On the no(M) for M of singular power

Abstract: We prove that for λ singular of cofinality $\kappa > \aleph_0$, if $(V \mu < \lambda)\mu^{\kappa} < \lambda$ then for some model M, $M = (M, R^M)$, R a two place predicate, $||M|| = \lambda$ and $no(M) = \{N/\approx : N \equiv_{\infty,\lambda} M, ||N|| = \lambda\}$ is quite arbitrary e.g. any $\mu < \lambda$ and λ^{κ} (hence 2^{λ}).

See [Sh 5] for the back ground: where the result were proved for M with relations with infinitely many places. By the present paper the only problem left, if we assume V = L, is whether $no(M) = \lambda$, may happen for M of cardinality λ for λ singular.

§1 On γ - systems of groups.

- 1.1 Definition : A γ -system will mean here a model of the form $\mathcal{A} = \left\langle G_{\alpha}, h_{i,j} \right\rangle_{\substack{i \leq j < \gamma \\ \alpha < \gamma}}$ where
- (i) G_i is a group with the unit $e_i=e^{G_i}=e_i{}^{\mathcal{A}}$, the G_i 's are pairwise disjoint.
 - (ii) $h_{i,j}$ is a homomorphism from G_j into G_i when $i \leq j$.
 - (iii) $h_{i_1,i_2} \circ h_{i_2,i_3} = h_{i_1,i_3}$ when $i_1 \le i_2 \le i_3 < \gamma$.
 - (iv) $h_{i,i}$ is the identity. (so we sometimes ignore them).

We denote γ -systems by \mathcal{A},\mathcal{B} and for a system \mathcal{A} , we write $G_i = G_i \mathcal{A}, \gamma = \gamma \mathcal{A}$ $h_{i,j} = h_{i,j}$. Let $||\mathcal{A}|| = \sum_{i < \kappa} ||\mathcal{G}_i||$. We omit the \mathcal{A} when there is no danger of confusion.

Let $\gamma = \gamma^{\mathcal{A}}$, for $\beta \leq \gamma$ let $\mathcal{A} \upharpoonright \beta = \left\langle G_{\alpha}^{\mathcal{A}}, h_{i,j}^{\mathcal{A}} \right\rangle_{i \leq j < \beta, \alpha < \beta}$. The really interesting case is $\gamma = \text{limit}$.

1.2 **Definition**: For a γ -system \mathcal{A} let $Gr(\mathcal{A}) = \{ \mathbf{a} = \left\langle a_{i,j} : i \leq j < \gamma \right\rangle : a_{i,j} \in G_i, \ a_{i,i} = e^{G_i} \text{ and if } \alpha \leq \beta \leq \varepsilon < \gamma \text{ then}$ $a_{\alpha,\varepsilon} = h_{\alpha,\beta}(a_{\beta,\varepsilon}) \ a_{\alpha,\beta}$

Let $\mathbf{a} \upharpoonright \boldsymbol{\beta} = \langle a_{i,j} : i \leq j < \boldsymbol{\beta} \rangle$.

- 1.3 **Definition** : For $\mathbf{a} = \left\langle a_i : i < \gamma \right\rangle \in \prod_{i < \mathbf{x}} G_i$, let fact $(\mathbf{a}) = \left\langle a_{i,j} : i < j < \gamma \right\rangle$ where $a_{i,j} = h_{i,j} (a_j)^{-1} \ a_i$. Let Fact $(\mathcal{A}) = \left\{ \left\{ fact(\mathbf{a}) : \mathbf{a} \in \Pi G_i \right\} \right\}$.
- 1.4 Claim: The mapping $\mathbf{a} \to fact(\mathbf{a})$ is from $\prod_{i < \kappa} G_i$ into $Gr(\mathcal{A})$. So fact (\mathcal{A}) is a subset of $Gr(\mathcal{A})$.

Proof: Trivially $a_{i,j} \in G_i, a_{i,i} = e_i$, and if $\alpha \leq \beta \leq \varepsilon$;

$$h_{\alpha,\beta}(\alpha_{\beta,\varepsilon}) \circ \alpha_{\alpha,\beta} = (h_{\alpha,\beta}(h_{\beta,\varepsilon}(\alpha_{\varepsilon})^{-1})h_{\alpha,\beta}(\alpha_{\beta}))(h_{\alpha,\beta}(\alpha_{\beta})^{-1} \circ \alpha_{\alpha}) = (h_{\alpha,\beta}h_{\beta,\varepsilon})(\alpha_{\varepsilon})^{-1}\alpha_{\alpha} = h_{\alpha,\varepsilon}(\alpha_{\varepsilon})^{-1}\alpha_{\alpha} = a_{\alpha,\varepsilon}.$$

- 1.5 **Definition** : 1) $Gs(\mathcal{A}) = \{ \overline{\mathbf{a}} \in Gr(\mathcal{A}) : \text{ for every } \beta < \gamma^{\mathcal{A}} \}$ $\langle a_{i,j} : i < j < \gamma \rangle \in Fact(\mathcal{A} \upharpoonright \gamma) \}$.
- 2) We define a relation $\approx_{\mathcal{A}}$ on $Gr(\mathcal{A})$ (let $\gamma = \gamma^{\mathcal{A}}$): $\mathbf{a} \approx_{\mathcal{A}} \mathbf{b}$ if for some $\langle g_i : i < \gamma \rangle \in \prod_{i < \gamma} G_i \mathcal{A}$, for every $i < j < \gamma \ b_{i,j} = h_{i,j}(g_j)^{-1} a_{i,j} \ g_i$.

We shall say that $\langle g_i : i < \gamma \rangle$ exemplify $\mathbf{a} \approx {}_{\mathcal{A}} \mathbf{B}$.

- 3) \mathcal{A} is called smooth if for every limit $\beta < \gamma$, $Gr(\mathcal{A} \upharpoonright \beta) = Fact(\mathcal{A} \upharpoonright \beta)$.
- 1.6. Claim: For a γ -system \mathcal{A} :
 - 1) $\approx_{\mathcal{A}}$ is an equivalence relation on $Gr(\mathcal{A})$ (hence also on $Gs(\mathcal{A})$).
 - 2) If $a,b \in Gr(A)$, $\beta < \gamma^A$ and $a \approx_A b$ then $b \upharpoonright \beta \approx_A \beta b \upharpoonright \beta$.
- 3) For $\mathbf{a} \in Gr(\mathcal{A})$: $\mathbf{a} \in Fact(\mathcal{A})$ iff $\mathbf{a} \approx \int e_i \mathcal{A} i < j < \gamma \mathcal{A} \rangle$ (where $e_i \mathcal{A}$ is the unit of $G_i \mathcal{A}$).

^{**}Really \$G\$ (\$\mathcal{A}\$) = \$Gr(\mathcal{A}\$), as if \$\mathbf{a}\$ = \$\left\langle a_i, j : i < j < \gamma \right\rangle \in Gr(\mathcal{A}\$) then \$\left\langle a_{i,\beta} : i < \beta \right\rangle\$ witness \$\mathbf{a}\$ \cdot \beta \in G\$ (\$\mathcal{A}\$); but we shall not use this.

