A Partition Theorem for Scattered Order Types

PÉTER KOMJÁTH ${ }^{1 \dagger}$ and SAHARON SHELAH ${ }^{2 \ddagger}$
${ }^{1}$ Department of Computer Science, Eötvös University, Pázmany Péter Sétany 1/C, H-1117, Budapest, Hungary (e-mail: kope@cs.elte.hu)
${ }^{2}$ Institute of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel (e-mail: shelah@math.huji.ac.il)

Received 13 June 2002; revised 16 November 2002

If φ is a scattered order type, and μ is a cardinal, then there exists a scattered order type ψ such that $\psi \rightarrow[\varphi]_{\mu, \aleph_{0}}^{1}$ holds.

In this note we prove a Ramsey-type statement on scattered order types. A trivial fact on ordinals implies the following statement. If μ is an infinite cardinal, then $\mu^{+} \rightarrow\left(\mu^{+}\right)_{\mu}^{1}$. It is less trivial but still easy to show that, if φ is an order type, and μ is a cardinal, then there is some order type ψ such that $\psi \rightarrow(\varphi)_{\mu}^{1}$ holds. We can say that these results show that the classes of ordinals and order types are both Ramsey classes in the natural sense: given a target element and a cardinal for the number of colours, there is another element of the class which, when coloured with the required number of colours, always has a monocoloured copy of the target. We can wonder which other classes have similar Ramsey properties. A natural, and well-investigated, class in between is the class of scattered order types. For this class, the Ramsey property fails for the following well-known and simple reason. There is some scattered order type ψ such that, for every scattered φ, we have $\varphi \nrightarrow[\psi]_{\omega}^{1}$. See Lemma 1 .

In this paper we show that this is the most that can be proved in the negative direction, that is, for every scattered order type φ and cardinal μ there exists a scattered order type ψ such that $\psi \rightarrow[\varphi]_{\mu, \omega}^{1}$ holds.

In a further paper we will prove the corresponding variant of the Erdős-Rado theorem, that is, for any scattered order type φ, natural number r, and cardinal μ, there is a scattered order type ψ such that $\psi \rightarrow[\varphi]_{\mu, \omega}^{r}$ holds.

[^0]We notice, however, that the full Ramsey result can be proved if the number of colours is finite, that is, for every scattered order type φ and natural number n, there is a scattered order type ψ such that $\psi \rightarrow(\varphi)_{n}^{1}$ holds. Then ψ is simply the n-fold lexicographic product of $\varphi, \psi=\varphi \times \cdots \times \varphi$. An inductive argument gives the Ramsey property. In fact, the lexicographic μ th power of any φ has the Ramsey property with μ colours and φ as the target type. What is specific about scattered types is that, if $|\varphi| \geqslant 2$, then the lexicographic μ th power of φ is no longer scattered for $\mu \geqslant \omega$.

Notation. We use the standard axiomatic set theory notation. If φ, ψ are order types, then $\varphi \leqslant \psi$ denotes that there is an order-preserving embedding of φ into ψ, that is, every ordered set of order type ψ has a subset of order type φ. If φ is an order type, then φ^{*} denotes the reverse order type, that is, if φ is the order type of $(S,<)$, then φ^{*} is the order type of $(S,>)$. Here ω is the ordinal of the set of natural numbers, $(\mathbb{N},<)$, and η is the order type of the set of rational numbers, $(\mathbb{Q},<)$.

If φ, ψ are order types, and μ is a cardinal, then $\varphi \rightarrow(\psi)_{\mu}^{1}$ denotes the following statement. If $(S,<)$ is an ordered set of order type φ and $f: S \rightarrow \mu$, then for some $i<\mu$ the subset $f^{-1}(i)$ contains a subset of order type ψ. That is, if a set of order type φ is coloured with μ colours, then there is a monochromatic ψ. If the statement does not hold, we cross the arrow: $\varphi \nrightarrow(\psi)_{\mu}^{1}$.

If φ, ψ are order types, and λ, μ are cardinals, then $\varphi \rightarrow[\psi]_{\lambda, \mu}^{1}$ denotes the following statement. If $(S,<)$ is an ordered set of order type φ and $f: S \rightarrow \lambda$, then there is a subset $X \subseteq \lambda$ of cardinality μ such that the set $\{x \in S: f(x) \in X\}$ contains a subset of order type ψ. Again, crossing the arrow denotes the negation of the statement: $\varphi \nrightarrow[\psi]_{\lambda, \mu}^{1}$. Notice that $\varphi \rightarrow(\psi)_{\mu}^{1}$ is equivalent to $\varphi \rightarrow[\psi]_{\mu, 1}^{1}$.

