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Monadic Logic: Hanf Numbers!

Abstract

This is part of the classification developed in Baldwin Shelah [BSh]. The
paper is divided into two parts. In part I we show that (7., 2™) =/ (T, mon)
iff the Hanf number for the theory 7T in monadic logic is smaller than the
Hanf number of second order logic.

For this we deal with partition relations for models of 7. The main
result is that if 7 does not have the independence property even after
expanding by monadic predicates (or equivalently (T, 2™¥) =/ (T, mon))

then: 3,,,(N)* = 5 (ANF% In Part Il we analyze such T getting a decomposi-
tion theorem like that in [BSh] (but weaker) (This is needed in part 1.)

Part 1
§1 Preliminaries

We review here some relevant facts and definitions.

1.1. Convention:

T will be a fix complete theory, € a %-saturated model of 7, % large
enough (see [Sh1] 1 §1); M, N denote elementary submodels of € of power
<K, A,B,C subsets of such M, a,b.c,d elements of €, @.,b,5.d finite
sequences, and [,/ denote linear orders. A monadic expansion of M is
expansion by monadic predicates; a finite expansion is one by finitely many
relations. When dealing with finite monadic expansions of €, we may mean
a k-saturated one, or any such expansion. We shall not specify, because if
Mc €, M* a finite expansion of M, then we can expand € to €, an

¥ I thank Rami Gromberg for many corrections.
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elementary extension of M* which is k-saturated.

This paper has two parts, the major one in part [, but in order to prove an
important property of decomposition of models (see claim 12.4(1)) we need
a property of types which is lemma 2.3 of Part II. The sole contribution of
part II to I is the proof of this lemma.

We quote from [BSh] 1.2, 1.3:

1.2. Definition:
We say (7., 2™) < (T, mon) if in some monadic expansion of €, there is

an infinite set on which a pairing function is defined. (a pairing function on
A is a one-to-one function from 4 X A onto 4).

1.3. Theorem:

1) II 7 has the independence property {(see [Shl] II §) then
(Tw, 2™) = (T, mon). Hence, (7., 2™) = (T, mon) iff some finite monadic
expansion of a model of T has the independence property.

2) If in some finite monadic expansion of € for some infinite sets
{a, -t €1, tby : t € J{ and formula @, for any t € I, s € J there is d such

that (Vvu 1) (vv €J) [e(a,,b,.d) €= t=u as=v] then
(T.,2™) < (7T,mon).

We quote from [Shi] VII §4:
1.4. Definition:

1) We say p is finitely satisfiable in 4 if every finite subset of p is real-
ized by elements of 4

2) For an ultrafilter D on 74, and set B, we define

Av(D,B) = $ol...,xy, . . ., b)ies 1 b € B and the set

{{ag:teld: F ¢l..a. ... Bl belong D]

1.5. Lemma:

1) Av(D,B) is a complete type in the variables {z; : t €} over B, fin-
itely satisfiable in A; of course B ¢ C == Av(D,B) ¢ Av(D,C)

2) If p is finitely satisfiable in 4, p a set of formulas in the variables

fz, :t €|, then for some ultrafilter D on A, and some set B
p C Av(D,B).
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3) If p is finitely satisfiable in 4 then p does not split over 4 (i.e., if b,6
realize the same type over 4 then for no ¢, ¢(Z,b), -¢(Z,6) €p)

4) If p is an m-type over B finitely satisfiable in A4, then it can be
extended to p' € S™ () finitely satisfiable in 4,

5) If p,q e U SM™(C) are finitely satisfiable in A, B ¢ C, and every
m<w

m-type over 4 realized in C is realized in B, thenp [B=q [[B == p=gq

8) If tpJ(Cy,AUB) is finitely satisfiable in 4, and tp.(C,,AUBU{y) is fin-
itely satisfiable in AUC, then tp (CquC,4AUB) is finitely satisfiable in 4.
1.6. Observation:

If every p € U S™(4;) is realized in 4, (hence 45 C 4,) tp{DUC,A,UB)

m

and &p (D,4,VC) are finitely satisfiable in Ay then tp (D,4,0BuUC) is finitely
satisfiable in Ag
Proof: W.lo.g D = d;by 1.5(4) there is d’ realizing tp(d,4,uC) such that
tp(d!,4,UBUC) is finitely satisfiable in Ag (remember that tp(d,4,uC) is
finitely satisfiable in 4g). By 1.5(6) tp.(Cud! 4,UB) is finitely satisfiable in
Aq.
So tpJCudt 4,UB), tp.{Cud,A,UB) are both finitely satisfiable in 4, and
their restriction to A4, are equal. By 1.5(5) they are equal. Hence
tp(d',4,UBUC) = tp(d,A,UBUC). As tp(d!,4,UBUC) is finitely satisfiable in
Ag, necessarily tp(d,4,UBUC) is finitely satisfiable in Aq.
1.6A Remark: We can weaken the hypothesis by restricting ourselves to
p € \i S™{A4g) realized in 4, v B.

m<w

§2 A Weak Decomposition Theorem

Hypothesis: (T,,,2™*) =/ (T,mon).
Notation: Let 7,J be linear ordering
2.1. Definition:
1) Wesaythat 4 = { 4, :¢ €[) is a partial decomposition of M over N

iff : the A4;'s are pairwise disjoint subsets of M and for every t €1,
tp {4, gtAsUN) is finitely satisfiable in N {but not necessarily N ¢ M).
5

2) A is a decomposition of M over N, if it is a partial decomposition of
Mover Nand M = U 4, .
tel
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2.2. Definition:

For partial decomposition {(4;:tel}, (B :te€J) of M over N we
say {4 te€ly s (B :ted> if IC J and for every t €I, 4 C B;; we
say (At el =" (B :teJ)ifl[=Jandforeveryt €/, 4 C B;.

