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Volume 61, Number 4, Dec. 1996 

ON COUNTABLY CLOSED COMPLETE BOOLEAN ALGEBRAS 

THOMAS JECH AND SAHARON SHELAH 

Abstract. It is unprovable that every complete subalgebra of a countably closed complete Boolean 
algebra is countably closed. 

§1. Introduction. A partially ordered set (P, <) is a-closed if every countable 
chain in P has a lower bound. A complete Boolean algebra B is countably closed 
if (B+, <) has a dense subset that is a -closed. In [2] the first author introduced a 
weaker condition for Boolean algebras, game-closed: the second player has a win­
ning strategy in the infinite game where the two players play an infinite descending 
chain of nonzero elements, and the second player wins if the chain has a lower 
bound. In [1], Foreman proved that when B has a dense subset of size Ni and 
is game-closed then B is countably closed. (By Vojtas [5] and Velickovic [4] this 
holds for every B that has a dense subset of size 2N°.) We show that, in general, 
it is unprovable that game-closed implies countably closed. We construct a model 
in which a B exists that is game-closed but not countably closed. It remains open 
whether a counterexample exists in ZFC. 

Being game-closed is a hereditary property: If A is a complete subalgebra of a 
game-closed complete Boolean algebra B then A is game-closed. It is observed in 
[3] that every game-closed algebra is embedded in a countably closed algebra; in 
fact, for a forcing notion (P,<), being game-closed is equivalent to the existence of a 
a -closed forcing Q such that P x Q has a dense a -closed subset. Hence the statement 
"every game-closed complete Boolean algebra is countably closed" is equivalent to 
the statement "every complete subalgebra of a countably closed complete Boolean 
algebra is countably closed". 

Below we construct (by forcing) a model of ZFC+GCH and in it a partial 
ordering P of size K2 such that B{P), the completion of P, is not countably closed, 
but B(P x Col) is, where Col is the Levy collapse of K2 to Ni (with countable 
conditions). 

THEOREM. It is consistent that there exists a partial ordering (P, <) such that B(P) 
is not countably closed but B(P x Col) is countably closed. 
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ON COUNTABLY CLOSED COMPLETE BOOLEAN ALGEBRAS 1381 

§2. Forcing conditions. We assume that the ground model satisfies GCH. 
We want to construct, by forcing, a partially ordered set (P, </>) of size N2 that has 

the desired properties. We shall use as forcing conditions countable approximations 
of P. One part of a forcing condition will thus be a countable partial ordering 
(A,<A) with the intention that A be a subset of P and that the relation <A on A be 
the restriction of <p. As P will have size H2, we let P = a>2, and so A is a countable 
subset of co2. 

The second part of a forcing condition will be a countable set B c A x Col, a 
countable approximation of a dense set in the product ordering P x Col. The third 
part of a forcing condition will be a countable set C of countable descending chains 
in A that have no lower bound. Finally, a forcing condition includes a function that 
guarantees that the limit of the B's is a -closed (and so P x Col has a <T-closed dense 
subset). 

Whenever we use < without a subscript, we mean the natural ordering of ordinal 
numbers. 

DEFINITION. For any set X, Col(X) is the set of all countable functions q such 
that dom(^) e ci\ and range (q) c X; Col = Col(co2)-

DEFINITION. The set R of forcing conditions r consists of quadruples r = {{Ar, 
<r), Br, Cr,Fr) such that 

(1) Ar is a countable subset of a>2, 
(2) (Ar, <r) is a partially ordered set, 
(3) ifb<ra then a < b, 
(4) Br is a countable subset of Ar x Col(Ar), and for every {p, q) G Br, 

p G range(tf), 
(5) Cr is a countable set of countable sequences {an }£L0 in Ar with the property 

that flo >r a\ >r • • • >r an >r • • • and that {a„}„ has no lower bound in 
Ar, 

(6) Fr is a function of two variables, {a„}„ G Cr and (/>, #) € B, such that 
/? > ao, and range(iv) c <a. If m = iv({a„}„, (/?, q)) then for every 
(//, q') G Br stronger than (p, q), 

(*) if />' < r am then / / _Lr {a„}„ (i.e., />' i_r a,t for some k). 

