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On the no{M) for M of singular power

Abstract: We prove that for A singular of cofinality & > ¥, if (V
@ < A)uf < A then for some model M, M = (M,E¥), R a two place predicate,
WMl =X and no(M) = {N/~:N=_,M ||N]| = A} is quite arbitrary e.g. any
4 < A and A* ( hence 23).

See [Sh 5] for the back ground: where the result were proved for ¥ with
relations with infinitely many places. By the present paper the only problem
left, if we assume V = L, is whether no (#) = A, may happen for M of cardinal-

ity A for A singular.

§1 Omn - systems of groups.

1.1 Definition : A -systermn will mean here a model of the form

A= < Ga,hi’j>isj<y where
a<ly

(i) G; is a group with the unit e; = e® = ;4 , the G,'s are pairwise
disjoint.

(ii) h; ; is a homomorphism from G; into G; wheni < j.

(iii) hy

iz @ hia.ia = h,.,',h.,‘,a when 29 =< 12 =13 < 7

(iv) h; ; is the identity. (so we sometimes ignore them).

We denote y-systems by _{/ and for a system _4 we write G, = GAy =94

Ly :h,,;jg. Let JI_4Il = 211G ll. We omit the _{d when there is no danger of
1<K

confusion.

Let y =94 for B=<7y let _Jdrg= <Géd:h(,§'>isj<p,a<,a- The really interesting

case is y = limit.
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1.2 Definition : For a y-system A let
Gridh=ta= <a.;,j:i =7 < 7>:a,;'j € Gy, a,, = e®andifa=<=B=<¢e <ythen

Qge ™ h‘a.B(a'ﬂ,a) 2.8
LetarBp=<a;;i=sj<By.
13 Definition : For a = <a,;:i < 'y> € 1;[ Gy, let fact
<&

(a) = {ai,j:i <ji< 7> where a;; = h,;!j(aj)_l a,. Let Fact
(D = }ifact(a)a € 1G4,

1.4 Claim: The mapping a -» fact(a) is from EI G; into Gr(_4). So fact
18K
(A is a subset of Gr(_4).
Proof : Trivially a, ; € G;,a;,; = ¢;, andif a < < ¢,
h’u,ﬁ(aﬁ,e) 2 a’u,ﬂ = (h'u,ﬁ(h'ﬂ,s(a’e)_l)hn,ﬂ(aﬂ))(hn,ﬁ(aﬂ)_l ° a’a) =
(ha,ﬂhﬁ,t)(aa)-laa = h’a.::{as)—laa:aa,s'

1.5 Definition : 1) Gs(d=taeGr( 4 : for every B<y4
{ay i <j <7y € Fact (A1 y)}. 2

2) We define a relation &, on Gr(_{) (let y=74%: a=~ b if for some
<g,;:‘i < 7> € if([/G,;’d, for every i <j <7 b;; = hy;(g;) 7 a; 5 95
We shall say that <g¢:i < 7‘) exemnplify a® 4B.
3) _dis called smooth if for every limit B <7, Gr{ At B) = Fact (A1 B).
1.6. Claim: For a y-system _4
1) ™ ,is an equivalence relation on Gr(_4) (hence also on Gs ).
2)Ifabe Gr(d), p<y?andam bthenbl B~ fgb!B.

3) For a€ Gr{_{): a€ Fact(_4) iff aN/Ae{":?l <j <7—/0> (where e is
the unit of G79.

2 Really ng/ﬁz_j)c'fr(/d), sita=0a;j:1<j <7y €Gr( A menap:i<By
S ;

witness @ [ [3 < but we shall not use this.



Sh:228

122

4)Forabe Gr(_{),ifa=  bthenac Gs(_4) <> b e Gs(_4).

Proof: 1) Let us check the properties.
reflexivity fora€ Gr(_4{), a=~ Ja: <e(4i j< 7> exemplify this

symmetry: suppose a® ;b and <gi:’i < 7> exemplify this, so for every
i<j <7y, by ; = Ry ;(95) ey 95, hence hy (gj)h,;.jg,;‘l =a, but
hy (971 = (R ;(g;))" (s h;; is a homomorphism from G; into G;). So (for
everyi <j <)
a;; = (hy ;{97 ) 1 bs ;{95 so <g[1:z’ < 7> exemplify b ® 4a.

transitivity: suppose a® b, b™ ,c and <g,;0:11 < 7> ,<gil:i < 7> exem-
plify them (resp.) So for i <j <7, b;; = hy (@) a;; g0 and ¢y ; = hy ;(gH 7!
b, ; 9i', substituting we get

¢y = by j(g) M hy 5 (90) Pay ;9094 =
(P j () hy (@) tay ;(9lgsh) =
hy i (9 9,7 a; 5 (909:Y)

So <gf°gilzi < 7> exemplify a & yc.