2.3. Claim:

1) For every < -increasing sequence of partial decompositions of ¥ over
N there is a least upper bound {(similarly for < %)

2) If {4 :t €I} is a partial decomposition of M over N, I C J, and for
t e Jd, welet 4 = pthen (4, : 1 €J) is a partial decomposition of ¥ over
N
Proof: Immediate
2.4. Claim:

1) Suppose {4 :t €[> is a partial decomposition of ¥ over N and
¢ € M. Then for some (B;:teJ) = (4 :tel> (a partial decomposi-
tion of # over N), ¢ € U B,

tel

2) If ] is a well-ordering with last element then wlog /= J

Proof:

1) Wlo.g. ¢ ztU[At, Let 7; be a maximal initial segment of 7 {i.e.,
€

(vtely) (vsel) (s<t = s e€l)] such that tp(c, Y A, UN) is finitely
€l

satisfiable in N (there is such [;, as I; = ¢ satisfies the demand, and by the
finitary character of the demand). By 2.3 () wlog [, =f{sel:s < t"
for some t*€ /. Now we let / = [, and let B, be A if t+ # t°, and 4; U {c} if
t = t*. We now check Def 2.1 (1). The main non-obvious point is why for ¢,
t* < t €], tp.B,, sgtBsuN) is finitely satisfiable in N. If not then for some

beB =4, adc &()tBs —f{c} = utAs, tp{b.@auiclUN) is not finitely satisfi-
s s<

able in N. However we know that tp(b,@UN) is finitely satisfiable in N {as
{ A; 15 €1) is a partial decomposition of ¥ over N). Also tp(c ,SL<J£AS UN) is

not finitely satisfiable in &N (by the choice of /;, as maximal, as t > t* and
as w.l.o.g. we add t* only if needed), hence w.l.o.g. #p{c.@UN) is not finitely
satisfiable in N. Hence, tp(b ~<c>, @UN) is not finitely satisfiable in N.
Together, N,&,b,c contradict Lemma 11 2.3. For £ = #*, we should prove for

bed.,ac Ut B, = U A that ip(b ~<c>, Nud) is finitely satisfieable in
s<t* s<t*
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N. Suppose this fails. As {4y : s&€/ ) is a partial decomposition of ¥ over
N, clearly tp(b , Nua) is finitely satisfiable in N. By II 2.3 and the last two
facts tp(b (@ ~<c¢>) UN) is finitely satisfiable in N. By the choice of t*
tp(c , Nug@) is finitely satisfiable in N. By 1.5 (8) and the last two facts,
tp(b ~<c>, Nua) is finitely satisfiable in N, contradiction

2) Either there is t* as required or [; = [, and then choose * as last.

2.5. Conclusion:

1) Suppose {4; :t € ) is a partial decomposition of # over N. Then
there is a decomposition { Byt € J> = {4 1t €[> of M over N

2) If I={a+1,<) then wlog. =1 also
fted . B# gl= [t el: 4 # ¢
Proof: Immediate by 2.3(1), 2.4

Remember that (see [Sh1]) Ded,.()A) is the first regular cardinal y, such
that every linear order of power A has strictly less than u Dedekind cuts.
2.6. Lemma:

1) Suppose {4; :t €1} is a decomposition of # over N. Then we can
find relations P}, (a< Ay < Ded, (||N|| +|[T[), 7< |T|, hence
Ay = 2HINIT+ITH such that:

a) Py, is an n-place relation on M.
b) if y<|T], n < », and a# g then P, NPTz = ¢ and koJlPZ/‘A =

U ™A
td(t)

¢) for a finite sequence b from any 4; let a.,(l;), n(b) be the unique n
and a such that & € PJ,; then if £, < - - < {,, b, €4 then we
can compute the type of b; ~ - - ~b, from (n(by): m =1, n)},
and (a_r(l;m):m =1, n), fory< |T|
2) So as Ded.(|T])= (8T)* we can use just |T| predicates when
|N| = | T}, and we waive the disjointness of the P} ’s.

