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Abstract. In Almost Free Modules, Set-theoretic Methdelklof and Mek-

ler [5, p. 455, Problem 12] raised the question about the existence of dual
abelian groups: which are not isomorphic té & G. Recall thati is a dual
group ifG = D* for some group with D* = Hom (D, Z). The existence

of such groups is not obvious because dual groups are subgroups of cartesian
productsZ” and therefore have very many homomorphisms #ttf 7 is

such a homomorphism arising from a projection of the cartesian product,
thenD* = ker w @ Z. In all ‘classical cases’ of groupd of infinite rank it

turns out thatD* = ker 7. Is this always the case? Also note that reflexive
groupsG in the sense of H. Bass are dual groups because by definition the
evaluation ma : G — G** is an isomorphism, hencdg is the dual of

G*. Assuming the diamond axiom foy; ($w, ) we will construct a reflex-

ive torsion-free abelian group of cardinality which is not isomorphic to

7 & G. The result is formulated for modules over countable principal ideal
domains which are not field.

Mathematics Subject Classification (20003C05, 13C10, 13C13, 20K15,
20K25, 20K30, 03E05, 03E35

1 Introduction

Let R be a countable principal ideal domain with# 0 and not a field. If

S = R\ {0} is enumerated by,, (n € w) such thatsg = 1, then we let

qn = ][ si- Theg,’s constitute a divisibility chain withy,, 1 = ¢, s, and
<n
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go = 1. The principal idealg,, R define a neighborhood basis @fc R
for the R-topology of R which is Hausdorff becausé€) ¢,R = 0. The R-

new
completion ofR is denoted by and obviousM]§| = 2% see also Gbel,
May [7]. If Fis a freeR-module, then similarly C F andFis pure and
dense inF. Recall that?” C, F is pure if and only ifF'g, N F C Fq, for
all n € w. Also F C F is dense if and only if*/F is divisible. The fact
that]ﬁf\ = 2% js reflected in an easy

Observation 1.1 If 0 # r, € Rforalln € wthenwe canfing,, € {0,7,}
such that
Z Pngn € R \ R.

new

See again [7].

We will use topological arguments and the prediction principlg
which holds in many models of set theory, in particular ifd8l's universe
V = L, to answer a problem in the book by Eklof and Mekler [5, p. 455,
Problem 12] concerning dual modules. Recall that a modils a dual
module ifG = D* whereD* = Hom (D, R) is the dual of theR-module
D. There is a large range of recent literature on dual modules which can
be looked up in [5]. Strongly related with dual modules are the well-known
evaluation maps

o=o0p:D— D" (d— o(d))
whereo (d) € D** is the homomorphism defined by evaluation
o(d): D" — R (¢ — ¢(d)).

Investigating questions on homology Bass [1, p. 476] introduced the notion
reflexivityandtorsion-less Now D is reflexiveif and only if the evaluation
mapop is an isomorphism.p is torsion-less if this map is an injection.)
Trivially reflexive modulesD are dual modules a® = (D*)*. Moreover

it is obvious that dual modules = D* are ( isomorphic to ) submodules

of the cartesian produd?”. An R-module isX;-free if all its countable
submodules are free and recall from a result of Specker (see Fuchs [6])
that cartesian produci®”® areR;-free. Hence dual modules are-free as

well. In particular reflexive module§ = (G*)* are dual modules hence
N;-free and the exampl€& we want to construct must B¢ -free. This is

also a warning that anticipated results may depend on the set theory in use.
We have seen that reflexive modules are dual modules, hence the following
theorem — the main target of this paper — provides a strong negative answer
to the problem in [5].
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Theorem 1.2 (ZFC + {y, ) If R countable principal ideal domain which is
not a field, then there is a reflexiv& moduleG of cardinalityX; such that
G#*RDG.

Using a remark od -invariants from Sect. 3 we can construct a family
of pairwise non-isomorphic examples which has $7e

Itis also remarkable that Eda’s interesting examples of dual groups aris-
ing from a theory of continuous functions do not share the main property of
the theorem, see Eda [3] and Eda, Otah [4].