2) If <g,;:i < 7> exemplify a®,b then <gi:i < ﬂ> exemplify

3) Because <g,;:’é < 7> exemplify <e{":‘£ <j< 'y> ®4a i
a;; =hy; (g}»)_lgi {for every 1 <j<7y) ie. iff <g,; 11 < 7> exemplify
a € Fact(_4).

4) By 3) c€ Gs(_{) iff for everyﬁ<7-/é, crﬁ%/;< eAi<j <ﬁ>, and by
A forg<ylar g %~ 4br B, hence (as R g is as an equivalence relation)

alg Nj<ez/":i =j< ﬁ> ifibrg R&,(e(d:i <j< ﬁ> and the result follows.

1.7 Definition : For a 7y-system _4. let no'(_4) be the cardinality of
Gs (A ~ 4(i.e. the number of non ® yequivalent a € Gs .

1.8 Lernma : Suppose _4./ are y-systems,.

(i) H; is a homomorphism from G4 onto G{'-r",
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(i) fori <j <7, H o hd =hf - H,

(iii) for every B <7, a,b € Fuct(_41 B), satisfying H;(a; ;) = H;(b; ;)
fort < j < ., a member gf,,b € G/ are defined for i < § such that :
a) ifi < a < Bthen g, pa = ghb-
b) b, ; = hA(9dy) e, ghp fori <j < B
Then no* (_4J) < no* ().

Proof: We define a function H with domain Gr{(4) : H(a)=
H(< a; ;1 <j < 7>) = <H,-(a,;,j):'£ <7i< 7>. By (ii) we can check that H is into
Gr (£3). We shall show later

(*) fora,b € Gr(_{), as ;biff H(a) S, H(b).

Applying this to _{dtg (for B<7y) and noting that H (e =ef
H(<em/4.'é <j < ﬁ>) = <e¢3:i <j< ﬁ> we see that for a € Gr(_4), g < 7.

[at B € Fact(_A4rt B) iff H(a)t € Gs(£)]. So by (*) H induces a one to one
map from Gs(_4)/ = yinto Gs(B)/ ™y sone” (L <= n”(£).

Proof of (*): First suppose a & ,b and let <g.;:i < 7> exemplify this. So
foreveryi <j <7y

b, ; = {,%(9;)‘1 ;59
applying H; we get Hy(b; ;) = Hy(h:4(g;) ™) Hy(ay ;) Hi(g:)
Now by (ii) H; (hi§(9;)7") = (HAhy 5 (9,07 = (h&(H;(g;)) 7" so
Hi(b; ;) = h{’%‘(Hj (gj))_ll—lé(ai,j)Hi(gi)
So < Hi(g;):1 < 7) exemplify that H(a) gy H(b).

Next suppose H(a) ®p H(b) and let <g{:i <7> exemplify it. As H; is a
homomorphism from Gg? onto G# there are g; € G4 such that H;{g;) =g;
(for i < 7). Now Hy(b; ;) = hf5(9;)  Hylay ;) gi = h{(H;(9;))  H;(ay ;) Hi(9:)

= Hy(hii(9;) )V Hy(a, ;) Hi(g;) = Hi(hifi(g;) e, ;9:)
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Let us define ¢ € Gr(_4) by Cij = bﬁd(gi)_l a; ;9;- It is easy to check that ¢
really belongs to Gr(_4) and<gi:i < 7> exemplify a ® 4 ¢, and the above equa-
tion shows that H(b) = H(c), and by (iii) this implies b® 4c ((g’l;,'c:i < 7>
exemplify that). Together a® 4b.

So we have proved (*) hence 1.8,

1.9 Claim: If in 1.8 in addition:
(iv) H* is a homomorphism from G£into G4
(v) H; o H* is the identity (on G£)
(vi) Rl o H = H¥ e hd fori < j < 7.
Then no* (L4 =n" (/).