If r,s € R then r <R s (r is stronger than s) if 
(7) ArDAs, 
(8) < r and <^ agree on As, and J_r and ±s agree on ^ ; i.e., if a,b G ̂  then 

a <r b iff a <s b and a _Lr fc iff a ± s b for all a,b £ As, 
(9) 5 r D 5 „ 

(10) Cr D Cs, 
(11) F r 2 F , 

The relation <^ on R is a partial ordering. We shall prove that the forcing 
extension by R contains a desired example (P, <P). Assuming the GCH in the 
ground model, the forcing R preserves cardinals and VR is a model of ZFC+GCH; 
this follows from the next two lemmas: 
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1382 THOMAS JECH AND SAHARON SHELAH 

LEMMA 1. R is a-closed. 

PROOF. Let {r„}„ be a sequence of conditions such that ro >R r\ >R • • • >R 

r„ >R • • •. We show that {r„}„ has a lower bound. 
Assuming that for each n, rn = ((A„,<n),B„,C„,F„), we let Ar = \J^L0A„, 

Br = UZoBn, C = I X o cn, Fr = I X O * » and <r= \JZo <»> we claim that 
r = ((Ar, <r), Br, Cr, Fr) is a condition, and is stronger than each rn. 

The quadruple r clearly has properties (1 )-(4). It is also easy to see that for every 
n, <r agrees with <„ and J_r agrees with _L„ on A„. To verify (5), let {a„}„ £ Cr. 
There is an m such that {an}n £ Q for all k > m, and therefore {a„}„ has no lower 
bound in any Ak. Thus {a„}„ has no lower bound in Ar. Finally, to verify (6), let 
Fr(a, (p, q)) — m and let (p', q') be stronger than {p, q). Since (*) holds in r„ where 
n is large enough so that a £ C„ and (p, q), {p', q') £ B„, (*) holds in r as well. 

Therefore r is a condition and for every n, r is stronger than r„. H 

LEMMA 2. R has the ^i-chain condition. 

PROOF. If W is a set of conditions of size H2, then a A-system argument (using 
CH) yields two conditions r,s £ W such that if r = ((Ar,<r),Br,Cr,Fr) and 
s = ((AS,<S)',BS,CS,FS), then there is a D (the root of the A-system) such 
that D = Ar n As, supD < min(^4r — D), s\xpAr < min(^,, — D), <r and <,, 
agree on D, l r and 1 , agree on D, Br n {D x Col(D)) = Bs n {D x Col(D)), 
CrDDm = CsCi Da, and Fr(a, (/>, ?)) = Fs(a, (p, q)) whenever aeCrnDm and 
(p,q) eBrn(D x Coi(D)). 

Moreover, there exists a mapping n ofAs onto ,4r that is an isomorphism between 
s and r and is the identity on D. 

Let t = {{At, <t), Bt, C, Ft) where A, = Ar U As, B, = Br U Bs, C, = Cr U Cs, 
<t—<r U <s, and Fr will be defined below such that F, D Fr U F^. We claim that 
/ is a condition, and is stronger than both r and s; thus r and s are compatible. 
Properties (l)-(4) are easy to verify. It is also easy to see that <t agrees with <r on 
Ar and with <s on As, and ±t agrees with _Lr on ylr and with J_̂  on As. 

Note that if a £ Ar - D and b e As - D then a 1, b. Thus if {a„}n is in Cr 

but not in Cs (or vice versa) then {a„}„ has no lower bound in Ar U ^4 ,̂ and so (5) 
holds. 

In order to deal with (6), we first verify it for the values of Ft inherited from either 
r or s. Thus let a e Cr, {p,q) £ Br, m = Fr{a, {p,q)) and let {p',q') £ B, be 
stronger than (/?, q). (The argument for s in place of r is completely analogous.) If 
(//, #') £ Br then (*) holds in r and therefore in t. Thus assume that (/?', #') e Bs. 

Since / / e ^ , and p' <t p, it follows that p £ D, and since range(#) C 
range(^r') C As, we have {p,q) £ Bs. Now if a £ Cs then Fs{a,{p,q)) = 
iv(o*, {p,q)) and so /?' satisfies (*) in 5 and hence in /. If a fi Cs and p' £ Ar 

then p' _L, a and again p' satisfies (*). 
The remaining case is when p' £ D and {p,q) £ Br D Bs. Since {p',nq') = 

{np1, nq') is stronger than {p, q) = {np, nq), p' satisfies (*) in r and therefore in t. 
To complete the verification of (6) we define F, {a, (p, q)) for those a and {p, q) 

that come from the two different conditions. Let a £ Cr — Cs and {p, q) £ Bs - Br 

