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ABSTRACT 

We prove that every ring R without strong decomposition theorem has a strong 
non-decomposition theorem. We use diamonds (but this will be eliminated in a sub- 
sequent paper). 

§1. Introduct ion 

R will be a ring, not  necessarily commutat ive,  with 1; R-module  is a left R-mod-  

ule unless stated otherwise. In [Sh54] = [Sh54a] 8.7 we proved 

1.A. TIaEORE~t. For every ring R,  either: 

(1) all R-modules are the direct sum o f  countably generated R-modules (such 

rings are called left pure semisimple rings) 

or 

(2) f o r  every cardinal ~, > [R l, 
(2)x there is an R-module M o f  power ~ such that for  no # < ~ is M the direct 

sum o f  R-modules o f  power < ~t. 

In fact  (1) ¢=* -1 (2) ¢o the class o f  R-modules is superstable¢=~ a condition on equa- 

tions in R. 

Subsequently,  Garavagl ia  [Gr] and then Ziegler [Z] much  improve the results 

concerning (1) (e.g., unique decomposit ion to indecomposable modules). See more 

in Prest [P1] and [P2] about  the history o f  this and other  equivalent condit ions.  

But here we want to strengthen possibility (2); more  specifically, we want to 
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9 2  S. S H E L A H  Isr. J.  Ma th .  

show for case (2) there are R-modules which have few endomorphisms, are "rigid 

like", and, moreover, that the decomposition theory for R-modules is "bad"; e.g., 

that the answer to: 

M - - N ( ~ M I ,  N - - M G N I = N = M ?  

(Kaplansky's first test problem) is negative. 

In a classical way we do it by giving a ring S (the ring of endomorphisms we 

want) and try to build an R-module which "has the endomorphisms for s E S but 

not many more". 

The literature on the endomorphism of modules (including the restriction to in- 

decomposability or rigidity, and to abelian groups which are exactly the Z-mod- 

ules) is quite large. 

Kaplansky in [K] suggested test problems for having a satisfactory decomposi- 

tion theory. 

Fuchs, with some help of Corner, proved the existence of an indecomposable 

abelian group in many cardinals X (e.g., up to the first strongly inaccessible) [Fu], 

and even of a system of 2 × rigid abelian groups of power ~, (the proof was by in- 

duction on X). In fact it seems at the time reasonable that for some "large cardi- 

nal" (e.g., supercompact) this fails. Corner [C2] reduced the number of primes to 

five. 

Shelah [Sh44] proved the existence in every X (using stationary sets). Lately, 

Gobel and Ziegler generalized this to R-modules for "R with five ideals". Shelah 

[Sh45], answering a question of Pierce, constructed reduced separable (abelian) 

p-groups with only "small" + p-adic endomorphism but has to use h strong limit 

of uncountable cofinality. 

Eklof and Mekler [EM], using diamond on Xt (and a non-reflecting stationary 

set) got a h-free indecomposable abelian group of power X; continuing this, in 

[Shl40] the diamond was replaced by weak diamond on a non-reflecting station- 

ary subset o f S  = [c5 < X:cfti = ~o} (so for X = 1~1, 2 ~° < 2 ~' suffices). 

Much earlier Corner [C] proved that we can realize any torsion-free reduced 

countable ring as an endomorphism ring of a torsion-free abelian group and de- 

duce by it a negative answer to, e.g., the Kaplansky problem cited above. 

Dugas [D1] continuing [EM] proved the existence of a strongly K-free abelian 

group with endomorphism ring Z (if, e.g., V = L) and then Gobel [G1] realized 

a larger family of rings; he used p-adic rings. 

Dugas and Gobel [DG1], continuing [D1], [G1] and [Shl40] (but [DG1] used one 

t i t  is a consequence of V = L but not  provable in ZFC. 
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prime), for k as in [Shl40], proved: for a ring R of cardinality < k, which is cotor- 

sion free, i.e. (R ,+)  (an additive group) is torsion free, reduced and contain no 

direct summands isomorphic to Ip (p-adic completion of  2) for all primes p. 

Dugas and Gobel [DG2] characterize the rings which can be represented as End M 

modulo "the small endomorphism" for some abelian p-group, but as it continues 

[Sh45] (which dealt with the case when we want the smallest such ring) the repre- 

sentation of  a ring R is by an abelian group M of a power strong limit cardinal of 

cofinality > [RI. The situation is similar in Dugas and Gobel [DG3] where the re- 

suits of [GD1] and more are obtained in such cardinals. 

In [Sh172] + [Sh227] we introduce a principle "black box", which follows from 

ZFC, that enables us to get the results of [DG2], [DG3] in more and smaller cardi- 

nals, e.g., k = ([Rl~o) +. 

Corner and Gobel [CG] continue this; see there and in [EM1] for additional 

references. 

In 2.1-2.5 we give the algebraic setting and choose specific bimodules which we 

will use. 

Next, 2.6 is the diamond construction (with a non-reflecting stationary set 8 __ 

[~ < k : c f ~  = 1~o1, with (>~). The construction is phrased such that its existence 

is immediate. 

Main fact 2.7 tells us that every R-endomorphism of M× (the bimodule con- 

structed in 2.6) is somewhat definable. 

However, we later use an even slightly weaker variant defined in 2.8(3), 

(Pr-)~*)[F]  (some a < k, n (*)  < 00). In 2.10 we show that it implies a stronger 

version ((Pr 1)~!~)). The rest of the section explicates the result: in M× every en- 

domorphism is in some sense equal to one in a ring dE. The ring dE depends on 

R and S (but not on k); the "in some sense equal" means: for each n we restrict 

F to a sub-abelian group ¢~ (Mx) (closed under F),  divide by another (Nl ~t(Mx)) 

and take the direct limit; on top of this we have an "error term": we have to di- 

vide by a "small" submodule of M×, which means of cardinality < k. An alterna- 

tive presentation is: we divide the ring of such endomorphisms by the ideal of those 

with "small" range. 

In section 3 we try to make the "error term" smaller. We have to avoid a "large 

member" of 3£ (e.g., projectives). So we fix a family of bimodules 3£ (e.g., those 

which are finitely generated, finitely presented). Then we ask Mx to be h-free in 

a sense; i.e., where M~ = Us<x Ms, Ms increasing continuous of  power < k, de- 

mand that every Ms is the direct sum of members of  3£. We get this time a 

smaller error t e r m -  its power is _< [R I + [ S I + n0 and, if R, S are countable, it 

disappears. 
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In section 4 we draw specific consequences of our representation theorem. 

In a subsequent paper [Sh421] we get the main results in ZFC (without any ex- 

tra axioms); this is as done originally. We lose the h-freeness (this is unavoidable, 

even for abelian groups-see  Magidor and Shelah [MgSh204]). We also get, for 

each m (*), an R-module M such that M _= M n iff n divides m (*) and the other 

Kaplanksy test problems. We shall also point out that the theorems apply to ele- 

mentary (= first order) classes of modules which are not totally transcendental. 

We thank Gobel and Ziegler for helpful questions on an earlier version of the 

work. 

1.B. REMARK. We use (Nn,N'~,Ntr,gn : n < to) (see 2.5) totally determined by 

(~n :n < ¢o) (and T,R,S). However, we do not use all their specific properties, 

just: 
(a) N,  a bimodule with a distinguished element x tnl . 

(b) g~ is a (bimodule) homomorphism from Nn to N~+I mapping x t~l to x t~+lj . 

(c) Let ~n (M) be defined as 

[h(xt~l) : h an R-homomorphism from N~ to M I . 

(d) There is no R-homomorphism h from N~+1 to N~,xtn+llh = x tnl. 

(e) f l , f ~  are R-homomorphisms from Nn to N'~,xtnlf~ = xl~lf 2, N;~ = Rang f;, 

and 

Ntr = [yfl : y E Nn' Yf~ - yf2 belongs t° l") ~pm(N'~) I 

§2. The diamond construction 

2.1. REMARI(. If yOU want tO deal with many ~'s simultaneously, no change is 

required. 

2.2. CONXEXX AND FACT. (a) R, S rings with unit 1, T a commutative subring 

of Cent R and of Cent S (Cen t - t he  center). A bimodule M is a left R-module, 

right S-module such that (rx)s = r(xs), tx = xt for x E M, t E T, r E R, s E S 

(really we should say an (R,S)-bimodule). T, R and S are fixed here (except in §4). 

K, M, N denote bimodules (or left R-modules). 

Homomorphisms (f, g, h, F),  particularly of R-modules, should be written from 

the right (so composition is accordingly). They are homomorphism of bimodules 

if not said otherwise; an R-homomorphism has the obvious meaning. 

(b) The class of (R, S)-bimodules is a variety. For a homomorphism M~ ~ M2, 
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the kernel Ker F = {x E M o : x F  = 0} is a sub-bimodule of M1, and the image, 

Rang F = {xF: x E Ml }, is a sub-bimodule of M2; F preserves the satisfaction of 

p.e. (= positive existential) formulas. 

(c) If M1 c_ ME (M1 a sub-bimodule of ME) then M z / M 1  = {x + ml :x  E M1} 

is a homomorphic image of ME,X ~ x + M~ a homomorphism, with kernel M~. 

2.3. ASSUMPTION. For some bimodule M* and sequence ~ = (~ , (x )  : n < co) 

of conjunctive positive existential formulas (in the language of left R-modules, see 

below): 

(¢n (M*) : n < o~) is strictly decreasing w h e r e ¢ n ( M ) = l x E M : M ~ [ x ] } .  

[By [Sh54] 8.7 it exists if possibility (1) of Theorem 1.A fails.] 

2.3A. OBSERVATION. ¢~ (M*) is a subgroup of M* as an (additive) group and 

even a sub-right S-module, but not necessarily a sub-bimodule. 

2.4. TRIVIAL DERIVATIONS FROM THE ASSUMPTION. Let 

(m~l  n ) 
~Pn(x) = ( : t Y o , ' ' "  ,Yqn- l )  a ~ x  = E bt, iYi ' 

', t=o i<kf / 

so ap, bl~,i are members of R. 

As we can replace ~ by Aj_<n *t, interchange order of  3 and A and change 

names of variables without loss of generality: k f  = kt, aft = a t, bP, i = bt, i, kt < 

k~+l, m~ < m~+~, and also without loss of generality mo = 1, ao = 1R, ko = 1, 

bo,0 = 1; i.e., ¢,0(x) = 3Yo(X=Yo)  and q, = kmn-1. 

2.5. DEFINITIOI, I ANn CLAIM. (a) Let N~ be the bimodule generated freely by 

{x} U lyi:0 -< i < km,- l }  subject only to the equations la tx  = Ei<k, bt, i y i : l  < 

m~}. When confusion may arise we write xI" l , y]  ~1. 

(b) Trivially: x E ~ (Nn) .  

(c) Trivially: if M is a bimodule, then x* E ~ ( M )  iff for some homomorphism 

h from Nn into M as bimodules, xh = x*. 