4) For $\mathbf{a}, \mathbf{b} \in Gr(\mathcal{A})$, if $\mathbf{a} \approx_{\mathcal{A}} \mathbf{b}$ then $\mathbf{a} \in Gs(\mathcal{A}) \iff \mathbf{b} \in Gs(\mathcal{A})$.

Proof: 1) Let us check the properties.

reflexivity for $a \in Gr(A)$, $a \approx A a$: $\langle e_i A : j < \gamma \rangle$ exemplify this

symmetry: suppose $\overline{\mathbf{a}} \approx_{\mathcal{A}} \mathbf{b}$ and $\langle g_i : i < \gamma \rangle$ exemplify this, so for every $i \leq j < \gamma$, $b_{i,j} = h_{i,j}(g_j)^{-1} a_{i,j} g_i$, hence $h_{i,j}(g_j) h_{i,j} g_i^{-1} = a_{i,j}$ but $h_{i,j}(g_j^{-1}) = (h_{i,j}(g_j))^{-1}$ (as $h_{i,j}$ is a homomorphism from G_j into G_i). So (for every $i \leq j \leq \gamma$) $a_{i,j} = (h_{i,j}(g_i^{-1}))^{-1} b_{i,j}(g_i^{-1})$ so $\langle g_i^{-1} : i < \gamma \rangle$ exemplify $\mathbf{b} \approx_{\mathcal{A}} \mathbf{a}$.

transitivity: suppose $\mathbf{a} \approx_{\mathcal{A}} \mathbf{b}$, $\mathbf{b} \approx_{\mathcal{A}} \mathbf{c}$ and $\langle g_i^0 : i < \gamma \rangle$, $\langle g_i^1 : i < \gamma \rangle$ exemplify them (resp.) So for $i \leq j < \gamma$, $b_{i,j} = h_{i,j} (g_j^0)^{-1} a_{i,j} g_i^0$ and $c_{i,j} = h_{i,j} (g_j^1)^{-1} b_{i,j} g_i^1$, substituting we get

$$\begin{split} c_{i,j} &= h_{i,j}(g_j^{\,1})^{-1}(h_{i,j}(g_j^{\,0})^{-1}a_{i,j}g_i^{\,0})g_i^{\,1} = \\ & (h_{i,j}(g_j^{\,0}) \; h_{i,j}(g_j^{\,1}))^{-1}a_{i,j}(g_i^{\,0}g_i^{\,1}) = \\ & h_{i,j}(g_j^{\,0}g_j^{\,1})^{-1} \; a_{i,j}(g_i^{\,0}g_i^{\,1}) \end{split}$$

So $\langle g_i^0 g_i^1 : i < \gamma \rangle$ exemplify $\mathbf{a} \approx_{\mathcal{A}} \mathbf{c}$.

- 2) If $\langle g_i:i<\gamma\rangle$ exemplify $\mathbf{a}\approx_{\mathcal{J}}\mathbf{b}$ then $\langle g_i:i<\beta\rangle$ exemplify $\mathbf{a}\upharpoonright\beta\approx_{\mathcal{J}_{\mathbf{B}}}\mathbf{b}\upharpoonright\beta$.
- 3) Because $\langle g_i:i<\gamma\rangle$ exemplify $\langle e_i \text{$^{\mathcal{A}}$} : i< j<\gamma\rangle \approx_{\mathcal{A}} \mathbf{a}$ iff $a_{i,j}=h_{i,j}(g_j)^{-1}g_i$ (for every $i< j<\gamma$.) i.e. iff $\langle g_i:i<\gamma\rangle$ exemplify $\mathbf{a}\in \mathit{Fact}(\mathcal{A})$.
- 4) By 3) $\mathbf{c} \in Gs(\mathcal{A})$ iff for every $\beta < \gamma^{\mathcal{A}}$, $\mathbf{c} \upharpoonright \beta \approx_{\mathcal{A}} \left\langle e_i^{\mathcal{A}} : i \leq j < \beta \right\rangle$, and by 2) for $\beta < \gamma^{\mathcal{A}}$, $\mathbf{a} \upharpoonright \beta \approx_{\mathcal{A}} \mathbf{b} \upharpoonright \beta$, hence (as $\approx_{\mathcal{A}\beta}$ is as an equivalence relation)

 $\mathbf{a} \upharpoonright \boldsymbol{\beta} \approx_{\mathcal{A}} \left\langle e_{i}^{\mathcal{A}} : i \leq j < \boldsymbol{\beta} \right\rangle$ iff $\mathbf{b} \upharpoonright \boldsymbol{\beta} \approx_{\mathcal{A}} \left\langle e_{i}^{\mathcal{A}} : i \leq j < \boldsymbol{\beta} \right\rangle$ and the result follows.

- 1.7 Definition: For a γ -system \mathcal{A} , let $no^*(\mathcal{A})$ be the cardinality of $Gs(\mathcal{A})/\approx_{\mathcal{A}}$ (i.e. the number of non $\approx_{\mathcal{A}}$ equivalent $\mathbf{a}\in Gs(\mathcal{A})$).
 - 1.8 Lemma : Suppose \mathcal{A},\mathcal{B} are γ -systems,.
 - (i) H_i is a homomorphism from $G_i^{\mathcal{A}}$ onto $G_i^{\mathcal{B}}$.

(ii) for
$$i < j < \gamma$$
, $H_i \circ h_{i,j} = h_{i,j}^{\beta} \circ H_j$

(iii) for every $\beta < \gamma$, $\mathbf{a}, \mathbf{b} \in Fact(\mathcal{A} \upharpoonright \beta)$, satisfying $H_i(a_{i,j}) = H_i(b_{i,j})$ for $i < j < \beta$, a member $g_{\mathbf{a},\mathbf{b}}^i \in G_i^{\mathcal{A}}$ are defined for $i < \beta$ such that:

a) if $i < \alpha < \beta$ then $g_{\mathbf{a}|\alpha,\mathbf{b}|\alpha}^{i} = g_{\mathbf{a},\mathbf{b}}^{i}$.

b)
$$b_{i,j} = h_{i,j}(g_{\mathbf{a},\mathbf{b}}^{j})^{-1}a_{i,j} g_{\mathbf{a},\mathbf{b}}^{i}$$
 for $i < j < \beta$.

Then $no^*(A) \leq no^*(B)$.

Proof: We define a function H with domain $Cr(\mathcal{A}): H(\mathbf{a}) = H(\langle a_{i,j}: i < j < \gamma \rangle) = \langle H_i(a_{i,j}): i < j < \gamma \rangle$. By (ii) we can check that H is into $Cr(\mathcal{B})$. We shall show later

(*) for $\mathbf{a}, \mathbf{b} \in Gr(\mathcal{A})$, $\mathbf{a} \approx_{\mathcal{A}} \mathbf{b}$ iff $H(\mathbf{a}) \approx_{\mathcal{B}} H(\mathbf{b})$.