Proof : We define a function HY with domain
Gr():H*(a) = <Hi+(ai'j):i <3< 7>‘ By (vi) H*(a) is always in Gr(_4). Clearly
H o H* is the identity on Gr (), so let {ct:¢ <no” ()} be pairwise non Ny
equivalent members of Gs(£), and let af = H*(cf) € Gr(_4). So H(a%) =cft.
From the proof of 1.8 we know that: a¢ € Gs(_{) because cf € Gs(f), and for
£ <& <no(B)—afal are non ~ requivalent (because cf,cf are non =g
equivalent). So no*(_4) = no* () hence we finish (by 1.8).

1.10 Claim: For a y-system of abelian groups.

1) Gr(_4) here is the same as Gr{_{) from [Sh 5], Definition 3.4 (except

that here we do not put the group structure.
2) Fact {_{) here is the same (set) as Fact (_4) from [Sh 5] Definition 3.5 .
3) For a,b € Gr(_4), a~ ,4b, iff (in [Sh 5] notation), a—b € Fact (_4).
4) Gs (_4{) here is the same as Gs (_{) from [Sh 5] Definition 3.7(1).

5) no*(_J) here is the same as the cardinality of E'(_{) (from [Sh 5]
Definition 3.7(2)).

Proof : Straightforward.
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1.11 Conclusion: For every regular & >Ny and u, for some k-system, A,

14l < u*, and mo" (L) = .

1.12 Claim : Suppose _4 is a y-system, 7 limit and for £ =1,2
a? = <a,f'j:1', <j < 7> belongs to Gs{(_4).

Suppose further S € ¥ is unbounded in ¥ and a,,fj = a,;z,j when 1,5 € S. Then
al ™ ,a

Proof: For every B < 7.8 = 1,2, af1 (B+1) € Fact(_{1 (8+1)) hence there
is gg = <gig'3:i < ﬂ> € iEﬂGﬂ such that a,fj = (hﬁ‘}(gjg'ﬂ)_l) g%#  when

i=j=B Fora<ylet g{a) = Min{pa=< B e S}
We want to find g; € G4 (i < 7) such that af; = h; ;(g;)7'a}; g;.

Nowfor€ =1,2,ifi = &(i)<j

af; = hilay @k ) aleq) =
hidiy (s s(afe) ™ adoren) ol =
riflafen) ™ oy (lye) 2swm)
[apply twice Definition 1.2 first for 1,£(1) , 7 standing for «,B,&, and second for
£{i),e{7) standing for a,8,2].

Now if i=<j=<g(i), applying twice this equation {remembering
afane) = 2fanen):
afy = by j(afe)) i) (@n)e)) e =
hy j(afey) Rk (@le)em)) @
=Ry j(afeny)) ™t (Rajlafegy) @y (@ileq))™) afeqy =
i j((@fe)) ™t aftegy)ad(adeq) ) aPq)) =
= i,j((ajl.e(j))'"l aj'g,e(j))"l %%j ((ail,e(i))_l a’iz,e(i))
This suggests to show that <(ai1'£(i))”“1 afeiyit < lc> exemplify a!® ,a° as
required. The missing case is 1 <j <7y j <&(i); so £(1) = &(j) and so we

should prove afy = hy 5 ((ae;)) 0o ) 7104l ((@ee)) ™ 2oy
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This is equivalent to h,t,j(aﬁe(j)) aiz’j (a.i,e(i))‘l =
hy j(ajt,;y) @5l (a'e)) " Applying twice the equation from Definition 1.2
this is equivalent to aZ.;)(afq))™

= 1,
finish.

o) (@iley)) T As 2(2) = 2(j) we

§2 On 7 systems of automorphisms
For this section we make the assumption.

2.1 Assumption: ¥ is an L-model, P, € I, monadic predicate, PH(i <)
are pairwise disjoint and |M| = (yP¥ For such M let M =1 y P¥ for

1<y isa
a < 7.

2.2 Definition : 1) Let k¥ be the class of L-models N such that
N= yPNand N8l = N1 (P} is isomorphic to M) for every g < 7.
i<y is8

2) Let G be the group of automorphisms of Ml

3) Let hf; (for i <j <) be the following function with domain
GE: hit(g) =g ME]

4) Let _Ad=_4¥ = <G{,’,h{%~:a <yi<j< 7>. (i.e. as long as M is con-
stant we can omit M).
2.3 Fact: 1) h{% is a homomorphism from Gj—M into G

2) _ is a y-system.
Proof : Immediate.