(d) By the choice of M* and ~ (and 2.5(c) above): x ~ ~,+1 (Am). 

(e) Let N~, be freely generated by x, Y[,Y'i' for i < km~-I subject only to the 

relations: 

atx = ~_j bl, iY;, 
i<kl 

a l x  = ~ b . "  i, iy i  • 
i<kn 
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Let N~ for ~" = 1,2 be the sub-bimodule of N;, generated by: 

{xl U {Yi: i  < km,,-l} for ~" = 1, 

{ x } O { y[' : i < kmn- l } for ~" = 2. 

Let f~ :  Nn f-~ N~ be the bimodule homomorphism defined by: xf~ = x; Yif~ = 
y;,  y i f2  = y[,. 

(f) N tr = Iz E ~n(N~) :zf~ - z f  2 E f')t ~t(N,~)} is an abelian subgroup of N~ 

(and S-submodule, as At ~t(N;,') is). 

2.6. THE CONSTRUCTION. Here we give the simpler variant, under diamond, 

sufficient for Kaplansky test problems. 

We let IRI + ISI + ~0 < 3` = cf3`, $ c_ {~ < k : c f ~  = g0} is stationary but does 

not reflect, 08, without loss of generality 8* = {c5 < 3`: cf8 = 1%, 8 ~ 81 is station- 

ary too. We define, by induction on ct __< 3 ,̀ M~ such that: 

(A) M~ is a bimodule and has universe 3'~ -< k and a < 3  ̀~ 3'~ < 3  ̀[e.g., 3'~ = 

3,-(1 + a)  where k = (k-)  +] and a < B = "re < ~a. 

(B) ~ < ~ = M , ~ M , .  
(C) a </~ & ot ~ $ = Me is a direct summand of Ma. 

(D) For limit ~ < k, M~ = Ue<~ Me. 

(E) 34o is the zero bimodule. 

(F) If ol is successor ordinal or a ~ $ : Me+l is the direct sum of Me and liMe II 

copies of  N~,N'~ for each n and some others; each bimodule of  power < k 

appears as a direct summand of M~+~ ~Me for a stationary set of such ot's. 

(G) If a = 3'e E 8, ()s gives us Fe, an endomorphism of M~, as an R-module 

and there is P satisfying 

@7~ [P  is a bimodule of  cardinality < k extending Me such that: 1 

[ (i) if/~ < o~,/~ ~ 8 then M~ is a direct summand of P, | 
/ 

(ii) Fe cannot be extended to an R-endomorphism of P. j 

Then Me+l satisfies @~t~+~. 

Otherwise, act as in clause (F). 

NOTE. There is no problem in carrying out the construction: for condition (C) 

we use "$ does not reflect". 

Now let Mx =:  U~<xMe, so Mx is a bimodule with universe k. 

2.7. MAIN FACt. Suppose Mx F Mx is an R-endomorphism of Mx (i.e., en- 

domorphism as an R-module). Then for some ct < X, o~ ~ $ and n (*) < 00, we 

have: 
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(Pr)~(*)[F] i fh  is a homomorphism from N.t .  ) to M× (as bimodules), then 
for every / < w we have: 

(xh)F E M~ + ~/(M×) + Rang(h).  

PROOF OF 2.7. Suppose that the conclusion fails. So for every o~ < k and n < 

w there is a counterexample h~., : N~ --, M× to (Pr)~,[F], the failure involving 

l (a,n) < oo. Now 

C =:  {/~ < k : F maps M~ into M~, M~ has universe ~ and, for every a < 6, 

n < w, we have: Rang(h~.,) c_ M~] 

is a club of k. 

So for some a E 8, o~ is an accumulation point of C \ $  and (>8 gives us, for a ,  

F~ = F ~ ~ (remember { b < k : b ~ 8, cf ~ = ~0 } is stationary). 

We shall construct P satisfying @7~. 

This suffices; why? By clause (G) of 2.6 we know that @~ holds; on the mcr+l 

other hand there is/3, a </3 < k such that F maps M~ into M~, so (by condition 

(C) from 2.6) there is a projection F '  from M~ onto M~+I and (F  t M~+l) o F '  is 

an R-homomorphism from M~+I to Ms+l, contradicting (~)~ mc¢+l " 

Construction of P. Choose o~ such that 

0 = iX0 < O~1 < ¢X2 < ' ' "  , 

ct, E C \ $  for n > 0, 

Rang(h~,. ,)  c_ M~,+~, 

n<oJ 

For n > 0, as o~. E C \ 8  we know that M~. is adirect  summand of M~.+~, so let 

M~.+, = M~. G K~. Let Ko = M ~ .  So M~ is the direct sum of [Kn : n < w}. Let 

pO = ~.<~,K~; i.e., the set of elements o f P  ° is [(z~ :n < w) :z~ E K . ] ,  addition 

and multiplication-coordinatewise, but we identify (z~ :n < w) with ~.<kz~ 

if A._>,zn = 0; so M~ is a sub-bimodule of po. For each n > 0 we know that (as 

h~., ~ is a homomorphism from the bi-module N~ to the bi-module M~.+, and by 

the definition of N . - s e e  2.5(a)): 

(or) alxh,~,,,n = ~i<knbt, i(Yi)ho~,,,n for 1 < m~, 

(~) xh,~..,,Fq~ M,~. + Rang(h~.,~) + ~t(,~.,,,)(M~,.+~) 
[note: the first two summands are sub-bimodules; the third, not necessar- 

ily, but is an additive subgroup]. 
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Let g* be the projection from M~.+I onto Kn, so 

g* t K.  -- identityx., g.* t M,~. = zero 

(note: g* is a homomorphism of bimodules). 

Clearly by (a)  : 

(a) '  atxh,~.,.g* = ~ i < k n  bt.iYih~,.,,,g* for 1 < m..  
Now by the choice of g*, as Rang h~.,. E M~,.+,: 

('y) xh~,.,. - xh,~.,.g* E M,~. and 

(6) Yih,~,,, n - Yih,~,,,ng* E M,~,,, 

(e) Ms. + Rang(h~.. .)  = M~. + Rang(h~.,.g~*), 

hence clearly by (/3) (and the choice of g,~): 

(13') xh,~,,.ng~, f~ M,~,, + Rang(h~.,~g*) + ~ot¢~.,m (M~.+~). 

Let '11 c_ oJ be infinite such that: 

[n < m & n E q.t & m E 'R = l(o~,,,n) < m],  O ~ 'U. 

We define x",y['  (n , i  < ~o): 

for n ~ °tt: y f = O E K . ,  

x" = 0 E K.;  

for n E '11: YF = yih,~..,,g,~ for i < km._l, 

YF = 0 for i >_ kin.-1 (but < o~), 

x"  = xh,~.,.g,7. 

Now we define in p0 some elements: 

x* = ( x  n:n  <_ o~), 

Y* = (Yr  : n < o~), 

x *J = x * -  ~ x " ;  i.e., x *J = (0,0 . . . . .  O,xJ, x J + ~ , . . . ) ,  
n < j  ~. 

r 

0 . . . . .  j -  1 

- -  = . 0 1;j  l~j+l y7 'j = y/* ~ y f ;  i.e., y/*,i (0,0 . . . . .  .~,j~ . . . .  ). 
n < j  k 

0 . . . . .  j -  1 

We can check that by (~)' [and for n ~ '11 trivially]: 

(or)" K n ~ [alx n = ~_ji<ktbt, iy  n] when 1 < m.;  
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hence 

( a ) "  pO ~ a t x . d  = ~,i<ktbl, iY*,j when 1 < mj. 

Now we define P: 

P is the sub-bimodule of p0 generated by M~ U [x*,y* : i < od. 

Note that for i , j  < o~, x * J , y ~  "j belongs to P. 

Suppose F ÷ is an extension of F~ = F t M~ (which is an endomorphism of  

M~ as an R-module) to an endomorphism of P (as an R-module). Therefore 

( x * ) F  ÷ E P, so for some i(*) < o~, (ri: i < i(*)) from R,  (si: i < i(*)) from S: 

(1) x * F  + - ~ - ] i < i ( . )  riY* S i E M~ (remember y~ = x*). 

As M~ = Y,t<~ Kt, for some n(*)  < o~ and some z E ~t<nt . )Kt  = M,,~.> we have 

(2) x * F  + - ~i<i(.) riY*S i = z. 

Without loss of generality n (*) E 91 (as we can increase n (*), '11 c_ o~ infinite). 

Let m(*)  = Min [q l \  (n(*)  + 1)]. We know that 

(3) x *'¢n(*)+1) = x *  - E l x " : n  < n(*)  + II = x *  - Y ] n < m ( * )  X n  (as n ~ 91 = 

x" = 0) satisfies ~'m~*)(--) (in P! ,  by ( a ) " )  hence also x*,~"<*)+~)F+ = 

x * F  + - ~ [ x " F : n  < n(*)  + 11 satisfies it inP.  

Let Z.(.)  be the natural projection of p0 onto K.c.): (( Vo, v~, vz . . . . .  ))Z.~.)  = 

v.~.); so Z.(.)  extends g,~¢.) and 

(4) x*'~"~*)+~)(F+Z.<.)) = (x*F+)Z .~ . )  - ~ [ ( x " F ) Z . ~ . ) : n  < n(*)  + 11. 

The left-hand side satisfies ¢m<*)(-) as an R-endomorphism preserves such satis- 

faction, hence also the right-hand side satisfies ~0m¢.)(--). NOW for n < n(*) ,  

x" E M~.+ 1 hence (as o~+~ ~ C) x ~ F  E M~.+j c_ M~.~.~ c Ker Zn~.), therefore 

x"FZ.~. )  = 0. So the right-hand side of (4) is equal to ( x * F + ) Z ~ . )  - (x"~*)F)Zn(.) .  

Now as Z~(.) extends g*~.) and x ~ * ) F  E M~.~.~+,, clearly 

(5) (x"~*)F)Z.~.)  = (x"~*)F)g*~.). 

So the right-hand side of the equation (5) is equal to ( x * F + ) Z . t . )  - (xn(*)F)g*(.) ,  

hence (see line after (4) and remember Z is a homomorphism into K.(.)):  

(6) Kn(.) ~ ~Om~*)[(x*F+)Z.(*) - (xn~*)F)g*~*)]. 

So 

(7) x*F+Z.~ . )  - (x"(*)F)gn( . )  E ~Om(.)(Kn(. )) ~_ ~pm(.)(M~,,, .)+,). 

By choice of g*~.) we have 

(8) x " ~ * ) F -  (x"~*)F)g*~.) ~ M~.~., 

and by the choice of n (*)  (and as Z.~.) is a homomorphism of bimodules and 

z ~ M~.~.~, hence z F  + = z F ~  M~.~.~) : 

(9) (x*F+)Z.~ . )  = ( x * F  + - 0 ) Z . I .  ) = ( x * F  + - z ) Z . ~ . )  = (~i<i~.)riy*si)Z.~.) 