Proof:

1) For any set A, N ¢ 4, and formula ¢ the number of p € ST (4) fin-
itely satisfiable in N is < Ded,.{] [N]|) (see [Sh2, p.202], slightly improving
a result of Poizat, which suffice for (2) (alternatively use a < 22'”))

Let N, be such that N ¢ Ny, N, is (||N]||+|T})*-saturated and we shall
show that w.l.o.g.
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(#)) foreacht €1, b € 4, tp(b N, U Ut 4 ) is finitely satisfiable in N
s<

For each t € [let 4 = (bl :w € I(t)], let b® = (b :v €I{t)) and by 1.5(2)
we can choose an ultrafilter D, on [N such that:

tp(bf, Nu U A) = Av(D,,Nu U 4)

s<i s<t
It suffice to us that for any £(0) < - - - < t(n)el
() tp (B, N U B = aw(Dy(ny, Nu U DY)
i<n l<n

For any finite set w ¢ [ we define g, = q,, ({z, ¢ €N} ), a complete type
over NuU {y bf by induction on |w|. For w = ¢ itis tp.(N N), if w # ¢ let

tew
w = {£(0), ..., t(n)},n = 0, £(0) < - - <it(n), and we define it by
(%) if {ec:ceNy ) realizes qy _gs(n)), we can find (b’ 1 vel(t(n))} realiz-
ing A (Dy(ny, NU U 4yVie, 1 c€Ny]) and let F be an automorphism of C

p<n
F the identiy on NU ) 4, F(b',) = bt for wel{t(n)). Now
l<mn
Quw = tp(\/_F(ec):CEN1>,NU UAt)
tew

It is easy to prove that for w, C wy( C 7 finite) gy, C Gy, (by induction
on {wj|) and obviously gq,, is finitely satisfied. Hence ufg,, : w ¢ [ finite]
is finitely satisfiable, hence realized by some {e’, :ceN,;}». We can use
fe', : c€Ny} instead Ny and then (*) holds.

Let {¢3{Z,9) : 7 < |T|{ be a list of the formulas ¢(Z,7), L(Z) = n, and Ep;fa:
a< Ay} be a list of {tp(db,N;) ¢ b, ¢ as above}, lastly b € P}, iff
b€y n(4).n=L(b) andtp(B.N) | g = Pl

2) Obvious from (1).

§3 Partition relations for theories

3.1. Definition:

1} A = (WP mean that for every model M of T of power A, there are dis-
tinct elements a; (i < ) such that {a;:%1 <u> is an n-indiscernible
sequence in M.

2) A (,u,);rneans that for every model # of T and a; € M(i< A) there

isI'c A |I] = wsuchthat {@; :1 €]} is an n-indiscernible sequence.
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3) A2 (WFY% A2 (WY are defined similarly.
3.2. Discussion

This definition was suggested by R. Grossberg and the author during the
winter of 1980/1, but we still know little. We can rephrase [Shi] I 2.8 as,

e.g.: if T is stable, A = AlTl then A* - (A*)§% We cannot hope for results
on T without the strict order property (see [Shi] 11§4) or even for simple T

{see [Sh2l.) The reason is as foilows: suppose A )5 ¢, and let F be a func-
tion from fw :w < A, |w]| < ¥y} to {0,1} exemplifying it, let L consist of the
predicates R, (n place ) P, (monadic) for n<w, and let 7 be the model

completion of {{ Vz)(z=2)} in this language. We define an L-model M with
universe {a, ; : <, 1< A} such that:

(i) forw ¢ A, |w]l=mn, {a,;:icw > € R¥iff F(w)= 0.
(ii) for every m.,i for some k, for every m>k a, ; € Py, iff m is divisi-
ble by the n®* prime.
m
I (VY- Yn) (32) [ 2 5% % np (Byy - yp)] belong to T,

quantifier free, but K., P, do not appear in ¢ and
@y 8y, €{a,;:n<k, i<}, then there is b € {a, ; : 1<A] such
that Felb.ay, ... ,a,]

This is quite easy, M is a model of T {(by T’s definition and (iii),) and ¥
exemplify A )59 We can similarly deal with A () .
Now 7 is simple, and in fact very close to 7;,,;. This leads naturally to:

3.3. Conjecture:

If T does not have the independence property, then for every u for some
AN ()59 or even 3, (it [ T]) = (W)F°
3.4. Lemma:

Suppose (T,,,2™) =¥ (T, mon), then

3c.7+1 ()\+|T|)+ _)s ()\)?m.

Proof: Wlog A> |T], let uw= 3,47, 4= {a;:1< (297, for i # J
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a; # a; € M, and M is a model of T.
3.5. Fact:

At least one of the following occurs for 4 = {a,:1 <(B9Y*} ¢ H,
Al = (9™
(i) There is an indiscernible sequence of length (2%)* of distinct
members of A (in the same length)
(ii) There is k, and @; € *A(i < u) and @ such that M F e[g;.a;] iff
1< 7;
Proof: Repeat the proof of [Sh1]12.12. Let 4; =/ {a; : j < i}
Let §= {6< (29" ¢f 6> i}, clearly S is a stationary subset of {(2¥)*. For
each 6€ S and formula ¢ choose if possible a subset By, C A4 Bg, of cardi-
nality <u such that: ¢p (as4,) does not split over By, [i.e., if o= ¢(z.7),
b, ¢ sequences from A4; of length L(¥) realizing the same type over By,
then  glagb] = ¢asc]] Let S, = {6€ S: By, is defined].
Case a: For each ¢ for some closed unbounded € ¢ (29*, CnS=Cn S,
Then there is a closed unbounded C ¢ (2%9% such that for every ¢,
CnS=CnS5, For each §€ C NS choose By By a subset of 45 of power u
including k(: B, such that for each ¢, and n < w, every n-type over B, , real-

ized in A; is realized in Bs (possible as |Bs,| < u, u strong limit). Now by
Fodor’'s lemma for some stationary S*C € n S, for all 6€S% Bs { Bsy
€ L(T) >, tp(as By are the same. Continue as [Sh1]12.12.

