), 451-470.
[DG3] M. Dugas and R. Gobel, On endomorphism rings of primary abelian groups, Math. Ann. 261 (1982), 359-385.
[DSh325] M. Dugas and S. Shelah, E-Transitive groups in L, in Resultate der Mathematik; to appear in Proc. ' 87 Conference on Abelian Groups in Perth, Australia, Contemp. Math. 87 (1989).
[EM] P. Eklof and A. H. Mekler, On constructing indecomposable groups in L, J. Algebra 49 (1977), 96-103.
[EM1] P. Eklof and A. H. Mekler, Almost Free Modules: Set Theoretic Methods, North-Holland Mathematical Library, North-Holland, Amsterdam, 1990.
[Fu] L. Fuchs, Abelian Groups, I,II, Academic Press, New York, 1970, 1973.
[Gr] S. Garavaglia, Decomposition of totally transcendental modules, J. Symb. Logic 45 (1980), 155-164.
[G1] R. Gobel, Dartstellung von Ringen als Endomorphismeringe, Arch. Math (Basel) 35 (1980), 338-350.
[GSh190] R. Gobel and S. Shelah, Semi-rigid classes of co-torsion free abelian groups, J. Algebra 93 (1985), 136-150.
[GSh219] R. Gobel and S. Shelah, Modules over arbitrary domains, I, Math. Z. 188 (1985), 325-337.
[K] I. Kaplansky, Infinite Abelian Groups, Ann Arbor, 1954.
[MgSh204] M. Magidor and S. Shelah, When does almost free imply free? (For groups, transversals, etc.), J. Am. Math. Soc., to appear.
[P1] M. Prest, Model theory and modules, London Math. Soc. Lect. Note Ser. 130 (1988).
[P2] M. Prest, Rings of finite representation type and modules of finite Morley rank, J. Algebra 88 (1984), 502-533.
[Sh-e] S. Shelah, Universal Classes (new version, revised III and IV, V and VI exists, VII and VIII preprint).
[Sh44] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Isr. J. Math. 18 (1974), 243-256.
[Sh45] S. Shelah, Existence of rigid-like families of abelian p-groups, in Model Theory and Algebra. A memorial tribute to A. Robinson (D. Saracino and V. Weispfenning, eds.), Lecture Notes in Math. 498, Springer-Verlag, Berlin, 1975, pp. 385-402.
[Sh54] S. Shelah, The lazy model theorist's guide to stability, Logique et Analyse, 18 Anne, Vol. 71-72 (1975), 241-308.
[Sh54a] S. Shelah, The lazy model theorist guide to stability, in Six Days of Model Theory (P. Henrard Castella, ed.), Albeuve, 1977, pp. 9-76.
[Sh140] S. Shelah, On endo-rigid strongly \aleph_{1}-free abelian groups in \aleph_{I}, Isr. J. Math. 40 (1981), 291-295.
[Sh172] S. Shelah, A combinatorial principle and endomorphism rings of p-groups, Proc. 1980/1 Jerusalem Model Theory Years, Isr. J. Math. 49 (1984), 239-257.
[Sh227] S. Shelah, A combinatorial principle and endomorphism rings of abelian groups II, in Proc. Conference on Abelian Groups, Undine, April 9-14, 1984 (R. Gobel, C. Metelli, A. Orsatti and L. Solce, eds.), [BSF], CISM Courses and Lecture No. 287, International Centre for Mechanical Sciences, Abelian Groups and Modules, pp. 27-86.
[Sh300] S. Shelah, Universal classes, Ch. I-IV, Proc. U.S.-Israel Conference on Classification Theory (J. Baldwin, ed.), Lecture Notes in Math. 1292, Springer-Verlag, Berlin, 1987, pp. 264-418.
[Sh421] S. Shelah, Kaplansky Test Problem for R-modules in ZFC, a preprint.
[Z] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213.

[^0]: \dagger For each $s \in S, M$ a bimodule, s defines an endomorphism of M as an R-module: $x \mapsto x s$; now apply 2.13(4). Is it an embedding? Not necessarily, e.g. if $\varphi_{n}(x)$ is " x divisible by $z^{n "}$, if $s=2^{n} s_{n} \in S$ for each n, then s is mapped to zero.

