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Introduction 

Call a Boolean algebra X-narrow if every set of pairwise incomparable elements 
has cardinality less than h. The Boolean Algebra is narrow if it has cardinality A 
and is h-narrow. In 1976, the first author announced that, assuming CH, there is 
a narrow Boolean Algebra of power 2” = wl. Independently, Berney and Nyikos 
[4], also proved the same result, using a different argument (they ‘use’ the 
Sorgenfrey topology on the real line, which has no countable basis and for which 
the plane is not normal). In 1979, the second author improved the argument still 
further and proved, without any assumption, that there is a narrow Boolean 
Algebra of power cf(2”) - the cofinal cardinal of the continuum. In this paper, 
we present Shelah’s improvement. We remark that for every k 2 w, the construc- 
tion also gives a narrow Boolean Algebra of power k’ if we assume GCH. 

1. On narrow Boolean algebras 

1.1. Let E = (E, 6) be a partial ordering. A set of pairwise incomparable ele- 
ments of E is called an antichain. Let p <h be two cardinals. A partial ordering 
of cardinality h is said to be p-narrow (or more simply narrow if p = h) whenever 
every antichain of the ordering is of cardinality =+L. In particular, we have the 
notion of narrow Boolean algebra (in this case we must remark that an antichain is 
not necessarily a set of pairwise disjoint elements). 

Subsequently, we denote by K the cofinal cardinal of 2”. 

1.2. We will prove: 

Theorem 1. There is a narrow Boolean algebra of cardinality K = cf(2”). 
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2 R. Bonnet. S. Shelah 

In fact, we will prove that there is a subset P of the real line R, which is ~-dense 
(that means each non-empty open interval of [w, contains K points of P) and such 
that the Boolean algebra B = B(P), which is of cardinality K, is narrow. 

A Boolean algebra B of cardinality h 2 w, is said to be homogeneous in 
cardinality whenever for every 0 # a E B, the Boolean algebra Ba (defined on the 
set of t E B verifying t c a) is of cardinality h too. For instance, the above Boolean 
algebra B = B(P) is homogeneous in cardinality. 

Now, we will recall a result of J. Baumgartner. Let B be a narrow and 
homogeneous in cardinality Boolean algebra of cardinality A 2 w, then B has only 
one increasing one-to-one function f from B into itself, namely the identity. 
Otherwise let us suppose f(a) # a for some a. 

First case: a $ f(a). Let c = a n (f(a))’ = a -f(a) (here d’ is the complement of 
d in B). We have cf 0 and c nf(c) = 0. The set of x U (f(c)-f(x)) for x c c is an 
antichain of cardinality A : contradiction. 

Second case: a~f(a) and a#f(a). Let b=f(a)‘=l-f(a). We must have 

O# b$f(b) and f(b) # b, and thus we conclude as in the first case. Otherwise, we 
can assume that b and f(b) are comparable and so b cf(b). Let d = a U b. We 
have 

and thus f(1) = 1 = f(d), since d c 1, and we obtain a contradiction (f is one-to- 
one, and d # 1). 

Remark. From B is a narrow interval Boolean algebra of cardinality K, 

and from Theorem 5.7 of Mati Rubin [7], it follows that every subalgebra 
of B, of cardinality K, contains an interval subalgebra of cardinality K too. So 
we obtain another proof of Theorem 5.3 of [3]. 

1.3. Let S be a set and n 3 2 be an integer. A subset A of S” is said to be good 
whenever every element a = (Q)~<,, of A verifies q $ q for 0 G i <j < n. 

Now, let C = (C, s) be a chain. For every n ?=2 and e E{-1, +l)“, we denote by 
sE the order relation on C” defined by 55 =(x~)~<~ <,y =(Y~)~<,, whenever: 

either I = + 1 and then xk =G yk, 

or c(k) = - 1 and then yk s xk. 

For instance, if e(k) = + 1, for every k, then sE is the usual product order. 

Definition. A chain C= (C, s), of cardinality A 2 wr, is said to be hyper-rigid 
whenever for every n 2 2 and every E E (-1, +l)“, every good antichain of 
(C”, s,) has cardinality <h. 

Let C be a A-dense hyper-rigid chain of cardinality A. Let C’ be a subchain of 
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Narrow Boolean algebras 3 

C and f be a one-to-one monotonic function from C’ into C. Then the set 
N(f) of t E C’ verifying f(t) # t has cardinality <A (and so C is rigid). 

