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Abstract. We prove in ZF+DC, e.g. that: ifi = |72 (u)| and pu > cf(u) > No
then u* is regular but non measurable. This is in contrast with the results on
measurability for = X, due to Apter and Magidor [ApMg].

Annotated content
0 Introduction

[In addition to presenting the results and history, we gave some basic definitions
and notation.]

1 Exact upper bound

[We define some variants of least upper bouhdb,(eub) in (A)0rd, <p) for

D a filter on A*. We consider<p-increasing sequence indexed by ordinéals
or indexed by sufficiently directed partial orddrsof members of*”)Ord or of
members ofA)Ord/D (and cases in the middle). We give sufficient conditions
for existence involving large cofinality (af or 1) and some amount of choice.
Mostly we look at what th&FC proof gives without choice. Note in particular
1.8, which assumes onlpC (ZF is not mentioned of course), the filter ¥5-
complete and cofinality of large and we find arub only after extending the
filter.]

2 hpp

[We look at various ways to measure the size of the 4dt f(a)/D, like
acA*

supremum length okp-increasing sequence in[ f(a) (called ehpp,), or

acA*
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in [] f(a)/D (calledhppy), or we can demand them to be cofinal (gettamp
acA*
or pp); when we letD vary onI" we write ehpp,- etc. So existence cfp —eub

give downward results opp.]
3 Nice family of filters

[In this paper we can say little on products of countably many; we can say
something when we deal witk;-complete filters. So as in [Sh-g], V, we deal
with family E of filters on A* which is nice. Hence suitable ranks from function

f from A* to ordinal and filteD € E are well defined (i.e. the values are ordinals
not infinity). The basic properties of those ranks are done here.

We then define some measures for the size [df f(a)/D (i.e. Tw, Ts,
acA*
T), looking at subsets of[[ f(a) or of [] f(a)/D which are pairwisets. In
acA* acA*
conclusion 3.12 we, under reasonable assumption, prove that some such measures

and su;{rkzD(f) : D € E} are equal. In 3.14 we have a parallel of 1.8: sufficient
condition for the existence afub when we allow to increase the filter. We end
defining normal filters and a generalization.

The basic point is that for evefy € “)Ord (if E is nice) for someD € E
we have g (f) = rk3 (f) and in this case the rank determif¢D, and order on

rank equal order among su¢h so we can represen{] f*(a)/D as the union
acA~
of < |E| well ordered sets.]

4 Investigating strong limit singular

[We deal with®, r, which means that we can regaRiN o as a substitute of
the family of regulars (not just individually) i.e. we can figeli) : i < «), e(i)
is an unbounded subset iobf order type which belongs 8. We give the basic
properties in 4.2, then move up fromto rkj (;) with appropriate choice dR.
With this we have a parallel of Galvin—Hajnal theorem (4.5). Here comes the
main theorem (4.6) assumim@C, p singular of uncountable cofinality (aril a
set of filters on cf() which is nice), ifu = |.74 ()| (kind of strong limit) then
set theory “behave nicely” up to0*22* is an aleph, there is no measurakle*
andyu* is regular.

We end defining some natural ideals in this contex®qfr.]

5 The successor of a singular of uncountable cofinality

[Here we prove our second main theoremXf : i < k) is increasing continuous
(E a nice family of filters onx) then for at most one\, for stationarily many
i < k, the cardinal\j has cofinality).]

6 Nice E exists

[The theorems so far have as a major assumption the existence offa. iséng

inner models we show that as in the situation with choice, if there is nokice
then the universe is similar enough to some inner model to answer our questions
on the exponentiation and cofinality.]
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0 Introduction

Originally | disliked choiceless set theory but ([Sh 176]) discovering (the first
modern asymmetry of measure/category: a difference in consistency strength and)

[ZF + DC]
if there is a set oR; reals then there is a Lebesgue non-measurable set

| have softened. Recently Gitik suggested to me to generalize the pcf theory to
the set theory without choice, or more exactly with limited choice. E.g.: is there
a restriction on(cf(Xp) : n < w)? By Gitik [Gi] ZF+ “every aleph has cofinality
No” IS consistent.

It is known that if ZF + DC + AD then there is a very specific pattern of
cofinality, but we have no flexibility. So we do not know e.g. if

“ZF + DC + (V6)[cf(0) < R, ]+ (V8 < a)(Rg+1 is regular)”

is consistent fora = 1, or « = 2 etc. The general question is what are the
restrictions on the cofinality function; really it is appropriate to dedicate this
work to Azriel Levy, my teacher and my friend, who has contributed so much
to this direction.

Apter repeated the question above and told me of Apter and Magidor [ApMg]
in which the consistency dfF + DCy_ +|.748(R,)| = X, +“R,+1 IS measurable”
was proved (for an earlier weaker result see Kafkoulis [Kf ]) and was quite
confident that a parallel theorem can be similarly provedNgr.

My feeling was that while the inner model theory and the descriptive set
theory are not destroyed by dropping AC, modern combinatorial set theory says
essentially nothing in this case, and it will be nice to have such a theory.

Our results may form a modest step in this direction. The main result is stated
in the abstract.

Theorem 0.1 ZF + DC) If u is singular of uncountable cofinality and is strong
limit in the sense that’Z (1) has cardinalityu thenp* is regular and non mea-
surable.

Note that this work stress the difference between “bounds for cardinal arith-
metic for singulars with uncountable cofinality” and the same for countable co-
finality.

Another theorem (see section 5) says

Theorem 0.2 If (i : i < k) is an increasing continuous sequence of alephs,
then for at most one, {i : cf(x;") = A} is a stationary subset of (see 3.173)).

We were motivated by a parallel questiondRC, asked by Magidor and to
which we do not know the answer: c&y,, be strong limit and for € {1,2}

there is a stationary s& C w; such that[] Rs.2/3& has true cofinalityr,,,+¢?
€S
It was known that “there are two successive singulars” has large consistency

strength.
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We do not succeed to solve Woodin’s problem (show consistencyef+
DC,+ every aleph has cardinalityy or X;"”), and Specker’s problem (show con-
sistency of ZF+ every (k) is the union of countably many sets of cardinality
< k"). For me the real problems are:

(&) (ZF) Is there an aleph (i.e. suitable definition) such th&C, implies that
the class of regular alephs is unbounded?

(b) For whichx < ), doesDC., implies X is regular?

(c) (ZF) Is therex such thaDC, implies that for every, for a class of alephs,
the set’(\) is not the union oK y sets each of cardinality and cf(\) > x?

We try to assume only standard knowledge in set theory but we start by
discussing what part of pcf theory survives (see [Sh-g] and history there) so
knowledge of it will be helpful; in particular Sect. 6 imitates [Sh-g, V, Sect. 1]
so it also uses a theorem of Dodd and Jensen [DJ]. On set theory without full
choice see [J1], on cardinal arithmetic and its history [Sh-g]. Lately Apter and
Magidor got consistency results complementary to ours and we intend to return
to the problems here in [Sh 589, Sect. 5], for more and on 1.5, 2.5 and (c) above,
see [Sh: F239].

Definition 0.3 A cardinality is called an aleph if there is an ordinal with that
cardinality, or just the cardinality of a set which can be well ordered and then it
is identified with the least ordinal of that cardinality.

Notation 0.4 «, 3,4,€,(,&,i,j are ordinalsp a limit ordinal; A\, i1, , x, 0,0 are
cardinals (not necessarily alephs),

Reg is the class of regular alephs (see Definition 1.1(7)),

D a filter on the set Donfif),

A =0 modD means Donp) \ Ae D,

D*={A:AC Dom@D), andA# ) modD},

D+A={XCDomD):XU(DomD)\A) eD}.

For a filterD, 6p = min{x : there is no functiorh : Dom({D) — x such
that for everyi < x we haveh=1(i) # ) modD}.

7, 7 denote ideals on the set Do, Dom(7) respectively; definitions
given for filtersD apply also to the dual ideglIDom®)\ A : A € D} but
Z+A={BCDom(7):B\Aec.7}.

I,J are directed partial orders or just index sets.

A cone of a partial ordet is a subset of the forja e | : |1 Fay < a} for
someag € | .

For a setA let 8(A) be

sup{a : « is an ordinal and there is a function frafonto « or « is finite}.

Note that if|A| is an aleph thed(A) = |A]*. Also (A) is an aleph. Ifg : A — 6
has unbounded range then&f< 6(A) (and |Rangg)| is an aleph< 6(A)) see
Definition 1.1(7).



Sh:497

Set theory without choice 85

Let 6—(A) be
min{a : o an ordinal and there is no one to one function franmto A};

clearly 8~ (A*) is an aleph and—(A) < 0(A).

For a directed partial order, 7 is the ideal of bounded subsets lofind
7P is the dual filter (usually is a regular aleph).

If f,g:A* — Ord andD is a filter on A then

f<pg means {acA*:f(a)<g(@a)}eD,

similarly for other relations<€p,=p, #p). Note: <p is a quasi order (as maybe
fo <o f1 <p fo, fo # f1) but (*)Ord/D, <p) is a partial order angp is not the
negation of 5.

Definition 0.5 Let |A| <* |B| mean thathere is a function fronB onto A (so
|A] < |B| = |A] <* |B]| but not necessarily the convefséNote: for well ordered
sets<, <* are equal, in fact “B is well ordered” is enough.)