Applying this to $\mathcal{A} \cap \beta$ (for $\beta < \gamma$) and noting that $H_i(e_i \mathcal{A}) = e_i \mathcal{B}$. $H(\langle e_i \mathcal{A} : \langle j < \beta \rangle) = \langle e_i \mathcal{B} : i < j < \beta \rangle$ we see that for $\mathbf{a} \in Gr(\mathcal{A})$, $\beta < \gamma$.

 $[\mathbf{a} \upharpoonright \boldsymbol{\beta} \in Fact(\mathcal{A} \upharpoonright \boldsymbol{\beta}) \text{ iff } H(\mathbf{a}) \upharpoonright \in Gs(\mathcal{B})].$ So by (*) H induces a one to one map from $Gs(\mathcal{A})/\approx_{\mathcal{A}} \text{into } Gs(\mathcal{B})/\approx_{\mathcal{B}} \text{ so } no^*(\mathcal{A}) \leq n^*(\mathcal{B}).$

Proof of (*): First suppose $\mathbf{a} \approx_{\mathcal{J}} \mathbf{b}$ and let $\langle g_i : i < \gamma \rangle$ exemplify this. So for every $i < j < \gamma$

$$b_{i,j} = h_{i,j}(g_i)^{-1} a_{i,j}g_i$$

applying H_i we get $H_i(b_{i,j}) = H_i(h_{i,j}(g_i)^{-1})H_i(a_{i,j})H_i(g_i)$

Now by (ii) $H_i(h_{i,j}(g_i)^{-1}) = (H_i \mathcal{A}(h_{i,j}(g_i))^{-1}) = (h_i \mathcal{B}_i(H_i(g_i)))^{-1}$, so

$$H_i(b_{i,j}) = h_{i,j}^{\mathcal{B}}(H_j(g_j))^{-1}H_i(a_{i,j})H_i(g_i)$$

So $\langle H_i(g_i): i < \gamma \rangle$ exemplify that $H(\mathbf{a}) \approx_R H(\mathbf{b})$.

Next suppose $H(\mathbf{a}) \approx_{\mathcal{E}} H(\mathbf{b})$ and let $\langle g_i^* : i < \gamma \rangle$ exemplify it. As H_i is a homomorphism from $G_i^{\mathcal{A}}$ onto $G_i^{\mathcal{E}}$, there are $g_i \in G_i^{\mathcal{A}}$, such that $H_i(g_i) = g_i^*$ (for $i < \gamma$). Now $H_i(b_{i,j}) = h_{i,j}^{\mathcal{E}}(g_j^*)^{-1}H_i(a_{i,j})$ $g_i^* = h_{i,j}^{\mathcal{E}}(H_j(g_j))^{-1}H_i(a_{i,j})H_i(g_i)$

$$=H_{i}(h_{i,j}(g_{i})^{-1})H_{i}(a_{i,j})H_{i}(g_{i})=H_{i}(h_{i,j}(g_{i})^{-1}a_{i,j}g_{i})$$

Let us define $\mathbf{c} \in Cr(\mathcal{A})$ by $\mathbf{c}_{i,j} = b_{i,j}(g_i)^{-1} a_{i,j}g_i$. It is easy to check that \mathbf{c} really belongs to $Cr(\mathcal{A})$ and $\mathbf{c}_{i,j}(g_i)^{-1} a_{i,j}g_i$. It is easy to check that $\mathbf{c}_{i,j}(g_i) = \mathbf{c}_{i,j}(g_i) = \mathbf{c$

So we have proved (*) hence 1.8.

- 1.9 Claim: If in 1.8 in addition:
- (iv) H_i^+ is a homomorphism from $G_i^{\mathcal{B}}$ into $G_i^{\mathcal{A}}$.
- (v) $H_i \circ H_i^+$ is the identity (on $G_i^{\not E}$)

(vi)
$$h_{i,j}^{\mathcal{B}} \circ H_j^+ = H_i^+ \circ h_{i,j}^{\mathcal{A}}$$
 for $i < j < \gamma$.

Then $no^*(\mathcal{A}) = n^*(\mathcal{B})$.

Proof: We define a function H^+ with domain $Gr(\mathcal{B}):H^+(\mathbf{a})=\left\langle H_i^+(a_{i,j}):i\leq j<\gamma\right\rangle$. By (vi) $H^+(\mathbf{a})$ is always in $Gr(\mathcal{A})$. Clearly $H\circ H^+$ is the identity on $Gr(\mathcal{B})$, so let $\{\mathbf{c}^\xi:\xi< no^*(\mathcal{B})\}$ be pairwise non $\approx_{\mathcal{B}}$ equivalent members of $Gs(\mathcal{B})$, and let $\mathbf{a}^\xi=H^+(\mathbf{c}^\xi)\in Gr(\mathcal{A})$. So $H(\mathbf{a}^\xi)=\mathbf{c}^\xi$. From the proof of 1.8 we know that: $\mathbf{a}^\xi\in Gs(\mathcal{A})$ because $\mathbf{c}^\xi\in Gs(\mathcal{B})$, and for $\xi<\xi< no^*(\mathcal{B})-\mathbf{a}^\xi,\mathbf{a}^\xi$ are non $\approx_{\mathcal{B}}$ equivalent (because $\mathbf{c}^\xi,\mathbf{c}^\xi$ are non $\approx_{\mathcal{B}}$ equivalent). So $no^*(\mathcal{A})\geq no^*(\mathcal{B})$ hence we finish (by 1.8).

- **1.10 Claim:** For a γ -system of abelian groups.
- 1) $Gr(\mathcal{A})$ here is the same as $Gr(\mathcal{A})$ from [Sh 5], Definition 3.4 (except that here we do not put the group structure.
 - 2) Fact(A) here is the same (set) as Fact(A) from [Sh 5] Definition 3.5 .
 - 3) For $\mathbf{a}, \mathbf{b} \in Gr(\mathcal{A})$, $\mathbf{a} \approx_{\mathcal{A}} \mathbf{b}$, iff (in [Sh 5] notation), $\mathbf{a} \mathbf{b} \in Fact(\mathcal{A})$.
 - 4) Gs(A) here is the same as Gs(A) from [Sh 5] Definition 3.7(1).
- 5) $no^*(\mathcal{A})$ here is the same as the cardinality of $E'(\mathcal{A})$ (from [Sh 5] Definition 3.7(2)).

Proof: Straightforward.

- 1.11 Conclusion: For every regular $\kappa > \aleph_0$ and μ , for some κ -system, \mathcal{A} , $||\mathcal{A}|| \leq \mu^{\kappa}$, and $no^*(\mathcal{A}) = \mu$.
- 1.12 Claim: Suppose \mathcal{A} is a γ -system, γ limit and for $\ell = 1,2$ $\mathbf{a}^{\ell} = \left\langle a_{i,j}^{\ell} : i \leq j < \gamma \right\rangle$ belongs to $Gs(\mathcal{A})$.