The main theorems are: 

Theorem 2. There is a K-dense hyper-rigid subchain of the real line W 

Theorem 3. If P is a K-dense hyper-rigid subchain of R’, then the interval algebra 
B(P) is narrow and of cardinality K. Moreover B(P) is homogeneous in cardinality. 

2. Proof of the Theorem 3 

2.1. Let P be a ~-dense subchain of [w Let us suppose there is an antichain A of 
B(P), of cardinality K. 

We use the notations, and notions introduced in Section 1 of [3, p. 3451. For 
each Ui E A, we have 

ui = U [alk, ai?k+d 
Osk<l(i) 

in which af E{--oo} U P U{+m} and l(i) is chosen as small as possible. 
Now, there are a subset R(A) of A, of cardinality K (called a residual subset 

of A), an integer m > 1, a finite strictly increasing sequence (rl, r;, . . . , r2m+l, 
r&,,+,) of rational numbers (called the separative sequence of R(A)), a none- 
empty subset pR(A) of (0, 1, . . . , 2m + l}, satisfying the following properties: 

(i) l(i)= m for every Vi ER(A). 
(ii) If Vi E R(A), then 

a~<r,<r;<a\<r,<* * .<a:,<r,,+,<r;,+,<a’,,+,. 

(iii) For every k ~2rn + 1 and k& h(A), we have a: = ai for every Ui and Uj 
in R(A). 

(iv) For every k E pR(A), we have a: # ai for distinct elements Vi and Uj in 

R(A). 

2.2. Now, let p,(A) = {k,, kl, . . . , k,_,}, with k,< k, <* - * <k,_,. Let us define 
EE{-l,+l)P by s(l)=+1 iff k, is odd and &(1)=-l if not. For each Ui~R(A), 
let Z’ = (c&, with C: = u:, for l< p. SO Ui c Uj iff F’ sE C’. Consequently the set C 
of 8 for Ui E R(A) is an antichain of (P”, S,) of cardinality K. 

3. How to begin the proof of the Theorem 2 

3.1. In the following, we denote by P a subset of l%, by n Z= 2 an integer and by E 
an element of {- 1, +ly. 

Sh:210



4 R. Bonnet, S. Shelah 

Definition. A subset A of P” is said to be separate, whenever there is a sequence 

(rO, rl, . . . , r*,,_J of rational numbers verifying: 
(1) If G = (u~)~<,, E A, then 

r0<a0<r1<r,<a,<r3<*. . < a_2 < r2n_3 < r2n_2 < a+1 < r2n_l. 

(2) If 6= (a&+, and b= (bk&,, are distinct elements of A, then ak $ bk for 
every k < n. 

Let Ik =]r2k, r2k+l[ c R for k <n. Then the 4’s are pairwise disjoint and ak E & 
for every ii = (ak)k.+, in A. 

3.2. Now, let n > 2 and 0 < I < n be given. Let A be a separate subset of R. For 
each h = (a,&,,, We put 

42l=kb, al,.. . , al-19 al+l,. . . , %-I>, 

i.e. a[Z] = (&[Z])k<,_J where &[Z] = ak for k =z l- 1 and &[Z] = &+I for 1 s k c 
n - 1. We denote by A[Z] the set of ti[Z], for a E A. So A[Z] c R”-‘. Let Al be the 
set of al for ii = (ak)k+, in A. 

The function +l from A onto A[Z], defined by I,$($ =E[Z], is one-to-one 
(according A is separate) and thus we define a one-to-one function rl from A[Z] 
onto A[ by n[(E) = al iff C = 6[Z] and li = (a k ) k<,, (that is to say, pl denoting the Zth 
projection from R” onto R, we have ni = p( . t,/~;‘). We must remark that we can 
interpret A CR” as the graph of the function rl (up to an isomorphism of indexes 
0, 1, . . . ) n - 1, which translates 1 at the last place). 

3.3. Now, let <L be the order relation on KY’, defined by 

a’ = (d)k<n--l d$ = (b;),<,_, 

whenever for every k <1, if e(k)= +l, then al< b;, and if e(k)= -1, then 
a;2 b;; and for every k verifying l- <k<n-1, if E(k+l)=+l then a;Sb; and, 
if e(k + 1) = -1 then a;~ b;. Moreover, we define the order sEC1) on [w by u se(l)u 
iff either &(Z)=+l and usz1, or &(1)=-l and uau. 