Definition 0.6

1. AC, j is the axiom of choice for every famifyh, : t € | } of sets,|A| < pu,
wherep = (u; :t € 1), 1 a set of cardinality< A\. If u, = p forall t €1
then we write AG ,,. We may write AC,,, AG 3 instead, similarly below.

2. Ifin part (1), | is a well ordering (e.g. an ordinal) then RE is the dependent
choice version.

DC, , is DG ; where(Vt € | )u, = p.

3. Let AG meanvupAC, ,; and AC.y = (Ve < A) AC,; and AC, ., ACc) o,
ACo»x <y ACy iz, ACcy iy ACy <izy have the natural meanings.

4. DC, means/u DC,, ,,, and DC.,,, DC,, <, DCcy ,, and DC., <), have the
natural meanings. DC is Dg.

1 Exact upper bound

Definition 1.1

1. A partial order | is(< \)-directed (or(< \)-directed) iffor every AC | of
cardinality < X (of cardinality < \) there is an upper bound. X = 2 we omit
it. Note that2-directed is equivalent t¢< Rg)-directed.

We say that J is cofinalinl if £ 1 and (Vs € 1)(3t € J)[I Es<t].

lis endlessifvs e )3t € I)[l Es < t].

4. We say\ > cf(l) if there is a cofinal JC | of cardinality < A and A = cf(l)
if A is the smallest such i.e. (VA1)(A1 > cf(l) — Ay > A) (it does not
necessarily exist, but is unique by the Cantor-Bernstein theorem).

5. Let F be a set of functions frod* to ordinals, D a filter onA*. We say
g A* — Ordis a<p —eub (exact upper bound) of F if:

i) feF=f<py

wn
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(i) Ifh:A* —0Ord h <maxg,1}
thenfor some f € F we have h<p max{f,1} (where f* = max{f,1}
means f is a function,Dom(f *) = Dom() and for every xe Dom(f *)
we have f(x) = max{f (x), 1}).

. Let! be(< \)*-directed if in(1) we askA|<* . We define similarly £f*(1) <

A", and also “I is (< A\)*- directed”, “cf*(1) < A", “cf*(1) = X" (e.g.

cf* (1) = X meangVA1)[ A1 > cf*(7) — A <* A\q]) & cf*(I) > ), so actually
we should sayf (1) = A\/=* where \;=*)\, iff A\; <* Ay <* ). Instead
“(< A)*-" we may write “(<* )\)-". Let A-directed mearf< \)-directed, etc.

. The ordinals is regular if 6 = cf(6) where

cf(a) = min{otp(A) : A C « is unboundegl.

Clearly if | is well ordered thercf(l) is a regular ordinal, and a regular
ordinal is a cardinal.

. We say A is unbounded in | if & | and fornot € | \ A do we have

(Vs € A)(s < t).

cf_(1) < Xif there is an unbounded & |, |A] < A; similarly cf* (1) < A,
cf* ()=

hef_(1) < X (the hereditarycf_(1) is < A) if for every JC I, cf_(J) < );
similarly hcf® (1) < A, hef (1) = A.

Definition 1.2 Let | be a(< Np)-directed (equivalently a directed) partial order
(often | will be a limit ordinalé with its standard order, then we write jus}.

1.

F= (Ft : t €l) is <p-increasing (or<p-increasing) if
(@ U Fy cPo"®)ordand R # 0,
tel
(b) if fe € Fy,, (fore < 2) and b <; t; then §/D < f;/D (or fo/D < f1/D).
F /D is smooth (ofF is D-smooth) if
(@) U Fy € Po"®0rdand R # 0,
tel
(C)f]__,f2€Ft:>f1/D:f2/D_- _
LetF = (F; : t € 1), we sayF /D is semi-smooth (oF is semi-D-smooth) if:

(@ U Fy cPo"®)ordand R # 0,
tel
() ifl Eto<ti<ty<tz"andf € F forl < 4then

{a € DomD): fi(a) < f2(a)} C {a € DomD) : fo(a) < f3(a)} modD,

F is almost D-smooth (oF_/D is almost smooth) is defined similarly but
(©)ifl Fto<tyand §,f’y € Fy,, and f,f’; € Fy, then

{a € DomD) : fo(a) < f1(a)} = {a € DomD) : f'y(a) < f';(@)} modD,

f € Pom®)Ord is a lub (least upper bound) & /D (or <p —lub of F) if:

@fe URi=f<py
tel
(b) if ¢ € PomP)Ord satisfies (a) too thep <p ¢'.
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g € Pom@)Ord is the eub of /D (or <p —eub ofF) if

@feUFRr=f<pyg,
tel
(b) if f* <p maxX{g,1a-}, then f* <p max{f, 1a-}; note that if for some

g € F we haveg #p Oa- then this is equivalent to: iff <p ¢ then

G e | JFO(E" <o 1)

tel

(note: if ~(g #p 0a~) this holds vacuously).

Observation 1.3 1. We havecf(0) = O, cf(o + 1) = 1 For a limit ordinal 6,

w N

cf(6) = cf*(0) is regular and infinite; each regular ordinal is an aleph. For a
linear order I, cf*(1) < X iff | is not (< A\)*-directed. For a limit ordinalé
we have:wcf(6) <* |A| iff cf(6) < 6(A).

. If F is <p-increasing therit is semi-D-smooth.
. If F is <p-increasing thernit is almost D-smooth.
. If I is a partial order, |I | an aleph, then there is L I, linearly and well

ordered by<; with no upper bound in \ J.

. We are assuming that each B a set; if we consider classes, intersect them

with .77 () for x large enough.

EY = (Y, D« < 6) is a sequence of subsets of A amck 3 < ¢ implies

Yo C Yg andcf(6) > 6(A) thenY is eventually constant i.e.

(Ha <)V < B <b6—Y3=Ya)

. IfF = (F, : o < ) is <p-increasing, A = DomD) and §(-#(A*)/D) <

cf(6), thenwe can define, in a uniform way, frofa club C ofé and Y/D
Z’(A*)/D such that:
(&) F [ C is <p+y—increasing,

(b) fl,fz S U F = f]_ =D+(A*\Y) fz.
teC

. If(F, o < 6) is <p-increasing, f is a<p —lub of |J F,

a<d
then{a € A* : f(a) a limit ordinal} € D.

Remark. Not (2(A%)) > 0((A*)/D) as|Z(A*)|* >|7(A*)/D].

Proof. (1)—(6), (8) Check.
(7) Fora < g < 6 let

Ei,a ={Y/D: YCA*and:Y =0 mod D orY € D*
and for somd; € F,, andf; € F3 we havef; <p.y f2}

EQs={Y/D: YCA*Y=0) modD or Y eD*
and for everyf; € F,,f, € F3 we havef; <p.y fp}

Clearly
()1 EL 5, € 22(A*)/D, 0/D € EQ, C El  andoy < oz < f2 < 1 =

EZ

az,B2 c Ealﬂl
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and

(%)2 if a1 < ap < B2 < By then Egzﬁz C EO

a1,B1”

As cf(6) > 6(«°(A*)/D), for £ € {0,1} anda < ¢ the sequencéEfm S
[a,6)) is eventually constant (by 1.3(6)), so tef € (o, §) be minimal such that
Vo <Y<86=EL, =E._,.

LetEL =E! ¢ Clearly

(x)3s EQ CEL,
() £ <28&a<fB=ELCESC 2(A")D,
(x)s a < = E; CEJC »(A")/D.

Applying again 1.3(6), by«)4, we find that for somex(x) < § we havea(x) <
a <6 =EJ=EY, soby )s+(x)s we geta(x) < a <6 =EJ=E; =EL,.

Choose by induction on an ordinaljs. < é: for € = 0 let 5. = a(x) + 1, for
e=(+1letf. =max{y_ 75 } < ¢ and fore limit 5. = |J f¢. So for some
(<e
limit ordinal e(x) we have:g. is defined iffe < e(x), and (5. : e < e(x)) is
strictly increasing with limité.
Choosef * € Fg,, f* € Fg, and letY* = {x € A* : f*(x) < f**(x)}. Clearly
Y* € B}, 5 = E} =Ei. =EY. hence

f'eFp & " €Fg =1 <psy f".

So clearlyY*/D does not depend on the choicefdf f**, i.e.f’ e Fg, & f” €
Fg, = {xeA*: f'(x) <f”’(xX)} =Y* mod D.

In fact we can replacesg, 51) by any (., 5:,) with eg < g1 < &(x). So
clearly the conclusion holds withf = A*\ Y*. 013

Claim 1.4
1. If {f3 : B < 6) is such that: § : A* — Ord and*

5207( | 2 xa)
a<f(A*)

thenfor somes < v < 6 we have § <f,.

2. [ACy (] If 1 is (< M)*-directed, H an increasing function from I tg JJ| < A
(I,J partial orders), therH is constant on a cone of I.

3. If I is (< 6(J))-directed,|l | an aleph, H an increasing function from | to J
andf(J) < X thenH is constant on a cone of I.

4. [ACy ji1|,ACag] If I is (<* M)-directed, H an increasing function from | to
J =B, B partially ordered sethcf* (B) < A (J ordered by: f< g «—
(Va € A)(f (a) < g(a))), and|A] < A then H is constant on a cone.

5. In part (2), instead ofJ| < A, actuallyhcf* (J) < X suffices (see Definition
1.1(10)).

1 See 4.5 below



Sh:497

Set theory without choice 89

6. [ACy,] If D is an Xj-complete filter orA* and F = (Fq : a < §6) is almost
D-smooth, andd > 0~ (J{*(#*(A*)/D) : a < 8(z’/A*)/D or a < w})
thenfor somes < v < 4, fg € Fg, f, € F, we have § <p f,.