This paper is also basic for proving the same theorem in ZFC assuming
the weaker special continuum hypothesis CH only. The present work, so to
speak, represents the ‘local case’ for [8]. The question whether the result
holds in any model of ZFC remains open. In another paper [9] however we
will show that (<>x,) or CH need not hold for showing Theorem 1.2. We
are also able to derive the statement assuming Martin’s Axiom (and e.g. the
negation of CH).

We will work in the category of free modules with bilinear forms leading
to some torsion-free module with bilinear form, which resembles the Hahn-
Banach-Theorem from functional analysis.

2 Bilinear forms on free R-modules

Let R be the principal ideal domain discussed in Sect. bilkear form
®:GOH — R

is a map with domaibbom ¢ = G@ H anR-module such that the following
two conditions hold. liy € G, then
&g, ):H— R

is an R-homomorphism (we say a homomorphism for short) and dually if
h € H, then
&( ,h):G— R

is a homomorphism as well.

In this definition we callG the left andH the right part of®. If H* =
Hom (H, R) is the dual module, the#a(g, ) € H*, &( ,h) € G* and

&G, )CH", &( ,H) C G".
We will also consider a particular clagsf such bilinear forms.

Definition 2.1 Saythatthe bilinear forn® belongstgif ¢ : GEH — R
satisfies the following conditions.

(i) G andH are freeR-modules of countable rank.
(i) @ is non-degenerative, that i8(g, ) = 0 only if g = 0 and dually
&(,h)=0onlyifh =0foranyg € Gandh € H.
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(i) @ preservespurity,that(g, ) €. H*if g €. Gandduallyd(,h) €.
G*ifh e, H.

For brevity we will call the conditions in Definition 2.1 the membership
conditions for® (to belong to¥). Also recall thaty €, G denotes a pure
element or equivalentlyR is a pure submodule a¥.

If G=H= @ e,Randg = > eng, € G is the usual direct sum

necw new

representation of with g,, € R andg,, = 0 for almost alln € w, then the
natural scalar product
P(g,h) = ) _ gnhn € R
new

is a bilinear form and it is easy to see tWatc §, henceg is not empty.
We define an ordering o by taking® C @’ in F for two bilinear forms if
¢’ extendsp andDom @ is a pure submodule ddom &'. The proof of the
following lemma is easy checking of the definitions above.

Lemma 2.2 Let® € §, Dom® =GoHand0 #+ f e, G*, 0+ g e, H*
respectively.

(i) There exist®’ € § such tha? C &', Dom®' = G ® (H @ eR) and
¢/( €)= f.

(i) There exists?’ € § such tha? C ¢, Dom ¥’ = (G® eR) ® H and
e, )=g.

The following definitions are crucial for proving the main result.

Definition 2.3 If ® € FwithDom ® = G & H thenyp € G* is essentiafor
@ if for any finite rank summand of G and any finite subset of H there
isg € G\ Lwith

gp #0=®(g,e) foralle € E.

The notionessentiafor ¢ € H* is dual. Obviously we may assume that
g in the Definition 2.3 is such thdt & gR is a summand of-.

If gp = 0= &(g,e) forall e € E and some finite C H theny is a
linear combination of thé( ,e)’s by induction on|E|. Hencep € G* is
essential for? is equivalent to say that is not in®( , H) modulofinite
rank inG.

Definition 2.4 We say tha® € § withDom @ = G @ H isfinitely covered
on the leftif for any g € L*, L C, G of finite rank we finch € H with
&( ,h) [ L = g. The definitiorfinitely covered on the right dual and®
is finitely coveredf it is both finitely covered on the right and on the left.

We have an immediate
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Corollary 2.5 If ® € Fthereis® C &' € § such that?’ is finitely covered.

Proof. If L C, G has finite rank therl is a summand of7 and any
element ofL* extends to an element &t*. If f €, L* is not of the form
&( ,e) | Lforsomee €, H, then apply Lemma 2.2 to find an extensign
taking care of an extension gfto G*. After countably many steps - taking
unions - we find an extensiah C @, which is finitely covered on the left.
Similarly ¢; C &, is finitely covered on the right. We proceed this way to
find®, = |J @, which s finitely covered such thdgt C ¢, € §.

new

In the proof of the Corollary 2.5 we used twice the following easy ob-
servation.