The interest of these orders are given by the following remark: 
Note. We have ii<,6 in A iff &(ti)=ii[Z]=$6[1]=&(6) in A[Z] and a,~,~,,b,. 

So, we have: 

Proposition. Let A be a separate subset of R”. The following properties are 
equivalent: 

(i) A is an antichain of (R”, s,). 
(ii) nl is decreasing from (A[Z], s> onto (A,, Q[,) for some 1 <n. 

(iii) r( is decreasing from (A[Z], & onto (A,, s,& for every 1 <n. 

3.4. Definition. A subset A of R” is said to be a nice antichain of R”, whenever 
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A satisfies the following conditions: 
(i) A is a good and separate set. 

(ii) A is an antichain of cardinality K. 

(iii) For every 1 <n, the subset A[l] is K-ImTOW in (LP-‘,<L), i.e. has no 
antichain of cardinality K. 

Now, we will prove the following: 

Proposition. Let P be a K-dense subchain of R. The following properties are 
equivalent: 

(i) P is hyper-rigid. 
(ii) For ~122 and E ~(-1, +l)“, there is no nice antichain in (P”, =G,). 

Proof. Trivially (i) implies (ii). Conversely, let us assume P is not hyper-rigid. So 
let n 2 2 be the smallest integer such that for some E E (-1, +l)“, the ordered set 
(P”, s,) contains a good antichain A of cardinality K. We choose such E and A. 
According to the choice of n, e and A, we can construct a nice antichain A’ of 
(P”, < .), included in A, and of cardinality K. 

First Stage. We can assume that a,, < a, < * - - < CII.,_~ in [w for every ii = (a&,,. 
Indeed, since A is a good set, for every ti in A, we have aVco)< a,(,)< * * - < 

a,(,_,, for some unique permutation (+ (which depends on ii) of indexes. The set 
A having K elements, then for some subset A” of A, of cardinality K, we have the 

same permutation (T for all ii E A. Without loss of generality, we assume A” = A 
and cr is the identity. 

Second Stage. We apply the method which appears in [3, §1.9, pp. 345-3461 to 
construct A’ = R(A). 

Step 2.1. For each a = (ak)k+, in A, we choose a strictly increasing sequence 

(rkLn (depending on 6) of rational numbers such that rzk < ak < rzk+l for every 
k <n. According A is of cardinality K (which is a regular cardinal so,) and the 
set Of possible sequences (rk)k<2n is countable, for some subset A0 of A, of 

cardinality K, we have, for every ti E A,, the same choice of the sequence (rk)k.&, 
(so which does not depend of Z E A,). 

Step 2.2. I claim the set So of a, for ii = (ak)k.+, in A0 is of cardinality K. 

Otherwise S, is of cardinality <K. According to K is regular and A, is of 

cardinality K, there are to in So and a subset A” of A,, of cardinality K verifying 
a0 = to for ii = (ak)k<,, in A”. Obviously A”[01 in (R”-l, ~9, which is isomorphic 
to A” in (K!“, SE), is a good antichain of cardinality K. We obtain a contradiction 
with the minimality of n. 

Step 2.3. For each t E SO, we choose only one ii = (ak)k.+, in A,, verifying a,, = t. 
So we define a subset A, of AO, of cardinality K, and Al verifies: if G = (ak) # 6= 
(bk) in Al, then a,,# b,. 

Step 2.4. Replacing A, by A1 and the index 0 by the index 1, we construct a 
subset A2 of A1 of cardinality K, such that if Sif b in A2, then a, # bl (and 
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6 R. Bonnet, S. Shelah 

moreover a, # b,). Repeating n times, we obtain a subset A’ = A,, c A of cardi- 
nality K and which verifies the condition: if 5 = (a&<,,# b= (bk)k+, in A’, then 
ak # bk for every k <n. 

4. How to continue the proof 

4.1. We begin by a nice theorem, proved independently by E. Corominas and S. 
Shelah [unpublished], and which is useful in 4.1 of [3], and in 6.4. 