Proof. 1) Assume not. For each < ¢ choose by induction on «(3,i) = ag,i
as the first ordinak such that:

(¥) a < B and for everyj <i, ag; < « and fora € A*

[fapi(@) > @) = fop)(@) > fu()].

So g, is strictly increasing withi and is< 3, henceag;i is defined iffi <ig
for someig < 3. The sequencé(ags; 1 i <ig): [ < ) exists. Now forg < ¢,
i <j <igletug;; = {ae A* :fygi(@) > fygs,(@)}. For eacha € A* and
[ < 6 we have:

vg(a) =: {i <ig:fyg,(@) > fz(@)} is a subset ofg and

(fa@i(@) 11 € vs(@))
is a strictly decreasing sequence of ordinals; henda) is finite.

Nowisg = | wvg(a) (asifj €ig\ U vs(a) thenag;, s are as required). So
acA~ acA~
we have a functiong from A* onto {vg(a) : a € A*}, a set of finite subsets of

i3 whose union isz. Now this set is well ordered of cardinalifi;| (or both are
finite), soig < O(A*).

LetAg; =:{ac A" :i cvg(@)} = {a € A* 1 fy,)(@) > fz(a)}; also for no
B1 7 B2 < 6 do we have{ag, i, Ag,i i1 <ip,) = (ap,i Az i <ig,): as by
symmetry we may assum@ < z; now 3, is a good candidate for beings, i,
S0 g, i,, IS Well defined and< 3;, contradicting the definition afs,. Similarly

,61 < ﬁz < 6, Vi < igz[i < apg, & A, i = Qi & A,Bz,i = Aﬁl,i]

is impossible. Clearly if <i,, 8=ay; then{ag; i <ig) = (a1 <j).

Now for every 3 < ¢ let us definecg = {ag; 1 i < ig}. Solcg| < O(A*).
Let Xg = {(i,a):i <iganda € Ag;} soXz Cig x A* andig < §(A*). Itis
also clear that forB, # 8> (< 6), Xg, # Xs,. (Just letf be a one-to-one order
preserving function fronecg, ontocg,, leta € cg, be minimal such that(a) # o
and we get a contradiction to the previous paragraph.)

So there is a one-to-one function frafrinto J{Z°(A* x ) : a < 6(A*)}.
Buté >60-( U <(A* xa)). So we are done.

a<O(A*)

2) LetforteJd,ly={sel :H(s)=t}. So{l;:t €J, I #0}is an
indexed family of< |J| nonempty subsets df, |I;| < |I|, so by assumption
there is a choice functiof for this family. LetA = {F(ly) : t € J,I; # 0},
so |A|<*|J], so asl is (< A)*-directed andJ| < X there iss(x) € | such that
(vt € I)(F (1)< s(x)).

ThusH (s(x)) is the largest element in the rangetdf As H is increasing it
must be constant on the coke : s(x) <, s}.
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3) Like part (2) (withF(l;) being the first member df for some fixed well
ordering ofl).

4) By the proof of part (5) below it suffices to prove*dfB | Y, <) < \;
whereY = Rang{) C #B, clearly Y is (<* \)-directed (proved as in the proof
of (2)). Let for @, b) € A x B,

Y@ ={h:heY andb =h(a)}.

Let for eacha € A, B, ={b € B : for someh € Y we haveh(a) =b} C B.

Case 1for somea € A, B, is a non empty subset & with no last element.
B, has an unbounded subd®t, |B*| <* \. AsY is (<* )\)-directed, to get
contradiction it suffices to find, |Z| <* A, Z not disjoint from any set in
{Yap :b € B*}; by AC, |y, as|Y| <* [I], one exists.

Case 2 not case 1.

Let h* € AB be h(a) = the maximal element dB,. If h* is in Y then it is the
maximal member o¥; so cf ("B | Y, <) =1 < \. If not to get contradiction it
suffices to have a choice function f@¥, n-) : @ € A} which again exists.

5) Like the proof of part (2). Lefl; = RangH) andJ, C J; be unbounded
in J1, |J2| < X and choosé as a choice function fofl, : t € Jp, I # (0}.

6) Letfor 8 <~y <6, Yg, € Z?(A*)/D be such that : for everf € Fg
andf, € F, we haveYg, =: {a € A* : fg(a) > f,(a)}/D. We can assume
toward contradiction that the conclusion fails, 8e< v < § = Yg,, # 0/D. For
eachf < 6 we define by induction om an ordinalag; = a(8,1) as the first
such that:

(v <i)ag; <a<B)and @ <i)¥as = Yas,,0)-

So clearlyag; increase with and is</3, hence for soméz < 5 we haveag;
is defined iffi <ig, and({ag; i <ig): 0 < 6) exists. Clearly foi <j <ig,
Y%h%j =Ya,, - If for somes andY the _set{i <ig:Yas, = Y } is infinite,
let jn the n-th member. ByACy, we can find(fi, : n < w) with f;, € Fj,, so
YaBejn7anin+1 = Y' SO

An={acA":f,,, (@ > f%_,jm(a)} € Yaﬁw%jnﬂ =Y

Hence N A, 0 (asD +Ag is a propemy;-complete filter rememberinyg ., #
n<w
(/D) and we get a strictly decreasing sequence of lengbh 0rdinals<f%jn (a):
n < w) fora € () A, a contradiction. Sag < 6(z°(A*)/D). (In fact let
n<w
bs ={i <ig: Yoy, ¢ {Yas,;,5:] <i}} then|bs| = [ig| or both are finite,
and clearly otgfs) < 6~ (=°(A*)/D), but 6~ (=°(A*)/D) is an aleph or finite

number, hencé, < w V iy < 07(°(A*)/D)). S0 B — (Yau, -1 < ig)
is a one-to-one function from to U *(z°(A*)/D) [why? because if
a<6(2(A*)/D)

01 # B2 have the same image, without loss of generality< (3, and 3; could
have served asg, i, , contradiction so the mapping is really one-to-onejy 4

Claim 1.5 [DC,, « an aleph> |’(A*)| and: AC, - or |l | is an aleph]
Assume:
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() D is a filter on the seA*
(i) 1 is a (< |2°(A*)|)*-directed partial order
(e.g. an ordinals, cf(6) > 0(=°(A*)))
(i) F ={f; :t €1} is <p-increasing, f : A* — Ord

ThenF has a<p —eub
Proof. Let 5* = (supJ Rangf;) + 1, it is an ordinal, and leX = A(3%). By
tel

DC, as|#°(A*)| < &, so without loss of generality = |?(A*)|*, |Z°(A*)| an
aleph.
We can try to choose by induction en< « functionsg, € X such that:

(@) @8 < a)(=g9s <p 9a)
(b) (vt € 1)(f <p 9a)
(¢) go(@) =sup{fi(a):tel}

By 1.4(1) the construction cannot continue fosteps; so a®C, holds, for
somea = a(x) < k We have(g, : a < a(x)) and we cannot choosg,.). By
clause (c) clearlyn(x) > 0. Let By =: {gs(a) : 8 < a(x)} s0 B, is a set of
ordinals,|Ba| < |a(*)| (as|a(x)| is an aleph) andB, : a € A*) exists.

DefineH : 1 — J] B, as follows:
acA*

H(t)(a) = min(Ba\fi(a)) (well defined agyp(a) € Ba).

Clearly |RangH)| < |Z2(A*)|IA7] = |22(A*)| (as|A*| is an infinite aleph hence
|A*xA*| = |A*)andl Es<t = H(g) <H(s) modD.Asl is (< |Z°(A*)|)*-
directed, by 1.4(2) ifAC -y and 1.4(3) if|l | is an aleph we know thatl is
constant on some corfg € | : s* < t}. Now consideH (s*) as a candidate for
Ja(+- it satisfies clause (b), clause (c) is irrelevant so clause (a) necessarily fails,
i.e. for somes < a*, gg<pH(s*) so necessarily(x) = 5+ 1, and soyg is as
required. O

Discussion 1.5AIn 1.5 the deman®C,, is quite strong, implying7’(A*) is well
ordered. Clearly we need slightly less thBC,; - only DC,.) but a(%) is not
givena priori so what we need is more th&C, ). Restricting ourselves to
N;- complete filters we shall do better (see 1.7).

Claim 1.6 (1) [AC -1 If (), (i), (iii) of 1.5 hold, and g is a <p-lub of
F then
(@) gisa<p-eub of F
(1A) [AC(a- xa=),1 +ACa-] Assume in addition
(i)" s (< |2°(A* x A*)|)*-directed partial order
Then
(b) for some AC A* andt< | we have:
() AeD*&t< s=1f[A=g | AmodD,
(B) a€ A < [cf(g(a)) = 0((A")) Vv g(a) =f(a)],
(v) if A ¢ D*, without loss of generality A& ), (changingg)
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(2) If (i), (i), (iii) of 1.5 hold, |1 | an aleph,g a <p-lub of F then(a) above holds
and if AGy- also (b) above holds.
(3) Assume:
() D is afilter onA*
(ii) 1 is a partial order, 6(-=’(A*)/D)-directed
(i) F=(F:tel)is<p-increasing
(iv) |1 is an aleph
(v) g a<p-lub of F

Then(a) above holds. If Ag- then also (b) holds.
Even waving Ag- (but assuming (i)-(v)) we have
(b)Y for some AC A* and t(x)
(o) fAeD*andt(x) <t el and f € F then
fTA=¢g | AmodD
(B) assumgii)*; for no C C Ord do we herdC| < (=°(A)) and{a €
A*\ A:g(a)=supC Ng(a))} # 0 modD.