If φ, ψ are order types, and μ is a cardinal, then $\varphi \nrightarrow[\psi]_{\mu}^{1}$ denotes the following statement. If $(S,<)$ is an ordered set of order type φ, then there is a function $f: S \rightarrow \mu$ such that, on every subset of S of order type ψ, f assumes every value. If the statement fails, that is, we have a positive statement for every function $f: S \rightarrow \mu$, then we do not cross the arrow: $\varphi \rightarrow[\psi]_{\mu}^{1}$.

The order type φ is scattered if and only if $\eta \nless \varphi$. Hausdorff proved that the class of scattered order types is exactly the smallest class containing 0,1 , and closed under well-ordered and reverse well-ordered sums (see [1], [2], [3]).

Lemma 1. If S is an ordered set with the scattered order type φ, then there is some f : $S \rightarrow \omega$ such that $f^{-1}(n)$ has no subset of order type $\left(\omega^{*}+\omega\right)^{n}$. Therefore, $\varphi \nrightarrow(\psi)_{\omega}^{1}$, where $\psi=1+\left(\omega^{*}+\omega\right)+\left(\omega^{*}+\omega\right)^{2} \cdots$.

Proof. The second statement obviously follows from the first one. In order to prove the first statement, using Hausdorff's characterization of scattered order types, it suffices to show it for $(S,<)$ which is the well-ordered sum of the ordered sets $\left\{\left(S_{i},<\right): i<\alpha\right\}$, and we have the required function $f_{i}: S_{i} \rightarrow \omega$ for every $i<\alpha$.

Define $f: S \rightarrow \omega$ by $f(x)=f_{i}(x)+1$ when $i<\alpha$ is the unique ordinal such that $x \in S_{i}$. If we now have a set of order type $\left(\omega^{*}+\omega\right)^{n+1}$ in colour $n+1$, then all but finitely many
of the ω^{*} copies of $\left(\omega^{*}+\omega\right)^{n}$ on its left-hand side must be in the same S_{i}, of colour n, which contradicts the assumption on f_{i}.

Before proceeding to our main theorem we need to show a technical result.
In what follows, for an ordinal λ, we let $\operatorname{FS}(\lambda)$ denote the set of all finite decreasing sequences from λ, that is, an element \mathbf{s} is of the form $\mathbf{s}=s(0) s(1) \cdots s(n-1)$ with $\lambda>$ $s(0)>s(1)>\cdots>s(n-1)$. Here $n=|\mathbf{s}|$ is the length of \mathbf{s}. The extension of the string \mathbf{s} with one ordinal γ is denoted by $\mathbf{s} \gamma$. We therefore identify the finite subsets of λ with decreasingly ordered strings.

If α is an ordinal, then an α-tree is a system of ordinals $\{x(\mathbf{s}): \mathbf{s} \in \operatorname{FS}(\alpha)\}$ with the following properties:

$$
x(\mathbf{s} \gamma)<x\left(\mathbf{s} \gamma^{\prime}\right)<x(\mathbf{s}) \quad \text { for } \gamma<\gamma^{\prime}<\min (\mathbf{s})
$$

Theorem 2. Assume that α is an ordinal and μ is a cardinal. Set $\lambda=\left(|\alpha|^{\mu_{0}}\right)^{+}$. Assume that $F: \operatorname{FS}\left(\lambda^{+}\right) \rightarrow \mu$. Then there exist an α-tree $\{x(\mathbf{s}): \mathbf{s} \in \mathrm{FS}(\alpha)\}$ and a function $c: \omega \rightarrow \mu$, such that

$$
F(x(s(0)), x(s(0) s(1)), \ldots, x(s(0) s(1) \cdots s(n)))=c(n)
$$

holds for every element $\mathbf{s}=s(0) s(1) \cdots s(n)$ of length $n+1$ of the tree.