Suppose further $S \subseteq \gamma$ is unbounded in γ and $a_{i,j}^1 = a_{i,j}^2$ when $i,j \in S$. Then $\mathbf{a}^1 \approx \mathbf{a}^2$.

Proof: For every $\boldsymbol{\beta} < \gamma, \ell = 1, 2$, $\mathbf{a}^{\ell} \upharpoonright (\boldsymbol{\beta}+1) \in Fact(\mathcal{A} \upharpoonright (\boldsymbol{\beta}+1))$ hence there is $\mathbf{g}_{\boldsymbol{\beta}}^{\ell} = \left\langle g_i^{\ell,\boldsymbol{\beta}} : i \leq \boldsymbol{\beta} \right\rangle \in \prod_{i \leq \boldsymbol{\beta}} G_i^{\mathcal{A}}$ such that $a_{i,j}^{\ell} = (h_{i,j}^{\mathcal{A}}(g_j^{\ell,\boldsymbol{\beta}})^{-1}) g_i^{\ell,\boldsymbol{\beta}}$ when $i \leq j \leq \boldsymbol{\beta}$. For $\alpha < \gamma$ let $\boldsymbol{\varepsilon}(\alpha) = Min\{\boldsymbol{\beta} : \alpha \leq \boldsymbol{\beta} \in S\}$.

We want to find $g_i \in G_i^{\mathcal{A}}$ $(i < \gamma)$ such that $a_{i,j}^2 = h_{i,j}(g_j)^{-1}a_{i,j}^1 g_i$.

Now for $\ell = 1, 2$, if $i \le \varepsilon(i) \le j$

$$a_{i,j}^{\ell} = h_{i,\epsilon(i)}^{\mathcal{A}}(a_{\epsilon(i),j}^{\ell}) \quad a_{i,\epsilon(i)}^{\ell} = h_{i,\epsilon(i)}^{\mathcal{A}}(h_{\epsilon(i),j}^{\ell}(a_{j,\epsilon(j)}^{\ell})^{-1} \quad a_{\epsilon(i),\epsilon(j)}^{\ell})a_{i,\epsilon(i)}^{\ell} = h_{i,j}^{\mathcal{A}}(a_{j,\epsilon(j)}^{\ell})^{-1}h_{i,\epsilon(i)}^{\mathcal{A}}(a_{\epsilon(i),\epsilon(j)}^{\ell}) \quad a_{i,\epsilon(i)}^{\ell}$$

[apply twice Definition 1.2 first for $i, \varepsilon(i)$, j standing for $\alpha, \beta, \varepsilon$, and second for $\varepsilon(i), \varepsilon(j)$ standing for $\alpha, \beta, \varepsilon$].

Now if $i \le j \le \varepsilon(i)$, applying twice this equation (remembering $a_{\xi(i),\xi(j)}^2 = a_{\xi(i),\xi(j)}^2$):

$$\begin{split} a_{i,j}^{\,2} &= h_{i,j} (a_{j,\varepsilon(j)}^{\,2})^{-1} h_{i,\varepsilon(i)}^{\,3} (a_{\varepsilon(i),\varepsilon(j)}^{\,2}) \ a_{i,\varepsilon(i)}^{\,2} = \\ & h_{i,j} (a_{j,\varepsilon(j)}^{\,2})^{-1} h_{i,\varepsilon(i)}^{\,3} (a_{\varepsilon(i),\varepsilon(j)}^{\,1}) \ a_{i,\varepsilon(i)}^{\,2} \\ &= h_{i,j} (a_{j,\varepsilon(j)}^{\,2})^{-1} \ (h_{i,j} (a_{j,\varepsilon(j)}^{\,1}) \ a_{i,j}^{\,1} \ (a_{i,\varepsilon(i)}^{\,1})^{-1}) \ a_{i,\varepsilon(i)}^{\,2} = \\ & h_{i,j} ((a_{j,\varepsilon(j)}^{\,2})^{-1} \ a_{j,\varepsilon(j)}^{\,1}) a_{i,j}^{\,1} ((a_{i,\varepsilon(i)}^{\,1})^{-1} \ a_{i,\varepsilon(i)}^{\,2}) = \\ &= h_{i,j} ((a_{j,\varepsilon(j)}^{\,1})^{-1} \ a_{j,\varepsilon(j)}^{\,2})^{-1} \ a_{i,j}^{\,2} ((a_{i,\varepsilon(i)}^{\,1})^{-1} \ a_{i,\varepsilon(i)}^{\,2}) \end{split}$$

This suggests to show that $\left\langle (a_{i,\varepsilon(i)}^1)^{-1} \ a_{i,\varepsilon(i)}^2 : i < \kappa \right\rangle$ exemplify $\mathbf{a}^1 \approx_{\mathcal{A}} \mathbf{a}^2$ as required. The missing case is $i < j < \gamma \ j < \varepsilon(i)$; so $\varepsilon(i) = \varepsilon(j)$ and so we should prove $a_{i,j}^2 = h_{i,j}((a_{j,\varepsilon(j)}^1)^{-1}a_{j,\varepsilon(j)}^2)^{-1}a_{i,j}^1((a_{i,\varepsilon(i)}^1)^{-1}a_{i,\varepsilon(i)}^2)$.

This is equivalent to $h_{i,j}(a_{j,\epsilon(j)}^2) \ a_{i,j}^2 \ (a_{i,\epsilon(i)})^{-1} = h_{i,j}(a_{j,\epsilon(j)}^1) \ a_{i,j}^1 \ (a_{i,\epsilon(i)}^1)^{-1}$. Applying twice the equation from Definition 1.2 this is equivalent to $a_{i,\epsilon(j)}^2 (a_{i,\epsilon(i)}^2)^{-1} = a_{i,\epsilon(j)}^1 (a_{i,\epsilon(i)}^1)^{-1}$. As $\epsilon(i) = \epsilon(j)$ we finish.

§2 On γ - systems of automorphisms

For this section we make the assumption.

- **2.1 Assumption:** M is an L-model, $P_i \in L$ monadic predicate, $P_i^M(i < \gamma)$ are pairwise disjoint and $|M| = \bigcup_{i < \gamma} P_i^M$. For such M let $M^{[\alpha]} = M \cap \bigcup_{i \le \alpha} P_i^M$ for $\alpha < \gamma$.
- **2.2 Definition**: 1) Let K^M be the class of L-models N such that $N = \bigcup_{i < \gamma} P_i^N$ and $N^{[\beta]} = N \upharpoonright \bigcup_{i \le \beta} P_i^N$ is isomorphic to $M^{[\beta]}$ for every $\beta < \gamma$.
 - 2) Let G_{α}^{M} be the group of automorphisms of $M^{[\alpha]}$.
- 3) Let $h_{i,j}^M$ (for $i \le j < \gamma$) be the following function with domain $G_j^M: h_{i,j}^M(g) = g \upharpoonright M^{[i]}$.
- 4) Let $\mathcal{A} = \mathcal{A}^{M} = \langle G_{\alpha}^{M}, h_{i,j}^{M} : \alpha < \gamma, i < j < \gamma \rangle$. (i.e. as long as M is constant we can omit M).
 - **2.3 Fact**: 1) $h_{i,j}^{M}$ is a homomorphism from G_{j}^{M} into G_{i}^{M} .
 - 2) \mathcal{A}^{M} is a γ -system.