Remark. In 1.6(1A) instead A x A* we can use A x (¢ for every ( <
6(=’(A*)/D). In 1.6(3) we could have used (=°(A*)/D) insteadd(=°(A*) /D).

Proof. 1)(a) Letf € A Ord,f < max{g, 1a-}. We define a functiomd : 1 —
Z’(A) by H(t) = {a € A* : f(a) > maxX{fi(a), 1}}. By 1.4(2) we know thaH
is constant on a cone ¢f more exactlyH’, H'(t) = H(t)/D is increasing and
is constant by the proof of 1.4(2). Lete | be in the cone. IH (t) = ) modD
we are done, otherwise defifié to be equal toy on A* \ H(t) and equal td
on H (t). Now f * contradicts the fact that is a <p —lub. Now check.

1A)(b) forACA*letla={tel :A={ae A*:fi(a) =g(@)}} if not
empty, andl otherwise. Let us apphAC »a-), to {la : A € Z(A*)} getting
{ta: A€ (A)}. Lett(x) €| be an upper bound dfta : A € Z°(A)} (exists by
assumptioni()). Let

Ag=1{ae A fyy(@) #£9(a)}

and
A ={a € Ay: g(a) is a limit ordinal}

and lastly
A = {a e A : cf(g(a)) < 0(="(A))}.

Now clearlyt(x) <, se€l = fs < g mod DO + Ay andA; = Ay mod D.
If A =0 mod D we are done, so assunfé ¢ D*. By ACx- we can find
(C4 :a € A*), such that fora € A’ we have:C, an unbounded subset gfa)

of order type cff(a)]. Let fora € A*\ A’, C, = {0}, and forh € J] Cj let
acA*

Il = {t €l :h <p maxf,la-}}. Now the assumption of 1.6(1A) implies

that of 1.6(1), hence clause (a) holds, and helficés not empty. As we have

AC,- clearly |A*| is an aleph, and(=’(A*)) is an aleph with cofinality> |A*|,
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hence{otp(C,) : a € A*} is a bounded subset é{="(A*)), so we can find a
functionh* from &”(A*) onto ¢* = sup{otp(C,) : a € A*}. Let h, be the unique
one-to-one order preserving function from @g) onto C,, so (h, : a € A*)

exists. Forh € ] Cj let
acA

X =: {(a,b):a € A* andh;'oh(a) =h*(b)} C A* x A*.

Clearly the mappingh — Xy is one-to-one from [[ C, into &°(A* x A*).
acA*
Hence byAC -,
| T Cal < 12(A" x A% = |22(A%)),
acA*

so we can find a functio®, Dom@G) = [] Ca, G(h) € I. By (ii) we get that
acA*
Rang@G) has an<, -upper bound (x*), and we can get a contradiction.

2) Follows by (3) (withF; =: {f;})

3) (@) Let <* be a well ordering of . Letf € ®)Ord, f < max{g,1a-}.
For everyA € D* let typ be the<*firstt € | such that for somé < F; we
have{a ¢ A* : fi(a) > f(a)} = AmodD. Now A — ts,p is @ mapping (maybe
partial) from=°(A*)/D into | and|l| is an aleph, so

[{ta/p : A€ D"} < O(’(A")/D) (< O((A))).
But | is §(=’(A*)/D)-directed so there i(x) € | such that
(VA€ D™)(ta/p <i (%))
Any fi) € Fy) satisfiest < max{fiy, 1a-}.
(b) + (by For eachA € D, letta/p be the<*-firstt € | such that
AC{aeA":fi(a)=g(@)} modD
if there is one. So clearly
{ta/p : Ac D" andtp is well defined
is a set of<*-order type< 6(=°(A*)/D), hence there i$(x) € | such that
AcD'& tA/D well defined = tA/D < t(*)
Let
Ag=:{aec A" fyy(a) # g(a)}
A =: {a € Ay : f(a) a limit ordinal}
and
A = {a e A : cf(g(a)) < 0(=’(A"))},
as in the proof of 1.6(1A) we have fok = Ay, clause §) of (b) and of (b)
holds, andA; = Ay mod D, and if A’ =( mod D we are done. As for clause
(b)(B) by ACx-, if it fails then () of (b)’ fails, so it suffices to proveb]’. Now
clause ¢) holds, and we proved) as in 1.6 (1A). O16
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Claim 1.7 [DCy, + ACa+)] Assume:

() D is an X;-complete filter on a set"A
(i) 1 is a (< |Z2°(A")|)*-directed partial order,
(i) F ={f; :t €1} is <p-increasing, f: A* — Ord.

ThenF has a<p —eub

Remark 1.7A.

1. GivenF = (F 1t € |) is <p-increasing (ile.[Es <t & f els & g €

Ii = f <p g]) we can usel = (| Fi, <p) as the partial order insteddwith
tel _
f, =g for g € |J Fy, so claim 1.7 applies t& = (F; : t € I) too; similarly

tel
for 1.5 . Note that ifl is (< \)*-directed so is]. Also 1.6 (1) (in the proof
replaceH by H’ : H’(t) = H(t)/D), concerning 1.6 (&) check, and lastly
for 1.6 (2) see 1.6 (3))

2. If we want to demand onbAC ) », then\ = [] 3, is large enough.
acA*
3. NoteAC_(a-) can be replaced bCa-)/p-

Proof. By 1.6(1) it suffices to find alp-lub. Let fora € A*,
Ba =:supffi(@) :tel}+1eOrd

For everyA € D*, there is no decreasing-sequence in (| 3., <p+a); hence
acA*
by DCy, there is a functiory € [] Fa satisfying:
acA*
(HDa (vt € DIft <p+ag]
(i)a if ¢ satisfies (i) then(¢' <p+a 9)-

By ACa-) we can find(ga : A € D¥) with ga € H Ba that satisfiesi(a + (ii )a.

Let By = {ga(@): Ae D*}U{Ba} sO|Ba| < |D* | < |7 (A%)|
LetH : 1 — B* = [[{Ba : a € A"} be H(t)(a) = min(Ba\fi(a)). Clearly
H is an order preserving mapping from, &) to (B*/D, <p). Also

B/D| <* |B*| <* ] ID*[= D" < [2(an) A,
acA*

But asAC »(a-) holds clearly A is well ordered, hencgA*| x |A*| = |A*|, hence
|2(A7)|W T = 2(A")].

By 1.4(2) we know thaH is constant on a cone, sdy : s(x) < t}.

Assumeg* =: H(s(x)) is not a<p-lub , so someg’ exemplifies it. Let
A={aeA*:¢(a) < g*(@)}, soAe D" andga is well defined.

By the choice ofga andg’ clearly =(¢’ <p+a ga) hence

Ar={ac A" :g(@) > ga@}#0 modD +A

SoA, =A;NA e D*; andga <p+a, g'- But by the choice off* = H (s(x))
(as Fa)(ga(a) € By)) clearly g* <p.a ga. Together we geg* <p.a, ¢’, but this
contradicts the definition of asA; C A 017
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Claim 1.8 [DCy,] Consider the conditions:

(i) D is anX;-complete filter on A,
(ii) 1is a (< |°(A*)/D|)*-directed partial order,
(i) F=(F;:tel)is<p-increasing, so f: A* — Ordforf € |J F,

tel
(iv) g: A* — Ordand (vt € I)(Vf € F)(f <p g),
(V) nog’ <p g satisfies (iv).

Thenthe following implications hold:

(1) If (i), (iii) then someg satisfies (iv).
(2) If (i), (iii), (iv) then someg* < g satisfies clauses (iv), (v); if far clauses (i),
(iii), (iv), =(v) hold, we can ask alsg* <p g.
(3) [ACa+yp,] [f(i)-(v), and F is D—smooth thethere is D, such that
(a) D* anR;-complete filter extending D,
(b) g is <p+ —lub of F.

(4) In (3) we can omit smoothness.
(5) If (i)-(v) and |l | is an aleph then for some ‘Dclauses (a), (b) of (3) hold (i.e.
we can drop AC in part (3)).

Proof. (1), (2) are contained in the proof of 1.7

(3) LetD* = {A C A* : for D + (A*\A), clause (v) fail$. ClearlyD* is R1-
complete filter and) ¢ D*. Clearly F is <p--increasing angy is a <p--upper
bound ofF. If g is not a<p--lub, there isg’ € A)Ord, a<p--upper bound of
F such that-[g <p~ ¢'], so

A ={aeA":¢(a) < g(@)}#0 modD".
For eacht € |, for everyf; € F; let
Yy =:{a € A*:fi(a) > ¢'(a)}/D € D*/D

(well defined agd= is D-smooth), and — Y; is an increasing function frorh to
(D*/D, <p), by 1.4(2) we get a contradiction.

(4) Use 1.9(3) below to regain smoothness.

(5) Left to the reader (just use 1.4(3) instead 1.4(2)). O

We have used

Observation 1.9 1. [AC a-)/p, Or |I]is an aleph] IfF = (F :tel)is
<p-increasing (where:f: A* =: Dom(D) — Ord), | is (< |Z°(A)/D])*-
directed therfor everyg : A* — Ord for some t € | and AC A*, for all
fe U F

t*<tel

{aeA*:f(a) > g(@)} =AmodD.