Lemma 2.6 If &, (a € §) is an ascending, continuous chain of bilinear
forms ing andd < Ny, then® = U, 5P, € § and®, C @ forall a < 4.

Proof. If a € 4, then®, C & as maps andDom P, = G, d H, is a
pure submodule dDom® = G & H with G = U,e5Ga, H = UgesHa,
hence?, C @ also as members {§. MoreoverG & H is countable and any
pure finite rank submodule belongs to soe® H, by purity, hence it is
free. If follows from Pontryagin’s theorem th&t® H is free, see Fuchs [6,
p.93]. The other membership conditions®pare automatic, hence € §
as desired.

First Killing-Lemma 2.7 Suppose thap € G* is essential forp € § with
Dom® = G @ H. Then we findd C &' € § with R
Dom®' = G' @ H andG' = (G, o)« C G

for somey, € G such thatp does not extend 6" — R.

RemarkBy symmetry a similar lemma holds fare H*.
Proof. Let H = @ R andG = € g, R. Inductively we construct

€W new
elementyy, € G\ G, with G,, = {(g;,9; : i < n). C G such that the
following holds:
(i) @(g),h;) =0foralli < n.
(i) @ g;Ris adirect summand d¥ - and alsod ¢, R is a summand of
<n 1EW
G.
(i) g,p#0foralln e w.

Supposgy; for i < n are constructed accordingly. We must figld €
G\ G, with (4), (i7), (éi3). If h* = &( , h;) fori < n, then recall thap is
essential fo» and there ig/, €. G\ G,, such that

gn # 0 =P(gy,, hi) = g,h' fori < n.
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Hence (i), (ii), (74) hold and the second part ¢fi) follows by an easy
support argument.
By Observation 1.1 we now can chodse< {0, g, } such that
> kaldyp) € R\ R.

new

Letyo = 3 kng,, € G and

new

G' = (G,yo)s C G.
Note thatG’ = (G, ysR : s € w) with
> kn(ks) gy if ks # 0 andy, = 0if &, = 0.
s<new

Replacing some of the generatars (n € w) of G we may assume that
the g/,’s and some of theg,’s generat& freely. Then they,, € G’ can be
used to generate some of thigs, hence they,’s together with some of the
mentioned generators 6f generate all of’. Obviously these elements (by
support) are independent, hence algas freely generated.

The homomorphisnp : G — R by continuity extends uniquely to
¢ : G — R however

Yop =Y kalgh)p € R\ R
new

which is no longer a homomorphism infbhencep does not extend.

Letd' : G’ ® H — R be the unique extension d@. In order to see
¢ C &' in § we must havdm @’ C R. However by(i) we have

yOa Z kngn7

necw
= kn®(gh, ;) = Y kn®(g), hy) € R.
new n<j

Note thatk,ys = g + yo for someg € G, henced’(ksys, hj) = ¥'(g +
Yo, hj) € R and®'(ksys, hj) = ksP'(ys, hj) € R. By purity we have
@ (ys, h;) € R as desired. The membership conditions®ok § are now
easily checked.

Second Killing-Lemma 2.8 Let® € § be withDom & = G& H. Suppose
thatn : G — G is a monomorphism with

G =2oR @ Imn.

Thenwe canfind C ¢’ € §suchthat)does notextendtoamy : G —
Rwithed C¢' C¢" € §F, DomP” = G" & H" andG” = 2o R © Im7n".



Sh:568

Nasty reflexive groups 553

Proof. Inductively we definer,, € G by

G =z2o0R& Gn
=zoR & (zoR & Gn)n
=29R & (xon)R ® Gn?=.. .= @xiRGS Gn".
<n
Hencer,, = zgn" foralln € w. Also letH = @ h,RandG = & g, R
new new

and let
g" € G* be the homomorphism defined by" = d; ,, (i € w).