Theorem. Let A be an infinite cardinal and let F = cf(h) be its cofinal cardinal@. 
Let (E, S) be a partially ordered set of cardinality A. Let us assume there is a subset 
D of E, of cardinality <p., which is dense in E, in the following meaning: 

(1) If x<y in E, then xsdcy for some dED. 
(2) For every x E E, there are dI and d2 in D verifying d, sx S d2. 

Then, for every subset F of E, of cardinality A, the subordered set (F, S) contains, 

either an antichain of cardinality h, or a chain order-isomorphic to the rational chain 

0. 

Proof. Let F be given. Let G be a subset of F of cardinality X. Let G, = G U D. 
For each x E G, we will define E, = (EL, E:), where E;, E: belong to (0, 1) in the 
following way: 

l Let G; be the set of t E G verifying t s x. So E; = 0 iff G; is of cardinality <h 
(i.e. G; is small), and E; = 1 otherwise. 

l Let G: be the set of t E G verifying t 2 x. So E: = 0 iff G: is of cardinality 
<h, and E: = 1 otherwise. 

Now let G; be the initial interval of G, generated by the d E D verifying 
~2 = 0, i.e. x E G; iff E; = 0 for some d ED verifying x <d. Dually let Gs be the 
set of x E G such that ~2 = 0 for some d E D verifying x 2 d (G$ is a final interval 
of G,). According to the hypothesis the sets G$, G, and thus G$ U G* are of 
cardinality <h. Consequently N(G) = G - (Gz U GJ is of cardinality A. We must 
remark that for x E G, the value E, = (EL, E?J depends on the set, but for 
x E N(G), the value E,, computed in G or in N(G), are identical. 

Case 1. Assume that for every subset G of F, of cardinality h, there is 
x(G) E N(G) verifying c,(o) = (l,l). Then F contains a chain order-isomorphic to 
Q. Indeed let N1,* = N(F) and a(1/2) E N1,* such that E,(~,~) = (1,l). Now we 
define F,,, = {x EN,,,; x s a(1/2)} and F3,4 = {x E NIn; x 3 a(1/2)}. Now let 

a(1/4) E NI,,=N(FI14) and a(3/4) E Nsj4 - -N(%) verifying E,(u~) = (I, 1) = E,(M. 
Continuing this process (at the next stage, choose a(1/8), a(3/8), a(5/8) and 
a(7/8) we define a sequence (a(r)),,, where A is the dyadic chain verifying rI < r, 

iff a(rI) < a(rJ. 
Case 2. Assume that for some subset G of F, of cardinality A, we have 

E, # (1,1) for every x E G. Then N(G), and thus F, contains an antichain of 
cardinality A. It is sufficient to prove that subchains of N(G) have at most two 
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Nmow Boolean algebras 7 

elements. First let x and y be elements of N(G). If x < y, then E, = (0,l) and 
E, = (LO). Indeed let d E D verifying x 6 d s y. As x, y, d are not elements of 

G; U G$, we have E: = 1= cd’ (note that d$ G) and thus E; = 1= cl. We con- 
clude, since E, = (1,l) = E, are impossible. 

Secondly let us suppose there are a, b, c in N(G) verifying a < b < c. From the 
above remark we obtain (0,l) = eb = (LO) which is a contradiction. 

4.2. In this paragraph p 22 and T( E (-1, +l)” given. Without loss of generality, we 
assume 71 (k) = + 1 for every k, and +, is the usual Cartesian order s. Now let f be 

a partial function from EP’ into R. We denote by Dam(f) its domain of definition. 
For two such functions f and g, we denote by fC g the order relation “g is an 
extension of f”, i.e. Dam(f) ~Dom(g) and f(t) = g(t) for t~Dom(f). 

4.2.1. Let B be a subset of Rp and f be an increasing function from (B, s) into 
(R, s). Let GEE?’ (which is not necessarily in B). We define: 

f(6-) = supcf( I); 7~ B and ts 6}, 

f(b’)=InfCf(F); DEB and tag}. 

In fact f(b=) = --co and f(b”‘) = +m are possible (whenever the corresponding sets 
are empty) and we have always f(6-) < f(6’), according to f is increasing. If 
f(b-)<f(g’), then we say that 6 is a jump of f. 

