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Abstract. In Almost Free Modules, Set-theoretic Methods, Eklof and Mek-
ler [5, p. 455, Problem 12] raised the question about the existence of dual
abelian groupsGwhich are not isomorphic toZ⊕G. Recall thatG is a dual
group ifG ∼= D∗ for some groupD withD∗ = Hom (D,Z). The existence
of such groups is not obvious because dual groups are subgroups of cartesian
productsZD and therefore have very many homomorphisms intoZ. If π is
such a homomorphism arising from a projection of the cartesian product,
thenD∗ ∼= kerπ ⊕ Z. In all ‘classical cases’ of groupsD of infinite rank it
turns out thatD∗ ∼= kerπ. Is this always the case? Also note that reflexive
groupsG in the sense of H. Bass are dual groups because by definition the
evaluation mapσ : G −→ G∗∗ is an isomorphism, henceG is the dual of
G∗. Assuming the diamond axiom forℵ1 (♦ℵ1) we will construct a reflex-
ive torsion-free abelian group of cardinalityℵ1 which is not isomorphic to
Z ⊕ G. The result is formulated for modules over countable principal ideal
domains which are not field.

Mathematics Subject Classification (2000):13C05, 13C10, 13C13, 20K15,
20K25, 20K30, 03E05, 03E35

1 Introduction

LetR be a countable principal ideal domain with1 /= 0 and not a field. If
S = R \ {0} is enumerated bysn (n ∈ ω) such thats0 = 1, then we let
qn =

∏
i<n

si. Theqn’s constitute a divisibility chain withqn+1 = qnsn and
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548 R. G̈obel, S. Shelah

q0 = 1. The principal idealsqnR define a neighborhood basis of0 ∈ R
for theR-topology ofR which is Hausdorff because

⋂
n∈ω

qnR = 0. TheR-

completion ofR is denoted bŷR and obviously|R̂| = 2ℵ0 , see also G̈obel,
May [7]. If F is a freeR-module, then similarlyF ⊆ F̂ andF is pure and
dense inF̂ . Recall thatF ⊆∗ F̂ is pure if and only ifF̂ qn ∩ F ⊆ Fqn for
all n ∈ ω. Also F ⊆ F̂ is dense if and only if̂F/F is divisible. The fact
that|R̂| = 2ℵ0 is reflected in an easy

Observation 1.1 If 0 /= rn ∈ R for all n ∈ ω thenwecanfindpn ∈ {0, rn}
such that ∑

n∈ω

pnqn ∈ R̂ \ R.

See again [7].
We will use topological arguments and the prediction principle♦ℵ1

which holds in many models of set theory, in particular in Gödel’s universe
V = L, to answer a problem in the book by Eklof and Mekler [5, p. 455,
Problem 12] concerning dual modules. Recall that a moduleG is a dual
module ifG ∼= D∗ whereD∗ = Hom (D,R) is the dual of theR-module
D. There is a large range of recent literature on dual modules which can
be looked up in [5]. Strongly related with dual modules are the well-known
evaluation maps

σ = σD : D −→ D∗∗ (d −→ σ(d))

whereσ(d) ∈ D∗∗ is the homomorphism defined by evaluation

σ(d) : D∗ −→ R (ϕ −→ ϕ(d)).

Investigating questions on homology Bass [1, p. 476] introduced the notion
reflexivityandtorsion-less. NowD is reflexiveif and only if the evaluation
mapσD is an isomorphism. (D is torsion-less if this map is an injection.)
Trivially reflexive modulesD are dual modules asD ∼= (D∗)∗. Moreover
it is obvious that dual modulesG ∼= D∗ are ( isomorphic to ) submodules
of the cartesian productRD. An R-module isℵ1-free if all its countable
submodules are free and recall from a result of Specker (see Fuchs [6])
that cartesian productsRκ areℵ1-free. Hence dual modules areℵ1-free as
well. In particular reflexive modulesG ∼= (G∗)∗ are dual modules hence
ℵ1-free and the exampleG we want to construct must beℵ1-free. This is
also a warning that anticipated results may depend on the set theory in use.
We have seen that reflexive modules are dual modules, hence the following
theorem – the main target of this paper – provides a strong negative answer
to the problem in [5].
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Nasty reflexive groups 549

Theorem 1.2 (ZFC +♦ℵ1) If R countable principal ideal domain which is
not a field, then there is a reflexiveR-moduleG of cardinalityℵ1 such that
G �∼= R ⊕ G.