Proof: Immediate.

- 2.4 Definition: 1) We call $\mathbf{g} = \left\langle g_{i,j} : i \leq j < \gamma \right\rangle$ a representation of $N \in K^M$ if there are isomorphism f_i from $M \upharpoonright \bigcup_{\epsilon \leq i} P^M_{\epsilon}$ onto $N \upharpoonright \bigcup_{\epsilon \leq i} P^N_i$ (for $i < \gamma$) such that $g_{i,j} = (f_j^{-1} \upharpoonright N^{(\mathbf{a})}) \circ f_i$.
- 2) For \mathbf{g} , $f_i(i < \gamma)$ as above we say that $\langle f_i : i < \gamma \rangle$ exemplify \mathbf{g} being a representation of N.
 - **2.5 Fact**: Every $N \in K^{M}$ has a representation.

Proof: By the definition of K^M (definition. 2.2(1)) there are $\boldsymbol{f_i}$ as required.

2.6 Fact: If **g** is a representation of N $(N \in K^{M})$ then $\mathbf{g} \in Gr(\mathcal{A})$.

Proof: Let $\langle f_i:i<\gamma\rangle$ exemplify $\mathbf{g}\in Gr(\mathcal{A})$ is a representation of M. For each $i\leq j$, as f_j is an isomorphism from $M^{[j]}$ onto $N^{[j]}$ clearly f_j^{-1} is an isomorphism from $N^{[j]}$ onto $M^{[j]}$, hence $f_j^{-1} \upharpoonright N^{[i]}$ is an isomorphism from $M^{[i]}$ onto $M^{[i]}$ clearly $(f_j^{-1} \upharpoonright N^{[i]}) \circ f_i$ is an isomorphism from $M^{[i]}$ onto $M^{[i]}$ so it belongs to G_i^M . So $g_{i,j} \in G_i^M$.

Easily $g_{i,i}$ is the unit of G_i^M .

We can now check that for $i \leq j \leq \beta < \alpha$, $g_{i,\beta} = h_{i,j}^M(g_{j,\beta}) \circ g_{i,j}$; remembering the definition of $h_{i,j}^M$ this means that

$$(f_{\pmb{\beta}}^{-1} \upharpoonright N^{[i]}) \mathrel{\circ} f_i \negthinspace = \negthinspace ((f_{\pmb{\beta}}^{-1} \upharpoonright N^{[j]}) \mathrel{\circ} f_j) \mathrel{\upharpoonright} M^{[i]}) \mathrel{\circ} (f_j^{-1} \upharpoonright N^{[i]}) \mathrel{\circ} f_i$$

or equivalent by, for every $x \in M^{[i]}$,

$$f_{\beta}^{-1} \circ f_{i}(x)) = f_{\beta}^{-1} f_{j} f_{j}^{-1} f_{i}(x)$$

which is obvious.

2.7 Fact: Let \mathbf{g}^0 be a representation of $N(\in K^M)$. Then $\mathbf{g} \in Gr(\mathcal{A})$ is also a representation of N iff $\mathbf{g} \approx_{\mathcal{A}} \mathbf{g}^0$.

Proof: First suppose that $\mathbf{g}^0 \approx_{\mathcal{J}} \mathbf{g}$, and let $\langle k_i : i < \gamma \rangle \in \prod_{i < \gamma} G_i^M$ exemplify this (see Definition. 1.2). So $g_{i,j} = h_{i,j}^M(k_j)^{-1}g_{i,j}^0k_i$ (for $i \leq j \leq \gamma$). Let $\langle f_i : i < \gamma \rangle$ exemplify \mathbf{g}^0 being a representation of N (see Definition. 2.4(2)).

So
$$g_{i,j}^{\,0} = (f_j^{\,-1} {\upharpoonright} N^{[i]}) \circ f_i$$
 , and we get

$$\begin{array}{l} g_{i,j} = h_{i,j}^{M}(k_{j})^{-1} \circ (f_{j}^{-1} \upharpoonright N^{[i]}) \circ f_{i} \circ k_{i} = \\ (f_{j} \upharpoonright M^{[i]} \circ h_{i,j}^{M}(k_{j}))^{-1} \circ (f_{i} \circ k_{i}) \end{array}$$

[Note that $(f_j \cap M^{[i]})^{-1} = f_j^{-1} \cap N^{[i]}$]; we would like to show that $\langle f_i \circ k_i : i < \gamma \rangle$ exemplify $\mathbf{g}_{i,j}$ is a representation of N. Clearly $f_i \circ k_i$ is an isomorphism from $M^{[i]}$ onto $N^{[i]}$. The above equality will be the only missing information provided that we shall show that

$$f_j \upharpoonright M^{[i]_0} h_{i,j}(k_j) = (f_j \circ k_j) \upharpoonright M^{[i]}$$

which is easy.

Second suppose $\mathbf{g} \in Gr(\mathcal{A})$ is a representation of N and we shall prove that $\mathbf{g} \approx_{\mathcal{A}} \mathbf{g}^0$.

Let $\langle f_i^0:i<\gamma\rangle$ exemplify \mathbf{g}^0 being a representation of N and $\langle f_i:i<\gamma\rangle$ exemplify \mathbf{g} being a representation of N (see Definition. 2.4(2)). So

$$\begin{split} g_{i,j}^{\,0} &= (f_j^{\,0} \upharpoonright N^{[i]})^{-1} \circ f_i^{\,0}, \\ g_{i,j} &= (f_j \upharpoonright N^{[i]})^{-1} \circ f_i \end{split}$$

(for $i \leq j < \gamma$). Let $k_i \stackrel{\text{def}}{=} f_i^{-1} f_i^0$ (for $i < \gamma$). As f_i, f_i^0 are isomorphism from $M^{[i]}$ onto $N^{[i]}$ clearly k_i is an automorphism of $M^{[i]}$, i.e. it belongs to G_i^M . Now $f_i^0 = f_i k_i$ hence

$$\begin{split} g_{i,j}^{\,0} = & (f_j^{\,0} {\upharpoonright} M^{[i]})^{-1} \circ f_i^{\,0} = ((f_j \circ k_j) {\upharpoonright} M^{[i]})^{-1} \circ (f_i \circ h_i) = \\ & = (k_i {\upharpoonright} M^{[i]})^{-1} \circ (f_j {\upharpoonright} M^{[i]})^{-1} \circ f_i \circ k_i = \\ & \qquad \qquad (k_j {\upharpoonright} M^{[i]})^{-1} \circ g_{i,j} \circ k_i \end{split}$$

But easily $k_j \upharpoonright M^{[i]} = h_{i,j}^M(k_i)$, so $\langle k_i : i < \gamma \rangle$ exemplify $g \approx_{\mathcal{A}} g^0$.

