Monadic Logic: Hanf Numbers[†]

Abstract

This is part of the classification developed in Baldwin Shelah [BSh]. The paper is divided into two parts. In part I we show that $(T_{\infty}, 2^{nd}) \not \leq (T, \text{mon})$ iff the Hanf number for the theory T in monadic logic is smaller than the Hanf number of second order logic.

For this we deal with partition relations for models of T. The main result is that if T does not have the independence property even after expanding by monadic predicates (or equivalently $(T_{\infty}, 2^{nd}) \not \leq (T, \text{mon})$) then: $\Im_{\omega+1}(\lambda)^+ \rightarrow_s (\lambda)_T^{<\omega}$. In Part II we analyze such T getting a decomposition theorem like that in [BSh] (but weaker) (This is needed in part I.)

Part I

§1 Preliminaries

We review here some relevant facts and definitions.

1.1. Convention:

T will be a fix complete theory, ${\bf C}$ a $\overline{\kappa}$ -saturated model of T, $\overline{\kappa}$ large enough (see [Sh1] I §1); M,N denote elementary submodels of ${\bf C}$ of power ${<}\,\overline{\kappa}$, A,B,C subsets of such M, a,b,c,d elements of ${\bf C}$, $\overline{a},\overline{b},\overline{c},\overline{d}$ finite sequences, and I,J denote linear orders. A monadic expansion of M is expansion by monadic predicates; a finite expansion is one by finitely many relations. When dealing with finite monadic expansions of ${\bf C}$, we may mean a $\overline{\kappa}$ -saturated one, or any such expansion. We shall not specify, because if $M \subset {\bf C}$, M^+ a finite expansion of M, then we can expand ${\bf C}$ to ${\bf C}^+$, an

 $^{^\}dagger$ I thank Rami Gromberg for many corrections.

elementary extension of M^+ which is $\bar{\kappa}\text{-saturated}.$

This paper has two parts, the major one in part I, but in order to prove an important property of decomposition of models (see claim I2.4(1)) we need a property of types which is lemma 2.3 of Part II. The sole contribution of part II to I is the proof of this lemma.

We quote from [BSh] 1.2, 1.3:

1.2. Definition:

We say $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$ if in some monadic expansion of \mathbb{C} , there is an infinite set on which a pairing function is defined. (a pairing function on A is a one-to-one function from $A \times A$ onto A).

1.3. Theorem:

- 1) If T has the independence property (see [Sh1] II §4) then $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$. Hence, $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$ iff some finite monadic expansion of a model of T has the independence property.
- 2) If in some finite monadic expansion of \mathbb{C} for some infinite sets $\{a_t: t \in I\}$, $\{b_t: t \in J\}$ and formula θ , for any $t \in I$, $s \in J$ there is d such that $(\forall u \in I)$ $(\forall v \in J)$ $[\theta(a_u, b_v, d) \longleftrightarrow t = u \land s = v]$ then $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$.

We quote from [Sh1] VII §4:

1.4. Definition:

- 1) We say p is finitely satisfiable in A if every finite subset of p is realized by elements of A
 - 2) For an ultrafilter D on ${}^{I}A$, and set B, we define

$$Av(D,B) = \{\varphi(...,x_t,\ldots,\bar{b})_{t\in I}: \bar{b}\in B \text{ and the set } \}$$

$$\{\; \left\langle\; a_t \,:\, t \,\in\, I \;\right\rangle \;:\; \left| = \; \varphi[\ldots,a_t\,,\,\ldots\,,\,\bar{b}\;]_{t \in I} \right\} \; \text{belong} \; D \}$$

1.5. Lemma:

- 1) Av(D,B) is a complete type in the variables $\langle x_t : t \in I \rangle$ over B, finitely satisfiable in A; of course $B \subseteq C \Longrightarrow Av(D,B) \subseteq Av(D,C)$
- 2) If p is finitely satisfiable in A, p a set of formulas in the variables $\{x_t : t \in I\}$, then for some ultrafilter D on IA, and some set B $p \subseteq Av(D,B)$.

- 3) If p is finitely satisfiable in A then p does not split over A (i.e., if \bar{b} , \bar{c} realize the same type over A then for no φ , $\varphi(\bar{x}, \bar{b})$, $\neg \varphi(\bar{x}, \bar{c}) \in p$)
- 4) If p is an m-type over B finitely satisfiable in A, then it can be extended to $p' \in S^m(B)$ finitely satisfiable in A,
- 5) If $p, q \in \bigcup_{m < \omega} S^m(C)$ are finitely satisfiable in $A, B \subseteq C$, and every m-type over A realized in C is realized in B, then $p \upharpoonright B = q \upharpoonright B \implies p = q$
- 6) If $tp_{\bullet}(C_0, A \cup B)$ is finitely satisfiable in A, and $tp_{\bullet}(C_1, A \cup B \cup C_0)$ is finitely satisfiable in $A \cup C_0$ then $tp_{\bullet}(C_0 \cup C_1, A \cup B)$ is finitely satisfiable in A.

1.6. Observation:

If every $p \in \bigcup_{m} S^{m}(A_{0})$ is realized in A_{1} , (hence $A_{0} \subseteq A_{1}$) $tp_{\bullet}(D \cup C, A_{1} \cup B)$ and $tp_{\bullet}(D, A_{1} \cup C)$ are finitely satisfiable in A_{0} then $tp_{\bullet}(D, A_{1} \cup B \cup C)$ is finitely satisfiable in A_{0}

Proof: W.l.o.g. $D = \overline{d}$; by 1.5(4) there is \overline{d}^1 realizing $tp(\overline{d}, A_1 \cup C)$ such that $tp(\overline{d}^1, A_1 \cup B \cup C)$ is finitely satisfiable in A_0 (remember that $tp(\overline{d}, A_1 \cup C)$ is finitely satisfiable in A_0). By 1.5(6) $tp_{\bullet}(C \cup \overline{d}^1, A_1 \cup B)$ is finitely satisfiable in A_0 .

So $tp_{\bullet}(C \cup \overline{d}^1, A_1 \cup B)$, $tp_{\bullet}(C \cup \overline{d}, A_1 \cup B)$ are both finitely satisfiable in A_0 , and their restriction to A_1 are equal. By 1.5(5) they are equal. Hence $tp(\overline{d}^1, A_1 \cup B \cup C) = tp(\overline{d}, A_1 \cup B \cup C)$. As $tp(\overline{d}^1, A_1 \cup B \cup C)$ is finitely satisfiable in A_0 , necessarily $tp(\overline{d}, A_1 \cup B \cup C)$ is finitely satisfiable in A_0 .

1.6A Remark: We can weaken the hypothesis by restricting ourselves to $p \in \bigcup_{m < \omega} S^m(A_0)$ realized in $A_1 \cup B$.

§2 A Weak Decomposition Theorem

Hypothesis: $(T_{\infty}, 2^{nd}) \leq (T, \text{mon}).$

Notation: Let I,J be linear ordering

2.1. Definition:

- 1) We say that $\overline{A} = \langle A_t : t \in I \rangle$ is a partial decomposition of M over N iff : the A_t 's are pairwise disjoint subsets of M and for every $t \in I$, $tp_*(A_t, \bigcup_{s < t} A_s \cup N)$ is finitely satisfiable in N (but not necessarily $N \subseteq M$).
- 2) \bar{A} is a decomposition of M over N, if it is a partial decomposition of M over N and $M = \bigcup_{t \in I} A_t$.

2.2. Definition:

For partial decomposition $\langle A_t : t \in I \rangle$, $\langle B_t : t \in J \rangle$ of M over N we say $\langle A_t : t \in I \rangle \leq \langle B_t : t \in J \rangle$ if $I \subseteq J$ and for every $t \in I$, $A_t \subseteq B_t$; we say $\langle A_t : t \in I \rangle \leq^* \langle B_t : t \in J \rangle$ if I = J and for every $t \in I$, $A_t \subseteq B_t$.