Using a remark onΓ -invariants from Sect. 3 we can construct a family
of pairwise non-isomorphic examples which has size2ℵ1 .

It is also remarkable that Eda’s interesting examples of dual groups aris-
ing from a theory of continuous functions do not share the main property of
the theorem, see Eda [3] and Eda, Otah [4].

This paper is also basic for proving the same theorem in ZFC assuming
the weaker special continuum hypothesis CH only. The present work, so to
speak, represents the ‘local case’ for [8]. The question whether the result
holds in any model of ZFC remains open. In another paper [9] however we
will show that(♦ℵ1) or CH need not hold for showing Theorem 1.2. We
are also able to derive the statement assuming Martin’s Axiom (and e.g. the
negation of CH).

Wewill work in the category of freemodules with bilinear forms leading
to some torsion-free module with bilinear form, which resembles the Hahn-
Banach-Theorem from functional analysis.

2 Bilinear forms on freeR-modules

LetR be the principal ideal domain discussed in Sect. 1. Abilinear form
Φ : G ⊕ H −→ R

is amapwith domainDomΦ = G⊕H anR-module such that the following
two conditions hold. Ifg ∈ G, then

Φ(g, ) : H −→ R

is anR-homomorphism (we say a homomorphism for short) and dually if
h ∈ H, then

Φ( , h) : G −→ R

is a homomorphism as well.
In this definition we callG the left andH the right part ofΦ. If H∗ =

Hom (H,R) is the dual module, thenΦ(g, ) ∈ H∗, Φ( , h) ∈ G∗ and
Φ(G, ) ⊆ H∗, Φ( , H) ⊆ G∗.

We will also consider a particular classF of such bilinear forms.

Definition 2.1 Say that thebilinear formΦbelongs toF if Φ : G⊕H −→ R
satisfies the following conditions.

(i) G andH are freeR-modules of countable rank.
(ii) Φ is non-degenerative, that isΦ(g, ) = 0 only if g = 0 and dually

Φ(, h ) = 0 only if h = 0 for anyg ∈ G andh ∈ H.
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550 R. G̈obel, S. Shelah

(iii) Φpreservespurity, that isΦ(g, ) ∈∗ H∗ if g ∈∗ GandduallyΦ( , h ) ∈∗
G∗ if h ∈∗ H.

For brevity we will call the conditions in Definition 2.1 the membership
conditions forΦ (to belong toF). Also recall thatg ∈∗ G denotes a pure
element or equivalentlygR is a pure submodule ofG.

If G = H =
⊕
n∈ω

enR andg =
∑
n∈ω

engn ∈ G is the usual direct sum

representation ofg with gn ∈ R andgn = 0 for almost alln ∈ ω, then the
natural scalar product

Φ(g, h) =
∑
n∈ω

gnhn ∈ R

is a bilinear form and it is easy to see thatΦ ∈ F, henceF is not empty.
We define an ordering onF by takingΦ ⊆ Φ′ in F for two bilinear forms if
Φ′ extendsΦ andDomΦ is a pure submodule ofDomΦ′. The proof of the
following lemma is easy checking of the definitions above.

Lemma 2.2 LetΦ ∈ F, DomΦ = G⊕H and0 /= f ∈∗ G∗, 0 /= g ∈∗ H∗
respectively.

(i) There existsΦ′ ∈ F such thatΦ ⊆ Φ′, DomΦ′ = G ⊕ (H ⊕ eR) and
Φ′( , e) = f.

(ii) There existsΦ′ ∈ F such thatΦ ⊆ Φ′, DomΦ′ = (G ⊕ eR) ⊕ H and
Φ′(e, ) = g.

The following definitions are crucial for proving the main result.

Definition 2.3 If Φ ∈ FwithDomΦ = G⊕H thenϕ ∈ G∗ isessentialfor
Φ if for any finite rank summandL ofG and any finite subsetE ofH there
is g ∈ G \ L with

gϕ /= 0 = Φ(g, e) for all e ∈ E.

The notionessentialfor ϕ ∈ H∗ is dual. Obviously we may assume that
g in the Definition 2.3 is such thatL ⊕ gR is a summand ofG.

If gϕ = 0 = Φ(g, e) for all e ∈ E and some finiteE ⊆ H thenϕ is a
linear combination of theΦ( , e)’s by induction on|E|. Henceϕ ∈ G∗ is
essential forΦ is equivalent to say thatϕ is not inΦ( , H) modulofinite
rank inG.