(the other case being analogous) be such that p > «o- We let F,{a, [p, q)) be the 
least m such that am £ D. 
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ON COUNTABLY CLOSED COMPLETE BOOLEAN ALGEBRAS 1383 

Let (//, q') G B, be stronger than (p, q); we'll show that p' •£, am. This is clear 
if p' G D, by (3). If p' £ D, then we claim that p' cannot be in Ar; then it follows 
that p' -L( am. To prove the claim, note that ranged) % Ar (because (p, q) £ Br) 
and hence range(a') C As. By (4), p' e As, and so p £ Ar. 

Therefore / i s a condition and is stronger than both r and s. 

Let G be a generic filter on R. In VG, we let P = \J{Ar : r G G}, <P= \J{<r: 
r G G}, and Q = \J{Br :r £ G}. (P, <P) is a partial ordering and Q c P x Co/. 
We shall prove that g is <r-closed and is dense i n ? x Col, and that the complete 
Boolean algebra B(P) does not have a dense cr-closed subset. H 

LEMMA 3. P = co2. 

PROOF. We prove that for every 5 and every p G a>2 there exists an r <R S such 
that p G Ar. But this is straightforward: let Ar = As U {/?}, Br = Bs, Cr — Cs, 
Fr = Fs and < r = < s ; properties ( l ) - ( l l ) are easily verified. (Note that p ±r a for 
alia G As.) H 

LEMMA 4. Q is dense in P x Col. 

PROOF. Let s be a condition and let po G ^ and qo G Co/. We shall find an 
r <R s, p G Ar and q D qo such that /> <r ^o and (/?, ̂ ) G fir: Let p be an ordinal 
greater than all ordinals in As, let q G Co/ be such that q D qo and p G range (a), 
and let Ar = ASU range (o), ^ = 5^0 {(^, ^)} , Cr = Cs, and let < r be the partial 
order of Ar that extends <^ by making p <r po- Finally, let Fr{a, (p, q)) = 0 for all 
<?G Cr. 

To see that r — {(Ar, <r), Br, Cr, Fr) is a condition, note that for every a G Cr, p 
is not a lower bound of a (because /?o isn't) and hence p ±r a. This implies both 
(5) and (6). Since adding p does not affect the relation _L on As, we have (8) and 
so r is stronger than s. -\ 

Next we prove that Q is a -closed. 

LEMMA 5. Ifu = {(p„, qn)}^L0 is a descending chain in Q then u has a lower bound. 

PROOF. Let u be a name for a descending chain and let ^ be a condition. By 
extending s co times if necessary (R is cr-closed), we may assume that there is a 
sequence u — {(p„, qn)}^Lo m m2 x C°l s u c n *hat s forces u = u, such that for every 
n, p„ G As, (p„,q„) G Bs, that p0 >s p\ >s • • • >s Pn > • • • is a descending chain 
in U^, < J and that q0 C qi C ••• C q„ C .... 

Let /» be an ordinal greater than supAs, let q D U^o^« ^ e s u c n t n a t ^ e 

ranged) C As U {̂ p}, let ^ r = ^ , U {p}, Br = Bs U {(/>,?)}, Cr = C„ and let < r 

be the partial order of Ar that extends <s by making p a lower bound of {pn}T=o-
Finally, let Fr(a, (p, q)) = 0 for all a G Cr and r = ( (^ r , < r ) , 5 r , Cr, f r ) . 

We shall show that for every a G C ,̂ /> is not a lower bound of a. This implies 
that p -Lr a and (5) and (6) follow. Since making p a lower bound of {p„}n does 
not affect the relation _L on As, we'll have (8) and hence r <R s. In r, {p, q) is a 
lower bound of u. 

Thus let a = {a^k G Cs. We claim that 

3k\/np„ fts ak. 
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1384 THOMAS JECH AND SAHARON SHELAH 

This implies that p jtr a^ and hence p is not a lower bound of a. 
If p„ < ao for all n then we let k = 0 because then p„ jis ao for all n. 
Otherwise let N be the least N such that px > a$, and let m = Fs(a, (PN,9N))-

Either p„ jts am for all n and we are done (with k = m) or else PM <S «m for some 
M > N. By (*) there exists some k such that PM -U ^k and hence pn jts ak for all 
n. -\ 

Finally, we shall prove that B{P) is not countably closed. 

