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ADDING LINEAR ORDERS 

SAHARON SHELAH+ AND PIERRE SIMON 

Abstract. We address the following question: Can we expand an NIP theory by adding a linear order 

such that the expansion is still NIP'! Easily, if acl{A)=A for all A, then this is true. Otherwise, we give 

counterexamples. More precisely, there is a totally categorical theory for which every expansion by a linear 

order has IP. There is also an oj-stable NDOP theory for which every expansion by a linear order interprets 

pseudofinite arithmetic. 

A well known open question is whether every unstable NIP theory interprets an 
infinite linear order. We are concerned here with a question somewhat in the same 
spirit but going in a different direction: Can we expand an NIP theory by adding a 
linear order on the whole universe so that the resulting theory is still NIP? We give 
a negative answer in two strong forms: 

(1) There is an co-stable NDOP theory of depth 2 for which every expansion by a 
linear order interprets pseudofinite arithmetic (see Section 2.2). 

(2) There is a totally categorical theory for which every expansion by a linear 
order has IP. 

In the first section, we mention a few positive statements that are true (and easy): 
if M is NIP and acl(/4) = A for all A c M, then M can be linearly ordered so as to 
stay NIP. Also if M is co-categorical, then M can be linearly ordered so as to stay 
co-categorical (a well known fact) so we cannot expect to get the strong conclusion 
of (1) with an co-categorical theory. 

Let us also note that, as proved in [2] (using results from [1]), adding a predicate 
for a small dense indiscernible sequence preserves NIP. In particular any unstable 
NIP theory T has an NIP expansion which defines an infinite linear order. 

As far as we know, the question we address was first asked by Artem Chernikov. 
It came up again in discussions with Udi Hrushovski, which led to this work. We 
would like to thank him for that and for helping the second author understand the 
results of the first author. 

§1. The easy case. We fix a one-sorted relational language 5£ not containing 
the symbol <, let 5f< be the language with a unique binary relation < and let 
£?' = i ? U JS?<. Let T be a complete ^-theory that eliminates quantifiers. Let T' 
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718 SAHARON SHELAH AND PIERRE SIMON 

be the i?'-theory generated by T and axioms stating that < defines a dense linear 
order with no end-points. 

We show in this section that if T eliminates 3°°, then T' has a model-companion. 
Apart maybe from Proposition 1.4, everything here is well known. We follow the 
exposition of [6] which contains exactly what we need. The co-categorical case was 
already observed by Schmerl in [5]. 

Let M be any structure, and A c M a finite subset. We say that a formula 
4>{x\, x„) with parameters in A is large if it has a solution a\, a„ such 
that: for all /, a,- ^ ac\{A) and for all / ^ j , a, ^ a,. If <j>{x\ x„:y) is a 
formula, then using elimination of 3°°, it can be checked that the set of «"s such 
that (j)(x\ ,... ,xn;d) is large is definable (Fact 2 of [6]). 

PROPOSITION 1.1. Let T be any 2'-theory that eliminates quantifiers and 3°°. Then 
T' admits a model-companion T axiomatized by T along with the statements saying 
that for every large Sf-formula <f>(x\, ...x„) and quantifier-free large 2'<-formula 
0(x\ ,x„), the conjunction <p(.X], x„) f\9{x\,... ,xn) has a solution. 

Furthermore, in T, the type of an algebraically closed set is given by the union of its 
S'-type and its 2'<-quantifier-free-type. 

PROOF. The first statement is a special case of Lemma 8 of [6]. The proof is 
straightforward: any model of T' embeds into a model of f by iteratively adding 
solutions to formulas. Existential closeness is clear. 

The second statement is by easy back-and-forth. H 

COROLLARY 1.2. Let M |= T bean 5?-structure, and assume that algebraic closure 
is trivial in M: ac\(A) = Afar all A c M. Assume that M admits elimination of 
quantifiers in 5C. Then there is an expansion T'ofTtoS" = 5C U {<} such that < 
defines a linear order and T' has elimination of quantifiers in 2". 