Similarly for f(a) = g(a), f(a) < g(a).
2. In (1) in the casél | is an aleph, “I is(< 6(=°(A)/D))*- directed” suffices.
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[ACy] Assumer = (Ft : t € 1) is <p-increasing. Let | be a partial order
(< Np)*- directed,

J={{th:n<w):thy €l and t, < th+1 forn < w},

t0 <t = [(Vn <w)@m < w)(t) < ty)],
0 <y tHif 10 < & (<5 1O).

Let B = {sup,_,fn: (fn:n<w) e [] F,} andF* = (F¢ : t € J) where

n<w

of course(supf,)(a) = supf,(a). Then<
_ n<w n<w

(a) F* is <p-increasing and smooth _

(b) gis a<p-lub of F iff gis a <p-lub of F*

(c) gis a<p-eub ofF iff g is a<p-eub ofF*

(d) I, J are equi-directed, what means: there is an embedding H of | into J
(a partial order) such that its range is a cofinal subset of J [us@)H=
(t:n<w)).

[ACy,] Assume I= 6 whereé is a limit ordinal of cofinality> Rg, and let

F = (F, : a < 6) be <p-increasing (where each FC “")Ordis not empty).

LetJ={a < 6 : cf(e) = g}, and fora € J let

F* =: {supf, : for some strictly increasing sequeng&, : h < w)
n

of ordinals < a we haven = |J an, and f, € Fy, }.
n<w

ThenF* = (FX:a € J) satisfies clauses (a)-(d) from part (3), and of course
J is well ordering.

Proof. Check.

2 hpp

Definition 2.1

1.

LetI" be a set of filters on A= A}, = Dom(l"). For an ordinal o, we let
hpp;-(a) be the supremum of the ordingls+ 1 for which there is a witness
(F, D), which means:
() Der,
(i) F =(F, :v < B), with E, #0,
(i) U Fy C®a,

<3
(iv) F is <p-increasing.
ehpp-() is defined similarly, but each Fa singleton; the definition of
shppy() is similar too, butF is smooth. We can replace by f € *7)Ord
in all these cases here (i.e. E [] f(@)). If F, = {f,} we may write

_ acA*
F = (f, : a < () instead ofF.
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3. If I' = {D} then we write D instead of. We say thatl” is X;-complete if
each De I' is Ni-complete, and similarly for other properties.
4. We define pp(a) as in (1) but add tdji)-(iv) also
(v) there existga, : a € Dom(D)) such that:
(@) O0A")<aa<aq,
(B) cfo((aa:a e A*)) =« (see below), each, a limit ordinal,

(y) foreveryge [] aathereisfe |J F, suchthaty <p f.
acA* <8

5. eppr(a), sppr(c) are defined similarly.
6. For a filter D with the domai\*,

cfo((aa : @ € A*))

=inf{otpC):C C |J aaand{a € A*: oy =supC Nay)} € D},
acA*
limsup({ag :a € A*)) =min{a: {a € A* i ay < a} € D}.
D

Remark. 1) Note that in 2.1(4) clause3 (i.e. clh({(aa : @ € A*)) = a) is a
replacement to (o, : @ € A*) is a sequence of limit ordinals with tlifof(e) :
acA*)=a".

2) Note pp stands for pseudo poweh, for hereditary,s for smooth,e for
element (rather than set).

Observation 2.2 1. hpp-(«), ehpp-(«) and shpp-(«) increase withe and I
and ppr-(a), eppr(«) and spp-(«) increase withl".

2. ehpp-(a) < shpp(a) < hppr(a) < 6(* o) and epp-(a) < ppr(a) <
(" )a), and epp-(a) < ehpp-(a) and ppr(a) < hppy(@).

3. Xp(@) =supxp(a) : D € I'} for x € {pp, epp, hpp, ehpp spp, shpp}.

4. x5() = supxp(B) : 6(DomD)) < B < a} for x € {hpp, ehpp shpp} if
6(Dom(D)) < cf(a).

5. Ifa#b = as # ap thencfp ((aa : @ € A*)) > minacp |A.

Remark 2.2A.1)f hpp,(«) > 3, and cf(3) > 6(=’(Dom(D)) and relevant crite-
rion for existence okp —eubholds forD € I" thenfor somea’ < o we have
ppr(a’) > (. See below. 2) In facshpp-(«) = hppr(«) andsppr(«) = ppr(c)

by 1.9(4); if« is a limit ordinal (hence-(«) is a limit ordinal forx as in 2.2(3)).

Proof. Easy, e.g.

5)letC C |J aa exemplify ch((aa : @ € A*)) = otp(C). Let
acA*

A ={acA*:Cy#a} where
Ca={8€C: 8 < a,butfornobeA* dowe havel < ap < aa}.
So there is a one-to-one function froM into C (simply a — min(C,)) and

otp{aa @ € A} < otp{as:a €A} +w,

so we can finish.
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Definition 2.3

1. | has the true cofinality, 6 an ordinal if there is a cofinal JC | and a
function h from J ont@ such that Iff;) < h(f,) = f1 <, f2.
2. | has strict cofinalitys, ¢ an ordinalif the function h above is one-to-one.

Claim 2.4 1. If | has the strict cofinality) thenl has the true cofinality and
cf(l) < 6.
2. If I has the true (strict) cofinality thenl has the true (strict) cofinalitgf(6)
(which is regular). _ _
3.IfF =(F, : a < 6), U Fa € ®)Ord, F is <p-increasing andF has
a<d
<p-eub{a, : a € A*) then [][ aa/D has the true cofinalitgf(6).

acA
4. If | has the true cofinality; andé, thencf(61) = cf(62).

Remark 2.4A. We did not say I' has the true cofinalith = cf(l) < A\”. But it
is true that:l has true cofinality\ implies cf(1) <* A.

Claim 2.5 LetI’, A* be asin 2.1(1).

1. [|A*] an aleph, DG -y ]" Assume < hppy(a), 6 a cardinal andcf(s) >
6(=(A*)). Then for some D= I anda = («, : @ € A*), with eacha, being
a limit ordinal < oo we have, [[ «aa/D has the true cofinality.

acA*
2. [ACa-] If J] «a/D has the true cofinality: then [] cf(aa)/D also has
acA* acA*
the true cofinalityy:.

3. [|A*| an aleph and DC/a-y:] Assumev < a < R, and®, > 6(’(A")).
If X, < hppp(R,) then®)a can be mapped ontg. Similarly for R,g., <
ppD (Nozo+a)-

4. Similar claims hold for pp, shpp, spp, ehpp and epp.

Proof. 1) By the definition ofhpp,-(a)) we can findD € I" and a<p-increasing
sequencé = (F, : a < §), with F,, € “)a non empty.
If g€ ®)(a+1)isa<p —eubof F then by 2.4(3)aa =: g(a) for a € A* are
as required. Now such exists by 1.5 which is applicable by 1.7A(1).
2) LetF = (F, : o < u) exemplify that [ «a has true cofinalityu. By
acA*

ACa- we can find(C, : a € A*) € V, C, a club ofa, of order type cf,). For
fe J] aaletf®e ] C,bef®@) =min(C, \ f(a)), sof <f®e [] Ca
acA* acA* acA*

andf; <p f, = £, <p ;. Now apply 1.3(7) to{{f® : f € Fo} : o < p).
3) It is enough to mag")a onto ¢ — 1) \ . We define a functiorH
from ®Ja into v\ a. Forf € ®)a, if ( [] N¢@), <p) has true cofinality
acA*
Raiper < R, then letH (f) = 8. By ACa- ané 2.5 (2) it is enough for every

such thatk, < Rgq < X, to findf € AI(R,) such that ([T f(a),<p) has
acA*

the true cofinalityXg+1. Now we use part (1) of 2.5.
4) By 2.2 or repeating the proofs. Oos
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Claim 2.6 [DCy, + (VD € I"'ACpompy] In 2.5(1), if I" is X1- complete then
the conclusion holds.

Proof. We can use 1.7 instead of 1.5.
Definition 2.7

pcfr{aa:a e A} = {\: \is the true cofinality of[[ aa/D
for some filter D on A which belongs td"}.

Remark 2.7A.We could phrase 2.5 for pgf

Claim 2.8 1. If A is an alephu < A < eppy (1) and(Dom(D)) < A then\ is
not measurable

2. If Xis an alephu < A < eppy (V).
thenthere is no(< |Dom(D)| + p)-complete uniform ultrafilter orh.

Proof. 1. Let (F,D) witness\ < eppy (i), sof € ,|JFo = Dom(f) = A*,
whereA* =: DomD); so letF = {f, : o < A}, whereF, = {f,}. AssumeD* is
a A\-complete ultrafilter om\. For eacha € A*, we have a functiorg, : A — u,
defined byga(«) =f,(a). S0 g, is a one-to-one map

from 8" = {a < A1 (V3 < @)(9a(B) # ga())} onto Rangga) < 4,

so |Rangga)| is an aleph< p (or finite). Hence|Rangg,)| < A. By the choice
of D* for some uniquey, we haveB, =: {a < A\ : f,(&) = 7a} € D*, as
(fo T & < X) exists also(y, : a € A*) exists as well agB, : a € A*). Clearly

H7a:a e A*}| < 0(A*). AsD* is (< |A*|)-complete B* =: (| B, € D*, but
acA*
[a, B € B* = f, =13], a contradiction.