: Xi<i(*)ri(yTZ.t.))si = Y~i<i<.)(riY~'t*))si 

= Y,i<i<.)riYi(h~.~.,,~<.)g*<.))si E Rang(h~(., ,~{.)g*t.)) 
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100 S. SHELAH Isr. J. Math. 

[for the second equality note that z E M~.c.~ hence zZnt.) = 0 as Z t M~.¢.) is 

zero]. 
As g*~.~ is a homomorphism with domain M,,.~.~÷, such that (¥y E M~.~.~÷t) 

[y - yg*(.) E M~.~.~] we have (remember: x E N.(.) and x n = xh~.~.~,.~.)g*~.)- 
see choice of the x"'s): 

(10) xh~.c.~, .( . )F- xh~.,.,,n~.)Fg*~.) E M~.~.~ 

and (as F maps M~.~.~ into itself) 

(11) xh~.~.~,.~.)Fg*~.) - xh~.~.~,n~.)g*~.)F ~ M~.~.~, 
and by the choice of the x"'s 

(12) x n~*~ = xh~.~.,,.~.)g*t.); hence 

x"~*)F = xh~.~.~,.~.)g*~.)F. 
By the last equations [first (10), (11), (12), then (8) and then (7) + (9)]: 

xh~.~.~,n~.)F ~ (x"~*))F + M~.~.~ = (x"~*)F)g~.) 

~_ M~.,., + Rang(h~.,.,,n~.)) + ~0m(.) (M~.,.,+,) 

so we get a contradiction to the choice of h~.~.~,.~.). 

Hence we have proved 2.7. 

2.8. DEFL~mOn. (1) H D S ~ ( h , N )  means: M1,M2,Nare bimodules, MI _CM2, 

h a (bimodule) homomorphism from N into ME and, for some bimodule K, ME = 

MI ~ (Rang h) G K. 
(2) IDS~tlZ(h,N) is defined similarly but h is one to one. 
(3) (Pr-)~, t*) [F] is the following apparent weakening of (Pr)~ t*~ [F] (speaking 

on (M~ : a _< k)) : 

i f  I D S ~ ( h , N ~ . ) ) ,  a < B < k, B ~ $ 

then for each / < o~ we have: 

( x h ) F E  M~ + (Rang h) + ~ot(M×). 

2.9. FACT. (1) If IDS~t~(hI,N) and ho is a bimodule homomorphism from N 

into MI, and h =: ho + hi, then I D S ~ ( h , N ) .  

(2) If Mo c_ Ml c_ M2 are bimodules, Mo a direct summand of M~, I D S ~ ( h , N )  
then IDS~o~(h,N). 

(3) If (Pr-)~ t*)[F], a _< ~3 < ~, F maps M~ into itself, ot ~ $, ~ C $ then 

(Pr-)~ t*) [F].  

(4) If (Pr)~ t*)[F] then (Pr-)~ t*~[F]. 

PROOF. Direct checking. 
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2.10. CrA~. Suppose (M~ : o~ ___ 3,) and $ satisfy (A)-(F) of 2.6 (but not nec- 

essarily (G)!) and F :  Mx--, Mx is an endomorphism of Mx as an R-module and 

(Pr-)~c*)[F] holds (see 2.8(3)) and c~ ~ 8. 
Then for some z E tr Nn(,) ( o n  Nt(,)tr see 2.5(0) we have: 

(Prl n(*) )~,z [F] if h is a homomorphism from N.(.) to Mx 

then ( x h ) F  - zh E M~ + n ~ot(M×). 
I<to 

PROOF OF 2.10. 

Step a. We shall prove: if I D S ~ ( h , N . ( . ) )  for some ~ E (o~,3`)\$ then x h F E  

M,~ + h ( N )  + nt~ot(Mx). 

Assume o~ </3 ~ 8, Ma = M~ • N @ K (bimodules direct sum), h an isomor- 

phism from Am(.) onto N (i.e., IDS~(h,Nnt . ) ) .  Choose 3/>/3 such that Fmaps  

M~ into itself and -y ~ $, so M e is a direct summand of My hence M~ = M,  e 

N ~) K'. Let Z be the projection from My onto K' with kernel M~ O N (as bi- 

modules); we know that for each l 

( x h ) F  E M~ + N +  ~pl(Mv). 

Clearly for some v E M~, u E N and w E ~ol(Mv) we have x h F  = v + u + w, 

hence 

xhFZ  = vZ + uZ + wZ = 0 + 0 + wZ = wZ 

SO 

xhFZ  E (~o,(M.y))Z c_ ~o,(Mv). 

As this holds for each 1 

xhFZ  E N~ol(M~) c A¢,(Mx). 
I / 

So (xh )F  = [(xh ) F -  ((xh )F)Z]  + ( x h F ) Z  E (M~, (~ N )  + nt<,~ ~ot(Mx) = M~ + 
(Rangh) + nt<~ ~t(Mx). 

Step b. Assume that for ~" = 1,2, ~ < fir ~ 8, fl~- < 3 ,̀ Met = M~ • Nr <~ K s 

(bimodule direct sum), h r is an isomorphism from Am(.) onto N~, zr E Nnt,) such 

that [xh~F - z thr  E M~ + nt<~ ~ot(Mx)]. Then (in Nn(.)): 

Zl - zzmod n ~t(Nn(,)). 
I<~ 
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We choose/3 ¢ g,/3 >/31,/3 >/32,/3 < ~, such that F maps M e into M e. Let N~ 

be isomorphic to N.(.)  such that Me+ ~ is the direct sum of M e , N ;  and some oth- 

ers (just remember (F) of 2.6). 

Let h3 be an isomorphism from N.(.)  onto N ;  and z3 E N.( . )  be such that 

xh3F - z3h3 E M~ + n ~ot(Mx) 
I<w 

(exists by stage a). 
It is enough to prove z3 - z~ 

symmetry it is enough to prove 

N ;  Q K. Let N~ = { Vhl - vh3 

and z3 - z2 mod[nt,p/(N~(,))  ] in Am(,); and by 

Z3 ------ Z l .  Clearly for some K, Me+l = M~ • N~ G 

: v E Nn(,) } and define h4 : AT,(,) ~ M e +  1 by 

o h 4  = V h l  - vh3. 

Clearly N~ is a sub-bimodule of  Mx, h4 an isomorphism from N.(.) onto N~ and 

M~,+I = M,, (~ N~' O N~ e K. Now modulo M~ + At<o, ~ot(Mx): 

(*) (xh4)F = (xh I - 

Now by step a: 

(*)1 

So 

(*)2 

xh3)F = x h l F -  x h 3 F -  Zlhl - z3h3. 

(xh4)F E Rang(h4) + (M~ + n ~°t(M×)) 

z lhl  - z3h3 E Rangh4 + (M~ + (') 

By (*)2 and the definitions of h4, for some v E Nn(.), 

(Zlhl - z3h3) - (Vhl - vh3) E g u  + n ~ / (gx) ;  
I<w 

i.e., ( z l  - v ) h l  - (z3 - v)h3 E Ms + nt<,~ tpt(Mx). So for some y E M~ we have 

(Zl - v)hl - (Z3 - v)h3 - y E Ct(Mx). 

But Ms+ 1 = M~ @ N ;  0) N~' G K and n1<0, ~ot(Mx) n Ms+ l = nt<0, tpt(M.r+l), 

so as (Zl - v)hl - (z3 - v)h3 E N ;  (~ N ; ,  without loss of generality y = 0. Also 

f') ~ot(M~) n (Nt ® N;) = f') ~ ( N t  ® N;) 
I < ~  l<w 
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we have 

Now in N~' @ N~' this implies for ~" = 1,3 

i.e., z r - v E n teRNn( . ) ) .  Hence also (in Nn(.~) 

z l  - z3 - -  ( z l  - v )  - ( z3  - v )  ~ A e ~ ( N . ~ , ~ ) .  

So z~ - z3 E At ~,~(N~c.)); i.e., we finish step b. 

There is z E N.~.) such that, if h is a homomorphism from N~.)  into Step c. 

M×, then 

xhF - zh E M~, + (')~Pt(Mx), 
I 

By stage b there is z E Nnt.) which satisfies the above requirement when h is as 

there. Suppose ho is a counterexample. Choose/~ ~ 8,/3 > a, F maps M e into M e 

and Rang(ho) c_ Me" Let hi be an isomorphism from Nnt.) onto some N~ such 

that Ma+l = M e ~) N~ 03 K for some K. So 

x h l F  - Zhl E Ms + ~ ~ot(Mx). 
I<w 

Let Nnt.) --~ Mx be defined by 

vh2 = vht - vho. 

Easily h2 is a bimodule homomorphism and, by the assumptions on N~, h~ (direct 

sum isomorphism), h2 is an isomorphism from N,<.) onto N~ =: Rang(h2), and 

Me+l = Ma t~) N ;  ~) K. 

So by step b, x h 2 F -  zh2 E Ms + (]t~o/(Mx). But 

(xh°)F = (xh' - xh2)F = x h l F -  xh2F E zh' - zh2 + ( M'~ + O 

as required, so we have proved z as required exists. 
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Step d. z E Ntrt.) (z from step c). (N~t~.) is defined in (f) of 2.5.) 

PROOF. Z E Cn(.)(Nn(*)) is very easy. 
Let h :N~(.) -~N~ c_ M~+~ be an isomorphism (onto) such that, for some sub- 

bimodule K, M~+l = M~ @ N~ ~) K [see 2.5(e) for definition of  N~t.),f~(, ~ and 

condition (F) of 2.6]. So 

fln(,)h f2(,)h 
Nn(.) ' Mx, N#(.) ' Mx 

are homomorphisms, so for ~" = 1,2 

(x( f~( . )h))F- z(f~(.)h) E M~ + n Ct(Mx) 
I<w 

and the conclusion follows. 

2.11. DISCUSSION. (a) Now rPrD'(*)[F]  (from 2.10) is almost what is re- 

quired, only the "error term" M~ is too large. 

(b) However, before we do this, we note that for the solution of the Kaplansky 

test problem this improvement is immaterial: we just divide by a stronger ideal, 

i.e., we allow one to divide by a submodule of bigger cardinality. We phrase our 

conclusion more clearly before we proceed. 

2.12. DEFINITION. (I) For any n < o, z E N~ t~ and bi-module M, we define 

H ~  = nH~.  

H ~  is the function from the abelian group ¢~ (M)/N~<~ ~ ( M )  to itself defined 

by: 
if h is a homomorphism from Nn to M, then 

(xh + f~t ~Pt(M))H" = zh + n 

(2) z is called n-nice if (z E N t~ and), when h : N~ ---, M is a homomorphism, 

rn > n, M ~ ~om(xh), then M ~ ~om(zh). 

2.13. CLAIM. (1) For n, z, M as in 2.12, "H~t is really a single-valued function 

and an endomorphism of the abelian group ~n (M)/nt<~ ~'t(M), so the value de- 

pends just on z + f")ltPl(Nn). Also if Zl,Z2 ~ N tr, Zl -- Z2 ~ nt<~ ct(N~) = for 

some R-module M, ~H~ ~ #H~ (e.g., M = N~). 