PROOF. Take f as above. As acl(A) = A for all A c M, the type of any set A 
is given by its J?-type and its quantifier-free ^<-type. As T eliminates quantifiers 
in 5C, f eliminates quantifiers in 3". H 

CONCLUSION 1.3. 1. If T is co-categorical, then T admits an co-categorical ex­
pansion to 2" in which < defines a linear order. 

l.IfT has trivial algebraic closure and is NIP, then it admits an NIP expansion to 
2' in which < defines a linear order. 

PROOF. The second point follows from the Corollary. 
For the first point, notice first that any co-categorical theory eliminates 3°°. More 

precisely, for finite A, acl(A) is finite. So for a given integer n, the type of an 
n-tuple a = (a\, a„) in a model of T is given by its Jzf-type and the ordering 
of acl(a). We see that there are only finitely many possibilities. Therefore T is 
co-categorical. H 

We end this section with a small observation. 

PROPOSITION 1.4. Assume T eliminates 3°°. Let M \= T. If all infinite definable 
sets of M has the same cardinality X, then M admits an expansion to a model M' of 
T as defined above. 

PROOF. Fix a A-saturated dense linear order (ft, < Q ) without end points. We will 
build an injection / : M —>• ft. Fix an enumeration (aa : a < X) of all pairs 
da = (4>a(x\,... ,xn),9a{x\ ,x„)) where <j>a(x) e 2{M) is large and 0a{x) is 
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ADDING LINEAR ORDERS 719 

an Jz?<-quantifier-free formula with parameters in M. We build / by induction on 
a < "A so / will be defined as an increasing union / = Ua<xfa, where each / „ has 
domain a subset of M of size ja |. 

At limit stages, set / „ = Up<afp. 
Assume fa has been defined. Let A be the set of parameters of 9a. If needed, 

start by increasing fa to an injection / ' defined on Dom(fa) U A by defining it 
on A in an arbitrary way. Let 9' be the formula built from 9a changing every 
parameter by its image by / ' . If 9' is not large (in particular if it is inconsistant), 
we le t / t t + i = / ' . 

Otherwise, we can find a tuple a = (a0 , a„-\) in M such that M \= 4>{d) and 
no a/i is in the domain of / ' . Pick any c = (co, • • •, c„_i) in Q, such that Q. \= 9'{c) 
and no t> is in the range of / ' . We define fa+\ a s / ' U {{ak, £k) • k < «}. 

Once / is defined, we expand M to J?" by letting a < b if and only if f(a) <n 
/ ( / ) ) . By construction the resulting structure is a model of T. H 

§2. Counterexamples. 
2.1. ¥p vector space. We prove the following result. 

THEOREM 2.1. If T defines an infinite dimensional vector space over some prime 
field ¥p, and T is linearly ordered by <, then T has IP. 

First we need to recall the following Ramsey-type result. See for example [3], 
Section 2.4, Theorem 9. 

Here F is a fixed finite field. 

THEOREM 2.2. For all r.t.k > 1, there is some n such that if the t-dimensional 
affine subspaces of F" are r-colored, there exists a k-dimensional affine subspace all 
of whose t-dimensional affine subspaces have the same color. 

Now we prove Theorem 2.1. 

PROOF. We identify F = ¥p with the set {0,1. p - 1} and order F by setting 
0 < 1 <••• < p ~ 1. 

Without loss, T is just an ordered vector space over F. Let M \= T and pick 
an infinite free family («, : i < co). Let k be any integer and set t = \,r = p\. 
Finally, let n be given by Theorem 2.2 for those values of r, t, k. We consider the 
vector space A spanned by {a\, ,an) and identify it with F" using (a\,..., a„) 
as canonical base. Let < be the lexicographic order on A (identified with F"). 

Let L c A be an affine line in A, L — {do dp-\} with do <\ d\ <•••<! dp-\. 
We assign to L a 'color' c(L) from the set S of permutations o f f in the following 
way: c{L) is the unique permutation n such that 

<4(0) < <4(1) < < dn(p-\), 

where < is the given order on M. 
By Theorem 2.2, we can find a k -dimensional affine subspace W oiA all of whose 

1 -dimensional affine subspaces have the same color %. So we can write W = d* + Wo 
where Wo is a linear subspace. Let {bl ,bk) be a basis of W0 such that for each 
I <k,b' is <l-minimal in Wo \ Vect(bx. ..,b'~l). For each / < k, let a>i be the least 
/ such that the f th coordinate of b' (in the basis (a\,...,a„)) is non zero. By choice 
of b1 we have 

Oi\ > Oil > • • ' > (Ok-
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720 SAHARON SHELAH AND PIERRE SIMON 

It follows that for each choice of s = (s\,.. .,Sk) £ Fk, there is a unique element 
ds of W such that for every /, the co,'th coordinate of J6 is equal to .v,. For 
/ C {1 , k}, let d[ be d5 for s = (e\.i, e*.j) where e,-./ = 1 if / € I and 0 
otherwise. 