Case b: For some ¢, S —S, is a stationary subset of (24)*

So there is §€ S-S, such that for every B € A, |B| < u thereis a< ¢

such that a, realizes tp{asB). Sc choose by induction on 1<
b;, €;, d; € Asas follows:

(a) b, €, realizes the same type over U b; ~c; ~<d;>
i<i
and '= ‘F[a'd: Ea] = - (P[Cld, Ea]
(wlog. [ ¢lasb,]nr-dascal)

(8 d; realizes tp{ay j\ji (b; ~¢; ~<d;>)ub; ~¢

By the choice of § this is possible and {b; ~€; ~<d;>: 1< ) is as



Sh:197

211

required.
3.6. Fact:
If d; € M are distinct for i < (2M*.
B,= {diyi<a), B = {di< (2N},
then at least one of the following occurs:
(i) for some y < (RM* and k < «, {tp(d,B,): d a sequence of length
k from Bl has power (2M)*
(ii) (i) does not occur but for some ¢ = ¢(x,¥) for a stationary set of
6< (2M*, cf 6> Nand tp(ds By split over B, for every a< &
(iii) for some stationary S ¢ (2M*, (d, :1 € S} is an indiscernible
sequence
Proof: Again asin [Sh1]12.12 (or 3.5 above)
Remark: In the proofs of 3.5, 3.6 we have not used the hypothesis of 3.4.

Continualion of the proof of 3.4:

Clearly if 3.5(i) holds, we finish, so w.l.o.g. 3.5(ii) holds. By Erdos-Rado
theorem, for every m,n<w there is I= I, Cu |, =300,
{d; 11 € I, ,»} is an m-indiscernible sequence. By the proof of [BSh] VIII 1.3,
there is a formula 8! such that for any m there are I, C (29,
|Z,| = 3,(A)*, and a finite monadic expansion €* of € such that (for some
distinct al*(1 € ,)):

(vi,j € )€ el (alal) iff i< j]

Note that al* belongs to our original A. We now can deal with
fa,' 11 €1} only. Wlog [I,=@", C€=C* al=a and denote
B,= {a; :i<7. Applying 3.6 to €*, A' = {a; : i< (2")*], if our conclusion
fails then one of the following two cases occurs.

Case I: there are y< (@M* and b, € A{a< (2M*) such that tp(b,B,) are
distinet (for distinct a's).

Wlo.g l(b,) = k for every . Next we show that w.l.o.g. k = 1, other-
wise choose an example with minimal k (possibly replacing € by a finite
monadic expansion). W.lo.g. the b, form a A-system hence by k's
minimality are disjoined. If k> 1, let b, = €,~<d,>; w.lo.g. for some
¢ = ¢(Z,y;Z), the types tp (b, B,) are distinct.
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Clearly if for some o {fp(dgB,uC,): B< (2M*] has power >2* we get
contradiction to k’'s minimality, hence w.l.o.g. a< < (28M*, o< (2M)* implies
tp (Eg<dg>.B,) # tp (C,<d,>,B,). Similarly wlo.g a<g<(2N*, o< (2M*
implies tp (€ g<dg>,B,) # tp (€< dx> ,B,). W.lo.g for every fthere is no
B'< B such that Cg~< dg> satisfies this. W.l.o.g. for some monadic predicate
PP = {dg B< (2N}, so dgis defined from ¢, so we can decrease k.

An  alternative way to do it is as follows. let b,=
{ B0y - - Yi(ak—) ) » WLog i(a0)< - <i(ak-1), and as the b,'s are
pairwise disjoint, wl.o.g a< i{ak-1) < 1(8,0) fora< £
We may expand € by P, = 1@ (am): a< (2M)*], and using the order defined by
8! on {a; : i <{2M)*] we can define the functions Qi(a0) > i(am) HENCE can
code b, by a;(4,0)-

So there are y< (8M)* and b, € A! (a< (2M)*), and ¢ such that tp (b & B,)
are distinct for distinct o's, and w.l.o.g. 7 is minimal. First assume
¢= ¢{z,y). Also w.lo.g for every 7, < y< a< (2M*, there are (2M)* g's
such that ] tp(bpB,) = tpbgB,). Hence for any n we can find
Y% < 71 < < 72, and o< (RN* for n € 272 such that 73, < 7% 7 < @, and
form = 2n,n, v e N2

1 b0y By) = P (b, By ) iff nlm = v m .
Expand € by:

E= §b%:n€2”‘8, m/;n(n(zm) = 0vn(2m+1) = 0)}
@, = {b,, m=nj

@y = §b72m“:m<'n§

P= B, .