(2) If M1,M2 are R-modules, h :MI --, M2 a homomorphism, then: 

(i) (~t(Ml))h C ~I(M2) , 
(ii) For n < 00, we define/~: for x E ~#(M) we let 

(x + t~<~(Pt(M'))h =: xh + N 
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h is a homomorphism from ~on (Ml)/f ')t et(M1 ) into ~,, (M2)/f')t ,Pl(M2) 

(as abelian groups). We denote/l  by h ~ ~on (MI)/Ot<,o ~t(M1 ). 

(iii) If n < w, z E N tr, M1 and M2 are bi-modules, then 

h = h .  2. 

(3) If n < m, z E N tr is n-nice, then for some y E N~ for every hi-module M: 

mH~4 = nH~ t (~m(M)/tO ~t(M) ) . 

(4) Suppose: 

(i) ¢(x,y) is a p.e. formula in the language of  hi-modules, logic-~x.~ .  

(ii) ~ , (x)  ~ (3y)¢(x,y), i.e., this holds for every x in every bimodules. 

(iii) ¢(x,y) -, ~,(x) & ~,(y)  (i.e., as in (ii)). 

( iv)  ~/ (x , y  1) & ~ ( x , y  I ) --~ ~ t (Y l  -- Y2) f o r  l < o) (i.e., as in (ii)). 
Then for some z E Ntr: 

, n ( )¢,z for every bimodule M: 

(so x,y ~ ~,(M)) I . 

• n (5) For every z E N tr for some ¢(x ,y) ,  (i), (ii), (iii), (iv) and ( )¢,z holds. (In 

fact, the formula is first order conjunctive positive existential.) 

(6) For every n < ~0 and zl,z2 E Ntn r for some z3 E Nntr: for every M, " H ~  = 

nH~ * "H~; and z4 = zi :# z2 is in N t~ and satisfies, for every R-module M, 
"n~  = nH~* - ' H ~ .  

(7) If  z E N t~ and "Hf% is one to one and onto (i.e., from ~,(N,) /AI~t(N,)  
onto itself) then for some z' E N t~ for every R-module M, nH~ is the inverse 

of "H~. 
(8) In (4), (5), (6), (7) we can start with S = T = Cent R so ¢ is the language of 

R-modules, and the parallel result holds. 

PRoov. Left to the reader. [For (6) and for (7) use (5) and then (4).] 

2.14. DEFINITION. For an R-module M let: 

(1) End(M) = ring of  endomorphisms of  M. 

End'~'n(U) = [[h ~ ~'n ( U ) ] / A t  ~o#(M) : h E End(M)] .  
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End~<'~(M) = [[h I ~ o n ( M ) ] / n t < ~ o z ( M )  E EndO'n(M): for some A ~ M, 

IZl <;~ 

and Rang h __ Ix + n t e t ( M )  :x E ~on((A)M)}]. 
E n d ~ l ( M )  is the direct limit of (End~,)(M) :n < o~) with the natural 

n~/n mappings ,I,c<×~[Ml from End~,~(M) to E n d ~ ) ( M ) .  

(2) B ~ ( M )  is ~on (M)/AI ~ot(M) expanded by the finitary relations definable by 

p.e. formulas (say in £ = ~3~21Rl÷lsJ÷~o)+,~) in nM (so actually even if we 

use this for a bimodule M, it counts only as an R-module). 

(3) + B ~ ( M )  is defined similarly, but p.e. is replaced by: preserved by direct 

sums. 

2.15. FACT. (1) In 2.14(1) all are rings into which (if M is a bimodule) S is 

mapped naturallyt; End~, is a two-sided ideal of E n d ~  if X </~, End<~'l~Ml÷ (M) = 

End~.~(M). 
(2) If Ml ,M2 are R-modules, h a homomorphism from M~ to M2 as R-module, 

then h induces a homomorphism from B ~ ( M I )  into B~(M2) naturally. 

(3) For a bimodule M , z  E N t~, the function nH~ is definable by a p.e. formula 

(this is 2.13(5)). If (in Nn) z E ~<km.-~ Rye, the p.e. formula is in the language of 

R-modules. 

The rings d E n ( d E )  defined below are derived from the ring of R-endomor- 

phisms of bimodules which we have not discarded. Note 2.13. 

2.16. DEv~rrIoN. (1) Let D E  n be the following ring; its elements are the (for- 

mal) operators nHZ for z E Nt~: 

(a) nHZ~ = nHZ2 iff Zl - Z2 E n t ~ o t ( N n ) .  

(b) nHZl +_ nHZ2 = nHZ'+-z~. 

(c) nHZ~ * ~H z2 = nHZ3, if for each bimodule this holds (z3 exists, by 

2.13(6); unique (mod At ~l(Nn)), by 2.13(1)). 
(d) The zero is nil°, the one is nHX ( D E  n is a r ing-as  it is embedded into 

the endomorphism ring of the ~ n ( N ~ ) / N t  ~ t (Nn)  as an abelian group). 

(2) D e  ~ = {~H z E D E  n : z  E ~,,~Ryi] is a subring o f  D E  n. 

(3) d E  n = {nHZ ~ D E  n : nH~t is an endomorphism of B ~ ( M )  for every bi- 

module M}. 
dE~ = [nHZ : z E N t~ and z is n-nice}. 

(4) de n =: D e  ~ n d E  ~, de~ d~=f D e  n n dE~.  

(5) d e n ( R )  is de n when we choose S = T = Cent(R); similarly for the others. 

~For each s ~_ S, M a bimodule,  s defines an endomorphism of  M as an R-module:  x ~ xs; now ap- 
ply 2.13(4). Is it an embedding? Not necessarily, e.g. if ~ (x) is "x divisible by z n ' ,  if s = 2nsn E S for 

each n, then s is mapped to zero. 
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2.17. CLAIM. (1) DE n is a ring, Den, dE n subrings, dEf  is a subring of  D E n 

extending dE n (all have the unit 1 = nHX and zero nil°, and extending T). 

(2) De n , dE n commute, hence de n is commutative. 

(3) There is a natural homomorphism from dE n to dE n+l (n < co), the direct 

limit is denoted by dE. Similarly for dEf ,  dE 1 . Also S is naturally mapped into 

dE n which is naturally embedded (i.e., by the identity map) into dEf;  the diagram 

commutes. Similarly de n is naturally embedded into def.  

(4) ¢ n ( M ) / n l ¢ t ( M )  is naturally a module over D E n and it is naturally a 

(Den, dEn)-bimodule (with de n playing the role of  T). 

The following lemma says that, e.g., in the module we constructed in 2.7 (see 

2.10) we have some control over End(Mx); note that it only says it is not too 

large, but we have the freedom to choose the ring S in order to make End(Mx) 

have some elements with desirable properties. 

2.18. LEMMA. Suppose ( M ~ : a  < X) satisfies (A)-(F) of  2.6, M =  Mx and 

(*) for  every endomorphism F: Mx --+ M x f o r  some n < o~, z E N tr, a E X\$ we 

have (Prl)~,z [F] .  

Then: 

(i) I f  (Prl)~,z[F] then nH~t is an endomorphism o f  B~(M) .  So as each Nn is 

isomorphic to a direct summand o f  M e complimentary to Ms for  c~ < ~ in 

X \$ ,  z is n-nice; i.e. nHZ E d e f .  Also as, e.g., "every ~(~),  a p.e. formula 

in ~ which has a model, has a model  which is a direct summand o f  M" ,  

clearly necessarily nHZ E dE n. 

(ii) I f  (Prl)~,z[F] and F is an automorphism o f  M then nH~4 is an automor- 

phism o f  B~(M)  and even o f  +B~(M) [ we can use 2.13(7)]. 
(iii) End~,~(Mx)/End~<'~(Mx) can be embedded into the ring dE (see 2.15, 

2.16(3)); moreover for  every subring ~ o f  End~'~(Mx)/End~<'~(Mx) o f  

power < X, for  some club C o f  X, i f  t~ E C \ $  is large enough, then ~ is em- 

bedded into End~'~(M×/M~) 

(iv) Moreover, End ~'~ (M×) = Un<~En, En - En+l, 

En = { ~" '~(F  t ~n/Nt ~/) : F E End(M) ,  and there are zn (F) E N iv, 

an(F)  < X such that (Prl)~IF),z~IF I (F)}, 

let n ( F )  = M i n [ n . F E  Enl; 

z , ( F )  is unique modulo 0 ~t(Nn). 

(v) En is a subring o f  End~,~(M) and the mapping F ~ nHZ~<F) is a homomor- 

phism f rom 
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(vi) 

I F  ~ / l ~ t  ~t: E End(M) (Prl)~tp).z~tp) 
L 

F and 

for some c~(F) < k, zn(F) E Ntnr 1 

intodE ~ with kernelEnd~(M);  i.e. [F E End~'~(M): zn(F) E At ~t(Nn)}. 

The ring S is naturally mapped into EndR (Mx), for each ~ <_ o~, there is a 

natural homomorphism from EndR(Mx) to End~'~(Mx) which, for ~ < o~, 

has a natural mapping to dE. (So S is naturally mapped into dE.) 

§3. Reducing the error term 

3.1. REVISED CONTEXT. (1) Let gn :Nn ---' Nn+, be the homomorphism with 

x[n]g = x[n+11, y]nlg = ytn+l] for i < kmn-l. Let gn, m = gngn+l" "'gm+l for n __. 

m<o~. 

(2) Let 3£ be a family of bimodules, each of power < X, and 3~ has _< h mem- 

bers, and Nn, N,~ E 3£ for each n < o~. We call 3£ trivial if 3~ = {Am, N~, : n < o~}. 

Let clis(3C) be the class of  bimodules isomorphic to some K E 3£. Let c1(3£) = 

clds(3£) be the class of bimodules isomorphic to a direct sum of bimodules from 

Clis(3£ ) (SO clis(CI(3C)) = C1(3£)). A 3C-bimodule means a bimodule from clis(3C). 

We say M1 is a 3£-direct summand of M2 if Mz = MI • K, K E c1(3£). 

(3) We now redo §2. A bimodule of cardinality < ~, is usually replaced by a 

cl(3£)-bimodule. In particular, in 2.6: 

In (A), Ms E c1(3C) for o~ < h. 

In (C), Ms is a cl(3£)-direct summand of Ma. 

In (F), the other bimodules are from 3£, and "each bimodule" is replaced by 

"each bimodule from 3£" (so we have _ ~ assignments). 

In Definition 2.8(1), K E c1(3C). 

In 2.9(2), Mo is a cl(~E)-direct summand of M1. 

In the proof of 2.10: check no harm is done. 

In 2.16(3), "for every 3£-bimodule". 

In 2.18(i), ~H z E dE n remains; ~H z E dE n = we use the new definition of dE n. 