Fact 2.8: Suppose the models $N_1, N_2 \in K^M$ has representations $\mathbf{g}^1, \mathbf{g}^2$ respectively, then $N_1 \cong N_2$ iff $\mathbf{g}^1 \approx {}_{\mathcal{A}} \mathbf{g}^2$.

Proof: Let $\langle f_i^{\ell}:i<\gamma\rangle$ exemplify " g^{ℓ} is a representation of N_{ℓ} " for $\ell=1,2$. So $g_{i,j}^{\ell}=(f_j^{\ell} \cap M^{[i]})^{-1} \circ f_i^{\ell}$ for $\ell=1,2, i \leq j < \gamma$.

First assume N^1, N^2 are isomorphic, and let H be an isomorphism from N^1 onto N^2 . For each $i < \gamma$, $H \upharpoonright N_1^{\{i\}}$ is an isomorphism from $N_1^{\{i\}}$ onto $N_2^{\{i\}}$, hence $k_i \stackrel{\text{def}}{=} (f_i^{\ 2})^{-1} (H \upharpoonright N_1^{\{i\}}) f_i^{\ 1}$ is an isomorphism from $M^{\{i\}}$ onto $M^{\{i\}}$, i.e. $k_i \in G_i^M$. So for every $i, f_i^{\ 2} = (H \upharpoonright N_1^{\{i\}}) \circ f_i^{\ 1} \circ k_i^{-1}$, and let $H_i \stackrel{\text{def}}{=} H \upharpoonright N_1^{\{i\}}$ (so for $i < j, H_i = H_i \upharpoonright N_1^{\{i\}}$). Now for $i \le j < \gamma$.

$$\begin{split} g_{i,j}^{\,2} &= (f_j^{\,2} \upharpoonright M^{[i]})^{-1} \circ f_i^{\,2} = \\ &= (H_j \circ f_j^{\,1} \circ k_j^{\,-1} \upharpoonright M^{[i]})^{-1} \circ (H_i \circ f_i^{\,1} \circ k_i^{\,-1}) = \\ &= (H_i \circ (f_i^{\,1} \upharpoonright M^{[i]}) \circ (k_i \upharpoonright M^{[i]})^{-1})^{-1} \circ (H_i \circ f_i^{\,1} \circ k_i^{\,-1}) = \end{split}$$

$$\begin{split} &= (k_{j} {\restriction} M^{[i]}) \circ (f_{j}{}^{1} {\restriction} M^{[i]})^{-1} \circ H_{i}{}^{-1} \circ H_{i} \circ f_{i}{}^{1} \circ k_{i}{}^{-1} = \\ &= (k_{j} {\restriction} M^{[i]}) \circ (f_{j}{}^{1} {\restriction} M^{[i]})^{-1} \circ f_{i}{}^{1} \circ k_{i}{}^{-1} = (k_{j} {\restriction} M^{[i]}) \circ g_{i,j}{}^{1} \circ k_{i}{}^{-2} \\ &\text{So} \left\langle k_{i}{}^{-1} : i < \gamma \right\rangle \text{ exemplify } \mathbf{g}^{1} \approx_{\mathcal{A}} \mathbf{g}^{2}. \end{split}$$

Second, assume $\mathbf{g}^1 \approx_{\mathcal{A}} \mathbf{g}^2$ and let this be exemplified by $\left\langle k_i^{-1}: i < \gamma \right\rangle$. Define

$$H_i = f_i^2 \circ k_i \circ (f_i^1)^{-1}$$

It is easy to check that H_i is an isomorphism from $N_1^{[i]}$ for $i < \gamma$ and $H_i = H_j \upharpoonright M^{[i]}$, for $i < j < \gamma$. So $\bigcup_{i < \gamma} H_i$ is an isomorphism from N_1 onto N_2 .

2.9 Lemma: If **g** is a representation of $N \in K^M$ then $\mathbf{g} \in Gs(\mathcal{A})$.

Proof: Suppose not so for some $\beta < \gamma$, $g \upharpoonright \gamma \not\in Fact(A \upharpoonright \gamma)$ so $g \upharpoonright \gamma, \left\langle e_i \land i \leq j < \beta \right\rangle$ are not $\approx_{(A \upharpoonright \beta)}$ -equivalent. Apply 2.8 to $M^{[\beta]}$ instead M (and $g \upharpoonright \beta, \left\langle e_i \land i < j < \beta \right\rangle$, $N^{[\beta]}, M^{[\beta]}$), and get that $N^{[\beta]}, M^{[\beta]}$ are not isomorphic contradicting $N \in K^M$.

2.10 Lemma: Every $g \in Gs(A)$ represents some $N \in K^M$.

Proof: We define by induction j

- (a) an L-model N_i , such that $N_i \cong M^{[i]}$ and $N_i \subseteq N_i$ for $i \leq j$.
- (b) an isomorphism f_j from $M^{[j]}$ onto N_j , such that for $i \leq j$, $g_{i,j} = (f_j {\restriction} M^{[i]}) \circ f_i$.

For j=0, j successor there is no problem. For j limit $\bigcup_{i < j} N_i$ is isomorphic to $\bigcup_{i < j} M^{[i]} = M \cap \bigcup_{i < j} P_i^M$ by 2.8, and multiplied by some $k \in Aut$ $(M \cap \bigcup_{i < j} P_i)$ it will be as required.

2.11 Conclusion: The numbers of non-isomorphic $N \in K^M$ is equal to $|Gs(A)| \approx A|$.

Proof: By 2.5-2.10.

2.12 Lemma : If the following conditions hold, then every $N \in K^M$ is $L_{\infty, \Lambda}$ -equivalent to M.

- a) Every function F of M are 1-place, amd for $x \in M^{[i]}$, $F_i^M(x) \in M^{[i]}$.
- b) for any relation R of M for some $n < \omega$ and $i < \gamma$:

$$M \models (\forall x_1, \ldots, x_n)[R(x_1, \ldots, x_n) \rightarrow \bigwedge_{\ell=1}^n P_i(x_\ell)]$$

- c) if $i < j < \gamma$, $g \in G_i^M$, g^* a partial automorphism of $M^{[j]}$, $\text{Dom }(g^*)$ closed under the function of M, and $g \cup g^*$ is a partial automorphism of M and $\text{Dom }(g^*)$ is in \mathcal{J}_i , (see below) then $g \cup g^*$ and be extended to an automorphism of $M^{[j]}$.
- d) \mathcal{J}_i is a family of subsets of $M, [i < j \implies \mathcal{J}_i \subseteq \mathcal{J}_j]$ \mathcal{J}_i closed under finite unions, and $[A \subseteq M, |A| < \lambda \implies A \in \bigcup_{i < \gamma} \mathcal{J}_i]$.

Proof: Easy.

§3 Constructing the model.