2.3. Claim:

- 1) For every <-increasing sequence of partial decompositions of M over N there is a least upper bound (similarly for <*)
- 2) If $\langle A_t : t \in I \rangle$ is a partial decomposition of M over $N, I \subseteq J$, and for $t \in J-I$, we let $A_t = \phi$ then $\langle A_t : t \in J \rangle$ is a partial decomposition of M over N

Proof: Immediate

2.4. Claim:

- 1) Suppose $\langle A_t:t\in I\rangle$ is a partial decomposition of M over N and $\mathbf{c}\in M$. Then for some $\langle B_t:t\in J\rangle \geq \langle A_t:t\in I\rangle$ (a partial decomposition of M over N), $\mathbf{c}\in \underset{t\in I}{\cup} B_t$
- 2) If I is a well-ordering with last element then w.l.o.g. I = J **Proof**:
- 1) W.l.o.g. $c \not\in \bigcup_{t \in I} A_t$. Let I_1 be a maximal initial segment of I [i.e., $(\forall t \in I_1)$ ($\forall s \in I$) ($s < t \to s \in I_1$)] such that $tp(c, \bigcup_{t \in I_1} A_t \cup N)$ is finitely satisfiable in N (there is such I_1 , as $I_1 = \phi$ satisfies the demand, and by the finitary character of the demand). By 2.3 (2) w.l.o.g. $I_1 = \{s \in I : s < t^*\}$ for some $t^* \in I$. Now we let J = I, and let B_t be A_t if $t \neq t^*$, and $A_t \cup \{c\}$ if $t = t^*$. We now check Def 2.1 (1). The main non-obvious point is why for t, $t^* < t \in I$, $tp_{\bullet}(B_t, \bigcup_{s < t} B_s \cup N)$ is finitely satisfiable in N. If not then for some $\bar{b} \in B_t = A_t$, $\bar{a} \in \bigcup_{s < t} B_s \cup N$ is finitely satisfiable in N. However we know that $tp(\bar{b}, \bar{a} \cup N)$ is finitely satisfiable in N (as $\{A_s : s \in I\}$ is a partial decomposition of M over N). Also $tp(c, \bigcup_{s < t} A_s \cup N)$ is not finitely satisfiable in N (by the choice of I_1 , as maximal, as $t > t^*$ and as w.l.o.g. we add t^* only if needed), hence w.l.o.g. $tp(c, \bar{a} \cup N)$ is not finitely satisfiable in N. Hence, $tp(\bar{b} \cap < c >, \bar{a} \cup N)$ is not finitely satisfiable in N. Together, N, \bar{a}, \bar{b}, c contradict Lemma II 2.3. For $t = t^*$, we should prove for $\bar{b} \in A_t$, $\bar{a} \in \bigcup_{s < t} B_s = \bigcup_{s < t} A_s$ that $tp(\bar{b} \cap < c >, N \cup \bar{a})$ is finitely satisfieable in

- N. Suppose this fails. As $\langle A_s : s \in I \rangle$ is a partial decomposition of M over N, clearly $tp(\bar{b}, N \cup \bar{a})$ is finitely satisfiable in N. By II 2.3 and the last two facts $tp(\bar{b}, (\bar{a} < c >) \cup N)$ is finitely satisfiable in N. By the choice of t^* , $tp(c, N \cup \bar{a})$ is finitely satisfiable in N. By 1.5 (6) and the last two facts, $tp(\bar{b} < c >, N \cup \bar{a})$ is finitely satisfiable in N, contradiction
 - 2) Either there is t^* as required or $I_1 = I$, and then choose t^* as last.

2.5. Conclusion:

- 1) Suppose $\langle A_t : t \in I \rangle$ is a partial decomposition of M over N. Then there is a decomposition $\langle B_t : t \in J \rangle \geq \langle A_t : t \in I \rangle$ of M over N
- 2) If $I = (\alpha + 1, <)$ then w.l.o.g. J = I; also $|\{t \in J : B_t \neq \emptyset\}| \ge |\{t \in I : A_t \neq \emptyset\}|$

Proof: Immediate by 2.3(1), 2.4

Remember that (see [Sh1]) $Ded_r(\lambda)$ is the first regular cardinal μ , such that every linear order of power λ has strictly less than μ Dedekind cuts.

2.6. Lemma:

- 1) Suppose $\langle A_t: t \in I \rangle$ is a decomposition of M over N. Then we can find relations $P^n_{\gamma,\alpha}$ $(\alpha < \lambda_N < Ded_{\tau}(||N|| + |T|), \quad \gamma < |T|, \text{ hence } \lambda_N \leq 2^{||N|| + |T|})$ such that:
 - a) $P_{\alpha,\gamma}^n$ is an *n*-place relation on M.
 - b) if $\gamma < |T|$, $n < \omega$, and $\alpha \neq \beta$, then $P_{\gamma,\alpha}^n \cap P_{\gamma,\beta}^n = \phi$, and $\bigcup_{\alpha} P_{\gamma,\alpha}^n = \bigcup_{t \in I} (A_t)$
 - c) for a finite sequence \bar{b} from any A_t let $\alpha_{\gamma}(\bar{b})$, $n(\bar{b})$ be the unique n and α such that $\bar{b} \in P^n_{\gamma,\alpha}$; then if $t_1 < \cdots < t_n$, $\bar{b}_m \in A_{t_m}$ then we can compute the type of $\bar{b}_1 \wedge \cdots \wedge \bar{b}_n$ from $\langle n(\bar{b}_m) : m = 1, n \rangle$, and $\langle \alpha_{\gamma}(\bar{b}_m) : m = 1, n \rangle$, for $\gamma < |T|$
- 2) So as $\operatorname{Ded}_{\tau}(|T|) \leq (2^T)^+$ we can use just |T| predicates when $|N| \leq |T|$, and we waive the disjointness of the $P_{\tau,\alpha}^n$'s.

Proof:

1) For any set $A, N \subseteq A$, and formula φ the number of $p \in S_{\varphi}^m(A)$ finitely satisfiable in N is $< Ded_r(||N||)$ (see [Sh2, p.202], slightly improving a result of Poizat, which suffice for (2) (alternatively use $\alpha < 2^{2^{|T|}}$)) Let N_1 be such that $N \subseteq N_1$, N_1 is $(||N||+|T|)^+$ -saturated and we shall show that w.l.o.g.

(*) for each $t \in I$, $\bar{b} \in A_t$, $tp(\bar{b}, N_1 \cup \bigcup_{s < t} A_s)$ is finitely satisfiable in N. For each $t \in I$ let $A_t = \{b_v^t : v \in I(t)\}$, let $\bar{b}^t = \langle b_v^t : v \in I(t) \rangle$ and by 1.5(2) we can choose an ultrafilter D_t on I(t)N such that:

$$tp\left(\mathbf{\bar{b}}^{t},\ N\cup\bigcup_{s< t}A_{s}\right) = Av\left(D_{t},N\cup\bigcup_{s< t}A_{s}\right)$$

It suffice to us that for any $t(0) < \cdots < t(n) \in I$ (*) $tp(\bar{\mathbf{b}}^{t(n)}, N_1 \cup \bigcup_{l < n} \bar{\mathbf{b}}^{t(l)}) = Av(D_{t(n)}, N_1 \cup \bigcup_{l < n} \bar{\mathbf{b}}^{t(l)})$

For any finite set $w \subseteq I$ we define $q_w = q_w$ ($\langle x_c \cdot c \in N_1 \rangle$), a complete type over $N \cup \bigcup_{t \in w} \bar{\mathbf{b}}^t$ by induction on |w|. For $w = \phi$ it is $tp_{\bullet}(N_1, N)$, if $w \neq \phi$, let

 $w = \{t(0), \ldots, t(n)\}, n \ge 0, t(0) < \cdots < t(n),$ and we define it by

(*) if $\langle e_c : c \in N_1 \rangle$ realizes $q_{w - \{t(n)\}}$, we can find $\langle b'_v : v \in I(t(n)) \rangle$ realizing $Av(D_{t(n)}, N \cup \bigcup_{v \leq n} A_{t(l)} \cup \{e_c : c \in N_1\})$ and let F be an automorphism of \mathbb{C} ,

 $F \quad \text{the identiy on} \quad N \cup \bigcup_{t < n} A_{t(t)}, \quad F(b'_v) = b_v^{t(n)} \quad \text{for} \quad v \in I(t(n)). \quad \text{Now}$ $q_w = tp\left(\left\langle F(e_c) : c \in N_1 \right\rangle, \, N \cup \bigcup_{t \in \mathcal{W}} A_t\right).$

It is easy to prove that for $w_1 \subset w_2 (\subseteq I \text{ finite})$ $q_{w_1} \subseteq q_{w_2}$, (by induction on $|w_2|$) and obviously q_w is finitely satisfied. Hence $\cup \{q_w : w \subseteq I \text{ finite}\}$ is finitely satisfiable, hence realized by some $\langle e'_c : c \in N_1 \rangle$. We can use $\{e'_c : c \in N_1\}$ instead N_1 and then (*) holds.