3.2. CLAIM. For any unbounded ql c_ o~, letting i(n) = iat(n) = the nth  mem- 

ber of ~ ,  there are bimodules P~,  Pat,n and h,~ : N~tn) ~ P'u embeddings for n < 

and x E P~t such that: 

(a) Rangh,~ n ~-Jm~:n Rangh,~ = 10}. 
(b) For each n < w we have: P~t = (Zt<n Rang ht*) (~ Kn,Kn is a direct sum of 

copies of Nm's (and really of Ni¢t),! >- n);  let Pat.n =:  ~t<n Rang ht*. 
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(c) ~n<~ Rang h,~ is not a direct summand of Pat; moreover, there are x E Pat, 

x ~ ~n<~Rangh* + n ~ ( P a t )  and f:Ni(o) ~ Pat a homomorphism, 

xt"°)Jf= x, such that, for each n for some 

x~ =:  Y], (xtiU)l)h7 E ~] Ranght*, 
I<n I<n 

x - x~ E ~oi(m (Pat) and (x Ei(°)l ) f  = x, 

P a t = ( ? R a n g h * U R a n g f ) .  

(d) Pat is the direct sum of copies of  the Ntis. 

PROOF. Let Pat be @i<~,RangfT, f*  :N, ,  o oPat an embedding, i(n) the nth 

member of '11. (i.e., Pat is the direct sum of the N,,'s for n E ~t so (d) holds). We 

define *" h~. N,-(,) --+ M by induction on n (on g,,.,+,, see 3.1(1)): 

th* =: tf* - t g i ( n ) , i ( n + l ) f ~ +  1. 

Clearly h* is a homomorphism. As Pat = Rang f *  (~ ( @ t , , R a n g  f [  ), clearly h* 

is an embedding. 

Now we shall show that for each n, Pat is @t<,  Rang h* ® (~t_>, Rang f / .  

Why? Because for each n, 

Rang f,~ @ Rang f*+ 1 = Rang h,~ (~ Rang f*+ 1 

(so 3.2(b) holds as well as 3.2(a)). Next we shall show that x =:  (x ~"°)1 )f~ is as 

required in (c) (this implies the first clause of  (c)): 

x = (x ti(°)l )f~ = (xti(°)l)h~ + x(i(°)lgi(o),io)f~ 

= (X l'(°)l)h~ + (X IiO)l)f~ 

= (X Iil°)l )ho + (x ti(')l )hf  + (x ti(2)l ) f ;  

= Z ( xli(l)))h[ + (x ti(n)l )f*. 
I<n 

The first term is in @z<~Rang hi and the second is in ¢i(m(Pat). 

3.3. DEFINITION. Suppose k = cfX > IR[ + IS[ + I% (>  and not > ,  just for 

simplicity), $ c_ {6 < X: cf8 = ~o} stationary and non-reflecting, [b < X : cf6 = I%, 

6 ~ $] stationary. 

We say (M~ : a _< ~,) is very nicely constructed for $ and 3( (or for ($ ,~) )  if: 

(A)-(F) of  2.6; only in (C) is M,~ a cl(X)-direct summand of M~ and in (F) the 
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direct summands are from clis3£, and for each M E 3£, for stationarily many ot E 
~ \8 ,  M appears as one of  those direct summands; (G) for 5 E 8, M~+I is defined 

either as in (F) or as in (**) of  (H) below: 

(H) i f ( * ) A  c_ ~ \$  is unbounded, for ~ E A  and n E '11 we have ~ </~.(ot) E 
~ \$ ,  ID~M~- ~ ~'M~ (h~,n,N.)  (see Definition 2.8) and ~ c w is infinite, 

then (**)  for some ~i E 8, we have (o~. : n < oJ) such that: 

(i) c~. E A, ~ . (ot . )  < o~.+i, 6 = U ~ < ~ + l .  

(ii) M~+l is defined as in the proof of  2.6, i.e., M~+I is P~ .+. M~, N~ = 
N~ 

~...eat h~ . . . (N . ) ,  where (using 3.2's notation) P~ is isomorphic to 

P~u by an isomorphism h6 such that the diagram (n = i (m)  = mth 

member of  qt) 
hc,.,n 

IV. h~., . ( N .  ) 

h~ 1 1 'd 
P~t h, ' P~ 

commutes and P~,, = (P,u,,)h. 

So in M~+l, P~ OM~ = N L  

Now 3.4, 3.5 below tell us we do not lose in comparison with §2 (and 2.13-2.18 

apply), only the error term is smaller; for, e.g., countable R, S it disappears (see 3.6). 

3.4. LEMMA. (1) I f  (Ms  : a <- h)  is very nicely constructed for  $ and 3£ then 

for  every R-endomorphism F o f  Mx, for  some n( * ) < w, a(  * ) ~ ~ \$ ,  we have 
- n ( * )  ( P r ) , ~ . ) [ F ]  (see 2.8(3)). 

t~ (Prl)~l* I z[F] (see 2.10). (2) In (1) in addition: for  some z ~ N,~.) ,  

(3) In (1) in addition: for  some L* = (L* : n >_ n (*)) ,  a decreasing sequence o f  

abelian subgroups o f  ~o,( . ) ( Mx ) , L* ~_ ~o,,(Mx) (depending on F, o f  course), we 

for  every n > n (*) and ( bi- ) homomorphism h : N .  ~ Mx, we have ( xh ) F -  

z . h  E L* + (']l~Ol(Mx) where z .  = zg.~.),. ,  and L* c_ ~o,,(Mx); 

(ii) L* is compact for  (~ ,n(*) )  in Mx; i.e., if vl E LT for  1 > n( * ) (bat l < w) 

then for  some v* E L*(.): 

for  every n >_ n (* )  v* - ~ vl E ~.+i (M×). 
l=n(*) 

(4) In (3) in addition we can have: L* is (3£,~)-finitary in Mx; which means 

for  some m > n (* ) ,  L *  is (3£,~o)-finitary in M×, which means L*  c_ ~ai<nK i + 

At<~ ~oA Ma), each Ki isomorphic to a member o f  3£, and ~i<. Ki a 3£-direct sum- 

mand o f  M ~ f o r  o~ large enough E ~ \$ .  

have: 

(i) 
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(5) If, for  N E  3£, there is no non-trivial L (which means AmLm ~ n l ~ t ( N ) )  

compact for  (~ ,n(*) )  in N,  then we can use L* = O, i.e., AnL~* = [0I t  [occurs 

for  countable R, S and usually]. 

(6) In (2) we can add the parallel of  2.18, replacing End~<'~(M) by 

Endff~'(M) = [h E End~'~ : the range of  h is compact for  ( ~, n ) in Mx]; 

similarly ~, ~ Endcot • 

PROOF. (1) Same proof as for 2.7 (using 3.2, of course). 

(2) By 2.10's proof (the change in the definition of IDS causes no problem). 

(3) Using n(*) ,c~(*) ,z  of (2) we let, for every n _> n(*)  (but < co), 

L,~ =:  { x h F -  zg~t.),~h:h is a bimodule homomorphism from N~ into M×]. 

Let zt = zg~(.),l E Nt when n(*)  < 1 < o~. By (Prl ~(*) r ~  - ,~( . ) ,z t r ]  we know that 

L,~ _c M~(.) + A~'I(Mx) 
l 

and easily L*(.) is an additive subgroup of ~n(.)(MD. 

Clearly (i) holds (by definition of L*), and let us prove (ii). Suppose vt* E L~' 

for n (*) _< l < co, so for some ht:Nl ~ Mx a bimodule homomorphism, v/* = 

(xht)F - zthl and let a(0)  < X be such that o~(0) ~ 8, F"(M~(o)) c_ M~(o), 

Rang hi c_ M~(o) and a(0)  > a ( * ) .  

Now note: 

(*) for each n E (n (* ) ,~ )  and B E X\8 for some ~,,/~ < 3' E ~,\8, some K a n d  

some embedding h~,~ : N~ ~ M~ we have: 

M ~ = M ~ ( ~ R a n g h ~ , ~ ( ~ K ,  K E c1(3¢), F"(Mr)  c_M ~ 

and xt~]h.~,.FE (Rang hr, .)  (~ K. 

So by choice of c~(*), x t" lhv , .F  - z .hv, .  ~ f')~<~,~(Mx). 

[PROOF OF (*). For every 3', 3' >/3, 3" E X\$ \ a  (0), let h r : N.  --, Mr+ ~ and K ° 

be such that: h r is an embedding and Mr+ ~ = M~ ~) Ranghv 0) K°; let % > 3' be 

in ~,\$ such that F m a p s  M,~ into M,~; and let, for e(l)  < e(2) < ~,, e(1) ~ $, 

M,(2) = M~(~) ® K,w,,(2~; 

so M,~ = M~ G Ranghr  • K ° Q Kr+l,, ~, and let xtnJhrF = o r + u r + w r where 

u r E M~, u~ E Rangh r and w~ E K ° G K~+l,, . By Fodor's lemma for some v 

1-We may have to increase n(*) .  

Sh:381



112 S. SHELAH Isr. J. Math. 

for a stationary set of 3, E h \ $ \ / 3 \ a ( 0 ) ,  v~ = v; choose 3,(1),7(2) such that: 

%(1) < 3,(2), and 3,(1),3,(2) are in this set. Let 3, = %(2), ha,,, = hvt2) - hvtl), 

K = Ka, v(l ) @ K°(I) @ Kv0)+l,~.(,, @ K%(l),v(2 ) 

® K°(z) O) Ranghv(l) @ Kv(2)+l,~.(2,. 

Now the 3,, ha,., K we have just defined are as required.] 

Let A = { 13 : ot (0) </3 ~ $, 13 < 3. F" (Ma) c_ M a }. We know that for each 13 E A 

for some 3,0 > 13 and embedding ha,. : N.  --, My, , ( . )  above holds. Let h~,t = 
ha, t + ht for/3 E A, l E '11 def {/: n(*)  < / < w}. By 2.9(1), IDS~o(h~,t,Nt,SC) for 

/3 E A, n ( * ) _< / < w. Now apply 3.3(H) and get 8 E $ (and h~ : Pat -~ P~, etc.) as 

there; let 7 < h be such that F"  (Mv) c_ M, ,  3' > 6. Clearly My = M~to) ~ P~ G K 

for some bimodule K E c1(3~) and (h t*- f rom 3.2) by chasing the arrows: 

(**) x l t l h ? h ~ F =  xt t lh~, , tF and zth[h~ = zth~,,,t 

and (by the choice of h'~, t and by the choice of ha, t): 

(***) x t t l h ' , , tF  - zth' , , t  E (xttlh,~,,tF - zth,~,,t) + (x t t ]h tF - ztht) 

= (x[t]h~, , , tF- zth~,,,t) + v? E v; + [') ~i(Mx). 
i<h 

Remember x = xt"(*)lfE Pat (notation of 3.2's proof, so for i ( l )  there we use 

n ( * )  + i).  
Let z' = z f E  Pat (remember zt = zg,,(.).t (for 1 E [n(*),~)))  so noting z is 

n(*)-nice and the construction of Pat for any m E [n(*) ,w) we have: 

m-1 

X-- Z x[l]h; E ~ m ( P a t ) ,  
I=n(*) 

m-1 

z' - ~ z,h? ~ ~m(Pat). 
I=n(*) 

Hence 

rn-I  

xh~ - ~a xtt lhTh~ E ~om(P~) ~ ~om(Mx), 
l=n(*) 

m-1 

z'h~ - ~a zih~h~ E ~0m(Ps) C (Pm(Mx). 
I=n(*) 

m - I  

x h a F -  Y], x t t lhThaF E ~om(Mx), 
/=n(*) 

As F is an R-endomorphism 
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SO 

r n - I  

(xh~F- z'hD - ~a (xttlh~h6 F -  zth?h~) E ~om(Mh). 
/ = n ( * )  

Using a projection Z which is the identity on M,,(0) and zero on K ~ P6, by (**) 

we have (xttlh~h~F- zth~hDZ = v~, so 

m--I 

(xhnF- z 'h~)Z- ~a v~ E Cm(Mx). 
l=n(*) 

Hence (xh6F- z'hDZ is as required. 