For eachn € w we want to finda]' € R for n < ¢ < 4n with the following
properties for

4n 4n
w = g zial andw’ = wn = E Tiy10;.
i=n i=n

w # 0, (2.2)
&(w, hy;) = 0 andwg® = 0 forall k < n, (2.2)
w'g® =0forall k < n. (2.3)

This is equivalent to say that we seek for a non-trivial solution of a homoge-
neous system dirn linear equations witln + 1 parameters] € R (n <

i < 4n). By linear algebra we can find the desired soluti¢ine R. Sim-
ilarly we will find a countable family of such elements Inductively we
define an increasing sequengec w (n € w) such that

45, < Spil (2.4)

and

{Zs,, s Tag,41} C @ giR. (2.5)

i<8n+1

The last two conditions are easily verified. Using (2.4) and (2.1)(2.3)
for s,, in place ofn we find an element

48y,

O#wn:me?

1=8n

such that

D(wn, hy,) = 0 andw, g* = 0for k < s,, (2.6)
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wpg® = 0fork < s,. (2.7)

Tn = @ giR

sn<i<Sn+t1

then conditions (2.5), the second part of (2.6) and (2.7) are equivalent to say
that

Wy, wyn € Ty, foralln € w. (2.8)

By [w] we denote thesupportof an elementv = > z;a;, that is the set
[w] = {i € w: a; # 0}. Letm,, = sup[w,] + 1 and consider the
projectionr,, : G — R which is defined as follows.
Write G = @ ;R © Gn**! for somek > m,, henceg € G has a
i<k
unigue (independent @f) representation
g=>Y b+ withb; € R, g € Gy,
i<k

Definegm,, = b,,, forall g € G. Hencer,, € G* and clearly
wpy = 0 butw,nm, #0foralln € w (2.9)

by the action ofy on z,,,-1n = x,,,. By Observation 1.1 we can find
ry, € R with

Z Tngn(Wpn)m, € R \ R. (2.10)

necw

Definez = ) gurpwy, € G and let

ncw
G =(G,2)s=(G,zp:neEW) CG
such thatzg = z andz, = > qnqk‘lrnwn cG. By an argument used
n>k
above we know tha&’ is a free R-module of countable rank. The map
& : G ® H — R by continuity extends uniquely @&’ : G’ ® H — R.
We want to see that
¢ :.GoH —R

and must show thdin &' C R. This will follow from (2.6) and continuity

él(za hk) = @/(Z gnTnWn, hk) = Z Qnrndj(wm hk)

new new

= Z Gnn®(wp, hy) € R.
n<k



Sh:568

Nasty reflexive groups 555

Finally we want to extend’ to a map again called' : G' ® H — R

with H = H @ hR and put®’( ,h) | T, = 7, | T,. By G = @ T), the
new
map®’( ,h) € G* is well-defined.

By continuity®’ : G & H' — R extends uniquely to

?:.GeoH —R
and again we must show thiah ¢’ C R. Note that¥’ (w,,, h) = w,m, =0
from above, hence
P (z,h) =¥ ( Z qnTnWn, h) = Z Gnrn® (wp, h) =0
necw necw
andlm @’ C R.

Also H' is a freeR-module and> @ H is a pure submodule ¢’ & H',
henced C &' in F after an easy checking of the membership condition for
@'

Finally we must show that does not extend tg” as stated in the
Second Killing Lemma 2.8. Otherwise C ¢" : G” ® H” — R and
G" = x9R® G"n’, hence

r=3®"(zn" h) € R.

We calculate- differently using continuity of maps:

r=&"(zf",h) = &"((Y_ qiriws)", h)

1EW

= QH Z%rzwz 77 +Qn ZQZ Qn 1Tzwz 77” h))

<n >n
= Z qiriP wzn’ + Qn@”((z Qiqglriwi)n//v h)
<n i>n
= Z q;ir; P wz77, = Z qm(wmm) mod Qn-
<n <n

Hence, inthelimit)_ ¢,,r,(w,nm,) = r € Rwhich contradicts our choice
new

after Observation 1.1, see (2.10). O

3 Construction of the reflexive modules

Let §* be the set of all those bilinear forngsin § which are also finitely
covered. Henc@* +#+ () by Corollary 2.5 ands in Sect. 2 can be replaced
by §*. Suppose thab, € §*, « € w; is an ascending, continuous chain
of bilinear forms. We will put additional restriction on this choice later on.
Hence® = J &, isabilinearformorG @ HwithG = |J G, H =

acwi acwr
\J H,andDom®, = G, @ H,. First we note

acwi
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Observation 3.1 ¢ is non-degenerative.