2. Same proof. 2.8
Remark 2.8A. You can also phrase the theorem in termshefomplete filters
on X\ which are weaklyx-saturated (i.e. for everlg : A — X < ), for some
C C X of cardinality< s, {& < A : h(a) € C} € D). Here instead ofA*| < A
we needD is uniform and-(\ < |A)k]).

Definition 2.9 Let E be a set of filters on a sAt.

1. E has the I-lub property (I a directed set) if:
foreveryDo € E and F= {f, : t € I} € W)Ord such that{f, : t € 1} is
<p,-increasing,
there isD, Dy C D € E such that there is ap-lub for F.

2. “E has the I-eub property” is defined similarly. The*eub is defined simi-
larly for <p-increasingF = (F; : t € I'). Similarly 1-*lub.

3. IfE = {D} we shall say D has this property.
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3 Nice families of filters

Hypothesis 3.0E is a family of X;-complete filters orA* = Dom(E), such that
(for simplicity) D e E & A€ D* = D +A € E. Our main interest is in nic&
(defined below).

Definition 3.1 We call E nice if
Be (vf : A* = Ord)(¥D € E)(rk3(f) < o0)

(see below). Letoa- meandg for some E, with A= Dom(E) and ©.[E] = &
with A* = k.
Let E[Do] = {D Do CD e E}

Definition 3.2

1. The truth value ofk3 (f, E) < a (for o an ordinal f : A* — Ord, E usually
omitted):
rk3 (f) < « if for every Ac D* and f <p+a f (and f : A* — Ord) there is
Dy, D+ACD; € E andg < a such thatk3 (f1) < 3.
(So f =p Oa- impliesrk?(f) < 0)
2. k3 (F) = a if rk3(f) < o and—[rkj(f) < g] for 6 < a
rk3(f) = oo if rk3(f) < a fornoa
rk (f) = min{rk3 (f) : D C D; € E}
(really we should have writterk% (f,E) etc.).

Remark. Why start with r€? To be consistent with [Sh-g] Ch.V.
Convention 3.3 Let f, g vary on®)Ordand D € E and AB C A*.

Claim 3.4 1. rk3(f) < 3, f < a impliesrk3 (f) < a; sork3 (f) is well defined
as an ordinal orco (ZF is enough for the definition).

2. Iff <gorjustf <p gandl=2 3thenrky(f) < rkh(g) (so f =p g implies

rkp (F) = rkp (9))-

In 3.2(1) we can demand in addition<€ f.

rk3 (f) < rk3 (f).

If Dy C D, thenrkd (f) < rk3 (f).

For every f D, for some B such that DC D; € E we have

o gk w

rkd (F) = rk3, () = k3, (F).

7. k3 (f) = sup{rk3,A(g) + 1:Ae D* and g <psaf}.
8. If Ac D* thenrkd () < rkd,A(f) < rk3 A(f) < rk3 ().
[Why? By parts (5), (4), (7)+(4) respectively.]

If rk3 (f) = rk3 (f) thenfor every Ac D*

©

rkB4a(f) = k. a(F) = kG (F) = 1k ().
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10. If f <p g thenrk3 (f) < rk3 (¢) or both arecc.
[Why? Apply part (6) tgy, D and get Q. Now

rkd () < rkd, (F) < rkd, (f) +1
< sup{rkd ,a(h) + 1 :h <p,+a g and A€ D}
= kb, (9) = kD, (9)-

(Why the inequalities? by B D4, using part (5); trivially; as f <p g hence
f <p, g; by definition ofrk?; and by the choice of Drespectively.)]

11. |[flo < rk3(f) (||.lo — the Galvin—Hajnal rank which is defined byf ||p =
suplllgllo +1: 9 <o ).
[Why? part (10).]

12. Iffor 1= 1,2, rk3(f;) = rk3 (f)) = oy and oy < a3 thenf; <p fo.
[Why? If not then for some & D* we have f <p.a f1, SO by part (2) we
haverk3,a(f2) < rk3,a(f1), but by part (9)rk3,a(f2) = az > as = k3 A(f1),
a contradiction.]

13. Iffor 1 = 1,2 rik3(fi) = rk3(f}) = oy anday = a, thenfy =p .
[Why? If not then by symmetry for some=AD* we have{ <p.a 2, S0 by part
(10) we havekd,(f1) < rkd,(f2) and by part (9) we get a contradiction.]

14. 1frk3,(f) < oo and—(g >p, f) thenfor some Q € Ejpy, rk§, (9) < 1k, (f) <
oo. [Why? Clearly for some A Do, g <py+a f; now for some B, Do + A C
D1 € E andrk? (g) = k3 (g) = k3 1ag), butrkd a(g) < rikd.a(f) <
kdyealf) < MGy (F) < o0.]

15. If {Ar:t €1} CD*and(vD1)(D C D; € E — (3t € I)(A € D))) (e.g. |

finite, |J A; € D) then
tel

rk3 (f) = sup(rk3, (f) : t € 1} andrkd () = min{rk3,, () :t € 1}

[Why? The inequalities>, < by part (8), the other by the definition (or part
(7) and part (9)).]

Observation 3.5 1. (a) If f = g+ 1, D € E thenrk3(f) < rk3(g) + 1; if in
additionrk3 (¢) = rk3 (¢) thenrk (f) = rk3 (¢) + 1.
(b) If every f(a) is a limit ordinal thenrk% (f) is a limit ordinal.
(c) f =p Oa- iff rk3(f) = 0.
(d) rk3(f) = Qiff =(0a- <p f).
2. Iff =g+ 1then
(@) rkd (f) € {rk§ (), rkd(g) +1},
(b) if rk3(f) = rk3(g) < oo thenrk3(g) is a limit ordinal of cofinality <
6(=°(A*)) and even< (2°(A*)/D).

3. If Rang() is a set of limit ordinals, FC ] f(a) is such that
achA~

[g <t = (EheF)g<h)

thenrk3 (f) = sup{rk3,A(h) : h € F,Ac D*}.
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4. 1f 6 = rk%(f), cf(6) > O(E) ther? for some @, D € D; € E, [] f(a)/D1
acA*
has true cofinalityp (moreover by a smooth sequengg, : a < cf(s)))

5. Ifrk3 (f) = a < oo thenfor every < a there are D g suchthatDC D; € E,
g <o, f andrkd,(9) =k}, (9) = 3.

Proof. 1)(a) By 3.4(7), 3.4(2), 3.4(8) and common sense respectively
rk3(f) =sup{rkd,a(¢)+1:AcD* andg <psaf}

< sup{rk3,A(9) +1:Ac D*}
< sup(rkp (9) + 1} = rkj () + 1

and, for the second phrase, by 3.4(4) and 3.4(10) respectively
kg () = i (F) = rk’(9) + L.

Together we have finished.

(b) By part (c) proved below, &(f) > 0, so assume toward contradiction that
rk3 (f) = a+ 1, so (by 3.4(6)) for som®; we haveD C D; (¢ E) and ri (f) =
rkd, () = k3, (f). By 3.4(7) for someA € D* andg <p,+a f we have 1§ () =

a. By 3.4(10), 3.4(10), 3.4(9) and the choice@fespectively

k3 ia(9) < k3 alg + 1) < 1k a(f) = 1k3 () = + L.

So rI%1+A(g) < « contradicting the choice o4, andg.

(c) If f =p Oa~ then the supremum in 3.4(7) (or the definition) is taken on an
empty set so rk(f) = 0. If ~(f =p Oa-) thenA =: {a € A* : f(a) > 0} and

g € A)0rd, g(a) = 0 appears in the supremum in 3.4(7) (or the definition) so
rk3(f)>0+1=1>0.

(d) By (c) and the definition of rk

2) By 3.4(2), 3.5(a) respectively we have
k5 (9) < k() < rkg (9) + L.

Thus clause (a) holds. For clause (b) assunfg(fik= rk3(g), and call this
ordinal a.. If o = 0 we get contradiction by 3.5(1)(c) a%rq{) =a,f=g+1.If
a = 3+ 1 then for someA € D* and g1 <p+a g We have r%+A(gl) = [3 so hy
3.4(7), 3.4(10), and the choice 9f, A, and the choice of respectively:

k3 (F) > rkd.a(g) + 1> 1k alg) +1=8+1=q;

contradiction. Sax is a limit ordinal and{rk%+A(g) :Ae D"} is an unbounded
subset ofa. hence cf§) < 8(=°(A*)) (in fact cf() < 6(=°(A*)/D)).

3) By 3.4(7) and 3.4(2).
4) By 3.4(7), and rg(f) being a limit ordinal

2 We can use this to prove a result parallel to 2.5 (3)
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5=rk3(f) =suprkd,A(¢9)+1:AcD*andg <psaf}
= sup{rk3,A(9) : Ac D* andg <p+af andg < f}
= sup{rk3,(g) : for someA € D*, g <p.af andg <f
andD +ACD; € E and
rkd, (9) = k3, (9) < 6}
=sup{rk3,(9) :D C D1 € E,g <p, f andg < f
and i (g) = i}, (9) < 6}

= sup suprkp,(9):g <p, f andg <f
D,€E,D1OD

and r _(g) = k3 (g) < 6}

As cf(6) > 6(E) necessarily for somB; we haveD C D; € E and
& =sup(rkd (9) : g <p, f andg < f and r (g) = rk3 (g) < 6}.
Fora < 6 let
Fo={g9:9<f,g9<o,f, anda =rkd (9) = rk},(9)}

andS = {a < 6§ : F, # 0}, it is necessarily unbounded in Now by 3.4(12),
(13),F = (F, : « € S) is <p,-increasing and smooth.