(4) By (2) above we can have L:(.) g M~¢.) for some a (* )  < h (without loss of 

generality ~ 8). Now M,, E c1(3£) and use 3.4A below. 

(5) By 3.4B below (and part (4) of  3.4). 

(6) Easy, too. 

3.4A. StrnvAcr. If K = @ietKi (for R-modules), L,  c ,p,(K) (additive sub- 

group), L = (L,  : n(*)  ___ n < oJ) is decreasing and compact for (~,n(*))  in K, 

then for some finite J _c I and m < o~: 

Lm ~ (~ Ki + n ~o/(K). 
iEJ  I<o~ 

PROOF Or 3.4A. If not, choose by induction on 1 >_ n (*), vt,.It, nt such that: 

Jt is a finite subset of L Jr c_ Jr+l, 

V l E L n , \ ( ( ~ K i + O ¢ t ( K )  ) and vtE (~) Ki; 
I \ iEJt iEJl+ 1 

as in the proof of 2.10 it follows that for some nt+l, 

vtq~ (~ gi + ,p,,,+, (K). 
iEJt 

Then find v* E Kas  in 3.4(3)(ii); so for some finite jc_ L v* E ~iesKi ,  and an 
easy contradiction. 

3.4B. SUBFACT. I f L  is compact for (~,n(*))  in K (R-modules), h : K ~ K '  is 

a homomorphism (as R-modules) and 

[xh E ¢/(K')\,Pl+~ (K') ~ ( ]y E K) [xy = yh ^ y E ¢t(K) \¢t+~ (K)]], 

then h"(L) = (h"(Ln) :n) is compact for (~,n(*))  in K'. 
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3.4C. R~MARt~. (1) We can weaken the assumption to: for some H :  w -* 60 di- 

verging to infinity 

l >  n ( * )  & xh E ~ot(K)\,pt+l(K) = ( 3 y E K )  

[xh = y & y E ~on<.)(K) & y q~ ¢~l~t)(K)]. 

(2) If  h is a projection the above condition holds. 

PROOf Or 3.4B. Straightforward. 

3.4D. SUBrACr. If  L c K, K = (~7=1K i and the projection of  L to each K;  

is (3(, ~)-finitary, then so is L in K. 

3.5. CLAM. If k = c f k  > Iel + ISI, 8 _c 1~ < ~,:cf6 + 1%} does not reflect, 

Os then there is (M~ : ct _< )~) very nicely constructed. 

PROOf. Like 2.6. 

3.6. CLAIm If R, S and every N E 3( has cardinality < 2 ~°, then 

(*) for every 5Gbimodule M and Ln c_ M (for n < w), if (Ln : no < n < w) is 

(~,~0)-compact in M, then for some m, Zm c:: Ol<w ~Ol(M). 

3.7. R~.MARr. If (*) of  3.6 holds, then in 3.4(3) we can choose Ln~.) = 0; so 

the "error term" disappears, i.e., for every endomorphism F of  Mx as an R-mod- 

ule, for some m, F P ~Om/f'~l<to ~01 is equal to mH~t×. 

3.8. REMARK. If R, S has cardinality < 2 ~o, we have interesting such 3('s, e.g., 

3£ the family of  finitely generated, finitely presented bimodules. 

PROOf OF 3.6, 3.7. Easy. 

§4. The first Kaplansky test problem 

For this section we make: 

4.1. Hxa, oxt-msis. (1) R is a ring, each ¢ ,  a p.e. formula for R-modules (see 

2.4) and, for some R-module M*, 

(~o,(M) : n < c0) is strictly decreasing, 

(2) ~, as in 2.5 for some 8. 

4.1A. RE~a~K. We could use the ZFC version of  our theorem from [Sh421], 

only. 
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4.2. CONCLUSION. Let X, 8 and R, T, S and @ be as in 2.6, 2.2 and 2.3, respec- 

tively. There is a bi-module M, 

[]MI[ = X = ](p.(M)/I  ~ ~ot(M) [ (for each n) 
/ 1<o~ 

which has few direct decompositions in the following sense: 

(i) If  M = (~i~jMi, then for all but finitely many i E J, 

(ii) Assume Iel  + ISI < 2~°; if M= K~ e L~ for ct < (Igl + ISl + ~0) + then 

for some a < / 3  and n 

9.(K,~) + N,,(M) = 9.(Ka) + N ¢ d M ) ,  
t I 

(iii) Ende"~(m)/End~l'~l+lSl+Ko)+(M)has cardinality _< ]R] + IS I + Ro. 

PROOF. (i) By 3.5, there is (Mi : i <_ X) which is very nicely constructed. Let 

M = Mx as an R-module. Assume M = @ i ~ j M i  is a counterexample. By 

regrouping without loss of generality J = co, and ~, (Mn) ¢ Nl<~ ~ot(M~). Let F be 

the R-endomorphism of M defined by: F t M; is zero for i even, and the identity 
n( * )  on Mi for i odd. Apply 3.4; by 3.4(2) for some z (Prl)~(.),z[F]. By 3.4(3) we 

get L* = ( L  n : n (* )  < n < o~) a decreasing sequence of  abelian subgroups of 

~.~.)(M),  L :  c_ ~ . ( M ) ,  L* is (~,n(*))-compact.  By 3.4A for some k < co and 

m < c o :  

(a) for every n >_. k, L*. c ~,, i<nM i "t- Ot<o,~t(M), 

(b) if n ___ n(*) ,  h :N .  --* M then xhF  - z . h  E L:  + N t ~ t ( M )  where z.  = 

zg.~.), .  (on g - s e e  2.5). 

Now choose n large enough and compare what we get for M.  and M.+1 to get 

a contradiction. 

(ii) Remember 3.6. 

(iii) Should be easy. 

4.2A. REMARK. (1)  For any T,S as in 2.1, we get the same conclusion ( M a  bi- 

module) if we replace I RI by I RI + I S I. 
(2) If we omit "IRI + ISl < 2 ~°'', we get by the same proof weaker conclu- 

sions: with an "error term" which is included in a finitely generated bimodule. 
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4.3. CONCLUSION. (1) There are R-modules M, M1,M2 of  power ~ such that 

M G MI -~ M Q M2, Ml ~ M2. 
(2) Moreover, M1 --L,..x M2 (note tl MI II = II M2 If = x ) .  

4.3A. REV_ARK. (1) Note conclusion (1) is trivial if we omit the "of  power V ' -  

take M1,M2,M3 free R-modules IIMX > raM211 > ~M,H ---Igl + ~o. So the "more- 

over" in (2) makes it more interesting. 

(2) We can ask more of  M in 4.3 (and similarly for the other conclusion). It is 

obtained as in 4.2 for suitable S. 

PROOF. (1) A Stage: Let T be the subring of  R which 1 (the unit) generates. 

Let S be the ring freely generated by T U { X, WI, Y, W2 } except 

XX=X,  

Y Y =  Y, 

xw~ w2 = x ,  

YW2WI = Y, 

X W I Y  = XWI, (1 - X ) ( 1  - Y) = 1 - X, YX = Y, 

YW2X = YW2 

(to understand these equations see the definition of  M a as a bimodule below). 

BStage: Le tM* be an R-module such that <¢n(M*) : n < o~> is strictly decreas- 
hi 

ing; le t  M *  =- M/* (R-module) ,  M a = (~i<~Mi,* g = K +2, K = ( Ig l  + IS I + go)- 

We expand M ~ to a bimodule by (for x E M*)  

~ xhi, i >_ K, 
(xhi)X= (.0, i < K; 

[ xhi, i >_ K +, 
(xhi)Y = ~ 0, i < ~+; 

( x h i ) W l = ( ~  hJ 
if for some a ,  i =  K + a , j  = K + + a,  

otherwise; 

if for some a ,  i = K + + o~, j = K + or, 

otherwise. 
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So assumption 2.3 holds. Let, e.g., 3£ be from 3.7; hence 3.5 applies and we get 

a bimodule, 9 /=  Mx. Let ng/be 9/as an R-module. 

C Stage: So every member of S is an endomorphism of RgA. As X X  = X we 

have Rg/= RM l G RMI where RM 1 = (Rg/)X, RM1 = (Rg/)(I -- X) .  Similarly 

R9/= g M2 G RM2 where RM 2 = (Rg/)Y, RM2 = (R9/)(1 -- Y). 

Now l'Vl, I, V2 provide isomorphisms from M l  onto M z, so let R M  =:  RM j =-- 
RM2. 

It suffices to show RMI ~ nM2. 

D Stage: Suppose RM~ --= RM2; then there are endomorphisms Z~,Z2 of Rg/,Z~ 

mapping RM~ onto RM2, and RM ~ onto R M  2, and Z1Z2 = Z2Zl = 1. It is easy to 

check that: 

X Z I  = X Z I Y ~  YZ2 = YZ2X, 

(1 - X ) Z  1 ---- (1 - X ) Z ~ ( 1  - Y), (1 - Y)Z2 = (1 - Y)Z2(I - X ) .  

So by 3.4 there are n(*)  < o:, Zl,Z2 E Nntr(,), such that the equations above 

hold in the endomorphism ring of the abelian group ¢ . t . ) (M)/( ' ) l  ~I(M) for any 

bimodule M when we replace ZI, Z2 by "t*)Hfd,"~*)H~ respectively (and interpret 

X, Y E S naturally). This holds in particular for the bimodule M a we have de- 

fined in stage B. But by the equations above we get a one-to-one mapping from 

Mr) onto M )Ir3, MT), an 
easy contradiction (as they have different cardinalities). 

(2) We assume the reader knows about L=,× and proof of -= ,x  by a hence and 

forth argument. In the construction we just use 3£ such that, for each c~ < X, the 

following bimodule belongs to 3£: as an R-module it is M~ x M~, with 

X, Y, I, VI, I412 interpreted as the identity. (So we construct in 3.5 and extend 3£ 

together.) 