2.4 Definition: 1) We call g= <gi‘j:i =j < 7> a representafion of
N € k¥ if there are isomorphism f; from Mt (JP¥ onto Nt PN (fori<7)

st
such that g; ; = (f;7 1t N@) o g,

&ex1

2) For g, ;{1 < 7) as above we say that <f,;:'i. < 7> exemplify g being a
representation of N.

2.5 Fact: Every N € K¥ has a representation.
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Proof : By the definition of KM (definition. 2.2(1)) there are f, as

required.
2.6 Fact: If g is a representation of N (N € K¥) then g € Gr(_4{).

Proof : Let <f,;:’i, < 7> exemplify g € Gr(_{) is a representation of M.
For each i £, as f; is an isomorphism from MUT onto NLI] clearly fj_l is an
isomorphism from NU! onto MU, hence fj"l t N1 is an isomorphism from N
onto M clearly (fFitr Ny o f. is an isomorphism from M onto MU so it
belongs to G¥. So 9ij € G

Easily g; ; is the unit of GH.

We can now check thatfori <j<fg<a, g;g= h{f’j(gj,p) ° g;,4 ; remember-
ing the definition of h,f:’j this means that

(g Ny o fo=((f g NN o 7)1 4By o (f 7N o 1,
or equivalent by, for every z € #l*],
Falefilz))=rg* f; £ fi(2)
which is obvious.
2.7 Fact: Let g” be a representation of N(cK™). Then g € Gr(_4) is also a
representation of N iff g & , g°
Proof : First suppose that g° N ,g and let <1c,;:?l <7> € I GH exem-
1<y
plify this (see Definition. 1.2). So g;; = h,f?j(kj)‘lgfjki {for i<j<7v). Let
(f,ézi < 7) exemplify g¥ being a representation of N (see Definition. 2.4(2)).
So 94,?3’ = (f_?-_lfN{ﬂ) a f; . and we get
Gig = hi ) o (fFUNED o fiok; =
(ijMM o hiti(le;)) Vo (5 o ky)
[Note that (fer[’;])'"1 = fj“er[”]; we would like to show that <f.,;oic¢:i < 'y>
exemplify g; ; is a representation of N. Clearly f;ok; is an isomorphism from

M1 onto NI). The above equality will be the only missing information pro-
vided that we shall show that
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fer[i]"h'i,j(kj) = (f k)t /i

which is easy.

Second suppose g € Gr{_{) is a representation of N and we shall prove

that g™ 4 g

Let { £ 24 < 7) exemplify g° being a representation of N and { f;:1 < 7>

exemplify g being a representation of N (see Definition. 2.4(2)). So

g = (FaNth"te g 0

gi; = (FHNEDTo 1y
(fori<j <7). Let k; & f.71f 9 (for i < ). As f;.f 0 are isomorphism from #M{*]
onto Nl clearly k; is an automorphism of M[*l ie. it belongs to GH Now
f&=f:k; hence

g2 =(f LU Lo f O = ((F oy M) o (£ 0 hy) =
= (kg MUNT o (f M) "o fy 0 ke =
(kjt M) o g, 5ok,

But easily k; t M1t = R (k,), so <Ic.£:'i. < 7> exemplify g & ,g°.

Fact 2.8: Suppose the models N;,N, € K¥ has representations g!,g?
respectively, then N, £ N, iff g! Njgz,

Proof : Let <f,;Q:i < 7> exemplify "ge is a representation of Ng' for
¢ =12Sogl=(fMi) e rffore =12 i<j<y.

First assume N!,N? are isomorphic, and let H be an isomorphism from N!
onto N2 For each © <7, Ht N[l is an isomorphism from N[*! onto N,
hence k; Z(f2)~1(H 1 NE1)f! is an isomorphism from M1 onto M) ie.
k; € G So for every i,f# = (HIN[1) o £l o k7!, and let # #H 1 NI (so for
i<j.H = H rN{”‘)]). Nowfori<j <7.

9'1;2,3' = (sz PN e f 2=
= (Hy o fih oMM o (B0 £ o k) =
= (Hy o(f MUY o (gt M) ™) o (B o f i o BT =
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= ([cij{"]) o (fjlfM[’;])"'l o f:['i,—l ° [11, a f’il o ki'“l =
= (gt o (M) o £l o kTt = (ki tHE)) o gyl ok

So <Ici"1:i < 7> exemplify g' ® , g°.