5) Supposesd < a, f, D form a counterexample. Then we prove by induction
on~ > (3 that

(x), if g € A)0rd, andD C D; € E andg <p, f and 1 (g) > S then

k3 (9) > 7.

For~ = clearly (), holds trivially.

Fory > 3, we can findD, such thatD; C D, € E and ri () = rk3 (g) =
rk%z(g), butg < rk%l(g) by assumption, so g%, o, f, D form a counterexample
B < k3, (9) so by 3.4(7) applied to g(g) we can findA € D3 andg; <p,+a g
such that rf_,(g1) > 3, so by the induction hypothesisFka(g1) > U{n :
B <y < 7}. Now by 3.4(9) we know rf ,(9) = rkd (9) and by 3.4(10),
rk®Dasalg1) < rk%2+A(g). Together we get the required conclusion #).(So
rk3 (f) = sup{rk3,a(9) +1 : A € D* andg <pa f} is a hence> 3 so for
someA € D* andg <p«a f we have r%+A(g) > 8 hence by £) it is > «a,
contradiction. Uss

Definition 3.6 For D a filter on A and f : A* — Ord let
Tsp(f)={F :F C J] f(i) satisfiesfc F & f, € F & f1 7, = f1 #p fo}
i €A*
Twp(f)={(F,e): F C ] f(i), eis an equivalence relation on,F
i €A
—\fl Efz = fj_ #D fz},
To(f) ={(F.,e) € Twp(f) : eis =p[ F},

Tsp(f) = sup{|F|: F € Tsp(f)},
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Twp (f) = sup{|F /€| : F/ee Twp(f)},
To(f) =sup({|F /e| : (F,e) € Tp(f)}

(itis a kind of cardinality; of course thsupdo not necessarily exist). We may write
F /e € Twp(f) instead of(F,e) € Twp(f) and also may writd= = (F; :t € 1)
for (F,e) if F = JF, and feg — (3t)[{f, ¢} C Fi] and so the Fs are pairwise

t

disjoint.

Observation 3.7 1. F € Tsp(f) = (F,=) € Twp(f).
2. T (f) < Twp(f).

3. IfF =(F, : a < a*) is <p-increasing,JF, € [] f*(@) thenrk3D(f*) >
acA*

o*; so hppy (F*) < rkd(f*); also (F, : a < a*) € Twp(f) hencela*| €
Twp (f).

4. [ACa-]Iff,g €A Ordand D is a filter onA* and {a € A* : f(a) = g(a)} €
D and X e {Ts, Tw, T} thenXp (f) = Xp(9).

Claim 3.8 1. [E is nice] Assume F- “)Ord. We can find(Fp, hp) : D € E)
such that:

(@ F=U Fo
DEE
(b) hp : Fp — Ord

(C) if fl,fz € Fp thenhD(fl) < hD (fz) < f1 <p f2 and hence
hp(f1) = ho(f2) < f1=p f2, so

hp (f]_) < hp (fz) — fi<pf
(d) if F C JJ f()then(Fp,=p) € Tw(f).
i EA*

2. Instead of “E is nice” it suffices that £ [] f*(a), rk% (f*) < 0.
acA*

Proof. 1)Let Fp =: {f € F : rk3(f) = rk3(f)(< o0)}, hp(f) = rk3(f). Now
clause (a) holds by 3.4 (6), clause (b) holdsEass nice (see 3.1). For (c): it
holds by 3.4(12), 3.4(13). Lastly clause (d) follows from (c).

2) Similar (see 3.4 (14)). Oz

Conclusion 3.9Let Dy € E.

1. [E is nice] Assume EZ [] f*(a) is in Tsp,(f*).
acA*
(a) If |[E|is an aleph therso is|F|.
(b) F can be represented 49{Fp : Do C D € E} such that p’s cardi-
nality is an aleph< ehpp-(f *).
(©) |F[ <" [E[xehpp(f)
2. [ E is nice ] AssumgF, €) is in Twp,(f *)
(any (F,=p) will do for F C A")Ord).
(@) If|E|is an aleph therso is|F /€.
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(b) F/ecan be represented 4§{Fp/e: Do C D € E} such that|F /e is
an aleph< hpp(f *).
(©) |F /el <*|E| x hppe(f*)
3. Instead of “E is nice”, “rk%o(f*) < 00" suffices.

Proof. 1) It follows from 2) as in this case is the equality.
2) ForD € Eppy, let

Fo ={f e F:rk3(f) =rk3(f) and: iffy e f/eand ri(f1) = rk3 (f1)
then rid (f1) > rk3 (f)}.

Let hp : Fp — Ord behp (f) = rk3 (f). So (forfy,f, € Fp):
hD(fl) = hD(fz) iff fl/e:fg/e.

Also F/e=J{Fp/e: D € E}. So clause (b) holds, for clause (c) (D, «)

bey iff y has the fornf /e wheref € Fp, hp(f) = a; S0 G is a partial function
from |E| x hppe(f*) onto F /e. Note that clause (a) follows aX| <* |Y|, |Y|

is an aleph implie$X| is an aleph. (We can choose a well orderingf E, we
can letF) = {f : f € Fp and lettingf € F, for nof’ € f /eandD’ < D do
we havef’ € Fp.}. Leth = J{hp | F} : D € E} so lettingh(f /e) = hp(f) for

f € F}, clearlyh is one-to-one function fronk /e onto a set of ordinals.)

3) Similar proof (remember 3.4 (13)). Oz

Claim 3.10 1. If Fisin Tsp(f) andrkd (f) = a < oo then|F| <* |a| x |E|.
2. AssuméF,e) € Twp(f) andrk3 (f) = a < co. Then|F /e| <* |a| x |E].

Proof. Included in the proof of 3.9.

Clam 311 If a = rk%o(f*), Do € E thenwe can find(Ap : D € Ep,), a
(U{Ap : D € Ep,}, and((Fp,hp) : D € Ejp,) with (Fp,hp) as in 3.8, b
1T f*(a) with Rangbp) = Ap and

acA*

N 1

ho(f)=a = A (f)=rk3(f)=a.

Proof. Because there is “no hole in the possible ranks”. l.e. we apply 3.8 to

F = ]I (f*(@) +1), and get{(Fp,hp) : D € Ejp,). Our main problem is that
acA~
somefl < aisnotin |J Rangfp). Then use 3.5(5). 0311
D €E[Do]

Conclusion 3.12 Assumek is nice and for simplicityE| is an aleph,
f € A)0rd and {a € Dom(E)) (f(a) > |E|).

1. Then the cardinals

sup |rk5(f)[, sup (To(f)). sup (Tuo(f)) and sup{hpp,(f)}

D€Epy D €Epy D€Epy DeEpg

are equal.
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2. AssumeACa-. If f1, f, are as in the assumption add € A* : [fi(a)| =
[f2(a)|} € D then

sup [rk3(f)],  sup [rk3(F))|
DGE[DO] DEEDO
are the same cardinal.

3. AssumeACx-. Then 1§ (f*) < sup |rk3(f)|* wheref* € “)0rd is
DeEpy

@ = f @)

Proof. 1)
Step A

() sup (k3 (f) +1) > hppe,, ()

D E€Ep)

If 6 < hppE[Do](f) then we can findD € Ejp, andF = (F, : a < ) such
thatF, € [] f(a) non empty and- is <p-increasing. We can prove using

acA*
3.4(10) by induction orx < ( that
(+%) g € Fo = k3 (f) > a.

Now by 3.4(7) we have &(f) > o anda < 8 so rig(f) > 3.
Step B
rk% (f) can be represented as the union Bf sets each of order type
< hppg,,, ().
By 3.10.
Step C
sup k3 (f)| = hppg,, ().
D €Epy
Why? By steps A, B a$E| is an aleph and(a) > |E| for everya.
Step D
hppe, () < To(f) < Twp(f).
By definition (true for eaclD separately).
Step E
sup Tp(f) < sup rk3(f).
De E[DD] De E[DO]
Why? By 3.8
2) By part (1) and 3.7(4).
3) By part (2) and the definition of f. Os.12

Remark 3.12Alf we waive “|E| is an aleph” but still assumi(a) > 6(E) we
get that those three cardinals are not too far.
Claim 3.13 Assume

(A) AXisanaleph() :i < §) is a strictly increasing continuous sequence of
alephs with limitX,
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(B) thereis G = |J Gi, G a one-to-one function fronj[ ); into some\" <

i<é j<i
Ai+1 ( so if AG;, we need just that each; @xists, i.e] [] Aj| < Ai+1).
j<i

Thenthere is Fe Tngd(<)\i* i< o)), and|Fl = ] A
i<6
(D4 is the filter generated by the cobounded sets)of
Remark. This goes back to Galvin, Hajnal [GH], see [Sh 386, 5.2A(1)].
Proof. Define a functionG : [ \i — [[ A* by
[ i<s

<6
GE)(i)=Gi(f [i) and letF = RangG) O3.13
Claim 3.14 Assume that Pe E and f, € A)0rd for o < a*.

1. [E is nice ] There argy € W) Ordand D such that:
(@) DocDE€E,
(b) rk3(9) = k3 (9),
() gisa<p-lubof{f,:a<a*},ie.:
i) a<a* = fu<pyg
(i) if ¢ € @)Ordand f, <p ¢ for all a < a* theng <p ¢'.
(d) Moreover for every & D™, g is also a<pa-lub of {f, : a < a*}.
2. If fo <p, f* for a < a*, rk3 (B*) < oo then there areg € “)Ord, D
satisfying (a)-(d) and we can add
(e) g<f~.