Note that X = Y = WI = I'V2 = 1 satisfies all the equations; once we note this 

the checking does not use anything specific on R, T, S. 

We may use more specific properties and then use a fixed 3£; choose it as fol- 

lows: 3£0 is the set o fN , ,N '~ (n  < w); 3£ is the set of N E  K0 and, for each N E  K0, 

the bimodule N* is in 3£ where N* is N as an R-module, but multiplication 

(from the right) by X, Y, W1, W2 is zero. So [ 3£1 < X (in fact it is countable). Let 

= U~<xA~ be the representation of 9/(i.e., in 3.5, we get (A~ : a  < ~)). 

4.4. CLAIM. Suppose S, as a T-module, is free, say [s~ :/3 < a ] is a free basis. 

(1) Let Nn,0 be the R-submodule of N,~ which [x, Yi: i < k,,n_ 1 } generates. Then 
h~ 

Nn, as an R-module, is the direct sum ~ < ~  N,.~, N~.0 --- N,,,~ (as R-modules); for 
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y E Nn,o we have yh~ = ys~ and Nn,o is the R-module generated freely by { Yi : i < 

kmn-l ] except for the equations, and ho is the identity. 

(2) Hence ~on(Nn)/At ~ol(Nn) (as an additive group and even as a T-module) is 

the direct sum ~]~<~ ~on (Nn,~)/AI ~ol(Nn,~). 

(3) If  z E N~ tr, then z = ~ i z i h i ,  zi E Nn,o N N tr f~ ~on(Nn,o), i.e., z E 

~ < ~  ~on(Nn, i) t') Ntr; so Z = Y, i ZiSi and nHZ = ~ i  (nHZ' )si; z is n-nice iff each zi 

is n-nice. 

(4) de n, S (as subrings of dE n_  see 2.15, 2.16) generate dEn; moreover, they 

commute. Each member of dE n has the form Z~ x~si (xi E de n) and dE n = 

de n @ r  S and de n is commutative. 

(5) Let In be a maximal ideal of de n (to which 1 does not belong); Dn -- den~In, 

T' = T/In f'l T, S' = S/In N T. So Dn is a field (so commutative). 

Any set of equations on S which has a solution in End(M) for M as in 4.2 has 

a solution in Dn @ r' S'. 

PROOF. Straightforward. 

4.5. CONCLUStON. Suppose: 

(a) R is a ring satisfying (2) of  Theorem 1.A, T the subring 1 generates (so 

T = Z / p Z ,  where p is the characteristic of R which is not necessarily 

prime). 

(b) S is a ring, (S,+)  is a free T module (so Tis a subring of S). 

(c) k is as in 4.2. 

Then we can find an R-module M of power k, and a homomorphism H of S into 

End(M) such that: 

(d) K e r H =  10}. 

(e) I f  I' is a set of equations with parameters in S , H ( F )  is solvable in End(M),  

then for some field D [p > 0 = D of characteristic a prime dividing p ] ,  

[p = 0 = D of characteristic zero, or prime], we have r is solvable in D ® S. 

(f) For s E S \  {0}, M ( H ( s ) ) ,  the image of M under H ( s )  has cardinality k. 

PROOF. Left to the reader. 

4.6. CONCLUSION. If  S is a ring extending Z, (S,+) free, the assumption 2.3 

holds and I' is a set of equations over S not solvable in D Qzp (S/pS)  when D is 

a field of characteristic dividing that of R, Zp = Z / p X  if p > 0 and Z if p = 0; 

then for M as in 4.2, r is not solvable in End(M)  (with S embedded there 

naturally). 

PROOF. Left to the reader. 
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4.6A. Rsu_~mg. In 4.5, 4.6, if (S,+) is }%-free (or }~0-free T-modules) the con- 

clusions are similar. 

4.7. CLAIM. There are R-modules, M~,Mz (as in 4.2), such that: 

MI, M2 not isomorphic, 

M~ is isomorphic to a direct summand of M2, 

M2 is isomorphic to a direct summand of M 1 . 

PROOF. A Stage: Let T be the subring of R which 1 generates. Let S be the ring 

(with 1, associative but not necessarily commutative) extending T generated by 

XI, X_I, W~, W-I, Z l, Z_I freely except for the equations (to understand them, see 

below in stage B). 

(*)1 r = 0 if r is a term,t M~r  -- 0 for M~ as defined below in stage B for 

every field D. 

We shall prove S is a free T-module. 

Let M be as in 4.2 for T,R ,S  (and)~,$). Let MI = M X I ,  M - l  -- MX-1; so 

M I ,  M_ 1 are R-modules as in 4.2, also M = MI ~) 34-1 (as X 2 = X1, X21 = X-l ,  

XI + X-1 = 1, X1X_I = X-1X1 = 0 in S). We shall show that M~,M_~ are as re- 

quired in 4.7 (on M1,M2). 

Also Z 2 = Z1, Z1 X1 = Z1 = XI ZI so M1 = MI (1 - ZI ) (~ MI Zl; i.e., M1 Z1 is 

a direct summand of M1. On the other hand M_I = MIZ1 a s  W 1 maps M-I into 

MI Z1 (since X_1W~ = X_l W1 Z1 ) and W_I maps M1 Z1 into M_I (since X1 Z1W-I = 

W_IX_I ), and the two maps are inverses of each other because X-I W~ W-1 = X-1 

and XI ZI W_I W1 = ZI = X1Z1. 

Similarly M-1 = M-1 (1 - Z_j)  G M_IZ_I ,  so M_~Z_I is a direct summand of 

M-1 and M_I Z_I is isomorphic to M1. Hence 

M I - = M t ( 1 - Z 1 ) ~ M - I ,  M-1- - - -M-I (1 -Z-1 ) (~MI .  

We are left with M~ ~ M-l;  if they are isomorphic, then as M = MI G M_I (for 

every n large enough) in dE ~ there is a solution to the set of equations (in the un- 

known Y): 

(*)2 X1YX-1 = X1 Y, 

X - 1 Y X 1  = X - I Y ,  

Y Y =  1. 

We shall get a contradiction by 4.5. 

"H.e., in the language of rings, in the variables X~ ,X_l, W1, W_I,Zj ,Z_I. 
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B Stage: Let A 1 

function: 

[A_~] be the set of even [odd] integers, F the following 

l =j i+  1, i>o, 
F(i) li - 1 ,  i < 0 .  

So F maps Al into A- l  and A_~ into AI, A l \ R a n g ( F  t A- l )  = [0], A - l \  

Rang(F t A1) = [--1}. Let D be a ring and T be the subring 1 generates. Let i 

vary on the integers. Let So be the ring generated freely by [XI,X_~, WI, W-l, 
Z I , Z - I  1. 

We define a right (D ~) r  So)-module M~ as a D-module M = ~Dxi, with 

(~aixi)b = ~i(aib)xi for ai,b E D. To define multiplication (x E M, c E 

D (~)r So) (as D, So commute in D (~)r So) it is enough to define it for x = xi, 
s one of the generators of S; so let 

~xi, i E Al, 
xiXl = [ 0 ,  i E A_x; 

xiX-1 =(0 ,  iEAl ,  
xi, i E A_I; 

XiWl = XF<i); xiW_~ ~XF-qi), i E  Rang(F), 
= [ 0 ,  i ~  Rang(F); 

( xi, i E A1 O Range  [ xi, i E A_I (q Range  
/.- 

= xiZ-l = ~( 0, otherwise. xiZ~ ~ O, otherwise; 

Of course, it is naturally a (D (~)r S)-module (see definition of S). 

C Stage: There is no problem to check that in M~ the equations from (*)l 
hold, so it is enough to prove that: 

(a) in D ~ ) r  S there is no solution to (*)2 (i.e., no such Y) (making S have the 

same characteristic as D), 

(b) S is a free T-module. 

Clearly S is a T-module, generated by the set of monomials in {X~,X_I, W~, 
W-1,Z1,Z_I }. 

Our aim now is to show S is a free T-module and find a free basis. 

Now for IE  11,-11, k E  7., n _> 0, n _> -k ,  we define an endomorphism qr~,n = 
of 

=fXFk(i) ifF-"(i) is well defined, xiEAi 
xi% t, n 

' l O  otherwise 
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(it is easy to see that it is an endomorphism of  M~) and a monomial Ykt,,, (note: 

for every monomial r we let r °, the zeroth power, be I = idM3) and remember 

n >  - k ,  so n + k > O: 

= x (w_l)"wg 

The reader can check that Ykt~ as an endomorphism of  M~ is equal to q~ , . .  

We next want to prove that [Y~, . :n,k E Z,n > O,n > - k , l  E [1,-11] gener- 

ates S as a T-module; this is done in the next stage. 

D Stage: The set {Y~,~:n ,k  E Z ,n  >_ - k  and ! E 11,-11} generates S as a 

T-module. 
/ I It is enough to show that for every monomial z, some equation r = ~a . , kYk , .  

holds in S (where [( l ,n ,k)  :a~,k ~ 0} is finite, a~,~ E T); i.e., it holds in the ring 

of  endomorphism of M~. We prove this by induction on the length of  the 

monomial. 

If  the length is zero, r is 1; now 1 = X~ + X_~ (check in M*) and )(i = Y0t,o . 

Hence 1 = Yol,o + Yo_o 1 as required. 

If the length is > 0, by the induction hypothesis it is enough to prove: 

(*) i f  r E [X1,X_I ,  W1, W - l , Z l , Z - l ]  
I 1 then vl( . )  is equal to some ~t,k,. ak,.Yk,.  • k ( . ) , n ( . )  7" 

(Note: it is enough to check equality on the generators of M* - t h e  xi's.) 

Let us check: 

Case  1. v l ( , )  v is: l k ( * ) . n ( * ) A l  

Case  2. v t ( , )  w is: ~tk(,) .n(,)rVl 

zero i f  [l(*) = l ~  k(*)  odd], 
Irk *) / f  [ /(*) = 1¢=} k(*)  even]. ( * ) , n ( * )  

yl(.) k ( * ) + l , n ( * )  

y l ( * )  
k ( * ) - l , n ( * ) + l  

Case 3. v t ( . )  Z/is: vt( . )  J k ( * ) , n ( * )  ~ k ( * ) , n ( * )  

E Stage: 

ykt(*) ( * ) , n ( * ) + l  

zero 

i f l = l ,  

i f  l =  -1 ,  k (* )  + n(*)  > 0, 

i f l  = -1 ,  k ( * )  + n ( * )  = O. 

i f  n ( * )  + k(*)  > 0 and 

[1(*) = l ¢ ~ k ( * )  odd], 

i f  n ( * )  + k(*)  = 0 and 

[l(*) = 1 ~  k(*)  odd], 

i f  [/(*) = I ¢ ~ k ( * )  even]. 