We let 4>n{x, y) be the formula: 

p-i 

4>n(x.y) = j \ x + n(i).y <x + n(i + \).y. 
;=0 

Let / C {1, . . . ,&} and/ <k. Consider the line L = dj + Vect (b1). Enumerating 
L in <\ increasing order gives 

dj - eub
l < di - eijb1 + b1 < • • • < di - eub

l + (p - \).bl. 

As L has color n we see that <j)K(di,bl) holds if and only if £/./ = 0. This proves 
that the formula <j>n(x. y) has independence rank at least k. Ask was arbitrary, and 
there are only finitely many possibilities for n, there is at least one value of n for 
which (f>n(x, y) has IP. H 

Remark 2.3. In the case p = 2, the same proof works if instead of assuming that 
< defines a linear order, we only assume that it defines a tournament (i.e., for all 
x ^ y & M, exactly one of x < y and y < x holds). 

2.2. Interpreting arithmetic. By pseudofmite arithmetic, we mean the (incom­
plete) theory Taruh consisting of formulas true in almost all structures 
({0 , . . . ,«} ;+ , x). A model interprets pseudofmite arithmetic if it has an ele­
mentary extension that interprets a model of Tarith. Note that the theory Taruh has 
IP as can be seen by considering the formula x\y (x divides y), so it follows that 
any structure interpreting pseudofmite arithmetic also has IP. 

THEOREM 2.4. There is an w-stable theory T, NDOP of depth 2, in a language & 
such that: for every model M (= T and every expansion M' of M to 5C' = J5? U {<} 
in which < defines a linear order, M' interpretspseudofinite arithmetic. 

We take as language Jz? = {E, S, R} where E and S are binary predicates and R 
is quaternary. In the structure we will build, E will define an equivalence relation 
and each f-class will be made by (S, R) into a regular colored graph as defined 
later. 

We will define T by constructing its prime model Mo built as a disjoint union 
of finite regular graphs. Each of those graphs will be exactly one f-class. The 
«'th graph will contain no cycle of length < n. We will choose the finite graphs 
in such a way that no mater what order is put on them, the «'th graph interprets 
({1 , . . . ,«} ,+ , x), by an explicit formula not depending on n. The condition about 
cycles will ensure that the limit theory of those graphs is co-stable. 

The first observation is that, for every n, there is a structure ({1.... N}. <\. <2) 
where both <i and <2 are linear orders (call this a bi-order) that interprets 
({1 , . . . ,«} ,+ , x). Furthermore, the formulas involved in the interpretation do 
not depend on n. This is an easy exercise whose solution is given in the appendix. 
As a consequence, the problem is reduced to that of interpreting two linear orders. 
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We will work with colored graphs. For us, a colored graph is a structure (G;S,R) 
where S(x, y) is symmetric anti-reflexive and R{XQ, jo- x\, y\) is a quaternary rela­
tion which defines an equivalence relation on pairs (x, y) G S. It should be thought 
of as saying that {xo, Jo} an<^ {*i'Ji} are two edges in the graph of the same color. 
We will consider only regular colored graph, namely such that each vertex belongs 
to exactly one edge of each color. For simplicity, we will introduce the imaginary 
sort C of colors defined to be the quotient of {(x,y) G G2 : (x,y) G S} by the 
equivalence relation (xo,yo) ~ (x\,yi) -*=> R{xo,yo,xi,y\). If k G C is a color 
and x G G is a vertex, by the /:-neighbor of x, we mean the unique y E G such that 
{x, y} is an edge of color k. 

Denote by 5Ccg the language {S, R} of colored graph. We will use 2"cg to denote 
the expanded language {S, R. <} where < is a binary predicate. Also let 0(x, y, u, v) 
be the 3"Cf, formula saying that {u, v} is an edge and if k is its color, then the 
^-neighbor of x is <-less than the /c-neighbor of y. 