Second, assume g!® ,g° and let this be exemplified by <1c{'1:i <7>.
Define

Hy=ffok o (fH?

It is easy to check that H; is an isomorphism from N;ﬂ for i <7y and
H,; ='ﬁ} P MU, fori < j <. So U H; is an isomorphism from N, onto Nj.
i<y

2.9 Lemma : If g is a representation of N € K¥ then g € Gs (_4J).

Proof : Suppose not so for some B<7y, gty Fact(4dty) so
gr7,< efi=j < ;3> are not ® Ag-equivalent. Apply 2.8 to M8 instead M
{and ng,(e,;"’:’i <jJ <;§'>, N LBy, and get that NIB) HIBl are not iso-
morphic contradicting N € K¥,

2.10 Lernma : Every g € Gs (_{) represents some N € K™,
Proof : We define by induction j
(a) an L-model N;, such that N; 2l and N; © Njfori=<j.

(b) an isomorphism f; from MUl onto N

;, such that for 1=j,
gi; = (FyrHH) o f;.

For j =0, j successor there is no problem. For j limit 4N is isomorphic to
i<j

UM = iy PH by 2.8, and multiplied by some k € dut (Mt | P;) it will be

i<j i< i<j

as required.

2.11 Conclusion: The numbers of non-isomorphic N € k¥ is equal to

|Gs (/= 4.
Proof : By 2.5-2.10.

2.12 Lemma : If the following conditions hold, then every N € K¥ is
L. y-equivalent to M.
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a) Every function F of M are 1-place, amd for z € M*], Fi(z) € J7{3)

b) for any relation R of # for somen < wand i <7:
n
M F(Vzlv'”vxn)[}?(xl ----- zn) 42/:\1 P,,;(.’Eg):[

c) if i<j <7 g eGH g a partial automorphism of MUl Dom (g*)
closed under the function of M, and g {y g is a partial automorphism of #
and Dom ( g*) isin _{, (see below) then g |y g° an be extended to an automor-
phism of #1791,

d) 9 is a family of subsets of M.[i <j = 4 ¢ \91] b closed under finite
unions, and [4 ¢H, |4] <a=> 4 € y 4]
1<y

Proof: Easy.

§3 Constructing the model.
3.1 Main Theorem : Suppose
(Je=cf(A) <Axand (Vu < A {(uz<® < A).

(i) £ is a k-system, and |GF| < Afori < k.

Then there is a model M (with relations and functions of finitely

many places only) of cardinality A such that no (M) = no* (£).

3.1A Remarks: W.l.o.g. M = (|#],R¥) for some two- place relation R.
(see [Sh 5], 1.4)

Notation: For 4 € ¥, let cly(4) be the closure of 4 under the functions
of M.

Proof : By 1.12 w.l.o.g. for j < « limit, hfjﬂ is onto G_,,‘g, and if x € Gf,
z # ef then for some i < j, hf(z) # ef By 1.12 wlo.g. Gf is trivial (=fef}).
Let L ={F;,F;;.:1<j <k} {R1i <k}, P(i <x) monadic predicates, Fj;

one place function symbols, R; three place predicate. Let A= )} Ay,
1<K
ASE =0 <A A > (B Af + |GA1)F)*S. We shall now define by induction on
i<t
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J <& M;,G; H; HY, R (i < §) such that :
(A) (1) M; is an L-model,

(A) (R) H; is the disjoint union of Pn;M’(‘i < j) and PiM’ = (M AF?)  when

i<j, P =¢pwhenk>i=j

(A) (3) F’f{ﬂ is a 1-place function from Pg’ into Pf’ {and not defined oth-
erwise) for a < § < k.

(A) (4) for any R; RLM’ is a {three place) relation on P,

(A) (5) fori < j, My = My 1 (UPLY).

241

(B) (1) G; is the group of automorphism of M; if j is a successor ordinal,
otherwise G; =tk € Aut(M;): for some a € ng for every 1i<j,
Hy(k 1 M;) = hy ;(a)}, (see below on H;)

(B) (2) H; is a homomorphism from G; onto Gf.

(B) (3) fori <j, k € G;, h&(H;(k)) = Hy(k t };).