LEMMA 6. The complete Boolean algebra B(P) does not have a dense a-closed 
subset. 

PROOF. Assume that B{P) does have a dense c-closed subset D. For a,b £ P, 
we define 

a < b if a <P b and 3 d £ D such that a <B(P) d <B(P) b. 

The relation -< is a partial ordering of P, (P, -<) is a -closed, a -< b implies a </> b 
and for every a £ P there is some b £ P such that b <a. 

Toward a contradiction, let s be a condition and assume that s forces the preceding 
statement. For each a < co2, there exist a condition sa stronger than s, and a 
descendingchain{c^}„in^4iQ suchthatcg" > a and that for every n,sa lh c"+1 -< c". 

By a A-system argument we find among these a countable sequence rn — san = 
((A„, <n),Bn,C„,F„) and a set E such that for every m and « with m < n we 
have £ = ^4m n An, supE < min(^m - E), sup^ m < mm{An - E), <m and <„ 
agree on E, Lm and _L„ agree on E, Bmf)(E x Col(E)) = Bn D (E x Col{E)), 
CmC\Ew = C„ n £'a', and Fm (a, (/?, q)) = Fn {a, (p, q)) whenever deCmr\Ew and 
(/?, g-) € Bm n (£" x Col(E)). Moreover, there exists a mapping nmn ofAm onto ̂ 4„ 
that is an isomorphism between (rm, {c"m}k) and (rn, {c^"}k) and is the identity on 
E. We also let nnm = nmn~

l, nmm = id and assume that the nmn form a commutative 
system. Note that for every n and k, c"" £ E. 

For each n and k, let a£ = c"£ and fe£ = c"£+1. Let ;7 = {un}„ be the "diagonal 
sequence" 

"2n = «^ , "2n+l = £«• 

We shall find a condition ? = ((A,,<t),B,,Ct,Ft) stronger than all r„ such that 
the diagonal sequence w*is a descending chain and belongs to Ct. Since t\\- b% -< a" 
for every n, it forces that (P, -<) is not <7-closed. This will complete the proof. H 

To construct t we first let At — \J^LoAn and B, — U^=o-^«- Let <t be the 
minimal partial ordering extending U^=o <« s u c n t n a t for e v e r y n> an+l < ' ^«-
Before proceeding to define C( and F, we shall prove some properties of \At, <,). 

LEMMA 7. (i) Let m < n and let y e Am — E and x G A„ — E. If x <t y then 
x <n a^ andb™ <m y. Ifx andy are compatible in <t then b% <m y. 

(ii) For all m and n, if x £ A„ and y £ Am and ifx <t y then x <„ nmny {and 
nnmx <m y). In particular, ifx,y £ An then x <t y if and only if x <„ y. 

(iii) For all m and n, if x £ An and y £ Am and if x and y are compatible in <t 

then x and nmny are compatible in <„ (and nnmx and y are compatible in <m). In 
particular, if x,y £ An then x _L, y if and only if x _L„ y. 
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PROOF, (i) The first statement is an obvious consequence of the definition of <r , 
and the second follows because any z such that z <t x is in some Ak — E where 
k >n. 

(ii) Let x £ A„ and y £ Am and let x <t y. First assume that y £ E (and so 
x £ E.) Necessarily, m < n and if m — n then clearly x <„ y. Thus consider m < n. 
By (i) x <„ an

n <n b"m = nmn(b%) <« nmny. 
Now assume that y £ E and proceed by induction on x. If x G E then x <n y. 

If x $_ E then either x <„ y or there exists some z ^ E such that x <, z <r j , and 
by the induction hypothesis z <^ nmky (where z G ̂ 4/0- Applying the preceding 
paragraph to x and z we get nnkx <k z and hence nnkx <k nmky. The statement 
now follows. 

(iii) Let x G A„ and j G Am and let z G Ak be such that z <t x and z <, y. 
By (ii) we have nknz <„ x and 7r,tOTz <m y. Hence nk„z = nmnnkmz <n nmny. The 
second statement follows from this and from the second statement of (ii). H 

Lemma 7 guarantees that / will be stronger than every rn. Another consequence 
is that if a G C„ then a has no lower bound in <t: if x G Am were a lower bound 
then nm„x would be a lower bound in <„. 

Let C, = ( J^ 0 CnL){u}. Every sequence in Ct is a descending chain in <t without 
a lower bound (clearly, u has no lower bound). 