Definition 2.4 We say thatΦ ∈ FwithDomΦ = G⊕H is finitely covered
on the leftif for any g ∈ L∗, L ⊆∗ G of finite rank we findh ∈ H with
Φ( , h) � L = g. The definitionfinitely covered on the rightis dual andΦ
is finitely coveredif it is both finitely covered on the right and on the left.

We have an immediate
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Nasty reflexive groups 551

Corollary 2.5 If Φ ∈ F there isΦ ⊆ Φ′ ∈ F such thatΦ′ is finitely covered.

Proof. If L ⊆∗ G has finite rank thenL is a summand ofG and any
element ofL∗ extends to an element ofG∗. If f ∈∗ L∗ is not of the form
Φ( , e) � L for somee ∈∗ H, then apply Lemma 2.2 to find an extensionΦ′
taking care of an extension off toG∗. After countably many steps - taking
unions - we find an extensionΦ ⊆ Φ1 which is finitely covered on the left.
Similarly Φ1 ⊆ Φ2 is finitely covered on the right. We proceed this way to
findΦω =

⋃
n∈ω

Φn which is finitely covered such thatΦ ⊆ Φω ∈ F.

In the proof of the Corollary 2.5 we used twice the following easy ob-
servation.

Lemma 2.6 If Φα (α ∈ δ) is an ascending, continuous chain of bilinear
forms inF andδ < ℵ1, thenΦ = ∪α∈δΦα ∈ F andΦα ⊆ Φ for all α < δ.

Proof. If α ∈ δ, thenΦα ⊆ Φ as maps andDomΦα = Gα ⊕ Hα is a
pure submodule ofDomΦ = G ⊕ H with G = ∪α∈δGα, H = ∪α∈δHα,
henceΦα ⊆ Φ also as members inF. MoreoverG⊕H is countable and any
pure finite rank submodule belongs to someGα ⊕Hα by purity, hence it is
free. If follows from Pontryagin’s theorem thatG⊕H is free, see Fuchs [6,
p.93]. The other membership conditions ofF are automatic, henceΦ ∈ F
as desired.

First Killing-Lemma 2.7 Suppose thatϕ ∈ G∗ is essential forΦ ∈ Fwith
DomΦ = G ⊕ H. Then we findΦ ⊆ Φ′ ∈ F with

DomΦ′ = G′ ⊕ H andG′ = 〈G, y0〉∗ ⊆ Ĝ

for somey0 ∈ Ĝ such thatϕ does not extend toG′ −→ R.

Remark.By symmetry a similar lemma holds forϕ ∈ H∗.
Proof. Let H =

⊕
i∈ω

hiR andG =
⊕
n∈ω

gnR. Inductively we construct

elementsg′
n ∈ G \ Gn with Gn = 〈gi, g

′
i : i < n〉∗ ⊆ G such that the

following holds:

(i) Φ(g′
n, hi) = 0 for all i < n.

(ii)
⊕
i<n

g′
iR is a direct summand ofG - and also

⊕
i∈ω

g′
iR is a summand of

G.
(iii) g′

nϕ /= 0 for all n ∈ ω.

Supposeg′
i for i < n are constructed accordingly. We must findg′

n ∈
G \ Gn with (i), (ii), (iii). If hi = Φ( , hi) for i ≤ n, then recall thatϕ is
essential forΦ and there isg′

n ∈∗ G \ Gn such that

g′
nϕ /= 0 = Φ(g′

n, hi) = g′
nh

i for i ≤ n.
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552 R. G̈obel, S. Shelah

Hence(i), (ii), (iii) hold and the second part of(ii) follows by an easy
support argument.

By Observation 1.1 we now can choosekn ∈ {0, qn} such that∑
n∈ω

kn(g′
nϕ) ∈ R̂ \ R.

Let y0 =
∑
n∈ω

kng
′
n ∈ Ĝ and

G′ = 〈G, y0〉∗ ⊆ Ĝ.

Note thatG′ = 〈G, ysR : s ∈ ω〉 with
ys =

∑
s≤n∈ω

kn(ks)−1g′
n if ks /= 0 andys = 0 if ks = 0.