Proof. If 0 g € G then0 +# g € L C, G for someL of finite rank, hence
L C, G, for somea € wy. HoweverL is free and there i € L* with
gp # 0. We also findh € H, with &( ,h) [ L = ¢ from &, € F*. Hence
@(g,h) = g # 0. The other case follows by symmetry. (|

Now we must recall the definition of the evaluation map= o¢ :
G — G* from Sect. 1. The following maps are obviously related to the
evaluation maps.

G:G— H"(g— ®(g, ))andG’ : H — G* (h — &( ,h))

We claim that

Lemma 3.2 The evaluationmaps =0 : G — G*,0 =0y : H —
H** and in particularG : G — H* andG’ : H — G* are injective.

Proof. If 0 # g € G, then by Observation 3.1 there is Are H such that
D(g,h) #0.1f o =P( ,h) € G*, thengp = (g, h) # 0, hencego # 0
ando is injective. The other case follows by symmetry. O

The next lemma explains why we wafitandG’ to be surjective.

Lemma 3.3 If G andG’ are surjective, then andoy are isomorphisms,
and hences and H are reflexive modules.

Proof. If G andG’ are surjective, thefi> and G’ are isomorphisms by
Lemma 3.2. Hence any € G** can be viewed as an elementhfi from
G* = Im(G') = &( ,H) identifying G* and H underG’. Hencep €
H* =Im (G) = ¢(G, ) and we findg € G with

¢ =2(g, ). (3.1)
Hence
a(9)®( ,h) = P(g,h) = (g, )(D( ,h))

forallh € H. Now®( ,h) runs through all of* ando(g) = (g, ) = ¢
by (3.1). Hencerg is surjective and an isomorphisms by Lemma 3.2. The
proof for oy is similar, andG, H are reflexive by definition. O

Surjectivity of G andG’ will be a consequence of the particular choice of
the filtrations{G,, : a € w1} and{H,, : o € w;} for G andH respectively.
We formulate the restrictions féf , the conditions ol follow by symmetry.

If ¢ € H is essential fo?,, then we can findd > « such that

any extensiony’ € H; of ¢ will not extend toH; ;. (3.2)
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Lemma 3.4 (i) If(3.2) holds forH, thenG : G — H* is surjective.
(i) 1f(3.2) holds forG, thenG’ : H — G* is surjective.

Proof. Itis enough to show thak is surjective. We will write
G(g) =P(g, )= fg € H forallg € G.

If G is not surjective, thed(G, ) + H* and there is
¢ € H* suchthatp # f, forall g € G. (3.3)

Obviously we can findv € w; such that (3.3) ‘restricted t@’ holds, that is
¢ | Hy € Hysuchthatp [ Hy, # f, | Hoforallg € G,.

Considergy,...,gn € Go andD = [ ker(fy, [ Ha), then we can
1<j<n

write H, = L @& D with L free of finite rank< n andfgj [ D = 0 for

j < n.We may assume that the elemegis. . ., g,, are independent, hence

fgr»---» fg, are independent by the proof of Lemma 3.2. Herlcé =

rk L* = nandwefindi; € Rwithy [ L= fga; [ L.Ifo [ D=0,

1<j<n
then
o= fuai= Y g Ja;=( > gja;, )=®(g, )= f,
1<j<n 1<j<n 1<j<n

fromf,, | D=0(j <n)forg= 3 gja;. Thiscontradicts (3.3) ‘when
1<j<n
restricted tax’. Hence any familyy, . .. g, in G, satisfies

ﬂ ker®(gj, ) [ Ho € kerp [ H,.