Let (remembering 8 defines the order on {a, : © < (RN)*}):
Wz y) £ R(x) A Qx(y) n @z, y DIR(z1) ~ @iy ) A
A (YY) Qa(y2) A 0N (y2y) > 0 (yay)] A
alz, x, realizes the same ¢-type over
{z € P :8'(z,y)] but not over

fz € P:ol(zy)}]
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It is easy to see that:
F ylbga,,,. ] off nEm+l) =1

Together with compactness this shows that some finite monadic expan-
sion of € has the independence property, contradiction.

We still have to deal with the case ¢ = ¢(z,¥), L(F)>1. Let 1{(F) = m let
<* be the lexicographic order on ™(B,), (based on 8!): so ™B,= {dy
Q@ <Yy}, @< 'Bgiff < B< 7,. We then let y'< 7, be minimal such that
{lolz,ag): B< 7", Eolbydg)): 7< a< (2N*] has power (2Y)*. Now again
necessarily 7" is limit and we can find 75 < 7, < - - < 7" and 7' < «, < (2M)*
for n € 2 which are eventually zero such that

ﬂ{)‘ Qa[ba,,'a'ﬁ] = fb,,a5 iff nll=v[L

Our only problem is to code {&@,,:l <« by monadic predicates, which is easy
applying Ramsey theorm on the @,,’s and using the order on 5.
Case II: For some finite ¢ €€ and some 7 < (2M*, {tp(b,B,u €): b < AY}
has power {(2M)*
Like case L
Case III:  Note case II.
We shall prove
(¥ if e €C, W (& 6§< (2M*, cf 6> A} is stationary, then for
some closed unbounded U ¢ (8M)*, and function f,
Dom f = UnW, f{a) < a for a€ Un W, and for each 7 the
sequence { tp(an€ Ulag B< a f(f=7) fl=7) Iis
increasing.
Now it suffice to prove (*). As then we define by induction on n X, and
fort € K,, Wy, Us, f¢, €; such that:
(a) Kg= {<0>), Wegs = WC {8< (RN* ¢f 8> A}, €.g> is the empty
sequence.

(b) for t € K, &; €C is a sequence of length n, and if a; < ag - - - <oy
are in W, then

tp({“aﬁﬁaaﬁ_i ----- aa2~a'a,> , 207:7< a7 € Wt;)

tp(Cs, fa, 7 < a7 € W)
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(¢) K, is a family of sequences of length n of ordinals < (2*)*

(d) for t € K,, U; is a closed unbounded subset of (2M)*, f, a function
with domain Up 0 Wy, fi(al<a

(e) Kpoyi={n~<¥: nek, ve€Rang(f,) for some t €K,} and
Wpacys = ta€ Wy a€ Upand f,(a) = 7
Forn = 0-no problem, for n+1: for each W,(n € K,) apply (*) (with ¢ = ¢,).
Now Ko, W,€,(n€ Kp) are defined.

If w,c, are defined we can define f,, U, by applying (*), then define
Woncys Cnacys (¥ € Rang(f,)) by (d). If we do this for every n€ K,, we can
define K .1 by (e).

For every 6€ W.,, we can define by induction on |l < «, 7, € K}, such
that o, = m41 ML, 6€ W, and Fangn, < 6and the n;, are unique but maybe
for some L, 62 U, hence nf.; is not defined. Let &(d) = w be such that nf is
defined iff { < &8). If {6 &) < w] is stationary, we get contradiction by
Fodor lemma. If W*= {§: &(8) = w} is stationary, then %08 = sup WLy < 6

<w
for 6€ W* (as ¢f 6> A) hence for some stationary W! < W* ¥(d) is constant

on Wl As (2= 22 wlo.g mf= m for every € Wl Now 0 W, is station-
5]

aryand by (b} {a; :1 € l(\ W > is an indiscernible sequence.
<w

Proof of {*): For notational simplicity let € = & For every ¢ = o(z,¥),
and y< (2M*, type p € Sy ?"}fp‘p(ai,[??): y< i< (2M*] and natural
number n we define when ik (p) = n:

Forn = 0-always.

For n = 2m+1, Rk(p) = n iff there is B, ¥ < B< (2M* and distinct
P1p2 € S§ extending p with Rk (p).Fk (p3) = 2m..

For nn = 2m+2, Hk(p)= n iff for every 8, v< 8< (28" there is
p; € 5§ extending p with Rk:‘p(pl) = 2m+1.

If there are p,¢ such that Rlcq,(p) > n for every n < «, the proof is as in
case I. Suppose not, then for every p € U S¢ let Rk (p) be the maximal n
such that Fk (p) = n. Clearly !

{(*)py = py(bothin &ﬁ) Sg) implies Rk (p1) = K, (p2)

Now for every € Wy = {i < (2M*: cf i > A}, and «, there is ¥(6p) < ésuch
that:
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AHoy) = < =2 Rk (tp (asBysq)) =
Rk (tp [asB,))

Let #(8) = u(b,¢) so y(6) < 6 As we can use several f's {by coding) we
can restrict ozrselves to some stationary W; C W, such that for some ¥*
(vée W) A9 = ¥

As not case Il similarly w.l.o.g. for somep (vée W,) [tp (a.é,B?,‘) =pl

Clearly Fk,(p I'¢) is not even, hence is odd, (for every ¢). Suppose
Y < 8 < &in Wy, tplag.Bs) € tp(ag, Bs), then for some gand a < §,a> »*
and both ip fags,B,) # tp (a4, B,) have the same rank (Fk,(3) as p, con-
tradiction.