Replacing some of the generatorsgn (n ∈ ω) of G we may assume that
theg′

n’s and some of thegn’s generateG freely. Then theyn ∈ G′ can be
used to generate some of theg′

n’s, hence theyn’s together with some of the
mentioned generators ofG generate all ofG′. Obviously these elements (by
support) are independent, hence alsoG′ is freely generated.

The homomorphismϕ : G −→ R by continuity extends uniquely to
ϕ̂ : G′ −→ R̂ however

y0ϕ̂ =
∑
n∈ω

kn(g′
n)ϕ ∈ R̂ \ R

which is no longer a homomorphism intoR henceϕ does not extend.
Let Φ′ : G′ ⊕ H −→ R̂ be the unique extension ofΦ. In order to see

Φ ⊆ Φ′ in F we must haveImΦ′ ⊆ R. However by(i) we have

Φ′(y0, hj) = Φ′(
∑
n∈ω

kng
′
n, hj)

=
∑
n∈ω

knΦ(g′
n, hj) =

∑
n<j

knΦ(g′
n, hj) ∈ R.

Note thatksys = g + y0 for someg ∈ G, henceΦ′(ksys, hj) = Φ′(g +
y0, hj) ∈ R andΦ′(ksys, hj) = ksΦ

′(ys, hj) ∈ R̂. By purity we have
Φ′(ys, hj) ∈ R as desired. The membership conditions forΦ′ ∈ F are now
easily checked.

Second Killing-Lemma 2.8 LetΦ ∈ F be withDomΦ = G⊕H. Suppose
thatη : G −→ G is a monomorphism with

G = x0R ⊕ Im η.

Thenwe can findΦ ⊆ Φ′ ∈ F such thatη does not extend to anyη′′ : G′′ −→
R withΦ ⊆ Φ′ ⊆ Φ′′ ∈ F, DomΦ′′ = G′′ ⊕ H ′′ andG′′ = x0R ⊕ Im η′′.
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Proof. Inductively we definexn ∈ G by

G = x0R ⊕ Gη

= x0R ⊕ (x0R ⊕ Gη)η

= x0R ⊕ (x0η)R ⊕ Gη2 = · · · =
⊕
i<n

xiR ⊕ Gηn.

Hencexn = x0η
n for all n ∈ ω. Also letH =

⊕
n∈ω

hnR andG =
⊕
n∈ω

gnR

and let
gn ∈ G∗ be the homomorphism defined bygig

n = δi,n (i ∈ ω).

For eachn ∈ ω we want to findan
i ∈ R for n ≤ i ≤ 4n with the following

properties for

w =
4n∑
i=n

xia
n
i andw′ = wη =

4n∑
i=n

xi+1a
n
i .

w /= 0, (2.1)

Φ(w, hk) = 0 andwgk = 0 for all k < n, (2.2)

w′gk = 0 for all k < n. (2.3)

This is equivalent to say that we seek for a non-trivial solution of a homoge-
neous system of3n linear equations with3n + 1 parametersan

i ∈ R (n ≤
i ≤ 4n). By linear algebra we can find the desired solutionan

i ∈ R. Sim-
ilarly we will find a countable family of such elementsw. Inductively we
define an increasing sequencesn ∈ ω (n ∈ ω) such that

4sn < sn+1 (2.4)

and

{xsn , . . . , x4sn+1} ⊆
⊕

i<sn+1

giR. (2.5)

The last two conditions are easily verified. Using (2.4) and (2.1),. . . ,(2.3)
for sn in place ofn we find an element

0 /= wn =
4sn∑
i=sn

xia
n
i

such that

Φ(wn, hk) = 0 andwng
k = 0 for k < sn, (2.6)
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wng
k = 0 for k < sn. (2.7)

If
Tn =

⊕
sn≤i<sn+1

giR

then conditions (2.5), the second part of (2.6) and (2.7) are equivalent to say
that

wn, wnη ∈ Tn for all n ∈ ω. (2.8)

By [w] we denote thesupportof an elementw =
∑

xiai, that is the set
[w] = {i ∈ ω : ai /= 0}. Let mn = sup [wn] + 1 and consider the
projectionπn : G −→ R which is defined as follows.

Write G =
⊕
i<k

xiR ⊕ Gηk+1 for somek ≥ mn, henceg ∈ G has a

unique (independent ofk) representation

g =
∑
i≤k

xibi + g′ with bi ∈ R, g′ ∈ Gηk+1.