Let $\{\varphi_{\gamma}^{n}(\bar{x},\bar{y}): \gamma < |T|\}$ be a list of the formulas $\varphi(\bar{x},\bar{y}), l(\bar{x}) = n$, and $\{p_{\gamma,\alpha}^{n}: \alpha < \lambda_{N}\}$ be a list of $\{tp(\bar{b},N_{1}) \mid \varphi: \bar{b}, \varphi \text{ as above}\}$, lastly $\bar{b} \in P_{\gamma,\alpha}^{n}$ iff $\bar{b} \in \bigcup_{t \in I}^{n}(A_{t}), n = l(\bar{b}), \text{ and } tp(\bar{b},N_{1}) \mid \varphi_{\gamma} = p_{\gamma,\alpha}^{n}$

2) Obvious from (1).

§3 Partition relations for theories

3.1. Definition:

- 1) $\lambda \to (\mu)_T^n$ mean that for every model M of T of power λ , there are distinct elements a_i $(i < \mu)$ such that $\langle a_i : i < \mu \rangle$ is an n-indiscernible sequence in M.
- 2) $\lambda \to_s (\mu)_T^n$ means that for every model M of T and $a_i \in M(i < \lambda)$ there is $I \subseteq \lambda$, $|I| = \mu$ such that $\langle a_i : i \in I \rangle$ is an n-indiscernible sequence.

3) $\lambda \rightarrow (\mu)_T^{\leq \omega}$, $\lambda \rightarrow_s (\mu)_T^{\leq \omega}$, are defined similarly.

3.2. Discussion

This definition was suggested by R. Grossberg and the author during the winter of 1980/1, but we still know little. We can rephrase [Sh1] I 2.8 as, e.g.: if T is stable, $\lambda = \lambda^{|T|}$ then $\lambda^+ \to_s (\lambda^+)_T^{<\omega}$. We cannot hope for results on T without the strict order property (see [Sh1] II§4) or even for simple T (see [Sh2].) The reason is as follows: suppose $\lambda \not \to (\mu)_2^{<\omega}$, and let F be a function from $\{w: w \in \lambda, |w| < \aleph_0\}$ to $\{0,1\}$ exemplifying it, let L consist of the predicates R_n (n place) P_n (monadic) for $n < \omega$, and let T be the model completion of $\{(\forall x)(x=x)\}$ in this language. We define an L-model M with universe $\{a_{n,i}: n < \omega, i < \lambda\}$ such that:

- (i) for $w \in \lambda$, |w| = n, $\langle a_{n,i} : i \in w \rangle \in R_n^M$ iff F(w) = 0.
- (ii) for every n, i for some k, for every m > k $a_{n,i} \in P_m$ iff m is divisible by the n^{th} prime.
- (iii) if $(\forall y_1 \cdots y_m)$ ($\exists x$) $\begin{bmatrix} m \\ i=1 \end{bmatrix} x \neq y_i \land \varphi (x,y_1 \cdots ,y_m)$ belong to T, φ quantifier free, but R_k , P_k do not appear in φ and $a_1 \cdots , a_m \in \{a_{n,i} : n < k \ , \ i < \lambda\}$, then there is $b \in \{a_{k,i} : i < \lambda\}$ such that $\models \varphi[b, a_1, \ldots, a_m]$.

This is quite easy, M is a model of T (by T's definition and (iii),) and M exemplify $\lambda \not \sim (\mu)_T^{\omega}$. We can similarly deal with $\lambda \not \sim (\mu)_T^n$.

Now T is simple, and in fact very close to T_{ind} . This leads naturally to:

3.3. Conjecture:

If T does not have the independence property, then for every μ for some λ , $\lambda \to (\mu)_T^{\leq \omega}$, or even $\mathbf{1}_{\omega+\omega}(\mu+|T|) \to (\mu)_T^{\leq \omega}$.

3.4. Lemma:

Suppose $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$, then

$$\beth_{\omega+1} \; (\lambda+\mid T\mid)^+ \to_s \; (\lambda)_T^{<\omega} \, .$$

Proof: W.l.o.g. $\lambda > |T|$, let $\mu = \Im_{\omega}(\lambda)$, $A = \{a_i : i < (2^{\mu})^+\}$, for $i \neq j$

 $a_i \neq a_j \in M$, and M is a model of T.

3.5. Fact:

At least one of the following occurs for $A = \{a_i : i < (2^{\mu})^+\} \subseteq M$, $|A| = (2^{\mu})^+$:

- (i) There is an indiscernible sequence of length $(2^{\mu})^+$ of distinct members of A (in the same length)
- (ii) There is k, and $\bar{a}_i \in {}^k A(i < \mu)$ and θ such that $M \models \theta[\bar{a}_i, \bar{a}_j]$ iff i < j;

Proof: Repeat the proof of [Sh1] I 2.12. Let $A_i \stackrel{\text{def}}{=} \{a_j : j < i\}$ Let $S = \{\delta < (2^\mu)^+ : cf \ \delta > \mu\}$, clearly S is a stationary subset of $(2^\mu)^+$. For each $\delta \in S$ and formula φ choose if possible a subset $B_{\delta,\varphi} \subseteq A_\delta$, $B_{\delta,\varphi}$ of cardinality $<\mu$ such that: $tp_{\varphi}(a_\delta A_\delta)$ does not split over $B_{\delta,\varphi}$ [i.e., if $\varphi = \varphi(x,\bar{y})$, \bar{b} , \bar{c} sequences from A_δ of length $l(\bar{y})$ realizing the same type over $B_{\delta,\varphi}$ then $\models \varphi[a_\delta,\bar{b}] \equiv \varphi[a_\delta,\bar{c}]$]. Let $S_\varphi = \{\delta \in S : B_{\delta,\varphi} \text{ is defined}\}$.

Case a: For each φ for some closed unbounded $C \subseteq (2^{\mu})^+$, $C \cap S = C \cap S_{\varphi}$. Then there is a closed unbounded $C \subseteq (2^{\mu})^+$ such that for every φ , $C \cap S = C \cap S_{\varphi}$. For each $\delta \in C \cap S$ choose B_{δ} B_{δ} a subset of A_{δ} of power μ including $\bigcup_{\varphi} B_{\delta,\varphi}$ such that for each φ , and $n < \omega$, every n-type over $B_{\delta,\varphi}$ realized in A_{δ} is realized in B_{δ} (possible as $|B_{\delta,\varphi}| < \mu$, μ strong limit). Now by Fodor's lemma for some stationary $S^* \subseteq C \cap S$, for all $\delta \in S^*$, $B_{\delta} \subset B_{\delta,\varphi}$: $\varphi \in L(T) \setminus T$, T (a_{δ} , B_{δ}) are the same. Continue as [Sh1] I 2.12.

Case b: For some φ , $S - S_{\varphi}$ is a stationary subset of $(2^{\mu})^+$

So there is $\delta \in S \to S_{\varphi}$ such that for every $B \subseteq A_{\delta}$, $|B| \leq \mu$, there is $\alpha < \delta$ such that a_{α} realizes $tp(a_{\delta}B)$. So choose by induction on $i < \mu$, \bar{b}_i , \bar{c}_i , $d_i \in A_{\delta}$ as follows:

(a)
$$\bar{b}_{\alpha}$$
, \bar{c}_{α} realizes the same type over $\bigcup_{j < i} \bar{b}_{j} \wedge \bar{c}_{j} \wedge \langle d_{j} \rangle$
and $\models \varphi[a_{\delta}, \bar{b}_{\alpha}] \equiv \neg \varphi[a_{\delta}, \bar{c}_{\alpha}]$
(w.l.o.g. $\models \varphi[a_{\delta}, \bar{b}_{\alpha}] \wedge \neg \varphi[a_{\delta}, \bar{c}_{\alpha}]$)

$$(\beta) \; d_i \qquad \text{realizes } tp \, (a_{\, \delta_i} \, \mathop{\cup} \limits_{j < i} \, (\bar{b}_j \, \smallfrown \bar{c}_j \, \smallfrown < d_j >) \, \cup \, \bar{b}_i \, \smallfrown \bar{c}_i$$

By the choice of δ this is possible and $\langle \, \bar{b}_i \, \, {}^\smallfrown \bar{c}_i \, \, {}^\smallfrown < d_i > \, : \, i < \, \mu \, \rangle$ is as

required.