- 3.1 Main Theorem: Suppose
- (i) $\kappa = cf(\lambda) < \lambda$ and $(\forall \mu < \lambda)(\mu^{<\kappa} < \lambda)$.
- (ii) \mathcal{B} is a κ -system, and $|G_i^{\mathcal{B}}| < \lambda$ for $i < \kappa$.

Then there is a model M (with relations and functions of finitely many places only) of cardinality λ such that $no(M) = no^*(B)$.

3.1A Remarks: W.l.o.g. $M = (|M|, R^M)$ for some two-place relation R. (see [Sh 5], 1.4)

Notation: For $A \subseteq M$, let $cl_M(A)$ be the closure of A under the functions of M.

Proof: By 1.12 w.l.o.g. for $j < \kappa$ limit, $h_{j,j+1}^{\mathcal{B}}$ is onto $G_j^{\mathcal{B}}$, and if $x \in G_j^{\mathcal{B}}$, $x \neq e_j^{\mathcal{B}}$ then for some i < j, $h_{i,j}^{\mathcal{B}}(x) \neq e_i^{\mathcal{B}}$. By 1.12 w.l.o.g. $G_0^{\mathcal{B}}$ is trivial (={e_0^{\mathcal{B}}}). Let $L = \{P_i, F_{i,j}, : i < j < \kappa\} \cup \{R_i : i < \kappa\}$, $P_i(i < \kappa)$ monadic predicates, $F_{i,j}$ one place function symbols, R_i three place predicate. Let $\lambda = \sum_{i < \kappa} \lambda_i$, $\lambda_i^{<\kappa} = \lambda_i < \lambda$, $\lambda_i > ((\sum_{j < i} \lambda_j^+ + |G_i^{\mathcal{B}}|)^{\kappa})^{+5}$. We shall now define by induction on

- $j < \kappa$, M_j , G_j , H_j , H_j^+ , P_i (i < j) such that:
 - (A) (1) M_j is an L-model,
- (A) (2) M_j is the disjoint union of $P_i^{M_j}(i < j)$ and $P_i^{M_j} = (\lambda_i, \lambda_i^{+2})$ when i < j, $P_i^{M_j} = \phi$ when $\kappa > i \ge j$
- (A) (3) $F_{\alpha,\beta}^{M_j}$ is a 1-place function from $P_{\beta}^{M_j}$ into $P_{\alpha}^{M_j}$ (and not defined otherwise) for $\alpha < \beta < \kappa$.
 - (A) (4) for any $R_i = R_i^{M_j}$ is a (three place) relation on $P_i^{M_j}$
 - (A) (5) for i < j, $M_i = M_j \upharpoonright (\bigcup_{\varepsilon \le i} P_{\varepsilon}^{M_j})$.
- (B) (1) G_j is the group of automorphism of M_j if j is a successor ordinal, otherwise $G_j = \{k \in Aut(M_j): \text{ for some } a \in G_j^{\mathcal{B}} \text{ for every } i < j, H_j(k \upharpoonright M_i) = h_{i,j}(a)\}$, (see below on H_j)
 - (B) (2) H_j is a homomorphism from G_j onto $G_j^{\mathcal{B}}$.
 - (B) (3) for i < j, $k \in G_j$, $h_{i,j}^{\mathcal{B}}(H_j(k)) = H_i(k \upharpoonright M_i)$.
 - (B) (4) G_j has cardinality $\leq \lambda_j^{+2}$.
- (B) (5) H_j^+ is a homomorphism from $G_j^{\mathcal{B}}$ into G_j , $H_j \circ H_j^+$ is the identity (on $G_j^{\mathcal{B}}$) and for $i < j, \alpha \in G_j$, $H_j^+(\alpha) \upharpoonright M_i = H_i^+(h_i^{\mathcal{B}}_j(\alpha))$.
 - (C) (1) \mathcal{P}_{i}^{j} is a family of subsets of $(\lambda_{j}, \lambda_{j}^{+2})$ (when i < j).
 - (C) (2) if $A \in \mathcal{P}_i^j$, $i < \alpha < j$, then $cl_M(A) \cap (\lambda_\alpha, \lambda_\alpha^{+2}) \in \mathcal{P}_i^\alpha$.
 - (C) (3) for $i < \alpha < j$, $\mathcal{P}_i^j \subseteq \mathcal{P}_{\alpha}^j$.
 - (C) (5) every $g \in G_{j+1}$ maps any $A \in \mathcal{P}_i^j$ to a member of \mathcal{P}_i^j .
- (C) (6) \mathcal{P}_i^j is closed under union of $\leq \kappa$, (i.e if $A_{\xi} \in \mathcal{P}_i^j$ for $\xi < \zeta \leq \kappa$ then $\bigcup_{\xi < \xi} A_{\xi} \in \mathcal{P}_i^j$).
 - (C) (7) every subset of $(\lambda_j, \lambda_j^{+2})$ of power $\leq ||M_i||$ is included in some

member of \mathcal{P}_{i}^{j} .

- (D) (1) For i < j let $Q_i^j = \{A \subseteq M_j : \text{ for } \alpha < i, (\lambda_{\alpha}, \lambda_{\alpha}^{+2}) \subseteq A \text{ and for } \alpha \in [i, j), A \cap (\lambda_{\alpha}, \lambda_{\alpha}^{+2}) \in \mathcal{P}_i^{\alpha} \text{ and } A = cl_{M_i}(A)\}.$
- (D) (2) If i < j, $k_0, k_1 \in G_j$, $A \in Q_i^j$, k_0, k_1 are equal on $(\bigcup_{\alpha < i} P_{\alpha}^{M_j}) \cap A$ then $(k_0 \upharpoonright A) \cup (k_1 \upharpoonright \bigcup_{\alpha < i} P_{\alpha}^{M_j})$ can be extended to an automorphism k of M_j .

Moreover, if $a \in G_j^{\mathcal{B}}$, $b_{i,j}^{\mathcal{B}}(a) = H_i(k_1 \cap M_i)$ then we can demand $H_j(k) = a$.

Clearly it suffices to carry the construction by induction, as then $M \stackrel{\text{def}}{=} \bigcup_{j < \kappa} M_j$ is as required by the previous Lemmas (i.e. by 2.12 every $N \in K_M$ is $L_{\infty,\lambda}$ -equivalent to it (and clearly $[N \equiv_{\infty,\lambda} M \Longrightarrow N \in K_M]$) so $no(\mathbf{A}) = \{N/\cong : N \in K_M\}$. But 2.11 this number is equal to $no^*(M) = |Gs(\mathbf{A})/\approx_{\mathbf{A}}|$ where $\mathbf{A} = \mathbf{A}^M$ (see Definition 2.2(4)). By 1.9 this number is $no^*(\mathcal{B})$. But \mathcal{B} was chosen so that it is μ .)

Case I: j = 0.

Nothing to do.

Case II: j is limit.

In this case let $M_j = \bigcup_{i < j} M_i$, and there is no problem to check all the conditions. Note that in (D)(2) we can easily prove the second sentence.