Proof. We define, for every $\mathbf{s} \in \mathrm{FS}(\alpha)$ and for every function $c: \omega \rightarrow \mu$, a rank $r_{c}(\mathbf{s})$ as follows. Assume that $\mathbf{s}=s(0) s(1) \cdots s(n-1) . r_{c}(\mathbf{s})=-1$ if, for some $0 \leqslant i<n$, we have $F(s(0) s(1) \cdots s(i)) \neq c(i)$. Otherwise, we declare that $r_{c}(\mathbf{s}) \geqslant 0$. Then we define by induction on ξ when $r_{c}(\mathbf{s}) \geqslant \xi$ holds: we set $r_{c}(\mathbf{s}) \geqslant \xi$ if and only if, for every $v<\xi$, we have

$$
\lambda \leqslant \operatorname{tp}\left(\left\{\gamma<\min (\mathbf{s}): r_{c}(\mathbf{s} \gamma) \geqslant v\right\}\right)
$$

Naturally, $r_{c}(\mathbf{s})=\xi$ holds if $r_{c}(\mathbf{s}) \geqslant \xi$ but $r_{c}(\mathbf{s}) \geqslant \xi+1$ is not true.
Assume first that, for some function $c: \omega \rightarrow \mu$, we have $r_{c}(\phi) \geqslant \alpha$. In this case we can select the α-tree as required in the theorem, with the additional property that

$$
r_{c}(x(s(0)), x(s(0) s(1)), \ldots, x(s(0) s(1) \cdots s(n))) \geqslant s(n)
$$

To show this we have to show that, if we are given an \mathbf{s} with $r_{c}(\mathbf{s}) \geqslant \beta$, then we can select the ordinals $\left\{x_{\gamma}: \gamma<\beta\right\}$ with $x_{\gamma}<x_{\gamma^{\prime}}<\min (\mathbf{s})$ for $\gamma<\gamma^{\prime}<\beta$ and with $r_{c}\left(\mathbf{s} x_{\gamma}\right) \geqslant \gamma$ for $\gamma<\beta$. To this end, we let δ_{γ} be the supremum of the first λ ordinals x with the property that $r_{c}(\mathbf{s} x) \geqslant \gamma$. Notice that $\delta_{\gamma^{\prime}} \leqslant \delta_{\gamma}$ for $\gamma^{\prime}<\gamma$ and the cofinality of is δ_{γ} is λ. We are going to select by transfinite recursion the elements $x_{\gamma}<\delta_{\gamma}$ as required. At step γ we have the elements $\left\{x_{\gamma^{\prime}}: \gamma^{\prime}<\gamma\right\}$ selected, and as $\sup \left(\left\{x_{\gamma^{\prime}}: \gamma^{\prime}<\gamma\right\}\right) \leqslant \sup \left(\left\{\delta_{\gamma^{\prime}}: \gamma^{\prime}<\gamma\right\}\right) \leqslant \delta_{\gamma}$ we have $\sup \left(\left\{x_{\gamma^{\prime}}: \gamma^{\prime}<\gamma\right\}\right)<\delta_{\gamma}$ and so we can choose x_{γ}.

Assume now that for every function $c: \omega \rightarrow \mu$ we have $r_{c}(\emptyset)<\alpha$.
In this case we construct by induction on $0 \leqslant n<\omega$ the ordinals

$$
\left\{x(n, \gamma, s): \gamma<\lambda^{+}, s: k \rightarrow \lambda, k \leqslant n\right\},
$$

the ordinals $d(n)<\mu$, and for every $c: \omega \rightarrow \mu$, the values $-1 \leqslant \xi(n, c)<\alpha$ with the following properties:

$$
\begin{align*}
x(n, \gamma, s \tau)<x\left(n, \gamma, s \tau^{\prime}\right)< & x(n, \gamma, s)\left(1 \leqslant|s|<n, \tau<\tau^{\prime}<\min (s)\right) \tag{1}\\
\gamma & <x(n, \gamma, s) \tag{2}
\end{align*}
$$

Finally, if $\gamma<\lambda^{+}, s: n \rightarrow \lambda, 1 \leqslant k \leqslant n$, and we set $y_{i}=x(n, \gamma, s \mid i)$, then

$$
\begin{equation*}
F\left(y_{0}, \ldots, y_{k}\right)=d(k) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{c}\left(y_{0}, \ldots, y_{k}\right)=\xi(k, c) \tag{4}
\end{equation*}
$$

hold for every $c: \omega \rightarrow \mu$.
Initially, we select λ^{+}ordinals $x(0, \gamma, \emptyset)\left(\gamma<\lambda^{+}\right)$such that the value $F(x(0, \gamma, \emptyset))$ is the same (let this be $d(0)$), and for every $c: \omega \rightarrow \mu$ the value $r_{c}(x(0, \gamma, \emptyset))$ is the same (this will be $\xi(0, c))$. This is possible by the pigeon hole principle, counting possibilities.