Definegπn = bmn for all g ∈ G. Henceπn ∈ G∗ and clearly

wnπn = 0 butwnηπn /= 0 for all n ∈ ω (2.9)

by the action ofη on xmn−1η = xmn . By Observation 1.1 we can find
rn ∈ R with

∑
n∈ω

rnqn(wnη)πn ∈ R̂ \ R. (2.10)

Definez =
∑
n∈ω

qnrnwn ∈ Ĝ and let

G′ = 〈G, z〉∗ = 〈G, zn : n ∈ ω〉 ⊆ Ĝ

such thatz0 = z andzk =
∑
n≥k

qnq
−1
k rnwn ∈ Ĝ. By an argument used

above we know thatG′ is a freeR-module of countable rank. The map
Φ : G ⊕ H −→ R by continuity extends uniquely toΦ′ : G′ ⊕ H −→ R̂.
We want to see that

Φ′ : G′ ⊕ H −→ R

and must show thatImΦ′ ⊆ R. This will follow from (2.6) and continuity

Φ′(z, hk) = Φ′(
∑
n∈ω

qnrnwn, hk) =
∑
n∈ω

qnrnΦ(wn, hk)

=
∑
n≤k

qnrnΦ(wn, hk) ∈ R.
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Finally we want to extendΦ′ to a map again calledΦ′ : G′ ⊕H ′ −→ R
with H ′ = H ⊕ hR and putΦ′( , h) � Tn = πn � Tn. By G =

⊕
n∈ω

Tn the

mapΦ′( , h) ∈ G∗ is well-defined.
By continuityΦ′ : G ⊕ H ′ −→ R̂ extends uniquely to

Φ′ : G′ ⊕ H ′ −→ R̂

and again we must show thatImΦ′ ⊆ R. Note thatΦ′(wn, h) = wnπn = 0
from above, hence

Φ′(z, h) = Φ′(
∑
n∈ω

qnrnwn, h) =
∑
n∈ω

qnrnΦ
′(wn, h) = 0

andImΦ′ ⊆ R.
AlsoH ′ is a freeR-module andG⊕H is a pure submodule ofG′ ⊕H ′,

henceΦ ⊆ Φ′ in F after an easy checking of the membership condition for
Φ′.

Finally we must show thatη does not extend toη′′ as stated in the
Second Killing Lemma 2.8. OtherwiseΦ ⊆ Φ′′ : G′′ ⊕ H ′′ −→ R and
G′′ = x0R ⊕ G′′η′′, hence

r = Φ′′(zη′′, h) ∈ R.

We calculater differently using continuity of maps:

r = Φ′′(zη′′, h) = Φ′′((
∑
i∈ω

qiriwi)η′′, h)

= Φ′′((
∑
i<n

qiriwi)η′′ + qn(
∑
i≥n

qi(qn)−1riwi)η′′, h))

=
∑
i<n

qiriΦ
′(wiη, h) + qnΦ

′′((
∑
i≥n

qiq
−1
n riwi)η′′, h)

≡
∑
i<n

qiriΦ
′(wiη, h) ≡

∑
i<n

qiri(wiηπi) modqn.

Hence, in the limit
∑
n∈ω

qnrn(wnηπn) = r ∈ Rwhich contradicts our choice

after Observation 1.1, see (2.10). �

3 Construction of the reflexive modules

Let F∗ be the set of all those bilinear formsΦ in F which are also finitely
covered. HenceF∗ /= ∅ by Corollary 2.5 andF in Sect. 2 can be replaced
by F∗. Suppose thatΦα ∈ F∗, α ∈ ω1 is an ascending, continuous chain
of bilinear forms. We will put additional restriction on this choice later on.
HenceΦ =

⋃
α∈ω1

Φα is a bilinear form onG⊕H with G =
⋃

α∈ω1

Gα, H =
⋃

α∈ω1

Hα andDomΦα = Gα ⊕ Hα. First we note
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Observation 3.1 Φ is non-degenerative.

Proof. If 0 /= g ∈ G then0 /= g ∈ L ⊆∗ G for someL of finite rank, hence
L ⊆∗ Gα for someα ∈ ω1. HoweverL is free and there isϕ ∈ L∗ with
gϕ /= 0. We also findh ∈ Hα with Φ( , h) � L = ϕ fromΦα ∈ F∗. Hence
Φ(g, h) = gϕ /= 0. The other case follows by symmetry. �

Now we must recall the definition of the evaluation mapσ = σG :
G −→ G∗∗ from Sect. 1. The following maps are obviously related to the
evaluation maps.