3.6. Fact:

If $d_i \in M$ are distinct for $i < (2^{\lambda})^+$.

$$B_{\alpha} = \{d_i : i < \alpha\}, B = \{d_i : i < (2^{\lambda})^+\},$$

then at least one of the following occurs:

- (i) for some $\gamma < (2^{\lambda})^+$ and $k < \omega$, $\{tp(\bar{d}, B_{\gamma}): \bar{d} \text{ a sequence of length } k \text{ from } B\}$ has power $(2^{\lambda})^+$
- (ii) (i) does not occur but for some $\varphi = \varphi(x, \bar{y})$ for a stationary set of $\delta < (2^{\lambda})^+$, $cf \delta > \lambda$ and $tp_{\varphi}(d_{\delta}, B_{\delta})$ split over B_{α} for every $\alpha < \delta$
- (iii) for some stationary $S\subseteq (2^\lambda)^+,\ \langle\ d_i:i\in S\ \rangle$ is an indiscernible sequence

Proof: Again as in [Sh1] I 2.12 (or 3.5 above)

Remark: In the proofs of 3.5, 3.6 we have not used the hypothesis of 3.4.

Continuation of the proof of 3.4:

Clearly if 3.5(i) holds, we finish, so w.l.o.g. 3.5(ii) holds. By Erdos-Rado theorem, for every $m,n<\omega$ there is $I=I_{n,m}\subseteq\mu$, $|I_{n,m}|=\mathbf{a}_n(\lambda)$, $\{\bar{a}_i:i\in I_{n,m}\}$ is an m-indiscernible sequence. By the proof of [BSh] VIII 1.3, there is a formula \mathbf{e}^1 such that for any n there are $I_n\subseteq(2^\mu)^+$, $|I_n|=\mathbf{a}_n(\lambda)^+$, and a finite monadic expansion \mathbf{C}^+ of \mathbf{C} such that (for some distinct $a_i^n(i\in I_n)$):

$$(\forall i, j \in I_n)[C^+ \models e^1(a_i^n, a_j^n) \quad iff \quad i \leq j]$$

Note that a_i^n belongs to our original A. We now can deal with $\{a_i^1: i \in I_1\}$ only. W.l.o.g. $I_1 = (2^{\lambda})^+$, $\mathbf{C} = \mathbf{C}^+$, $a_i^1 = a_i$ and denote $B_{\gamma} = \{a_i: i < \gamma\}$. Applying 3.6 to \mathbf{C}^+ , $A^1 = \{a_i: i < (2^{\lambda})^+\}$, if our conclusion fails then one of the following two cases occurs.

Case I: there are $\gamma < (2^{\lambda})^+$ and $\bar{b}_{\alpha} \in A^1(\alpha < (2^{\lambda})^+)$ such that $tp(\bar{b}_{\alpha}, B_{\gamma})$ are distinct (for distinct α 's).

Clearly if for some α , $\{tp(d_{\beta},B_{\gamma}\cup\bar{c}_{\alpha}):\ \beta<(2^{\lambda})^{+}\}\$ has power $>2^{\lambda}$, we get contradiction to k's minimality, hence w.l.o.g. $\alpha<\beta<(2^{\lambda})^{+}$, $\sigma<(2^{\lambda})^{+}$ implies $tp_{\varphi}(\bar{c}_{\beta}\sim d_{\beta}>,B_{\gamma})\neq tp_{\varphi}(\bar{c}_{\alpha}\sim d_{\sigma}>,B_{\gamma})$. Similarly w.l.o.g. $\alpha<\beta<(2^{\lambda})^{+}$, $\sigma<(2^{\lambda})^{+}$ implies $tp_{\varphi}(\bar{c}_{\beta}\sim d_{\beta}>,B_{\gamma})\neq tp_{\varphi}(\bar{c}_{\sigma}\sim d_{\alpha}>,B_{\gamma})$. W.l.o.g. for every β there is no $\beta<\beta$ such that $\bar{c}_{\beta}\sim d_{\beta}>$ satisfies this. W.l.o.g. for some monadic predicate $P,P=\{d_{\beta}:\beta<(2^{\lambda})^{+}\}$, so d_{β} is defined from \bar{c}_{β} , so we can decrease k.

An alternative way to do it is as follows. Let $\bar{b}_{\alpha} = \langle a_{i(\alpha,0)}, \ldots, a_{i(\alpha,k-1)} \rangle$, w.l.o.g. $i(\alpha,0) < \cdots < i(\alpha,k-1)$, and as the \bar{b}_{α} 's are pairwise disjoint, w.l.o.g. $\alpha < i(\alpha,k-1) < i(\beta,0)$ for $\alpha < \beta$.

We may expand \mathfrak{C} by $P_m = \{a_{i(\alpha,m)}: \alpha < (2^{\lambda})^+\}$, and using the order defined by \mathbf{e}^1 on $\{a_i: i < (2^{\lambda})^+\}$ we can define the functions $a_{i(\alpha,0)} \to a_{i(\alpha,m)}$ hence can code \bar{b}_{α} by $a_{i(\alpha,0)}$.

So there are $\gamma < (2^{\lambda})^+$ and $b_{\alpha} \in A^1$ ($\alpha < (2^{\lambda})^+$), and φ such that $tp_{\varphi}(b_{\alpha}, B_{\gamma})$ are distinct for distinct α 's, and w.l.o.g. γ is minimal. First assume $\varphi = \varphi(x,y)$. Also w.l.o.g. for every $\gamma_1 < \gamma < \alpha < (2^{\lambda})^+$, there are $(2^{\lambda})^+$ β 's such that $tp_{\varphi}(b_{\alpha}, B_{\gamma_1}) = tp_{\varphi}(b_{\beta}, B_{\gamma_1})$. Hence for any n we can find $\gamma_0 < \gamma_1 < \cdots < \gamma_{2n}$, and $\alpha_{\eta} < (2^{\lambda})^+$ for $\eta \in {}^{2n}2$ such that $\gamma_{2n} < \gamma$, $\gamma < \alpha_{\eta}$ and for $m \leq 2n$, n, $\nu \in {}^{2n}2$:

$$tp_{\varphi}(b_{\alpha_{\eta'}}B_{\gamma_m}) = tp_{\varphi}(b_{\alpha_{\eta'}}B_{\gamma_m}) iff \eta \upharpoonright m = \nu \upharpoonright m$$
.

Expand **C** by:

$$R = \{b_{\alpha_{\eta}} : \eta \in {}^{2n}2, \bigwedge_{m < n} (\eta(2m) = 0 \lor \eta(2m+1) = 0)\}$$

$$Q_{1} = \{b_{\gamma_{2m}} : m \le n\}$$

$$Q_{2} = \{b_{\gamma_{2m+1}} : m < n\}$$

$$P = B_{\gamma}.$$

Let (remembering θ defines the order on $\{a_i : i < (2^{\lambda})^+\}$):

$$\psi(x,y) \stackrel{\text{def}}{=} R(x) \wedge Q_2(y) \wedge (\exists \ x_1, \ y_1)[R(x_1) \wedge Q_1(y_1) \wedge \\ \wedge (\forall \ y_2)[Q_2(y_2) \wedge \theta^1(y_2,y_1) \rightarrow \theta^1(y_2,y)] \wedge \\ \wedge [x, \ x_1 \text{ realizes the same } \varphi\text{-type over} \\ \{z \in P : \theta^1(z,y)\} \text{ but not over} \\ \{z \in P : \theta^1(z,y_1)\}]$$

It is easy to see that:

$$\models \psi[b_{\eta}a_{\gamma_{2m+1}}] \quad iff \quad \eta(2m+1) = 1$$

Together with compactness this shows that some finite monadic expansion of ${\bf C}$ has the independence property, contradiction.

We still have to deal with the case $\varphi=\varphi(x,\bar{y}), l(\bar{y})>1$. Let $l(\bar{y})=m$ let $<^*$ be the lexicographic order on ${}^m(B_\gamma)$, (based on ${\bf e}^1$); so ${}^mB_\gamma=\{\bar{a}_\alpha:\alpha<\gamma_m\}, \ \bar{a}_\alpha<^*\bar{a}_\beta$ iff $\alpha<\beta<\gamma_m$. We then let $\gamma^*\leq\gamma_m$ be minimal such that $\{\{\varphi(x,\bar{a}_\beta):\ \beta<\gamma^*,\ \models\varphi(b_\alpha,\bar{a}_\beta)\}:\ \gamma<\alpha<(2^\lambda)^+\}$ has power $(2^\lambda)^+$. Now again necessarily γ^* is limit and we can find $\gamma_0<\gamma_1<\dots<\gamma^*$ and $\gamma^*<\alpha_\eta<(2^\lambda)^+$ for $\eta\in{}^\omega\!2$ which are eventually zero such that

$$\bigwedge_{\beta < \gamma_l} \varphi[b_{\alpha_{\eta}}, \bar{\alpha}_{\beta}] \equiv \varphi[b_{\alpha_{\nu}}, \bar{\alpha}_{\beta}] \quad iff \quad \eta \upharpoonright l = \nu \upharpoonright l$$

Our only problem is to code $\{\bar{a}_{\eta}: l < \omega\}$ by monadic predicates, which is easy applying Ramsey theorm on the \bar{a}_{η} 's and using the order on B_j .