§4 From indiscernibles to finitely satisfiable and Hanf numbers
4.1. Lermma:

Suppose {a; :t €/} is an indiscernible sequence (/ infinite). Then we
can find a model N of power T such that for every ¢t €/,
tp(a;, Nu fag : s<t}) is finitely satisfiable in N.

Proof: LetlIc J, t(n)eJ —I, (vtel)[t < t{(n+1) <t(n)].

Let {a; :t €} ¢ Mc €, and let M* be an expansion of M by Skolem

functions (so M* is an L*model, L ¢ L*). By Ramsey theorem and the com-

pactness theorem, there is a model MY of the theory of M and
b, € M* (t € J) such that:

() forevery ¢z, ....z,) €L, ands;< - - <s, €Jif
M Edbs,. ... bg ]then for some t,< - - - <t, €],
HEdlas, ..., .
Clearly for every s;< - <sp €J, t,< ---<t, €] the L-types of
{bsp ... bs, > in M and {a;, ....q » in M are equal, hence w.l.o.g. the

L-reduct of M* is an elementary submodel of € and @, = b; for t € . Lastly
let N ¢ € be the model whose universe is the Skolem hull of ébt(n} T <l
in M*, and a; ¥/ b, also for t € J.

So let t €] and we should prove that tp;(a;, Nulag: s<t,s€l}) is fin-
itely satisfiable in N. Llet deWVN, ty< ;< ---<t,=tel, g¢pel,
Clglby by ..., 0,d] so for some L*term % and k<ug,
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d = by - .- b)) As (bt €J} is indiscernible in M¥, and
MY elby be oo beg WO (o), - - - Byry)] clearly
MY E @by e, - bepd]

As by(k+1) € N, we finish.

4.2. Conclusion:

If A =2 ()79 M a model of power A, then for some N of power |T|, ¥
has a decomposition {4; : 1 <a) over N, 4; # ¢ a € {pu+l)
Proof: Immediate by 2.5, 4.1.

Remember o[’o‘f,';\ is the set of sentences of o['m)\ with quantifier depth
< 6

4.3. Theorem:
Suppose {T.,2™) =/ (T, mon).
1} For limit ordinal § and every A the Hanf numbers of the logic IQ‘ZYA,
w1y for models of T expanded by < | T] monadic predicates, and
Mg for linear well ordering expanded by = | T} monadic predicates,
satisfies 3 (1) = 3 (1)
2) The Lowenheim and Hanf number of IS,')\, for well ordering
expanded by = | 7| monadic predicates, are equal; so if A,a are definable in

second order logic, then those numbers are smaller than the Hanf number
of 2™ order logic.

Proof: 1) By 2.6, 4.2 this is reduced to a problem on monadic theory of sum
of  models, for  complete proof see  [Sh4]. However  if

(va){a< 82> a+a< 8),3;> |T| there are no problems.
2) See [BSh].
Now by 4.3 and 3.4:

4.4. Conclusion:

For T as above.

1) The Hanf number of L, (mon) for models of 7T is strictly smaller
than the Hanf number of second order logic.
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2) Even in L, we cannot interpret a pairing function on arbitrarily
large sets in-models of T.

Part I
Hypothesis: (7., 2"%) </ (7, mon)
§1 On a rude equivalence relation
1.1. Context:
Let My be a fixed model (¢ €)My < M, C €, and in M, every type over M,
(with < w variables) is realized. The case ||Myl| = | 7], ||#,}} = 21T} will

suffice. We let & be an elementary extension of My, which is the model we
want to analyze: and we assume Ip .(Z?,MQ is finitely satisfiable in My (and

R c .
We usually suppress members of My when used as individual constants.

We further let I be a «-saturated dense linear order, «> 217l and we can
find elementary raaping f;{t €7) such that Dom f; = g, fe P Mg= the
identity, and for some ultrafilter D on © #y, tpJ(f:(B), M, U utfs(lg)) is

s<

Av (D, My :ths([b’))) (see for definition 1 1.4, 1.5).
s

We denote by [’?t the image of s by f¢.

For a €8 let a, = f,(a), {ay, o ooay e = (felay), .. felag) >,
0 €1/, fy= the identify.
1.1A Remark:

Exceptin 2.1, 2.3, we use just the indiscernibility of the ﬂgt’s,
1.2. Definition:

1) On £ = /30, we define a relation Fg
aEgb iff in some monadic finite expansion of € the set

{<ag,b,>t €[} is first order definable.

2) Fora efd, 0d(a) hold if in some monadic finite expansion of € the
set {<ay,a.>:t €1, s €[, t<s] isfirst order definable.

1.3. Claim:

1) Epis an equivalence relation

2) aFEyb implies 0d{a) ¢ = 0d(b)
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Proof: Easy
1.3. Claim
It a* ¢ b, /Eq C /g(k =1,n) and by /Eg# b, /Eg for k # m then:

(i) tp(&tllﬁiéA- -+ G4, M,)isthe same forall ty, ..., ¢, €/
n-1
(ii) tp(@™, M, U kU @*) is finitely satisfiable in Mg
=1

(iii) if a™ = b~¢, tp(€, M, Ub) is finitely satisfiable in M, then
_n-
tp(c, M, U b kgl ay ) is finitely satisfiable in Mn.