4.2.2. Let D be a countable subset of RP, and let f be an increasing function from 
(D, <) into (R, s). An element b~lR” is said to be a good point for f whenever 
either 6~ D, or f(6-) = f(b’>, i.e. we have no jump in 6. We denote by D” = 

G(D) the set of good points of f. We define a function G(f) =f* (denoted also by 
fg) in the following way: if LED, then f”(6) =f(@; and if by D*-D, then 

f”(E) =f&) =f(b”‘).. 
Obviously f* is increasing. Indeed, for instance, for LI s U in D*, if t E D and 

CED*-D, then f*(ii)=f(ti)~f(fiP)=f*(fi), and if tied*-D and CED*-D, 

then f(fi-)<f(E-) and f(Ci+)6f(CP) and so f*(fi)<f*(C>. 
Moreover f* is the greatest extension of f, uniquely defined by the function f 

(that is to say if C$D*, for an increasing extension of f, we can choose many 
values, since C+! D and C is a jump of f). The increasing function is said to be the 
entire extension off. 

Dually, if f is a decreasing function from (B, S) into (IX, s), then f has an entire 
extension f”, which is decreasing too. 

4.3. Now, we recall, that R” is a normed space, and so a topological space, 
whenever we put 

llall = M=4lakl; k < n1 
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8 R. Bonnet, S. Shelah 

where ii = (uk&,. For this usual topology, R” has a countable base. Consequently 
every infinite subset S of R” contains a countable dense subset H, i.e. S c E;i, that 
is to say every point of S is the limit of a sequence of elements of H. Now we will 
prove: 

Proposition. Let n a2 and E ~(-1, +l)” be given. Let A be a nice antichain of 
(R”, +>. Let 1 <n be given. Let D, be a countable topologically dense subset of 
A[l]. Let T, be the canonical decreasing function from (A[l], ~6) onto (A,, ~ECIj), 
and cpl be its restriction onto D[. Let DT be the domain of the entire extension (~7 of 
cp. With these notations the set A[l] - DT is of cardinality <K. 

Proof. W.l.o.g., we assume e(k) = +l for every k. Let S = A[l]-DT. We must 
prove that S is of cardinality <K. Let C E A[ 11. We recall that C = ii[ l] for a unique 

ii = (a&+ in A, and we have ~[(c)*a,. Let us suppose E E A[l]- DT. We have 
F& D[. SO, recalling that TT~ and thus cp( are decreasing, the real numbers: 

q((C-) = inf{cp,(E); 0 E D[ and V c C}, 

cpl(Z’) = sup{cp,(fi); V ED, and V > E}, 

7~~(C-)=inf(‘l~1(21);~~A[l] and 6(C), 

ml(?) =sup(rr[(B); i!~A[l] and U>C} 

verifying cp[(C-> > q[(C+), and 

Now, let S- (resp. So, S,) be the set C E S such that cpl(C-) > T((C-) (resp. 
T~(C-)>T~(E+), ~~((c+)>(p~(C+)). Obviously S=S_U&,US+. So it is sufficient to 
prove that S-, S, and S, are of cardinality <K. 

First stage. S, is of cardinality <K. Otherwise for each ii E S,, let r(u) be rational 
verifying ~~(6~) > r(6) > ~~(ii’). We construct a rational r and a subset S’ of SO, of 
cardinality K, such that r(C) = r for every ii E S’. The chains of (S’, G> have at most 
two elements. Otherwise for d <V < ti in S’. we have 

Contradiction. Accordingly A[l] is not K-narrow, we obtain a contradiction. 
Second stage. S- is of cardinality <K. Let C E S_. We have cp[(C-) > T,(T), i.e. 

for some 6~A[l], we have ~I(E-)>~,(d)~~~(c-). Let d=(d,),,,_, and E= 
(~~)_k<~-~. So li <E is equivalent to dk <ck for every k. Let Ik = ]dk, ck[ CR and 
U(d, E) be the product nk<n-l lk of the &‘s for k <n - 1. So U(& E) is a 
non-empty set of R”-l and U(2i, E) n A[ l] is empty (since 2i <X <E for every 2 E 
U(& E) and U(& E) BIDE is empty). Let F(F) be an element of U(& F) fl Qn-‘. 
Now, we assume S_ is of cardinality K. Consequently let FE Q”-l and SY be 
a subset of S_, of cardinality K verifying r = f(C) for every C E SY. I claim that 
SY is an antichain (and thus accordingly A[l] is not ~-narrow, we obtain 
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Narrow Boolean algebras 9 

a contradiction). Let ii, 0 be distinct elements of S’. Let US suppose 6 <V. 
We have 

r=r(fi)=r(ii)<u<v 

and thus U E U($G), V) nA[1], which is a contradiction. 
Third stage. S, is of cardinality <K (the proof is identical with the one we have 

used in the second stage). 