In the rest of this subsection, we prove the following proposition. 

PROPOSITION 2.5. Let N,c > 3 be integers, let also <\, <2 be two linear orders on 
N = {0 , . . . , N — 1}. Then for every even integer n big enough, there is a finite regular 
colored graph G„ on n vertices such that for every expansion ofGn to 5f'cx making < into 
a linear order, there are a, b,u,v G G„ such that the structure {[a, b]; <, <J>(x, y, u, v)) 
is isomorphic to (N; <\, <2). Furthermore, Gn has no cycle of length < c. 

Here [a, b] denotes the interval with end points a and b in the sense of <. 
We will build the graph G„ by a random procedure and show that with positive 

probability, we obtain what we want. Actually, we will start by building a colored 
multigraph G(a) and then modifiy it to make into an actual regular graph G'(a). 
By a colored multigraph, we mean a colored graph in which there can be two or 
more edges (of different colors) between two given vertices. 

Let n be even and big enough (we will see during the construction what big 
enough means). Fix some 1 — ^ < a < 1 and let d = [nl~a\. 

Let 6„ denote the symmetric group on n elements. Our space of events is Q, = <Sd
n 

equipped with the uniform probability law. Let a = (er, : i < d) be an element 
of Q.. We define a colored multigraph G(a) as follows: The vertex set of G{a) is 
n = {0, n — 1}. The set of colors is C = {0, . . . ,d — 1}. For& < d, we draw an 
edge of color k between vertices a and b if and only if for some / < n/2, we have 
{<jk{2l),ok{2l+\)} = {a,b}. 

A cycle of length r > 2 is a sequence (ao, ar~\) of distinct vertices and a 
sequence (e<), • • •, er-\) of distinct edges such that for each / < r, e, is an edge 
between a, and ai+\ (addition is modulo r). In particular, a cycle of length 2 in 
G{a) is given by two vertices and two different edges linking them. A cycle is said 
to be small if it is of length < c. 

If k G C is a color, we define <k by x <k y if and only if the ^-neighbor of x 
is <-less than the /:-neighbor of y. We will show that each of the following events 
occurs with probability converging to 1 as n tends to +00: 

1. The number of small cycles in G{a) is less than d2c, and we can obtain a 
regular graph G'{a) with no small cycles by changing at most 2d2c edges of 
G{a), 
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722 SAHARON SHELAH AND PIERRE SIMON 

2. For every ordering < of the vertices of G(a), we can find at least dic values of 
(a, b,k) e G2 x C such that ([a, b\, <, <*•) is isomorphic to (TV; <i , <2). 

2.2.1. Removing small cycles. We perform some surgery to remove small cycles 
from the multigraph G(a) and obtain a regular graph G'{a) with no small cycles. 

We compute the expectancy of the number of small cycles in G{o). Let 2 < s < c. 
Let H = {VH-EH) be the graph consisting of a unique cycle of length s. Fix some 
/ : VH —> {0 , . . . , n - 1} injective and someg : EH -> {0 , d - 1}. Assume that 
for any two edges e, e' e EH having a vertex in common, g(e) ^ g(e'). Call the 
pair (f,g) a subgraph of G(a) if for every edge e = {a, b} e EH, {f(a).f(b)} is 
an edge of G (er) and has color g(e). For a given edge e (and remembering that the 
pair (/ , g) is fixed), the probability p$ that this occurs is 

1 
Po = r-

n — 1 
If g is injective, then all those events are independent, so the probability p that 

(/ , g) is a subgraph satisfies 

' ~ G ) • 
If g is not injective, the events are not independent, but nevertheless, looking color 
by color, the same estimate can easily be seen to be true. 

The number of such pairs (f,g) is less than nsds. So the expected value of the 
number of cycles of length s is asymptotically at most 

n'ds (-\ =ds. 

Let X denote the number of small cycles in G(a). Summing over all s < r, we 
see that E(X) = 0(l).dc. By the first moment method 

Prob{X > d2c) < 0(\)J-1. 

In particular, with probability converging to 1 at n tends to +oo, the number of 
small cycles in G(a) is less than d2c. Consider a a that has that property. 