G : G −→ H∗ (g −→ Φ(g, )) andG
′ : H −→ G∗ (h −→ Φ( , h))

We claim that

Lemma 3.2 The evaluation mapsσ = σG : G −→ G∗∗, σ = σH : H −→
H∗∗ and in particularG : G −→ H∗ andG

′ : H −→ G∗ are injective.

Proof. If 0 /= g ∈ G, then by Observation 3.1 there is anh ∈ H such that
Φ(g, h) /= 0. If ϕ = Φ( , h) ∈ G∗, thengϕ = Φ(g, h) /= 0, hencegσ /= 0
andσ is injective. The other case follows by symmetry. �

The next lemma explains why we wantG andG
′ to be surjective.

Lemma 3.3 If G andG
′ are surjective, thenσG andσH are isomorphisms,

and henceG andH are reflexive modules.

Proof. If G andG
′ are surjective, thenG andG

′ are isomorphisms by
Lemma 3.2. Hence anyϕ ∈ G∗∗ can be viewed as an element inH∗ from
G∗ = Im (G′) = Φ( , H) identifyingG∗ andH underG′. Henceϕ ∈
H∗ = Im (G) = Φ(G, ) and we findg ∈ G with

ϕ = Φ(g, ). (3.1)

Hence
σ(g)Φ( , h) = Φ(g, h) = Φ(g, )(Φ( , h))

for all h ∈ H. NowΦ( , h) runs through all ofG∗ andσ(g) = Φ(g, ) = ϕ
by (3.1). HenceσG is surjective and an isomorphisms by Lemma 3.2. The
proof forσH is similar, andG,H are reflexive by definition. �

Surjectivity ofG andG
′ will be a consequence of the particular choice of

the filtrations{Gα : α ∈ ω1} and{Hα : α ∈ ω1} forG andH respectively.
We formulate the restrictions forH, theconditionsonG followbysymmetry.

If ϕ ∈ H∗
α is essential forΦα, then we can findβ > α such that

any extensionϕ′ ∈ H∗
β of ϕ will not extend toH∗

β+1. (3.2)
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Nasty reflexive groups 557

Lemma 3.4 (i) If (3.2) holds forH, thenG : G −→ H∗ is surjective.
(ii) If (3.2) holds forG, thenG′ : H −→ G∗ is surjective.

Proof. It is enough to show thatG is surjective. We will write

G(g) = Φ(g, ) = fg ∈ H∗ for all g ∈ G.

If G is not surjective, thenΦ(G, ) /= H∗ and there is

ϕ ∈ H∗ such thatϕ /= fg for all g ∈ G. (3.3)

Obviously we can findα ∈ ω1 such that (3.3) ‘restricted toα’ holds, that is

ϕ � Hα ∈ H∗
α such thatϕ � Hα /= fg � Hα for all g ∈ Gα.

Considerg1, . . . , gn ∈ Gα andD =
⋂

1≤j≤n
ker (fgj � Hα), then we can

write Hα = L ⊕ D with L free of finite rank≤ n andfgj � D = 0 for
j ≤ n. We may assume that the elementsg1, . . . , gn are independent, hence
fg1 , . . . , fgn are independent by the proof of Lemma 3.2. HencerkL =
rkL∗ = nandwefindaj ∈ Rwithϕ � L =

∑
1≤j≤n

fgjaj � L. If ϕ � D = 0,

then

ϕ =
∑

1≤j≤n

fgjaj =
∑

1≤j≤n

Φ(gj , )aj = Φ(
∑

1≤j≤n

gjaj , ) = Φ(g, ) = fg

fromfgj � D = 0 (j ≤ n) for g =
∑

1≤j≤n
gjaj . This contradicts (3.3) ‘when

restricted toα’. Hence any familyg1, . . . gn in Gα satisfies⋂
1≤j≤n

kerΦ(gj , ) � Hα �⊆ kerϕ � Hα.

There is anx ∈ Hα such thatxϕ /= 0 = xfgi for all i ≤ n. By an easy rank
argument there are many elementsy ∈ Hα \ L with yϕ = yfgi = 0 for all
i ≤ n. So, if x turns out to be inL, then replacex by x + y ∈ Hα \ L.
Henceϕ is essential forΦα. We are able to apply the hypothesis of the First
Killing-Lemma 2.7 and see thatϕ does not extend to an elements ofH∗,
henceG is surjective. �

We have an immediate corollary of Lemma 3.3 and Lemma 3.2

Corollary 3.5 If H andG satisfy (3.2) then the following holds forG and
H.