Case II: For some finite $\bar{c} \in \mathbb{C}$ and some $\gamma < (2^{\lambda})^+$, $\{tp(\bar{b}, B_{\gamma} \cup \bar{c}): \bar{b} \subseteq A^1\}$ has power $(2^{\lambda})^+$ Like case I.

Case III: Note case II.

We shall prove

(*) if $\bar{c} \in \mathbf{C}$, $W \subseteq \{\delta: \delta < (2^{\lambda})^+, cf \delta > \lambda\}$ is stationary, then for some closed unbounded $U \subseteq (2^{\lambda})^+$, and function f, Dom $f = U \cap W$; $f(\alpha) < \alpha$ for $\alpha \in U \cap W$, and for each γ the sequence $\langle tp(\alpha_{\alpha}, \bar{c} \cup \{\alpha_{\beta}: \beta < \alpha, f(\beta) = \gamma\}): f(\alpha) = \gamma \rangle$ is increasing.

Now it suffice to prove (*). As then we define by induction on n K_n , and for $t \in K_n$, W_t , U_t , f_t , \bar{c}_t such that:

- (a) $K_0 = \{<0>\}$, $W_{<0>} = W \subseteq \{\delta < (2^{\lambda})^+: cf \delta > \lambda\}$, $\overline{c}_{<0>}$ is the empty sequence.
- (b) for $t \in K_n$ $\bar{c}_t \in \mathbb{C}$ is a sequence of length n, and if $\alpha_1 < \alpha_2 \cdot \cdot \cdot < \alpha_n$ are in W_t , then

$$tp(\langle \alpha_{\alpha_n}, \alpha_{\alpha_{n-1}}, \ldots, \alpha_{\alpha_2}, \alpha_{\alpha_1} \rangle, \{\alpha_{\gamma} : \gamma < \alpha_1, \gamma \in W_t\})$$

$$= tp(\bar{c}_t, \{\alpha_{\gamma} : \gamma < \alpha_1, \gamma \in W_t\})$$

- (c) K_n is a family of sequences of length n of ordinals $<(2^{\lambda})^+$
- (d) for $t \in K_n$, U_t is a closed unbounded subset of $(2^{\lambda})^+$, f_t a function with domain $U_t \cap W_t$, $f_t(\alpha) < \alpha$
- (e) $K_{n+1} = \{ \eta \land < \gamma > : \eta \in K_n, \gamma \in Rang(f_t) \text{ for some } t \in K_n \}$ and $W_{\eta \land < \gamma >} = \{ \alpha \in W_{\eta}; \alpha \in U_{\eta} \text{ and } f_{\eta}(\alpha) = \gamma \}$ For n = 0-no problem, for n+1: for each $W_{\eta}(\eta \in K_n)$ apply (*) (with $\bar{c} = \bar{c}_{\eta}$).

Now K_0 , $W_n \bar{c}_n (\eta \in K_0)$ are defined.

If W_{η}, \bar{c}_{η} are defined we can define f_{η}, U_{η} by applying (*), then define $W_{\eta \land <\gamma >}, \bar{c}_{\eta \land <\gamma >}$ $(\gamma \in Rang(f_{\eta}))$ by (d). If we do this for every $\eta \in K_{\eta}$, we can define $K_{\eta+1}$ by (e).

For every $\delta \in W_{<>}$, we can define by induction on $l < \omega$, $\eta_l \in K_l$, such that $\eta_l = \eta_{l+1} \upharpoonright l$, $\delta \in W_{\eta_l}$ and $Rang \eta_l \subseteq \delta$ and the η_l are unique but maybe for some l, $\delta \not\in U_{\eta_l}$ hence η_{l+1}^{δ} is not defined. Let $\varepsilon(\delta) \leq \omega$ be such that η_l^{δ} is defined iff $l < \varepsilon(\delta)$. If $\{\delta \colon \varepsilon(\delta) < \omega\}$ is stationary, we get contradiction by Fodor lemma. If $W^* = \{\delta \colon \varepsilon(\delta) = \omega\}$ is stationary, then $\gamma(\delta) = \sup_{l < \omega} \eta_{l+1}^{\delta}(l) < \delta$ for $\delta \in W^*$ (as $cf \delta > \lambda$) hence for some stationary $W^1 \subseteq W^*$, $\gamma(\delta)$ is constant on W^1 . As $(2^{\lambda})^{\aleph_0} = 2^{\lambda}$ w.l.o.g. $\eta_l^{\delta} = \eta_l$ for every $\delta \in W^1$. Now $\bigcap_{l < \omega} W_{\eta_l}$ is stationary and by (b) $\{\alpha_i : i \in \bigcap_{l < \omega} W_{\eta_l} \}$ is an indiscernible sequence.

Proof of (*): For notational simplicity let $\bar{c} = \phi$ For every $\varphi = \varphi(x, \bar{y})$, and $\gamma < (2^{\lambda})^+$, type $p \in S_{\gamma}^{\varphi} \stackrel{\text{def}}{=} \{tp_{\varphi}(a_i, B_{\gamma}): \gamma < i < (2^{\lambda})^+\}$ and natural number n we define when $Rk_{\varphi}(p) \geq n$:

For n = 0-always.

For n = 2m+1, $Rk(p) \ge n$ iff there is β , $\gamma < \beta < (2^{\lambda})^+$ and distinct $p_1, p_2 \in S_{\beta}^{\varphi}$ extending p with $Rk_{\varphi}(p_1), Rk_{\varphi}(p_2) \ge 2m$.

For n=2m+2, $Rk(p) \ge n$ iff for every β , $\gamma < \beta < (2^{\lambda})^+$ there is $p_1 \in S_{\beta}^{\varphi}$ extending p with $Rk_{\varphi}(p_1) \ge 2m+1$.

If there are p, φ such that $Rk_{\varphi}(p) \geq n$ for every $n < \omega$, the proof is as in case I. Suppose not, then for every $p \in \bigcup_{\gamma} S_{\gamma}^{\varphi}$ let $Rk_{\varphi}(p)$ be the maximal n such that $Rk_{\varphi}(p) \geq n$. Clearly

(*) $p_1 \le p_2$ (both in $\bigcup_{\beta} S_{\beta}^{\varphi}$) implies $Rk_{\varphi}(p_1) \ge R_{\varphi}(p_2)$

Now for every $\delta \in W_0 = \{i < (2^{\lambda})^+: cf \ i > \lambda\}$, and α , there is $\gamma(\delta,p) < \delta$ such that:

$$\gamma(\delta,\varphi) \leq \gamma < \delta \Longrightarrow Rk_{\varphi}(tp_{\varphi}(\alpha_{\delta},B_{\gamma(\delta,\varphi)})) = Rk_{\varphi}(tp_{\varphi}(\alpha_{\delta},B_{\gamma}))$$

Let $\gamma(\delta) = \bigcup_{\varphi} \gamma(\delta, \varphi)$ so $\gamma(\delta) < \delta$. As we can use several f's (by coding) we can restrict ourselves to some stationary $W_1 \subseteq W_0$, such that for some γ^* $(\forall \delta \in W_1) [\gamma(\delta) = \gamma^*]$.

As not case II similarly w.l.o.g. for some $p \ (\forall \delta \in W_1) \ [tp(\alpha_{\delta}B_{\gamma}) = p]$.

Clearly $Rk_{\varphi}(p \upharpoonright \varphi)$ is not even, hence is odd, (for every φ). Suppose $\gamma^* < \delta_1 < \delta_2$ in W_1 , $tp(a_{\delta_1}, B_{\delta_2}) \not\subset tp(a_{\delta_2}, B_{\delta_2})$, then for some φ and $\alpha < \delta_1, \alpha > \gamma^*$ and both $tp_{\varphi}(a_{\delta_1}, B_{\alpha}) \neq tp_{\varphi}(a_{\delta_2}, B_{\alpha})$ have the same rank $(Rk_{\varphi}(-))$ as p, contradiction.

§4 From indiscernibles to finitely satisfiable and Hanf numbers

4.1. Lemma:

Suppose $\langle a_t : t \in I \rangle$ is an indiscernible sequence (*I* infinite). Then we can find a model *N* of power *T* such that for every $t \in I$, $tp(a_t, N \cup \{a_s : s < t\})$ is finitely satisfiable in *N*.