Assume that we have the result for some value n and we have the corresponding system $\left\{x(n, \gamma, s): \gamma<\lambda^{+}, s: k \rightarrow \lambda, k \leqslant n\right\}$ with $\gamma<x(n, \gamma, s)$. Thinning out this system, and re-indexing, we can achieve $\gamma+\lambda<x(n+1, \gamma, s)$.

We can define $x(n+1, \gamma, s \tau)<x(n, \gamma, s)$ for $\tau<\lambda$ satisfying (1) and (2). Thinning and reindexing, we can modify this system so that, if we set $y_{i}=x(n+1, \gamma, s \mid i)$ for $i \leqslant n+1$, then $F\left(y_{0}, \ldots, y_{n+1}\right)=d(n+1)$ and $r_{c}\left(y_{0}, \ldots, y_{n+1}\right)=\xi(s, c)$ hold for every $s: n \rightarrow \lambda, c: \omega \rightarrow \mu$, that is, the colour and the rank do not depend on the last value.

Repeating this, again thinning and re-indexing, we find that the value of $r_{c}\left(y_{0}, \ldots, y_{n+1}\right)$ depends only on c, so it is a value $\xi(n+1, c)$, as claimed.

For the above function $d: \omega \rightarrow \mu$ we have that

$$
\xi(0, d)>\xi(1, d)>\cdots
$$

a contradiction.

In order to handle scattered order types we represent them.
If α is an ordinal then let $H(\alpha)$ be the set of all functions $f: \alpha \rightarrow\{-1,0,1\}$ for which the set $D(f)=\{\beta<\alpha: f(\beta) \neq 0\}$ is finite. Order $H(\alpha)$ as follows: $f<f^{\prime}$ if and only if $f(\beta)<f^{\prime}(\beta)$ holds for the largest β with $f(\beta) \neq f^{\prime}(\beta)$. This clearly orders $H(\alpha)$.

Lemma 3. The order type of $(H(\alpha),<)$ is scattered.

Proof. Assume that the mapping $q \rightarrow f_{q}$ is an order-preserving injection for $q \in \mathbb{Q}$. Let $\beta<\alpha$ be the least ordinal that occurs as the largest ordinal where $f_{q}, f_{q^{\prime}}$ differ, for some $q<q^{\prime}$. Now choose the rational numbers $q^{\prime \prime}, q^{\prime \prime \prime}$ with $q<q^{\prime \prime}<q^{\prime \prime \prime}<q^{\prime}$. Then all four functions $f_{q}, f_{q^{\prime}}, f_{q^{\prime \prime}}, f_{q^{\prime \prime \prime}}$ agree above β, and some two at β, too, a contradiction.

Lemma 4. Every scattered order type can be embedded into some $(H(\alpha),<)$.

Proof. Using Hausdorff's characterization, it suffices to show that if some order types can be so represented then any well-ordered and reverse well-ordered sum of them can also be so represented. For this, it suffices to show that the antilexicographic products $H(\alpha) \times \beta$ and $H(\alpha) \times \beta^{*}$ can be embedded into $H(\alpha+\beta)$. Indeed, if we map the pair (f, γ) to the function g which is f restricted to α and in the interval $[\alpha, \alpha+\beta)$ is everywhere zero except at $\alpha+\gamma$ where it is 1 , then this is the required embedding for $H(\alpha) \times \beta$. For the other case we use extensions that assume -1 at exactly one place.