Proof: Clearly (ii) follows from (i) (just choose ¢, > ¢4, ..., ,t,4 in (i)] and
also (iii) follows by 1 1.8 from (ii).

So let us prove (i), and we prove it by induction on n and then on
k=mn, restricting ourselves to G 2T A such that
1§, ..., ty}] = n—% (for k = n we get the conclusions)

Suppose we have prove it forn' < n andforn'=n, k' < k.

1.3A Fact:

By replacing € by a monadic finite expansion we can replace &™ by a
singleton <a™>. Replacing € by a finite monadic expansion €* does not
preserve the properties of Mgy M, \/[?5: s € I>. However we can w.lo.g.
assume that (£ : s € ) is indiscernible over M, in €*. We could here
also use L(€*)-formulas only of the form ¢( - - ,z, - ,F(z,) ) where
¢ € L(€), F, are definable in €* and maps each £ into itself and commute
with the functions f,.

1.4. Notation:

For non-decreasing sequences {sy, ..., Sp o, {ty, ...ty from I, we
say that (s, ..., Sp > isclosedto {t ..., t, > if
gither (a) t{ < - - < to, S = trs1 Sme1 = tm, Sy = £ fori # m, m+1, for

somem , 1=sm=<n

or{f)forsomel=<l<m=n

ty= =< s T St < tgpas s iy, by < 8y < e

and (vi) [l=isnnri#m 2> s =4¢].
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We shall prove:
1.5. Fact:
I {sy ....8,> is closed to {ty ....%,>. both non-decreasing
sequences from 7, |{t; 11 = 1, n}| = n-k, then tp((atll, cosal ), M=
fP(<as1,; Ce g > M)

This suffice for proving 1.3 as any equivalence relation £ on
F(ty, oo, t,> t,el, |it; 1= 1, nil=nk|
satisfying the following has just one class:
(a) if 5 is closed to £ both non decreasing then § £ ¢
(b) if {s5¢ ..., Sp ) B {Sps1 .. S2p ) and (Vi,j€[1.2n]) [s;<5; = ¢;< ¢]
..... DN A S S

Proof of the Fact 1.5:

Note that 1.4(a) occurs only when k = 0, and 1.4(8) occurs only when
k>0

Case A: k=0

So there is a formula ¢ with parameters from
Mivlad, .., aj} aft? ..., aft}, such that F¢laf, aitl] but
F -¢laf,,. ai*']. So clearly (by the indiscernibility of
(Z;)t ct €l> over M) there is a formula ¢ with parameters
from € such that for any s < ¢t in [ E¢lal, af*!] n-¢[af, al*l]
and w.l.o.g. E¢lal al*l].

Adding monadic predicates Pt = fa}:t €1,
Pitl = {af*l: t € [}, we easily find that:

8(z.y) = plz.y) n PH(z) A PP Uy) n(vz) [Pz)rz <Pz 2 ~¢(z y)]

define {<al al*'> :s €[}, where

z <tz (vy) [P Uy)rgplzy) 2 elzy)laz # 2z A Pz)n PHz).

Now @ contradict the non Ej-equivalence of a¥, a**l.
Case B: k>0
So there is a formula ¢ with parameters from

Myvilaed, . et o**, .., al} such that:

tmer ?
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(@) Felaf, ... ot all]
(0) F~glaf,....afn7, off]

by the induction hypothesis on k, from (a) it follows
{c)forany vy, ..., v, €t €l ;, <t<t, 41,

not all of them equal E¢la), .. .. a ]

By(b),ast, = - - = £,,

(dyforanywv €t € t <t<t,, .}
E-dal, ... am]
Using the indiscernibility of (£, : t € I} over M, there is a for-
mula ¢ (with parameters from €) such that (c), (d) holds for any
vy, ..., Yy €1 not all equal, and for any v € [ respectively.
Expanding € by P* = {a}:t € I}, we find that the formula

m

8(z.y) = Pt(x) ’\Plﬂ(y) A3z, zZp)l A Pi(zi) A =p(Z Y 2 42 0 Zn)]

1=1+2

define the set {<af af*' > :t €] of pairs, contradicting the
non Fg-equivalence of at, at*l.
§2 Extending a pair of finitely satisfiable
We continue to use the context of §1 (of part II)
2.1. Claim:
ifa, b ek then tp(a-b, M) = tp(@;~by, M,) for some (every) s < t € [
iff tp(b, M, u @) is finitely satisfiable in Mg
Proof: Easy
2.2. Lemma:
There arenos < t €/, @, b €5 and ¢ €€ and formula ¢ with parame-

ters from M, such that:
(a) Eglc, @, b;]

(0) F -~#ec, a;, by ] foreveryt, > t (in 1)

(¢) E-dc,ag, b;] foreverys, < s (in])
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(d) a-b isincluded in one Ey-equivalence class .