Proof: Let $I \subseteq J$, $t(n) \in J - I$, $(\forall t \in I) [t < t(n+1) < t(n)]$.

Let $\{a_t: t \in I\} \subseteq M \subseteq \mathbf{C}$, and let M^{\bullet} be an expansion of M by Skolem functions (so M^{\bullet} is an L^{\bullet} -model, $L \subseteq L^{\bullet}$). By Ramsey theorem and the compactness theorem, there is a model M^{+} of the theory of M^{\bullet} , and $b_t \in M^{+}$ $(t \in J)$ such that:

(*) for every
$$\varphi(x_1,\ldots,x_n) \in L^*$$
, and $s_1 < \cdots < s_n \in J$ if

$$M^+ \models \varphi[b_{s_1}, \ldots, b_{s_n}]$$
 then for some $t_1 < \cdots < t_n \in I$,

$$M^* \models \varphi[a_{t_1}, \ldots, a_{t_n}]$$
.

Clearly for every $s_1 < \cdots < s_n \in J$, $t_1 < \cdots < t_n \in I$ the L-types of $\langle b_{s_1}, \ldots, b_{s_n} \rangle$ in M^+ and $\langle a_{t_1}, \ldots, a_{t_n} \rangle$ in M are equal, hence w.l.o.g. the L-reduct of M^+ is an elementary submodel of ${\bf C}$ and $a_t = b_t$ for $t \in I$. Lastly let $N \subseteq {\bf C}$ be the model whose universe is the Skolem hull of $\{b_{t(n)}: n < \omega\}$ in M^+ , and $a_t \stackrel{\text{def}}{=} b_t$ also for $t \in J - I$.

So let $t \in I$ and we should prove that $tp_L(a_t, N \cup \{a_s : s < t, s \in I\})$ is finitely satisfiable in N. Let $\overline{d} \in N$, $t_0 < t_1 < \cdots < t_n = t \in I$, $\varphi \in L$, $\mathfrak{C} \models \varphi[b_{t_n}, b_{t_{n-1}}, \ldots, b_{t_0}, \overline{d}]$ so for some L^* -term $\overline{\tau}$, and $k < \omega$,

$$\begin{split} \overline{d} &= \overline{\tau}(b_{t(0)}, \ldots, b_{t(k)}). \quad \text{As} \quad \left\langle \ b_t : t \in J \right\rangle \quad \text{is indiscernible in} \quad M^+, \quad \text{and} \\ M^+ &\models \varphi[b_{t_n}, b_{t_{n-1}}, \ldots, b_{t_0}, \overline{\tau}(b_{t(0)}, \ldots, b_{t(k)})] \text{ clearly} \end{split}$$

$$M^+ \models \varphi[b_{t(k+1)}, b_{t_{n-1}}, \ldots, b_{t_0}, \overline{d}] .$$

As $b_{t(k+1)} \in N$, we finish.

4.2. Conclusion:

If $\lambda \to (\mu)_T^{\leq \omega}$, M a model of power λ , then for some N of power |T|, M has a decomposition $\langle A_i : i < \alpha \rangle$ over N, $A_i \neq \emptyset$, $\alpha \in \{\mu, \mu+1\}$

Proof: Immediate by 2.5, 4.1.

Remember $\mathcal{L}^{\delta}_{\infty,\lambda}$ is the set of sentences of $\mathcal{L}_{\infty,\lambda}$ with quantifier depth < δ .

4.3. Theorem:

Suppose $(T_{\infty}, 2^{nd}) \leq (T, \text{mon}).$

- 1) For limit ordinal δ and every λ the Hanf numbers of the logic $\mathcal{L}_{\omega,\lambda}^{\delta}$, μ_1 for models of T expanded by $\leq |T|$ monadic predicates, and μ_2 for linear well ordering expanded by $\leq |T|$ monadic predicates, satisfies $\exists_{\omega^2}(\mu_1) = \exists_{\omega^2}(\mu_2)$
- 2) The Lowenheim and Hanf number of $\mathcal{L}_{\infty,\lambda}^{\delta}$, for well ordering expanded by $\leq |T|$ monadic predicates, are equal; so if λ,α are definable in second order logic, then those numbers are smaller than the Hanf number of 2^{nd} order logic.

Proof: 1) By 2.6, 4.2 this is reduced to a problem on monadic theory of sum of models, for complete proof see [Sh4]. However if $(\forall \alpha)(\alpha < \delta \rightarrow \alpha + \alpha < \delta)$, $\gimel_{\delta} > |T|$ there are no problems.

2) See [BSh].

Now by 4.3 and 3.4:

4.4. Conclusion:

For T as above.

1) The Hanf number of $L_{\omega,\omega}(\text{mon})$ for models of T is strictly smaller than the Hanf number of second order logic.

2) Even in $L_{\lambda,\lambda}$ we cannot interpret a pairing function on arbitrarily large sets in models of T.

Part II

Hypothesis: $(T_{\infty}, 2^{nd}) \leq (T, mon)$

§1 On a rude equivalence relation

1.1. Context:

Let M_0 be a fixed model $(\subseteq \mathfrak{C})M_0 \subseteq M_1 \subseteq \mathfrak{C}$, and in M_1 every type over M_0 (with $<\omega$ variables) is realized. The case $||M_0|| = |T|$, $||M_1|| \le 2^{|T|}$ will suffice. We let \mathcal{B} be an elementary extension of M_0 , which is the model we want to analyze: and we assume $tp_{\bullet}(\mathcal{B},M_1)$ is finitely satisfiable in M_0 (and $\mathcal{B} \subseteq \mathfrak{C}$).

We usually suppress members of M_0 when used as individual constants.

We further let I be a κ -saturated dense linear order, $\kappa > 2^{|T|}$, and we can find elementary maping $f_t(t \in I)$ such that $\text{Dom } f_t = \mathcal{B}$, $f_t \upharpoonright M_0 =$ the identity, and for some ultrafilter D on M_0 , $tp_{\bullet}(f_t(\mathcal{B}), M_1 \cup \bigcup_{s < t} f_s(\mathcal{B}))$ is $Av(D, M_1 \cup \bigcup_{s < t} f_s(\mathcal{B}))$ (see for definition I 1.4, 1.5).

We denote by \mathcal{B}_t the image of \mathcal{B} by f_t .

For $a \in \mathcal{B}$ let $a_t = f_t(a)$, $\langle a_1, \ldots, a_n \rangle_t = \langle f_t(a_1), \ldots, f_t(a_n) \rangle$, $0 \in I$, $f_0 =$ the identify.

1.1A Remark:

Except in 2.1, 2.3, we use just the indiscernibility of the \mathcal{B}_t 's.

1.2. Definition:

- 1) On $\mathcal{B} = \mathcal{B}_0$, we define a relation E_0 : $aE_0b \text{ iff in some monadic finite expansion of } \mathfrak{C} \text{ the set}$ $\{ < a_t, b_t > : t \in I \} \text{ is first order definable.}$
- 2) For $a \in \mathcal{B}$, 0d(a) hold if in some monadic finite expansion of \mathfrak{C} the set $\{\langle a_t, a_s \rangle : t \in I, s \in I, t \langle s \}$ is first order definable.

1.3. Claim:

- 1) E_0 is an equivalence relation
- 2) aE_0b implies $0d(a) \longleftrightarrow 0d(b)$

Proof: Easy

1.3. Claim

If $\bar{a}^k \subseteq b_k / E_0 \subseteq \mathcal{B}(k=1,n)$ and $b_k / E_0 \neq b_m / E_0$ for $k \neq m$ then:

- (i) $tp(\bar{a}_{t_1}^1 \bar{a}_{t_2}^2 \cdots \bar{a}_{t_n}^n, M_1)$ is the same for all $t_1, \ldots, t_n \in I$
- (ii) $tp(\bar{a}^n, M_1 \cup \bigcup_{k=1}^{n-1} \bar{a}^k)$ is finitely satisfiable in M_0
- (iii) if $a^n = \bar{b} \sim \bar{c}$, $tp(\bar{c}, M_1 \cup \bar{b})$ is finitely satisfiable in M_0 , then $tp(\bar{c}, M_1 \cup \bar{b} \cup_{k=1}^{n-1} \bar{a}_k)$ is finitely satisfiable in M_0 .

Proof: Clearly (ii) follows from (i) (just choose $t_n > t_1, \ldots, t_{n-1}$ in (i)] and also (iii) follows by I 1.6 from (ii).