LEMMA 8. For all k and n, if{p, q) G Bk — B„ and if{p', q') G Bt is stronger than 
(p, q) then (p', q') G Bk - Bn. 

PROOF. Since {p, q) £ B„, we have either range(q) % E or p £ E, in which case 
p G range(^) by (4) and again range(^) % E. Since q C q' it must be the case that 
(p',q')eBk-B„. 

We shall now define Ft so that Ft D ( J ^ 0 F„ and verify (6). This will complete 
the proof. H 

First we let Ft(a, (p, q)) = F„(a, (p, q)) whenever the right-hand side is defined; 
we have to show that (6) holds in t. Let m = F„ {a, (p, q)) and let (/?', q') G Bk be 
stronger than (p, q). It follows from Lemma 8 that (p, q) £ Bk. Now (itk„p', n^q') 
is stronger than {nknp,Ttknq) = (p,q) and (*) holds for nknp' in rn. If p' <t am 

then by Lemma 7 itknP1 <« am and hence 7t^„/?' _L„ a. By Lemma 7 again, p' _L, <?. 
Next, let a and (/?, #) be such that a G C„ — Q , (/?, q) £ Bk - Bn and /> > ao. 

If fc < n, we have W^/J > /> > a0 and we let F,(a, (/>,?)) = F„(a, {nknp,nk„q)). 
To verify (6), let m — F,(a, (p, q)) and let (p', q') G Bt be stronger than (p, q). By 
Lemma 8 (p',q') G £*, and (nk»p'',nknq') is stronger (in rn) than (nknp,nknq). If 
/ / <r am then by Lemma 7 7r^„/?' <„ am and so itk„p' L„ a. By Lemma 7 again, 

/>' J-/ 3. 
If A: > n, we let F,(<if, (/?, q)) be the least w such that am £ E and that b% ^„ am 

(suchmexistsasa*doesnothavealower b o u n d i n g ) . To verify (6), let (p',q') G 5, 
be stronger than (/?, q). If p' £ E then /?' ^ am and if p' g E then by Lemma 7(i) 
p' ±, am. In either case, (6) is satisfied. 

Finally, we define Ft{u,{p,q)). Thus let (p,q) G Bt be such that p > uo. 
Since wo = a§ g E, we have p £ E. Let « be the « such that p £ A„. We let 
F/(i7, (/>,#)) = 2n + 2. That is, the chosen um is W2«+2 = a"+i- To verify (6), let 
(p',q') £ Bt be stronger than (p,q). Since p £ A„ — E, by Lemma 8 we have 
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1386 THOMAS JECH AND SAHARON SHELAH 

(/>', q') G Bn and therefore p' £ An - E. But a^\ e .4„+i - £ and so />' ^r a"; 
Therefore (6) holds. 

REFERENCES 

[1] M. FOREMAN, Games played on Boolean algebras, this JOURNAL, vol. 48 (1983), pp. 714-723. 
[2] T. JECH, A game-theoretic property of Boolean algebras, (A. Macintyre et al., editors), Logic 

Colloquium 77, North-Holland, Amsterdam, 1978, pp. 135-144. 
[3] , More game-theoretic properties of Boolean algebras, Annals of Pure and Applied Logic, 

vol. 26(1984), pp. 11-29. 
[4] B. VELICKOVIC, Playful Boolean algebras, Transactions of the American Mathematical Society, 

vol. 296 (1986), pp. 727-740. 
[5] P. VOJTAS, Game properties of Boolean algebras, Comment. Math. Univ. Carol, vol. 24 (1983), 

pp. 349-369. 

DEPARTMENT OF MATHEMATICS 
THE PENNSYLVANIA STATE UNIVERSITY 

UNIVERSITY PARK, PA 16803, USA 

E-mail: jech@math.psu.edu 

SCHOOL OF MATHEMATICS 
THE HEBREW UNIVERSITY 

JERUSALEM, ISRAEL 
and 

DEPARTMENT OF MATHEMATICS 
RUTGERS UNIVERSITY 

NEW BRUNSWICK, NJ 08903, USA 

E-mail: shelah@sunrise.huji.ac.il, shelah@math.rutgers.edu 

Sh:565

mailto:jech@math.psu.edu
mailto:shelah@sunrise.huji.ac.il
mailto:shelah@math.rutgers.edu