Proof: By (d) and 1.3A, replacing € by a monadic finite expansion w.l.o.g.
@ = <a>,b = <b>. By Ramsey theorem and compactness we can assume

that if (v ....vpm >, (% ..., %, >, are increasing sequences from /,
(3k) (v = u = 5), (k) (9 = w, = t) then

(B, By > HMute}) =

tp({ By By > Myuic)).

By II. 1.3A, wlo.g. € has predicates for {a;:¢t €}, {b, : £ €}, and
{<ay, by>:t €I]. We shall try to use ¢ for coding {s,ti {i.e., {a;,b;}), which
contradict (7, ,2"*) < (T,mon) (see I. 1.3(2) ).

Case A: not 0d{a)

Subcase Al: Foranywv €l,s < v <t, Eglc, a,, b;].

Then we can fix ¢, and define {<a,, b, > : v<u<t} asin the proof of 1.5
Case A and then define {<a,, a,> : v<u €]}, contradicting nol 0d {(a}.

Subcase A2: Not Al but foranyv €/, ifv > t,then [E¢lc, a,, b;]

Similar contradiction: fix s, and using the function {< a,, b,> v €[}
define {<b,, b,> :s<v<u>}.
Subcase A3: Forwv €/,if s < v < t then E¢lc,aq, by
like subcase Al (interchanging ¢ and b)

Subcase A4: Note A3 butifv €[, v < s then [E¢[c,ag, b,]
like A2 (interchanging @ and b)

Subcase AS: Not Al1-A4

Here ¢ code the pair <ag, ;> : @ is unique for ¢ such that s # £ and
¢(c. ag, b;) (by not A1, A2). By symmetry (i.e., as not A3, A4) ¢ is unique for
s, by the indiscernibility we have over ¢ and as I is dense this shows that c
determine <s, t>, so we get the contradiction to the hypothesis of Part II.
Case B: 0d(a)

Let o{z,y,2) says all the relevant things on <a,b,c> : z €ia, : v €1},
yeib,:vell, olzy.z), -¢(z,zy) where z'<z [ie, (Iv<u)
(x'=aynz=a,)] and -¢(z.z,y) where y'<y J[ie, (Fv<u)
{(y = by ay' = b,)l and the amount of ¢{z,~-)-indiscernibility of
{<a,, b,> v €I} over {¢} which holds.
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Clearly Eeolag.b;.c]

It suffices to prove that
(#) Ifelagk)y, byeyclfor k=1, 2thens(1) = s(R), t(1) = £(2).

By symmetry we can assume £(1) < £(2) (if £(2) < ¢(1) interchange the
order, if t(2) = (1) neccessarily s(1) # s(2) and invert the order). Below
u,v denote elements of /.

Suppose s{2)<u<wv, we can find u,v, t(l) <u,<v,; such that
s{2) <uq, w<t(2) <=> u,<t(2), u=1t(2) <=> u,=t(2),
v<t(2) <==> v <t(R2), and v=¢t(R) <=> v,=£(R).

As Eelag(z), bi(z). ¢, it follows that

(1) glc,ay,, b,) = ¢(c,ay,b,)

Now choose ug> vy > (), as F6[ag(y),bs().c |, clearly

() ¢ Gy By) = ple .0y, b,,)

By transitivitiy of =

(iii) the truth value of ¢(c,a, b, ) is the same for all v>u> s(2).

Now (iii) is a property of ¢ and s(2), and it fails for any s'<s(2) as
izgo[as(g), byzc] but ~¢lasz).b,.c] when v > (2); so as(2) is definable

from c, and'then we can easily define be(2), and so get the desired contrac-
tion.

2.3. Lemma:
Ifa, b, ceC tp(b, Myu @) is finitely satisfiable in M, then:
tp(b~<c>, My U a) is finitely satisfiable in M, or

tp(b, My U @~<c¢>) is finitely satisfiable in M,

Proof: Suppose @, b, ¢ form a counterexample. W.l.o.g. &£ is [ 1Mol |*-
saturated. Choose @' e # realizing tp(a@, My), then choose b' such that
tp(@'~b’, My) = tp(@a~b, My). Then choose b" realizing tp(b’, My U &') such
that tp (b, M, U @') is finitely satisfiable in Mo now tp(@'~b", M,) is finitely
satisfiable in Mg, so we could have chosen 4{;", D such that@' %" ¢ £

Now choose ¢’ € 8 such that tp(a'~b"~c'>, My) = tp(@b-~<c'>, My);
hypothesis 2.2 (d) may fail for &', ", ¢’, but by 1.3 (iii) we get it by replac-
ing @, 5" by &' n(c'/Eg), b" N (c/Ey).
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We can choose ¢, such that ¢c"'~a’';~b";, c~@-b realizes the same type
over Mg, and tp.fc”} wu §/,>7v cs=w=t], Muu B, v <s]) is finitely
satisfiable in My We can furthermore assume as in the proof of 1. 2.6 that
for v >t tp.(ls’v, u:)v zgu ufe" u M) is finitely satisfiable in M, so

tp.f L;’t[;)v,Mlu ut/.;)u U fc'}) is finitely satisfiable in M;. Now @'y, b', ¢”
v us

satisfies (a) (b) (c¢) (d) of 2.2 if @, b, ¢ where a counterexample to 2.2, where
s < t €] Soby2.2we have proved 2.3.
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