So let us prove (i), and we prove it by induction on n and then on $k \le n$, restricting ourselves to $\langle t_1, \ldots, t_n \rangle$ such that $|\{t_1, \ldots, t_n\}| \ge n - k$ (for k = n we get the conclusions)

Suppose we have prove it for n' < n and for n' = n, k' < k.

1.3A Fact:

By replacing ${\bf C}$ by a monadic finite expansion we can replace ${\bar a}^m$ by a singleton $<{a^m}>$. Replacing ${\bf C}$ by a finite monadic expansion ${\bf C}^+$ does not preserve the properties of $M_0,M_1,~\langle {\mathcal B}_s\colon s\in I\rangle$. However we can w.l.o.g. assume that $\langle {\mathcal B}_s\colon s\in I\rangle$ is indiscernible over M_1 in ${\bf C}^+$. We could here also use $L({\bf C}^+)$ -formulas only of the form $\varphi(\,\cdots\,,x_n\,\cdots\,,F_k(x_n)\,\cdots\,)$ where $\varphi\in L({\bf C}),~F_k$ are definable in ${\bf C}^+$ and maps each ${\mathcal B}_s$ into itself and commute with the functions f_s .

1.4. Notation:

For non-decreasing sequences $\langle s_1,\ldots,s_n\rangle$, $\langle t_1,\ldots,t_n\rangle$ from I, we say that $\langle s_1,\ldots,s_n\rangle$ is closed to $\langle t_1,\ldots,t_n\rangle$ if either (a) $t_1<\cdots< t_n$, $s_m=t_{m+1}\,s_{m+1}=t_m$, $s_i=t_i$ for $i\neq m$, m+1, for some m, $1\leq m\leq n$

or (β) for some $1 \le l < m \le n$

$$t_1 \leq \cdots \leq t_{l-i} < t_l = t_{l+1} = \cdots = t_m < t_{m+1} \leq \cdots \leq t_n, t_m < s_m < t_{m+1}$$
 and
$$(\forall i) \quad [1 \leq i \leq n \land i \neq m \Rightarrow s_i = t_i].$$

We shall prove:

1.5. Fact:

If $\langle s_1,\ldots,s_n \rangle$ is closed to $\langle t_1,\ldots,t_m \rangle$, both non-decreasing sequences from I, $|\{t_i:i=1,n\}|=n-k$, then $tp(\langle a_{t_1}^1,\ldots,a_{t_n}^n \rangle,M_1)=tp(\langle a_{s_1}^1,\ldots,a_{s_n}^n \rangle,M_1)$

This suffice for proving 1.3 as any equivalence relation E on

$$\{\langle t_1, \ldots, t_n \rangle : t_i \in I, |\{t_i : i = 1, n\}| \ge n - k\}$$

satisfying the following has just one class:

- (a) if \bar{s} is closed to \bar{t} both non decreasing then \bar{s} E \bar{t}
- (b) if $\langle s_1, \ldots, s_n \rangle E \langle s_{n+1}, \ldots, s_{2n} \rangle$ and $(\forall i, j \in [1, 2n]) [s_i \langle s_j = t_j \langle t_j]$ then $\langle t_1, \ldots, t_n \rangle E \langle t_{n+1}, \ldots, t_{2n} \rangle$.

Proof of the Fact 1.5:

Note that $1.4(\alpha)$ occurs only when k = 0, and $1.4(\beta)$ occurs only when k > 0

Case A: k = 0.

So there is a formula φ with parameters from $M_1 \cup \{a_{t_1}^1, \dots, a_{t_{i+1}}^{i-1}, a_{t_{i+2}}^{i+2}, \dots, a_{t_n}^n\}$, such that $\models \varphi[a_{t_i}^i, a_{t_{i+1}}^{i+1}]$ but $\models \neg \varphi[a_{t_{i+1}}^i, a_{t_i}^{i+1}]$. So clearly (by the indiscernibility of $\langle \mathcal{B}_t : t \in I \rangle$ over M_1) there is a formula φ with parameters from \mathbf{C} such that for any $\mathbf{s} < t$ in $I \models \varphi[a_s^i, a_t^{i+1}] \land \neg \varphi[a_t^i, a_s^{i+1}]$ and w.l.o.g. $\models \varphi[a_s^i, a_s^{i+1}]$.

Adding monadic predicates $P^i = \{a_t^i : t \in I\}$, $P^{i+1} = \{a_t^{i+1} : t \in I\}$, we easily find that:

$$\Theta(x,y) = \varphi(x,y) \wedge P^{i}(x) \wedge P^{i+1}(y) \wedge (\forall z) \left[P^{i}(z) \wedge x <^{i}z \rightarrow \neg \varphi(z,y) \right]$$

define $\{\langle a_s^i, a_s^{i+1} \rangle : s \in I\}$, where

$$x < i z \stackrel{\text{def}}{=} (\forall y) [P^{i+1}(y) \land \varphi(z,y) \rightarrow \varphi(x,y)] \land x \neq z \land P^{i}(x) \land P^{i}(z).$$

Now $\boldsymbol{\Theta}$ contradict the non E_0 -equivalence of $\boldsymbol{a^i}$, $\boldsymbol{a^{i+1}}$.

Case B: k > 0

So there is a formula φ with parameters from $M_1 \cup \{a_{t_1}^1, \ldots, a_{t_{l+1}}^{l-1}, a_{t_{m+1}}^{m+1}, \ldots, a_{t_n}^n\}$ such that:

220

$$(a) \models \varphi[a_{t_l}^l, \ldots, a_{t_{m-1}}^{m-1}, a_{s_m}^m]$$

$$(b) \models \neg \varphi[a_{t_l}^l, \ldots, a_{t_{m-1}}^{m-1}, a_{t_m}^m]$$

by the induction hypothesis on k, from (a) it follows

- (c) for any v_l , ..., $v_m \in \{t \in I: t_{l-1} < t < t_{m+1}\}$, not all of them equal $\models \varphi[a_{v_l}^l, \ldots, a_{v_m}^m]$ By (b), as $t_l = \cdots = t_m$,
- (d) for any $v \in \{t \in I: t < t < t_{m+1}\}$

$$\models \neg \varphi[a_v^l, \ldots, a_v^m]$$

Using the indiscernibility of $\langle \mathcal{B}_t : t \in I \rangle$ over M_1 there is a formula φ' (with parameters from \mathbb{C}) such that (c), (d) holds for any $v_l, \ldots, v_m \in I$ not all equal, and for any $v \in I$ respectively. Expanding \mathbb{C} by $P^i = \{\alpha_t^i : t \in I\}$, we find that the formula

$$\Theta(x,y) = P^{l}(x) \wedge P^{l+1}(y) \wedge (\exists z_{l+2}, \ldots, z_{m}) \begin{bmatrix} m \\ \underset{i=l+2}{\wedge} P^{i}(z_{i}) \wedge \neg \varphi(x,y,z_{l+2}, \ldots, z_{n}) \end{bmatrix}$$

define the set $\{\langle a_t^l, a_t^{l+1} \rangle : t \in I\}$ of pairs, contradicting the non E_0 -equivalence of a^l , a^{l+1} .

§2 Extending a pair of finitely satisfiable

We continue to use the context of §1 (of part II)

2.1. Claim:

If \bar{a} , $\bar{b} \in \mathcal{B}$ then $tp(\bar{a} \sim \bar{b}, M_1) = tp(\bar{a}_s \sim \bar{b}_t, M_1)$ for some (every) $s < t \in I$ iff $tp(\bar{b}, M_1 \cup \bar{a})$ is finitely satisfiable in M_0

Proof: Easy

2.2. Lemma:

There are no $s < t \in I$, \bar{a} , $\bar{b} \in \mathcal{B}$ and $c \in \mathfrak{C}$ and formula φ with parameters from M_1 , such that:

(a)
$$\models \varphi[c, \bar{a}_s, \bar{b}_t]$$

(b)
$$\models \neg \varphi[c, \bar{a}_s, \bar{b}_t]$$
 for every $t_1 > t$ (in I)

(c)
$$\models \neg \varphi[c, \alpha_s, \bar{b}_t]$$
 for every $s_1 < s$ (in I)

(d) $ar{a} \hat{\ \ } ar{b}$ is included in one E_0 —equivalence class .