5. How to conclude 

5.0. Let p 2 1, q E (-1, +ly and 8 E (-1, +l} be given. For a countable subset D 
of RD, we denote by M(p, r), 8,D) the set of all decreasing functions from (0, +,) 
into ($ se) (s+1 is the usual order on R! and G-~ its converse). Let M*(p, q, 8, D) 
be the set of entire extensions f* of fe M(p, q, 8, D) (see 4.2.2). Obviously 
M(p, q, 8, D) and thus M*(p, q, 0, D) are of cardinality (2”)” = 2”. Now, let 
M*(p, r), 0) be the union of the M*(p, q, 0, D) for every countable set D of I&‘. 
According (-1, +lY and (-1, +l} are finite, the union M*(p) of M*(p, q, 0) is of 
cardinality 2”, and thus the union M* of all M*(p) for 1 G p < w is of cardinahty 
2”. Now, for f~ M”, we denote by n(f) the unique integer verifying f~ M*(n(f)). 

5.1. Let M* = IJ {Mz; a <K}, where K is the cofinal cardinal of 2” (and thus K is 
an initial regular ordinal). Each Mz is of cardinality <2” and the Mz’s are 
increasing w.r.t. inclusion, i.e. Mz c Mg for (Y <p <K. 

Now let KL, be an enumeration of non-empty open intervals ]r’, r”[, 

determined by rationals r’ < r”, each interval being repeated K times. 
We Will COnStrIXt P as a Set of x, E [w, for ct! < K. For this let x0 E [w. Let p < K. 

Let us suppose the x,‘s, for (Y < ,6 to be constructed. We denote by Pp the set of 
x, for Q! < 0, which is of cardinality <K. Let Tp be the set of f(G) E R, for every 
f E Mg and d E P$r). Obviously Tp and thus Pp U Tp, is of cardinality <2”. Let us 
choose x6 E I6 - (Pp U Tp)_ 

5.2. Let P be the set of the x,‘s for (Y <K. Obviously P is ~-dense (since x, E I, 
and each interval appears K times). To prove P is hyper-rigid let us suppose 
(according to Proposition 3.4), that there are n 2 2, E ~(-1, +l)” and a nice 
antichain A of (P”, + ) of cardinality K. Let IZ and A be chosen as above. For 
each a = (a&_, in A, we have & # ui for if j and 4 E P, i.e. 4 = x,(+ So 

a = (%&c<n. We define the index q(a) in the following way: q(Z) = k iff a(k) is 
the greatest ordinal of the set {a(O), a(l), . . . , a(n-1)). For instance if G = 
(x6, x8, x3, x,), then q(li) = 1. We have q(G) < n, and thus let 1 <n and A’ be a 
subset of A, of cardinality K such that q(6) = 1 for every ii E A’. So we can assume 
A = A’. Now, according to 3.2 and 3.3, let rr be the canonical decreasing 
function from (A[1], ~6) onto (Al, G &. Now, put C(1) = 8 ~(-1, +l}, and it, 
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10 R. Bonnet, S. Shelah 

equal to SW, where 7 is defined by n(k) = e(k) for k < 1 and q(k) = e(k+ 1) for 
lsk<n-1. Applying Proposition 4.3, let ~=(PTEM*. Let (Y<K verify f~iI4:. 
We must remark that the domain of definition D of the function f is a subset of 
Rn-’ and A[11 - D is of cardinality <K. So A[ 11 n D is of cardinality K. Now, let 

5 = (%)k<” be such that ~[l] belongs to (A[11 n D) - P:-‘. Let y be such that 
ai = x,(i) for every i -=L n. We have: 

y(i)<y(Z)=p for every i#l,i<n, 

CY < y(k) for some k < n, 

and so (Y < @. Putting 6 = a[E], we have f E @ and 6 E Pi-‘, and thus xp = f(G) E 
Te, which contradicts the construction of xe. 