We now modify the graph G{a) so as to remove all small cycles. We show that 
this can always be done by changing at most 2d2c edges. Working by induction on 
the number of small cycles, we have to show that if G is a (^-regular colored) graph 
with less than d2c small cycles, then one can move 2 edges of it so as to decrease the 
number of small cycles. 

Let G be such a graph and take C a cycle of size s < c. Pick any edge {a, b} in 
C. Assume it is drawn with color k. We want to take an edge {a', b'} drawn with 
color k, erase both those edges, and draw instead, with color k, the edges {a. a'} 
and {b, b'}. We have to choose {a1, b'} so that no new small cycle is introduced. It 
is easy to check that this will happen if the following two properties are satisfied: 

- the graph distance between a and a' is at least c + 2, 
- the edge {a',b'} does not belong to a small cycle. 

Note that the first condition implies that the distance between b and b' is at 
least c. We see that the number of edges {a\ b'} of color k which fail to satisfy 
those properties is at most 0(l).(dc+2 + d2c) < n/2, so we can find a', b' as required. 
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Iterating this procedure starting with our original graph G(a), we obtain a graph 
G'(a) with no small cycle and such that all but at most 2d2c of the edges of G(a) 
are still edges in G'{a) of the same color. 

2.2.2. Interpreting bi-orders. Let (N; <\, <2) be a given bi-order. We now prove 
that we can interpret it with high probability in G(o) (uniformly in N) in many 
different ways. This will automatically imply that we can also interpret it in G'(a). 
Let < beany order on {0, . . . ,n - 1} (the set of vertices of G{a)), without loss, the 
usual order. Given a < n and t £ C a color, define the event §ra>ft as 

([a. a + N - 1];<, </,) is isomorphic to (JV;<i,<2). 

Fix a value of k. Let D c {0 , . . . ,« — 1} be a subset of size < n/4N closed 
under taking the ^-neighbor. Assume we know the values of o> (x) for every x e D 
and the values of oi{x) for / < k and every x. Take some a < n such that 
D (1 {a, a + 1,... ,a + N — 1} = 0. We look at the values of the ^-neighbors of 
the points {a, a + 1 ,a + N — I}. With probability > 1/2 those neighbors are 
disjoint from {a, a + 1 , a + N — 1} so we are considering 2N distinct points. 
Consider the bi-order ([a, a + N - 1]; <, <k)- Clearly, all N\ bi-order have the same 
probability of occurring. So, knowing a^ restricted to D and 07 for / < k, the event 
%a,k holds with probability at least ĵ ry • 

Now, assume we know the values of a/ for I < k. Take Do = 0 and ao = 0. 
With probability at least J^T, the event ^aa,k holds. Next we let D\ contain 
{ao, cio + l,... ,ao + N — 1} and all /c-neighbors of those points. We take some a\ 
as in the previous paragraph. Again with probability at least 5^7, %a\,k holds. We 
can iterate this at least ^ times (as D increases by at most 2N each time). We do 
this for each color, one color after the other. Let Y be the number of events Wa,k 
that hold. Then for every x, 

Prob( Y < x) < Prob(B < x) 

where B is a random variable whose law is a binomial distribution with parameters 
j ^ j , 2^1. (Recall that the binomial distribution with parameters n, p is denned as 
the distribution of the sum of n independent random variables being equal to 1 with 
probability p and to 0 with probability 1 - p.) 

We now use the following fact about binomial distributions. It is a special case 
of Hoeffding's inequality (or of Chernoff s bound). See for example [4]. 

LEMMA 2.6. Let B be a random variable whose law is a binomial distribution with 
parameters n, p. Then for any x we have: 

Prob{B <x)< exp ^ - 2 ( ^ ~ x ) 

We conclude that the probability that at least d3c of the events Wa<k succeed is at 
least 

1 - exp -\6N2{l6N2N', ' = 1 - exp (~n2~a.O(l)). 

As there are n\ < exp(« In n) different orders on {0 , . . . , n - 1}, we see that with 
probability converging to 1 as n tends to +00, for every ordering < of the vertices, 
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there are at least d3c values of (a, k) E n x d for which 

([a, a + N — 1]; <, <k) is isomorphic to (N; <\, <2). 