Proof: By (d) and 1.3A, replacing ${\mathfrak C}$ by a monadic finite expansion w.l.o.g. $\bar{a}=\langle a \rangle, \bar{b}=\langle b \rangle$. By Ramsey theorem and compactness we can assume that if $\langle v_1,\ldots,v_m \rangle$, $\langle u_1,\ldots,u_m \rangle$, are increasing sequences from I, $(\exists k) (v_k=u_k=s), (\exists k) (v_k=u_k=t)$ then

$$tp_*(\langle \mathcal{B}_{v_1}, \ldots, \mathcal{B}_{v_m} \rangle, M_1 \cup \{c\}) =$$

$$tp_{\bullet}(\langle \mathcal{B}_{u_1}, \dots, \mathcal{B}_{u_m} \rangle, M_1 \cup \{c\})$$
.

By II. 1.3A, w.l.o.g. **C** has predicates for $\{a_t: t \in I\}$, $\{b_t: t \in I\}$, and $\{\langle a_t, b_t \rangle : t \in I\}$. We shall try to use c for coding $\{s, t\}$ (i.e., $\{a_s, b_t\}$), which contradict $(T_{\infty}, 2^{nd}) \leq (T, \text{mon})$ (see I. 1.3(2)).

Case A: not 0d(a)

Subcase A1: For any $v \in I$, s < v < t, $\models \varphi[c, a_v, b_t]$.

Then we can fix t, and define $\{ \langle a_v, b_u \rangle : v \langle u \langle t \} \}$ as in the proof of 1.5 Case A and then define $\{ \langle a_v, a_u \rangle : v \langle u \in I \}$, contradicting not 0d(a).

Subcase A2: Not A1 but for any $v \in I$, if v > t, then $\models \varphi[c, a_v, b_t]$

Similar contradiction: fix s, and using the function $\{< a_v, b_v>: v \in I\}$ define $\{< b_v, b_u>: s < v < u>\}$.

Subcase A3: For $v \in I$, if s < v < t then $\models \varphi[c, a_s, b_v]$

like subcase A1 (interchanging a and b)

Subcase A4: Note A3 but if $v \in I$, v < s then $\models \varphi[c, a_s, b_v]$

like A2 (interchanging a and b)

Subcase A5: Not A1-A4

Here c code the pair $<a_s$, $b_t>$: a_s is unique for t such that $s\neq t$ and $\varphi(c,a_s,b_t)$ (by not A1, A2). By symmetry (i.e., as not A3, A4) t is unique for s, by the indiscernibility we have over c and as I is dense this shows that c determine < s, t >, so we get the contradiction to the hypothesis of Part II.

Case B: 0d(a)

Let $\mathbf{e}(x,y,z)$ says all the relevant things on $\langle a,b,c \rangle : x \in \{a_v : v \in I\}$, $y \in \{b_v : v \in I\}$, $\varphi(x,y,z)$, $\neg \varphi(z,x',y)$ where x' < x [i.e., $(\exists \ v < u)$] $(x' = a_v \land x = a_u)$] and $\neg \varphi(z,x,y')$ where y' < y [i.e., $(\exists \ v < u)$] $(y = b_v \land y' = b_u)$] and the amount of $\varphi(z,\neg,\neg)$ -indiscernibility of $\langle \langle a_v,b_v \rangle : v \in I \rangle$ over $\{c\}$ which holds.

Clearly $\models \theta[a_s, b_t, c]$

It suffices to prove that

(*) If
$$\theta[a_{s(k)}, b_{t(k)}, c]$$
 for $k = 1, 2$ then $s(1) = s(2), t(1) = t(2)$.

By symmetry we can assume t(1) < t(2) (if t(2) < t(1) interchange the order, if t(2) = t(1) neccessarily $s(1) \neq s(2)$ and invert the order). Below u,v denote elements of I.

Suppose s(2) < u < v, we can find $u_1, v_1, t(1) < u_1 < v_1$ such that $s(2) < u_1$, $u < t(2) < \Longrightarrow u_1 < t(2)$, $u = t(2) < \Longrightarrow u_1 = t(2)$, $v < t(2) < \Longrightarrow v_1 < t(2)$, and $v = t(2) < \Longrightarrow v_1 = t(2)$.

As $\models \Theta[a_{s(2)}, b_{t(2)}, c]$, it follows that

(i)
$$\varphi(c, a_{u_1}, b_{v_1}) \equiv \varphi(c, a_{u_1}, b_{v_1})$$

Now choose $u_2 > v_2 > t(2)$, as $\models \theta[a_{s(1)}, b_{t(1)}, c]$, clearly

(ii)
$$\varphi(c, a_{u_1}, b_{v_1}) \equiv \varphi(c, a_{u_2}, b_{v_2})$$

By transitivitiy of ≡

(iii) the truth value of $\varphi(c, a_u, b_v)$ is the same for all v > u > s(2).

Now (iii) is a property of c and s(2), and it fails for any s' < s(2) as $\models \varphi[a_{s(2)}, b_{t(2)}, c]$ but $\models \neg \varphi[a_{s(2)}, b_{v}, c]$ when v > t(2); so $a_{s(2)}$ is definable from c, and then we can easily define $b_{t(2)}$, and so get the desired contraction.

2.3. Lemma:

If \bar{a} , \bar{b} , $c \in \mathcal{C}$, $tp(\bar{b}, M_0 \cup \bar{a})$ is finitely satisfiable in M_0 then:

 $tp\,(ar{b}\! \sim\! c>$, $M_0\cup ar{a})$ is finitely satisfiable in M_0 or

$$tp\left(\bar{b}\,,\,M_{0}\cup\bar{a}\!\sim\!c>
ight)$$
 is finitely satisfiable in M_{0}

Proof: Suppose \bar{a} , \bar{b} , c form a counterexample. W.l.o.g. \mathcal{B} is $||M_0||^{+}$ -saturated. Choose $\bar{a}' \in \mathcal{B}$ realizing $tp(\bar{a}, M_0)$, then choose \bar{b}' such that $tp(\bar{a}' \smallfrown \bar{b}', M_0) = tp(\bar{a} \smallfrown \bar{b}, M_0)$. Then choose \bar{b}'' realizing $tp(\bar{b}', M_0 \cup \bar{a}')$ such that $tp(\bar{b}'', M_1 \cup \bar{a}')$ is finitely satisfiable in M_0 ; now $tp(\bar{a}' \smallfrown \bar{b}'', M_1)$ is finitely satisfiable in M_0 , so we could have chosen \mathcal{B} , D such that $\bar{a}' \smallfrown \bar{b}'' \subseteq \mathcal{B}$.

Now choose $c' \in \mathcal{B}$ such that $tp(\bar{a}' \sim \bar{b}'' \sim c' > , M_0) = tp(\bar{a} \sim \bar{b} \sim c' > , M_0)$; hypothesis 2.2 (d) may fail for \bar{a}' , \bar{b}'' , c', but by 1.3 (iii) we get it by replacing \bar{a}' , \bar{b}'' by $\bar{a}' \cap (c' \times E_0)$.

We can choose c'', such that $c'' \sim \bar{a}'_s \sim \bar{b}''_t$, $c \sim \bar{a} \sim \bar{b}$ realizes the same type over M_0 , and $tp_*(\{c''\} \cup \cup \{\mathcal{B}_v : s \leq v \leq t\}, M_1 \cup \cup \{\mathcal{B}_v : v < s\})$ is finitely satisfiable in M_0 . We can furthermore assume as in the proof of I. 2.6 that for v > t $tp_*(\mathcal{B}_v, \bigcup_{u < v} \mathcal{B}_u \cup \{c''\} \cup M_1)$ is finitely satisfiable in M_0 , so $tp_*(\bigcup_{v > t} \mathcal{B}_v, M_1 \cup \bigcup_{u \leq t} \mathcal{B}_u \cup \{c'\})$ is finitely satisfiable in M_1 . Now $\bar{a}'_s, \bar{b}''_t, c''$ satisfies (a) (b) (c) (d) of 2.2 if \bar{a}, \bar{b}, c where a counterexample to 2.2, where $s < t \in I$. So by 2.2 we have proved 2.3.

References

- [BSh] J. Baldwin and S. Shelah. Second order quantifiers and the complexity of theories, Proc. of the 1980/1 model theory year in Jerusalem, *Notre Dame J. of Formal Logic*, 1985.
- [GSh] Y. Gurevich and S. Shelah. Monadic Logic and the next world. Proc. of the 1980/1 model theory year in Jerusalem; *Israel J. Math.*, 1985.
- [Sh1] S. Shelah. Classification theory, North Holland Publ. Co. 1978.
- [Sh2] S. Shelah. Simple unstable theories. *Annals of Math Logic* 19(1980) 177-204.
- [Sh3] S. Shelah. On the monadic theory of order. Annals of Math 102 (1975) 379-419.
- [Sh4] S. Shelah, More on monadic theories, in preparation.