(B) (4) G; has cardinality = A\}?.

(B) (5) H;* is a homomorphism from Gf into G;, Hy = H* is the identity
(on Gf) and for i < j,a € G;, Hi*(a)r M; = H¥(hf5(a)).

(C) (1) P is a family of subsets of (A Af®) (wheni < j).

(C)(RitAde P i <a<j, thencly(4) N AL AF?) € pa.

(C) (B fori <a <y, /Q,fg.:/Q;;‘l

(C) (5) every g € G;4y maps any 4 € P? to a member of /9.3

(C) (8) P is closed under union of <k, (i.e if Ag € Pf for £ < &<k then

£<¢

(C) (7) every subset of (A; A%) of power = ||M;]] is included in some
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member of /.

(D) (1) For i<j let @ ={ACHM;: for a<i, AgAg?) CA and for
a€[t,j), 4 N AAL?) € PR and 4 = cly (A)).

(D) () 1fi <j, kok,€ G, . A€ QJ, kgk, are equal on (UPY) n A then
ol '3 1 0:"1 Ula

a<i

(kgtA) Ukt U Pf’) can be extended to an automorphism & of ¥;.

a<i
Moreover, if @ € Gf, b{{”j(a,) = Hi(k ' M;) then we can demand H;(k) = a.

Clearly it suffices to carry the construction by induction, as then
¥y M; is as required by the previous Lemmas (i.e. by 2.12 every N € Ky is
J<K
L, 3-equivalent to it {and clearly [N =oa M => N €Kyl so
no (W) ={N/=2: N € Kyl. But 2.11 this number is equal to
no* (M) =1Gs(R)/ ~gy | where 3 =&Y (see Definition 2.2(4)). By 1.9 this
number is no *{f5). But £ was chosen so that it is u.)

Casel: j = 0.
Nothing to do.
Case II: j is limit.
In this case let M; = | M;, and there is no problem to check all the condi-
e
tions. Note that in (D)(Z)lwi can easily prove the second sentence.

Case III: j + 1 (assuming we have defined for j).

We shall define by induction on £ < )\j*z, a group G; ¢ , an ordinal a(¢), an
action of the group G; ¢ on M; U (A; a(€) and H; ¢ P{ ¢ F§ ;. k¢ such that

(i) for ¢ <& G;¢ is a subgroup of G;; and the action of g € G;¢ on
M; U (A;,a()) is extended too, and for k € Gj ¢ k I M; € G;.

(ii) a(§) € ()\]7"1,)\]'-"2) and «{§) is increasing and continuous.
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{<E

(iv) H; ¢ is a homomorphism from G; ; onto G

(v) Fg’j is a one-place function from (A, a(£)) into PZ’ increasing and

continuous in £.

(viy Pi, is a family of subsets of (A;.a(£)) such that
ABT & rE (2):a < j,z € Ajeg) for each 4 ePiy i<j.

(vii)if A € Pi,, g € G theng(A) e P,

(viii) /QJ,E is closed under union of = k members and it is increasing with
¢andifcf ¢>kthenPi, =y P,
{<£
(ix) we can choose for every a(£) an increasing sequence Bf(e <Af)

such that (A;,.a(€)) = y BE, and B} has cardinality = A;. We shall guarantee
E<Af

that for any € <Af*, e <Afi<j and 4 € @f for some £, £ < ¢ < )\fz, and
Bepi,. Bt cB.

(x) if kok €Gjp A€Q] kok, are equal on 4, ac€ G’ﬂ-l ’
hfi(a) = Hy(k t8;) then (kgA)U (EyH;) can be extended in some
G le<E¢ <A tok, H (k) =a.

(xi) K% is a three place relation on (Aj,a(€)), increasing with £, but for
¢ <& RE= RO (0,a(0).

(xii) each g € G; ¢ preserves R' and F§ ;.

(xiii) if cf & =A}, then R(a(¢)— —) define on (A; a(£)) a well-ordering [so
if g € Gj ¢.¢ > ¢ g maps (A;,a(€)) on itself then, g 1 (A; a(¢)) is determined by
g(a(&)].

(xiv) no a # B € (A;,a(¢)) realize the same quantifiers free, Ry-type over
(A;,A}). (So together with (xiii) we have a strict control over the automor-

phism of M; ).
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There is no problem to carry the induction on € hence on j, hence to
finish the proof of 3.1.
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