Case III: j + 1 (assuming we have defined for j).

We shall define by induction on $\xi < \lambda_j^{+2}$, a group $G_{j,\xi}$, an ordinal $\alpha(\xi)$, an action of the group $G_{j,\xi}$ on $M_j \cup (\lambda_j,\alpha(\xi))$ and $H_{j,\xi},P_{i,\xi}^j,F_{\alpha,j}^{\xi},R^{\xi}$ such that

- (i) for $\zeta < \xi$, $G_{j,\xi}$ is a subgroup of $G_{j,\xi}$ and the action of $g \in G_{j,\xi}$ on $M_j \cup (\lambda_j, \alpha(\zeta))$ is extended too, and for $k \in G_{j,\xi}$, $k \upharpoonright M_j \in G_j$.
 - (ii) $\alpha(\xi) \in (\lambda_j^{+1}, \lambda_j^{+2})$ and $\alpha(\xi)$ is increasing and continuous.

- (iii) for ξ limit $G_{j,\xi} = \bigcup_{\xi < \xi} G_{j,\xi}$.
- (iv) $H_{j,\xi}$ is a homomorphism from $G_{j,\xi}$ onto $G_j^{\mathcal{E}}$.
- (v) $F_{\alpha,j}^{\xi}$ is a one-place function from $(\lambda_j,\alpha(\xi))$ into $P_{\alpha}^{M_j}$ increasing and continuous in ξ .
- (vi) $\mathcal{P}_{i,\xi}^{j}$ is a family of subsets of $(\lambda_{j},\alpha(\xi))$ such that $A^{[i]} \stackrel{\text{def}}{=} \{F_{\alpha,j}^{\xi}(x): \alpha < j, x \in A\} \in Q_{i}^{j} \text{ for each } A \in \mathcal{P}_{i,\xi}^{j}, i < j.$
 - (vii) if $A \in \mathcal{P}_{i,\xi}^{j}$, $g \in G_{j,\xi}$ then $g(A) \in \mathcal{P}_{i,\xi}^{j}$.
- (viii) $\mathcal{P}_{i,\xi}^{j}$ is closed under union of $\leq \kappa$ members and it is increasing with ξ and if $cf \xi > \kappa$ then $\mathcal{P}_{i,\xi}^{j} = \bigcup_{\xi < \xi} \mathcal{P}_{i,\xi}^{j}$.
- (ix) we can choose for every $\alpha(\xi)$ an increasing sequence $B_{\varepsilon}^{\xi}(\varepsilon < \lambda_{j}^{+})$ such that $(\lambda_{j}, \alpha(\xi)) = \bigcup_{\varepsilon < \lambda_{j}^{+}} B_{\varepsilon}^{\xi}$, and B_{ε}^{ξ} has cardinality $\leq \lambda_{j}$. We shall guarantee that for any $\xi < \lambda_{j}^{++}$, $\varepsilon < \lambda_{j}^{+}, i < j$ and $A \in Q_{\varepsilon}^{j}$ for some ξ_{1} , $\xi < \xi_{1} < \lambda_{j}^{+2}$, and $B \in \mathcal{P}_{i,\xi_{1}}^{j}$, $B_{\varepsilon}^{\xi} \subseteq B$.
- (x) if $k_0, k_1 \in G_{j,\xi}$, $A \in Q_i^j$ k_0, k_1 are equal on A, $a \in G_{j+1}^R$, $h_{j+1}^R(a) = H_j(k_1 \upharpoonright M_i)$ then $(k_0 \upharpoonright A) \cup (k_1 \upharpoonright M_j)$ can be extended in some $G_{j,\xi}(\xi \leq \zeta < \lambda_j^{+2})$ to k, $H_{j,\xi}(k) = a$.
- (xi) R^{ξ} is a three place relation on $(\lambda_j, \alpha(\xi))$, increasing with ξ , but for $\xi < \xi$, $R^{\xi} = R^{\xi} \upharpoonright (\lambda_j, \alpha(\xi))$.
 - (xii) each $g \in G_{j,\xi}$ preserves R^i and $F_{\alpha,j}^{\xi}$.
- (xiii) if $cf \ \xi = \lambda_j^+$, then $R(\alpha(\xi)-,-)$ define on $(\lambda_j,\alpha(\xi))$ a well-ordering [so $if \ g \in G_{j,\xi}, \xi > \xi$, g maps $(\lambda_j,\alpha(\xi))$ on itself then, $g \upharpoonright (\lambda_j,\alpha(\xi))$ is determined by $g(\alpha(\xi))$].
- (xiv) no $\alpha \neq \beta \in (\lambda_j, \alpha(\xi))$ realize the same quantifiers free, R_{ξ} -type over (λ_j, λ_j^+) . (So together with (xiii) we have a strict control over the automorphism of M_{j+1}).

There is no problem to carry the induction on ξ hence on j, hence to finish the proof of 3.1.

REFERENCES

- [C] C.C. Chang, Some remarks on the model theory of infinitary languages:, pp. 36-63 in: The Syntax and Semantics of Infinitary Languages, Lecture Notes in Mathematics, 72, ed., J. Barwise, Springer, 1968.
- [HS]H.L. Hiller, and S. Shelah, "Singular cohomology in L", Israel Journal of Mathematics, vol. 26 (1977), pp. 313-319.
- [NS] M. Nadel and J. Stavi, " $L_{\infty\lambda}$ -equivalence, isomorphism and potential isomorphism," Transactions of the American Mathematical Society, vol. 236 (1978), pp. 51-74.
- [P] E. A. Palyutin, "Number of models in L_{∞,ω_1} theories III," pp. 443-456 in Algebra I Logika, vol. 16, no. 4. (1977): English translation in Algebra and Logic, vol. 16, no. 4 (1977), pp. 299-309.
- [S] D. Scott, "Logic with denumerably long formulas and finite strings of quantifiers," pp. 329-341 in The Theory of Models, North Holland, 1965.
- [Sh1]
 - S. Shelah, "On the number of non-isomorphic models of cardinality $\lambda, L_{\omega\lambda}$ -equivalent to a fixed model", Notre Dame J. of Formal Logic 22 (1981), 5-10.
- [Sh2] -----, "On the number of non-isomorphic models of power $\lambda \equiv_{\infty \lambda}$ to a model of power λ , when λ is weakly compact," Notre Dame J. of Formal Logic, 23 (1982), 21-26.
- [Sh3] -----, "The consistency of $Ext(G,\mathbb{Z}) = \mathbb{Q}$ " Israel Journal of Mathematics, 39 (1981), 283-288.
- [Sn4] -----, "A pair of non-isomorphic $\equiv_{\infty,\lambda}$, Models of Power λ for λ singular with $\lambda^{\omega} = \lambda$ ". Notre Dame J. of Formal Logic, 25 (1984), 97-104.
- [Sh5] -----, "On the possible number no(M) = the numbers of non-isomorphic models $L_{\infty,\lambda}$ -equivalent of power λ for λ singular, Notre Dame J. Formal Logic, in press.