Given an α-tree $\{x(\mathbf{s}): \mathbf{s} \in \mathrm{FS}(\alpha)\} \subseteq \lambda^{+}$, we define an injection $\Phi: H(\alpha) \rightarrow H\left(\lambda^{+}\right)$ as follows. If $f \in H(\alpha), D(f)=\left\{\beta_{0}, \ldots, \beta_{n}\right\}$ in decreasing enumeration, then set $\gamma_{j}=$ $x\left(\left\{\beta_{j}, \ldots, \beta_{0}\right\}\right)$ for $0 \leqslant j \leqslant n$. Now $\Phi(f)=g$ where $D(g)=\left\{\gamma_{0}, \ldots, \gamma_{n}\right\}$ and $g\left(\gamma_{j}\right)=f\left(\gamma_{j}\right)$.

Lemma 5. This mapping $\Phi: H(\alpha) \rightarrow H\left(\lambda^{+}\right)$is order-preserving.
Proof. Assume that $f, f^{\prime} \in H(\alpha), D(f)=\left\{\beta_{0}, \ldots, \beta_{n}\right\}, D\left(f^{\prime}\right)=\left\{\beta_{0}^{\prime}, \ldots, \beta_{m}^{\prime}\right\}$ in decreasing enumeration. Let r be the largest index such that $\beta_{i}=\beta_{i}^{\prime}$ and $f\left(\beta_{i}\right)=f^{\prime}\left(\beta_{i}\right)$ hold for $i<r$. For some β we have $f(\beta)<f^{\prime}(\beta)$, where either $\beta=\beta_{r}=\beta_{r}^{\prime}$ or $\beta=\beta_{r} \notin D\left(f^{\prime}\right)$ or $\beta=\beta_{r}^{\prime} \notin D(f)$.

Set $\gamma_{j}=x\left(\left\{\beta_{j}, \ldots, \beta_{0}\right\}\right)$ for $j<r$ and $\gamma=x\left(\left\{\beta, \beta_{j-1}, \ldots, \beta_{0}\right\}\right)$. Then the functions $\Phi(f)$ and $\Phi\left(f^{\prime}\right)$ agree above γ and $\Phi(f)(\gamma)<\Phi\left(f^{\prime}\right)(\gamma)$, and we are done.

Theorem 6. If φ is a scattered order type, and μ is a cardinal, then there exists a scattered order type ψ satisfying

$$
\psi \rightarrow[\varphi]_{\mu, \aleph_{0}}^{1} .
$$

Proof. By Lemmas 3 and 4, it suffices to show that, if α is an ordinal, and μ is a cardinal, then for some λ the ordered set $\left(H\left(\lambda^{+}\right),<\right)$has the property that, for every colouring with μ colours, there is a subset isomorphic to $(H(\alpha),<)$ that is coloured with only countably many colours.
Select λ as in Theorem 2. Assume that $G:\left(H\left(\lambda^{+}\right),<\right) \rightarrow \mu$ is a colouring. Let F be the following colouring of $\mathrm{FS}\left(\lambda^{+}\right)$. If $\mathbf{s}=s(0) s(1) \cdots s(n-1)$ is an element of it, let $F(\mathbf{s})$ be the following function defined on $\{-1,1\} \times \cdots\{-1,1\}: F\left(i_{0}, \ldots, i_{n-1}\right)=G(f)$, where f is the function with $D(f)=\mathbf{s}$ and $f(s(j))=i_{j}$.

Notice that this is a colouring with μ colours. By Theorem 2 there is an α-tree $\{x(\mathbf{s}): \mathbf{s} \in \mathrm{FS}(\alpha)\}$ such that

$$
F(x(s(0)), x(s(0) s(1)), \ldots, x(s(0) s(1) \cdots s(n)))=c(n)
$$

holds for some function c.
If we now consider the corresponding mapping $\Phi: H(\alpha) \rightarrow H\left(\lambda^{+}\right)$, then it gives a subset of $\left(H\left(\lambda^{+}\right),<\right)$isomorphic to $(H(\alpha),<)$ getting only μ colours.

Acknowledgement

The authors are grateful for the referee's report.

References

[1] Erdős, P. and Hajnal, A. (1962) On a classification of denumerable order types and an application to the partition calculus. Fundamenta Mathematicae 51 117-129.
[2] Hausdorff, F. (1908) Grundzüge einer Theorie der Geordnete Mengen. Math. Ann. 65 435-505.
[3] Rosenstein, J. G. (1982) Linear Orderings, Academic Press.

[^0]: \dagger Research partially supported by Hungarian National Research Grant T 032455.
 \ddagger Research supported by the Israel Science Foundation, Publication 796.