(i) G : G −→ H∗ (g −→ Φ(g, )) andG
′ : H −→ G∗ (h −→ Φ( , h))

are isomorphisms.
(ii) The evaluation mapsσG : G −→ G∗∗ and σH : H −→ H∗∗ are

isomorphisms andG andH are reflexiveR-modules.
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We will need another restriction on the choice of theΦα’s taking care of
possible isomorphisms betweenG andR ⊕ G. This like (3.2) we will do
with the help of the prediction principle♦ℵ1 , see Eklof, Mekler [5, pp. 139,
140], for instance. We may work in G̈odel’s universeV = L in which♦ℵ1

holds as shown by R. Jensen. However, there are many other models of set
theory with♦ℵ1 in which GCH for instance fails.

LetX =
⋃

α∈ω1

Xα be anℵ1-filtration of the setX of cardinalityℵ1 such

that at each stepα ∈ ω1 we have|Xα+1 \ Xα| = ℵ0. If ♦ℵ1(E) holds for
some stationary setE, then we decomposeE = Ei ∪ Ee into stationary
subsets withEi in charge of isomorphism andEe working for essential
homomorphisms.

If α ∈ Ei, then let
ηα : Xα −→ Xα

be the Jensen function predicting mapsX −→ X, and ifα ∈ Ee, then let
ηα : Xα −→ R

predict mapsX −→ R.
Inductively we defineXα = Gα ⊕ Hα and bilinear forms

Φα : Gα ⊕ Hα −→ R

such thatΦα ∈ F∗. At limit ordinals α we take unions and it remains to
defineΦα+1 for Φα. If α �∈ E and also ifα ∈ Ee and ηα is not essential
for Φα or α ∈ Ei and ηα � Gα is not a monomorphism likeη discussed in
Second Killing Lemma 2.8 andηα � Hα dually forH, then we extendΦα

trivially to Φα+1. There are only two interesting cases left.
(i) Supposeα ∈ Ee andηα : Gα −→ R is essential forΦα when restricted
toGα or duallyηα : Hα −→ R is essential forΦα when restricted toHα,
then we findΦα+1 from the First Killing-Lemma 2.7 (or its dual version)
and kill ηα. Henceηα does not extend toHα+1 or further up.
(ii) Supposeα ∈ Ei andηα : Gα −→ Gα is a monomorphism with

Gα = xαR ⊕ Im ηα.

Then we extendΦα with the aid of Second Killing Lemma 2.8 such that
Φα+1 : Gα+1 ⊕ Hα+1 −→ R

and more importantlyηα does not extend to any monomorphism
η : Gβ −→ Gβ for anyα < β such that

Gβ = xαR ⊕ Im η.

This finishes the construction ofΦ : G⊕H −→ R, and the following result
holds.

Theorem 3.6 (ZFC+♦ℵ1) There is a reflexiveR-moduleG of cardinality
ℵ1 such thatG �∼= R ⊕ G.
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Remarks.Using the Ulam-Solovay’s decomposition theorem for stationary
sets (see Jech [10])wemayassigndifferentEklof-invariantsΓ (G) to various
G’s, see Eklof, Mekler [5, p. 85] and the example in Theorem 3.6 can be
replaced by a family of size2ℵ1 members pairwise non-isomorphic. Also
note that the example(s)G are necessarilyℵ1-free as explained earlier.

Proof of the theorem.We must check the various consequences from the
above construction ofG =

⋃
α∈ω1

Gα etc. Clearly the moduleG is ℵ1-free

of cardinalityℵ1. By Corollary 3.5 we must check (3.2) forG andH but
this follows from(i) of the construction. HenceG andH are reflexive. If
G ∼= xR ⊕ G then letη : G −→ G be the obvious monomorphism with
G = xR ⊕ Gη. There is someα ∈ ω1 with x ∈ Gα andGα = xR ⊕ Gαη
by the modular law. Now we also find a Jensen functionηβ : Gβ −→ Gβ

for someα < β such thatη � Gβ = ηβ. At this levelηβ is killed when
passing fromβ to β + 1 by step(ii) of the construction, henceη is killed.
However this contradicts the fact thatη : Gγ −→ Gγ exists for manyβ < γ
which follows from a simple back and forth arguments. �
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