{Y~.,, : ( l , k ,n )  E O} generate S freely as a T-module where 

0 = [ ( l , k , n ) : l E  [ 1 , - l ] , k  E Z,n  _> O ,k+  n _> 0]. 
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Suppose 0 = Z[a~,,,Y~,,, : ( l , k ,n )  E O} as an endomorph ism of  ( M ~ , + ) ,  where 

we even allow a~,,, E D. We shall prove that  atk,. = 0 for  every ( l ,k ,n)  E O. 

I f  i E A l, i >_ Othen  

O = x i [  ~ a~,,,Y~,,,] 
(I,k,n)EO 

= ~ a~,n(xiY'k,n) 
(l,k,n)EO 

= ~a[a~,.xi+k:l= 1,( l ,k ,n)  E 0 and n _< i} 

=Z 
j_~o 

=E 
j ;o  

(~]1 alk,.: (1,k ,n)  E O,i >_ n, i  + k = j } ) x j  

(~]{ a~j_,,, . .  "i _> n,(1 , j  - i ,n) E 0 })xj. 

Hence  for  every i E A 1, i _> 0 and j >_ 0 

a 1 (*)i~j 0 = ~,,{ j-i,n :n  _> 0 ,n  _< i and n + ( j  - i) _> 0}. 

Similarly, for  i E A_I ,  i _> 0 (equivalently, i > 0 as i E A_1 = i ¢ 0) a n d j  ___ 0 we 

can prove:  

a - 1  (g*)ibj 0 = ~___~[ j_i,n:n > O,n <-/and n + ( j  - i) _> 0}. 

Similarly, for  i E A 1, i < 0 

[ , ,] 0 = xi Y'~ ak,~g~.~ 
(l,k,n)~:O 

= ~_~ a~,n(xiY~,,,) 
(I,k,n)EO 

= )--]{a~.nxi+k : ( 1 ,k ,n )  E 0 and - i  > n} 

= ~ [Z{a)_i ,~  : ( 1 , j -  i ,n) E 0 and n < - i } ]x j .  
j<o 

Hence  for  every i E A 1, i < 0 and j < 0 

0 = E { a ;  • j _ , , ~ . n > O a n d n + ( j - i ) > O a n d n < - i } .  

Similarly, for  every i E A - I ,  i < 0 and j < 0 

(*)idj 0 =  ~ , , {a f / i , n :n>_Oandn+ ( j - i ) _  0 a n d  i <  - h i .  
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Choose ,  if  possible,  ( k ,m)  such that:  

(1) ( 1 , k , m )  belongs to  O, 

(2) a~,m :# O, 

(3) under  (1) + (2), m is minimal•  

First assume that  m is even; in any  case m > 0. Let i = :  m, j = :  i + k so i E A1 
, a  (being even), i _> 0 and j = m + k is _> 0 as (1, k, m)  E O. In the equat ion ( )i,j the 

t e rm al.m appears  in the sum, and for  every other  t e rm al~,,m, which appears  in 

the sum, we have m I < m (and k I = k ) •  Hence  by (3) above  it is zero• So it fol- 

lows that  aA, m is zero,  contradic t ion.  

I f  m is odd,  we get a similar cont radic t ion  using (*)i~j: let i = - m  - 1, j = i + k, 

note  m >_ 0, hence i < 0 and i is even, so i E A j ; in the equat ion  (*)i~j the t e rm 

al_i,n = al, n appears  in the sum i f f 0  _< n < - i  = m + 1, and n + ( j  - i) = n + k _> 0 

(but if the latter fails, a2,m is not  defined),  so a2,m appears ,  and if ano ther  t e rm 

1 = 0. Necessari ly al, m is akl,ra t l  appears  then ml  < m (and kl = k) ,  hence atq.m~ 
zero,  contradict ion.  

So a2,~ = 0 whenever  it is defined• 

Similarly -1 0 whenever  it is def ined (use * b d ak, n = ( )i,j + (*)i,j).  Thus  we have fin- 

ished proviing (b) (i.e. (s, ff) is a free T-module) .  

F Stage: In par t icular ,  for  Y f rom stage C(a),  for  some a~,, : 

1 1 • Y =  ~_a[ak,~Yk,~.n >- 0 and k + n > 0 and I E  I 1 , - l l }  

(with only finitely m a n y  a~,n being non-zero and a~,~ E D ) .  Let n (* )  < w be such 

that  

a t k,, * 0 = I k l , n  < n(*) .  

Let,  for  / =  1 , -1 ,  

M}'°s = [ i~>_odiXi : di E D and all but finitely many are zero and di ~ O = i E A,  1 , 

Mtneg = I ~ dixi : di E D and all but  finitely m a n y  are zero and di ~ 0 = i E At 1 . 
k i < 0  ) 

Clearly,  as a D-modu le  (really, a left one) 

M ~  = M~ '°s @ ~Arvos @ M~eg (~ h,fneg 
~ - 1  ~ r L _ l  • 

Let Yf = Y t M f  for  r E  {pos ,neg] ,  I E  {1 , -1} .  By (*)2 (in stage A) we know 

XI YX_I = XI Y, hence Y maps  M~ p°~ into MP]  ~ and M~ aeg into M_n~g; i.e., y[os is 
• p o s  / IArneg Into M _ ~ ,  Yr ~g is into . . . .  1 • 
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Similarly by ( * ) 2  w e  know X-I  YXI = X-1 Y, hence Y maps po~ • M_ 1 into M ~  ~ and 
vPOS y ~ e g ,  v n e g  l,,~r"~g_l into M ~  eg. Also, all those mapping y~o~, - - i ,  - - t  are endomor-  

vPOS VPOS that phisms of  D-modules.  As y2 = 1 (again by (*)2) we know on -1 , - - i  

one is the inverse of  the other, so both are isomorphisms onto. Similarly for 
y n e g  v n e g  

1 ,-~--I • 

Let M~ tp = { ~-]'i>0 dixi " di E D, all but finitely many d~'s are zero and d~ q: 0 

i E A ~ I- Clearly M~ tp is a sub-D-module of  M~'°L (So what is the difference be- 

tween M~ tp and M~'°s? Just x0 E M/p°s, Xo ~ M~W). 

Let N = [Zi>.~.)d~x~:d~ E D, all but finitely many  are zero and d; ~: 0 

i E A 1 } .  
Let H p°s : g ~  Ip --~ M~ eg be defined by Xi Hp°s : X-i and H ncg : M~ cg ~ M~ tp be 

defined by x~H = x_~. Both are isomorphisms onto and endomorphisms of  D- 
li/lr neg and modules. By now we know y~eg is an isomorphism from M~ eg onto  . . . .  1, 

A~pos Note also H p°~ Y~¢gH n~g is an isomorphism f rom M~ tp onto  . . . .  1 • 

M ~  tp Hpo~ y~eg ) Hneg ) m ~ e g  i / / 'neg iArpos 
zv~_ 1 ) l v l _  1 . 

However,  by the choice of  n (*)  and N, computing directly we see that 

ypos p N = ( H  p°s Y~egHneg) t N. 

Let N* be the range of  y~os I N and hence also of  (Hp°sy~egHneg) ~ N. SO, as 

~rpos and N c_ M~ TM, we know N* is a y pos is an isomorphism from M p°s onto . . . .  1 

sub-D-module ~¢ ~.tpos Mpos/~r* . . . . . .  1 and - 1 , 1 ,  is isomorphic to Mr~°VN (as D-modules). 
A~rpo~ and N _ M~ tp, and But H p°s Y~egHneg is an isomorphism from M~ tp onto  . . . .  

it maps N onto N* (see above), so M~tp/N is isomorphic to MP°~VN *. By the pre- 

vious paragraph we get M~tp /N  = Mr~°VN. 
Now MP°VNis  a free D-module;  {x2,- + N : 0  _< 2i _< n(*)} is a free basis and 

also M~tP/Ni s  a free D-module: {x2i + N :  0 < 2i < n(*) ]  is a free basis; but the 

number  of  generators differ by 1. 

Appendix: An alternative older proof 

ON ThE PROOF OF 4.7. We can replace the proof  f rom the first equation of  

stage F as follows: 

Let b~ = ~n  a / k,. E D ;  so i f i E  Z, lil > n ( * )  + 1 then 

x ,Y  = ~_j b~(x,Y~,,,). 
IE[ 1,--I ] , k E Z  
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Checking what is (x iY)Y  when i E Air. ) and F-nt*)(i) is well defined (e.g., 

Iil > n ( * )  + 1) (i.e., we know ( x iY )Y=x i  as y2 = 1, on the one hand, and sub- 

stituting on the other hand) we see that: 

(a) for 1 E I1,-1} there is a unique k = kt such that: 

doj Z o. 
n 

If  kl is even and k_l is odd, choose large enough even i < o~; then 

((O~,)-Ix~_k,)Y= x~ and ((b~_,)- 'x~_L,)Y= x~ 

contradicting "Y is one to one" which follows from y2 = 1. So "k~ is even and 

k- i  is odd" is impossible. Similarly "k_~ is even and k~ is odd" is impossible. If  

k~,k_~ are even we can get a contradiction using the equation X~ YX_~ = X~ Y 

from (*)z. So k~,k_~ are odd. 

Now a s  y 2  __ 1: 

(b) kl = - k - l ;  let k (* )  = kl and 

Hence 

(c) for  some non-zero di E D, di = d(* ) for any integer i with I i I > n (*)  + 1, 

xiY  = diXek~*qO if i is even, x~Y = d ,  lxe-k~.,(~ if i is odd. 

Note 

(d) 

N O W ,  

(e) 

Note 

(f) 

Y maps M ~ and M ° into themselves where M" = [ ~i>o dixi : di E D and all 
but finitely many are zero ], 

Mb = [ ~i<0 dixi : di E D and all but finitely many are zero } 

and M = M a O M b (as D-modules). 

as y2 = 1, M =  Rang(Y) = M " Y +  MbY.  Hence: 

Y maps M "  onto M ~ and M b onto M °. 

Y is an automorphism of  M as a left D-module. 

G Stage: Assume k ( * )  ~ 1. Note also that Ymaps M a onto M a and 

M , t . ) = :  ~a d i x i : d i E D  onto M , t . ) + k t . ) = :  ~a d i x i : i E D  
[ i>-n(*) i>-n(*)+k(*) 
,, i even i odd 

(check directly by (c)). 
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By (*)2 X I Y X - 1  = X I Y ,  hence Y maps M~ '1 into M~'-I; similarly, as by (*)2 
X - l  YX1 = X -1  Y, clearly Y maps  M~ "-I into M~ "1. As y2 = 1, also Y maps M~ 'l 

on to  M~ '-1, hence Yis  an  i somorphism from M~ '1 on to  M~ '-1 as left D-modules  

mapp ing  M~il.) on to  M~i~+k~.  ) , hence M~'l/M~it .)  = M~'l/M~i-i~+~t.) but  we 

easily get a cont radic t ion  by comput ing  the dimensions .  

What  if k (*)  = 1 .9 Then  we use M b and get a similar contradict ion if k (*)  ~ - 1. 
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