1<j<n

Thereisan: € H, suchthatey # 0 = z fy, for all i < n. By an easy rank
argument there are many elements H,, \ L with yp = yf, = 0 for all

i < n. So, ifx turns out to be in_, then replacer by x +y € H, \ L.
Hencey is essential fo,. We are able to apply the hypothesis of the First
Killing-Lemma 2.7 and see that does not extend to an elementsiof,
henceG is surjective. O

We have an immediate corollary of Lemma 3.3 and Lemma 3.2

Corollary 3.5 If H and( satisfy (3.2) then the following holds fér and
H.

(i) G:G— H*(g— ®(9, ))andG' : H — G* (h — &( ,h))
are isomorphisms.

(i) The evaluation maps¢g : G — G*™* andoy : H — H* are
isomorphisms and: and H are reflexiveR-modules.
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We will need another restriction on the choice of #hgs taking care of
possible isomorphisms betweéhand R & G. This like (3.2) we will do
with the help of the prediction principley, , see Eklof, Mekler [5, pp. 139,
140], for instance. We may work ind@@lel’s universé” = L in which $y,
holds as shown by R. Jensen. However, there are many other models of set
theory with<{>x, in which GCH for instance fails.

LetX = (J X, beanX;-filtration of the setX of cardinality®; such

acwi
that at each step € w; we have| X,+1 \ Xo| = Ro. If Oy, (F) holds for
some stationary sdt, then we decomposE = F; U E, into stationary
subsets withZ; in charge of isomorphism ané. working for essential
homomorphisms.
If o € E;, then let
N Xa — Xa

be the Jensen function predicting maps— X, and ifa € F,, then let
Na: Xa — R

predict mapsX — R.
Inductively we defineX, = G, & H,, and bilinear forms
b,: G, ®PH,— R

such thatd, € F*. At limit ordinals o we take unions and it remains to
defined, for @,. If « € E and also ifa € E, and 7, is not essential
for @, or a € F; and 1, | G, is not a monomorphism like discussed in
Second Killing Lemma 2.8 angl, | H, dually for H, then we extend,
trivially to ®@,.1. There are only two interesting cases left.
(i) Supposex € E, andn, : G, — R s essential fo?, when restricted
to G, or duallyn, : H, — R is essential fob, when restricted td,,,
then we find®,,; from the First Killing-Lemma 2.7 (or its dual version)
and kill n,. Hencen,, does not extend tél,,, 1 or further up.
(ii) Supposey € E; andn,, : G, — G4 is @ monomorphism with
Go = 2o R ® Imn,,.

Then we extend,, with the aid of Second Killing Lemma 2.8 such that

Dot : Ga+1 2] Ha+1 — R

and more importantlyy, does not extend to any monomorphism
n: Gg — Ggforanya <  such that
Gg = 2, R®Imn.

This finishes the construction &f: G ® H — R, and the following result
holds.

Theorem 3.6 (ZFC+<x,) Thereis areflexiv&-moduleG of cardinality
N; such thatG 2 R & G.
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RemarksUsing the Ulam-Solovay’s decomposition theorem for stationary
sets (see Jech [10]) we may assign different Eklof-invarif€s) to various

G’s, see Eklof, Mekler [5, p. 85] and the example in Theorem 3.6 can be
replaced by a family of size®! members pairwise non-isomorphic. Also
note that the example(§j are necessarilit;-free as explained earlier.

Proof of the theoremWe must check the various consequences from the
above construction off = |J G, etc Clearly the modulér is R, -free

acwi

of cardinalityX;. By Corollary 3.5 we must check (3.2) féf and H but
this follows from(z) of the construction. Henc& and H are reflexive. If
G =2 zR @ G then letn : G — G be the obvious monomorphism with
G = xR ® Gn. There is somex € wy with z € G, andG, = xR ® G,n
by the modular law. Now we also find a Jensen functign Gg — Gpg
for somea < 8 such thaty | Gz = ng. At this levelrg is killed when
passing from3 to 3 + 1 by step(ii) of the construction, hencgis killed.
However this contradicts the fact that G, — G, exists for many3 <
which follows from a simple back and forth arguments. O
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