6. Application 

6.0. Let B be a Boolean algebra. A subset S of B is said to be a well-founded set 
of generators, whenever: first the Boolean algebra generated by S is B ; secondly 
S had no infinite strictly decreasing sequence (or equivalently, every non-empty 
subset of S has a minimal element). A Boolean algebra is said to be well- 
generated whenever it has a well-founded set of generators. 

6.1. We recall that a Boolean algebra B is said to be superatomic (or scattered) 

whenever B verifies one of the equivalent properties: 
(i) Every subalgebra is atomic. 

(ii) Every quotient algebra is atomic. 
(iii) There is no chain in B, order-isomorphic to the rational chain Q. 

Proposition. Every superatomic Boolean algebra is well-generated. 

Proof. Let B be a superatomic algebra. Now let K(B) be the set of subsets S of B 

verifying: first (S, <) is well-founded, and secondly the ideal I(S) generated by S, 
in B, is included into the subalgebra B(S) generated by S. The order < on K(B), 

defined by S,<S, whenever S, is an initial segment of S.,, is obviously inductive. 
Thus let G be a maximal element of K(B). Let T be the Boolean homomorphism 
from B onto B/I(G) = B*. We have B” = 212 and so B has G as well-founded set 
of generators. Otherwise let a be an atom of B*. Let b E B verify n(b) = a. We 
have b$ G, G U(b) = G, E K(B) and G s G,. Contradiction. 

Now, we will give that for a superatomic Boolean algebra B, we cannot assume 
some hypothesis on the chains of B. For this, let w, be a regular ordinal. So it is a 
well-ordered chain. Let B(o,) be the algebra of finite unions of intervals of the 
form ]azl, azl+J (we consider this kind of intervals, since B(q) is exactly the 
algebra of closed and open subsets of chain w, + 1 with the interval topology). 

Moreover, we recall that w*, denotes the converse chain of o, (i.e. x < y in o*, 
iff x 3 y in w,). We don’t give the proof of the following result: 
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Proposition. Let W, >w be a regular cardinal. Then every set of generators of the 
Boolean algebra B(q) contains a chain order-isomorphic to W, or 02. 

Now, we give two other examples of well-generated Boolean algebras: 

6.2. Proposition. Every free Boolean algebra is well-generated. Every complete 

algebra L??(X) of all subsets of a given set X is well-generated. 

The first part is trivial, and the second too if X is finite. Now let us suppose X 
infinite and let B = 9(X). So B and B x B are isomorphic. Let 1 ( = X) be the unity 
of B. Let G be the set of (x, 1 - x) for x E B. So G is an antichain of B x B and for 
(u,v)~BxB we have 

(n, v)=[(u, l-u)n(l, O)luC(O, l)n(l-v, v>I. 

Remarks. (1) In fact, we have proved that B = ‘2(X) contains an antichain G, which 
generates B as lattice (we don’t use the complement). 

(2) Now let n be the cardinal of X and w < m < n be given. Let 9, (X) the 
Boolean algebra of subset Y of X verifying Y or X- Y is of cardinality Cm. 
Assuming GCH we can prove P,,,(X) is well-generated. 

6.3. Proposition. Every countable Boolean algebra is well-generated. 

This is consequence of the following result: let B be a Boolean algebra and I be 
an ideal of B. Let us suppose first I is well-generated, that is to say there is a 
well-founded subset S of I such that the Boolean algebra generated by S contains 
I, and secondly the quotient algebra B/I is well-generated. Then B is well- 
generated. Indeed let m be the canonical homomorphism from B onto B/I, and K 
be a well-founded set of generators of B/I. For each x E K, let a, E B verify 
~(a,.) = x. The set S’ of all a, is well-founded and S U S’ is a well-founded set of 
generators of B. 

Now let B be countable. Let I be the ideal of all a E B verifying: [0, a] has 
no subchain order-isomorphic to the rationals. Then either I = B, or B/I is the free 
countable Boolean algebra. So we conclude. 

6.4. Proposition. There is an interval Boolean algebra which is not well-generated. 

Let P be a K-dense and hyper-rigid subchain of R (where K is the cofinal 
cardinal of 2”, so K >w). Let G be a residual subset (see 2.1) of a set of 
generators of B(P). We will prove that G contains a chain order-isomorphic to 
the rational chain. For this we remark we can assume Q c P. Let E = B(Q) U G. 
So we can assume that E verifies the hypothesis of Theorem 4.1 and as G is 
narrow and of cardinality K, we conclude. 
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