In particular, if furthermore G(a) has less than d2c small cycles, there is a choice 
of (a, k) such that no edge of color k having an end point in {a , . . . , a + N — 1} is 
changed during the construction of G'(er). Therefore with this choice of (a, k), we 
obtain an interpretation of (N; < i , <2) in G'((j) as 

{[a, a + N - 1], <, <X>(x, y.«, v)) 

where {u, v} is any edge of color k. 
This ends the proof of Proposition 2.5. 

2.3. The full structure. We now conclude with the proof of Theorem 2.4. 
We recall that we set SC — {E, S, R} where E is a binary relation. Fix an 

3 < n < (o. Let (N; < i , <i) be the structure Pn given by Proposition 2.7 below. 
Let also (Gn;S,R) be the colored graph given by Proposition 2.5 with c = n. We 
define the ^-structure Mo as follows. The reduct to {S, R} is just the disjoint union 
of the graphs {Gn\ S, R). The predicate E is interpreted as an equivalence relation, 
such that two points x, y e Mo are ̂ -equivalent if and only if they come from the 
same Gn. 

What does Th(Mo) look like? Let M be elementary equivalent to Mo. Then 
in M, E defines an equivalence relation which has a> finite classes. The substructure 
of M formed by the union of those finite classes is isomorphic to Mo. An infinite 
class of M, equipped with (S, R) is a regular colored graph with no cycles and 
infinite degree. So as a graph, it is a union of trees. Finally, there are no 5-relations 
between points in different ^-classes. 

We see that to every .Zs-class are associated two regular types: one for a new 
connected component and one for a new color. The type of a new E -class is itself 
a regular type. A model is entirely determined up to isomorphism by the number 
of infinite ^-classes and for each such class, the number of connected components 
and the number of colors. So the resulting theory is cu-stable, NDOP of depth 2. 

Finally, if < is an expansion of Mo by a linear order, then in the k\h equiva­
lence class, we can interpret ({0 , . . . , k}; +, x), uniformly in k. In particular the 
expansion interprets pseudofinite arithmetic. 

Appendix: interpreting arithmetic from two linear orders. The following is cer­
tainly well known, but we include it for completeness. 

PROPOSITION 2.7. There are formulas 4>(x,y\z;t), y/(x,y,z;T) in the language 
S? = {<i, <2J such that for each k < a>, there is a finite 3:'-structure P^ satisfying: 

• < i and <2 define linear orders on P^, 
• there are ao,a\,a in P^ such that the structure 

([flo- a\]i\ 4>{x, y, z; a), y/{x, y, z; a)) 

is isomorphic to ({0, ...,k— 1}. +, x) . 
{where [a, b]j denotes the interval a <i x <ib). 

PROOF. Let k <co and set n = 10/:2. Let Pk have universe {0 ,« — 1} and let 
<i be the usual order on that set. For / e {0 , . . . , k — 1}, let b; = lk{i + 1). Let 
a\ = bk-\. The points of Pk greater then bk-\ will be called delimiters. 
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Now we construct <2 in the following way: an initial segment is bo <2 b\ <2 
• • • <2 bk~\- Those points will correspond to {0. ...k — 1} in the interpretation. 
For / < n, r < k we say that / codes for r if Z>r_i < I < br (setting b-\ = —i). 
Now we encode the graph of addition. Let (^(/),<,v be an enumeration of all triples 
(r, s, ( ) e { 0 , . . i - l }3 such that r + s = t. Build a map f : N ^ P% such that 
for each / < N, i f / ( / ) = (cr,cs,ct,d) then cr, cs and ct code for r, s, t respectively 
and d = ct\ + i + 1 is a delimiter. Also impose that no point appears in two 
tuples / ( / ) . / ( / ' ) for i ^ i'. Now set <2 such that cr <2 cs <2 c, <2 d each 
time / ( / ) = (t>. cs.ct, d), and those four points form a interval of <2. Place those 
intervals one after another in any order. Let 02 be the last delimiter placed. Next 
do the same for the graph of multiplication, and let 03 be the last delimiter placed 
there. Finally place the elements that are left in any order after 03. 

Now it is easy to check that one can interpret ({0 .k - 1};+. x) in this 
structure, with parameters a\, ci2, a-$, and that the formulas involved do not depend 
either on the choices made nor on k. H 
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