Proof. 1)Follows by (2), just lef *(a) = sup, .- fo(a).
2) Clearly the set

K={(D,9):Do CD €E & (Va < a*)(fa <p g), rki(g) < oo and g <f*}

is not empty (because the pad{, f *) is in it ). Choose among those pairs one
(D1, g) with rk3 (g) minimal. So for someD, D; € D € E we have 1§ (g) =
rk3 () = rk3 (9) (see 3.4(6)), so alsdX, g) € K. Clearly 0, g) satisfies (a), (b),
(e) and (c)(i). If (c)(ii) fails then ley’ exemplify it and so

A={ack:g'(@) <g(@)}#0 modD.

But clearly also D + A, ¢’) is in the family and (see 3.4(10) and 3.4(9) respec-
tively):
kD+al9) < Tkd.alg) = k3 (9)

- a contradiction.
Clause (d) follows from 3.4(9) replacirg by D +A. O3.14

Definition 3.15 1. Let E be as ir8.0, x an aleph andkx = cf(k) > Nq, and D®
a filter on . We say that E is [weakly] B-normal if there is a function
witnessing it which means:
¢ is a function from A = Dom(E) to « such that
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(a) forevery De E
iD)=:{ACk:.}A) eD}

is a filter onx extending O,

(b) every D € E is [weakly] :-normal, which means: if f: A* — & is
-pressing down (i.e.(®) < 1 +.(a) for a € A*) then on some A& D",
the function f is constant [bounded].

2. We say that E is [weakly}-normal if this holds for some as above, filter

D® overx and function..

3. We say that E is [weakly(}x, S)-normal, where SC &, if this holds for some
filter D® over such that Se D®.

4. We say that D is-normal (with. witnessing it) if E:= {D +A: A€ D*} is,
with ¢ witnessing it.

If Dom(E) = &, ¢ the identity we omit it.

Omitting D from “D-normal” means omitting clause (a).

Remark 3.16 1. Note: for a filterD on x the normality is also defined as the
closure under diagonal intersection; this is equivalent. But it is not enough
that the diagonal intersection of clubs is a club, we need that the diagonal
intersection of sets including clubs includes a club.

2. The club filterD® on a regulans > R is not necessarily normal, but there
is @ minimal normal filter on itP2, but possibly) € D?, see below.

Definition 3.17 1. For an ordinalé
D= {AC 6 : A bounded ins}
D' = {AC §: A contains a club of}.

2. For & C &°(6) we define [g%'[zdf] by induction on( as follows:
¢=0 o Dgy%r[#/j] is the filter of subsets df generated by’ U D
¢ >0limit DJY[]= £L<jc DY ~].
(=&6+1  DFY[=] = {6\B :there is a function with domain B, regressive
(i.e. f(a) < 1 +a), such that for every < § the set{fa € § \ B : f(a) =
5) = 0 modDI[-/7}
D] = LCJ DY~
Above we replacaorbywnrif for ¢ = ¢+1we replace fo) = by f(a) < 3
If & =) we may omit it.
3. We call AC « stationary if A# ) modD[".

Claim 3.18 1. D{Y[-’] increases with and is constant foC > 6(°(6)) (so
D] = Dgoef(. J/(é))[«/'—’]), moreover it is constant fo{ > ({°' for some
nor < 9(°(6)). Note that we get B C D9[] even if we redefine B
as the filter generated by” U D, Clearly Df°[] is the minimal normal
filter on 6 which includes>’.
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2. DW’“[ Z’] increases with{ and it is constant foK > 6(<°(6)) (consequently
DW”f[ 7] = DY 9(/(5))[f] and DW’“[ 7| C D“‘”[ Z’]), moreover for{ >
g™ for somey™ < 6(°(9)). Also we get [gJ C Dy7" even if we redefine
D] as the filter generated by’ UDPd. Clearly DY™[=] is the minimal
Wéakly-normal filter ord which includes>’

3. In 1), 2) ifcf(é) = ¢, the filters "™, D™ (and also O, D;7) are es-
sentially the same. l.e. let:hy — § (strictly) increases contlnuously with
unbounded range, then

if AC 68, Ar C 61, AN Rangh) = h"(A)
then Ac D[] <= A1 € D[]

. If 6 is not a regular uncountable cardinal thenf® = &7°(¢).

5. [ACs, s + DC] If 6 regular uncountable, then in 1), 2) we haffez DJ°".
Moreover for every regulas < 6,

I

S={a<é: cfla) =0} #0 modDJ°"

Proof. 1) - 4) Check.

5) We use the variant of the definition starting wlﬂfd. Assume toward con-
tradiction thaté \ S € DJ°. We choose by induction on < w, an equivalence
relationE,, on S such that:

() Eois {(a,8) 1, B € S},
(i) En+y refinekn,
(i) the functionf, is regressive where

fa(e) = otp{ : BEra but § < a & —SEp+cc and 5 = min(3/En+1)}

(so it is definable fronk,, En.1),
(iv) for eacha < 6 andn < w

¢t =rmin{¢ : o/Ensy = PmMod DY} < ¢} = min{¢ : o/E, = fmod DY

or both are zero.

We can carry the induction bRPC. For n = 0 use clause (i) to defingg.
For the choice ofEn.,, for eacha < 6, fy | («/En) as required exists by the
inductive definition ofD]% (does not matter if we leb] be Dg' or D), but
we have to choose

(fa I (@/Ep) : @ < 6, = min(a/Ey));

so we have to makg |6| choices, each among the family of regressive function
on é. But as we have a pairing function @n this is equivalent to a choice of a
subset of5, SOACs sy which we assume is enough. L&t= {« < é:if 3 < a,
m < w, p2 = 0 then sup§/En) < a}. Clearly it is closed. Lety < &.

Now by DC we can choose by induction on< w, an ordinala,, < é such
thatag > v and
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(x) if 8 < an, m < wand{f = 0then sup§/Em) < an+1 (NOte[/En is bounded
in 8).
(Not hard to show thadv,+1 exists.) Now letting | an < 6, belongs toC \ ~;

n<w
as~y < 6 was arbitrary,C is a closed unbounded subsetfflLet a(x) be the

o-th member ofC we get easy contradiction dg2™ : n < w) is eventually
zero. Us.18

4 Investigating strong limit singular p

Definition 4.1

1. ®«,r Means: there is a function e exemplifying it which means:
®Qqrle] e is afunction,Dom() = {6 : 6§ < « a limit ordinal } and for
every limité < «, €(6) is an unbounded subset ®such that it is of order
type from R. (It follows that > « N Reg.
2. If RN « is the set of infinite regular cardinals. o we may omit it (then
otp(e(6)) = cf(s)).
If R is the set of regular cardinals: a union witho (not {c}!) we write o
instead of R.
3. Let®}, r Meansl, ru(anReg)

Observation 4.2

1. If ®,r, 0 € Risnotregular and R=R\ {¢} then®, r.
2. If there is e satisfyingy, z[€] below thenz, r holds (for another e)

@, rl€] e isafunctionDom(e) = {¢ : 6 < a a limit ordinal, § ¢ R} and
for every limit6 € Dom(e), e(6) is an unbounded subset 6f of order
type< 6.

3. Also the converse of (2) is true.
If ®a2,a1UR1 and ®al,aoURo then ®a2,aoURoUR1-
5. For any ordinalx letting j,| be 1 if|«| is regular and zero otherwise we have
Pa,jal+, NENCE fR4 5 then®,, a)+j,-
6. If ®}, - then we can definés : 3 € [(, a]), f3 @ one-to-one function from
onto|4|. _
7. If ®4 r then we can define = (fs : § < ), f3 a one-to-one function frord
ontosup(G N R).
8. If ®a,, ando < A" < a (SO is a successor) theR" is regular.
9. If we have: RC « closed,f = (fg : 3 < a), f3 a one to one function from
supR N B) onto 8 then®, r.
10. If®@y,randf <y < aand[B,7] "R =0 then|s| = |7|.

»

Proof. 1) By part 2) it suffices to havew .[e]. Now there ise satisfying
®a.rl€]l. We define a functiore’ D e | (o« \ R) such that Do) = o\ R’ just
choose fore’(c) a club ofo of order type cf).

2) We are givene such thaty, g[e]. We definee’() for 6 € a limit by
induction oné such thatw,, r[€'] holds.
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Casel: 6€R
We lete’(8) = 6.

Case 2. 6¢R
We let vs = otpE(d)) soys < §. Let gs be the unique order preserving
function from-s onto e(6). Necessarilyys is a limit ordinal (ase(s) has no
last element), and hen@&(vs) is a well defined unbounded subsetgf of
the order type fronR. Let

€'(8) = {gs(8) : B € €(vs)}-

3) Straightforward.

4) Let¢g exemplify®'q,,,.oqur (S€E (3)), therey U e] exemplifies
@y a0URUR, @Nd by part 2) we can finish.

5) Letf be a one-to-one function from onto |«|. Define a functione’,
Dom(€’) = {6 : |a|+]ja| < 6 < a, 6 alimit ordinal} which will satisfy@ﬁl’wﬂw
(enough by part 2)).

If 6 = |a| choosee’ () as an unbounded subset|ef of order type cf(«|). If
6> |a|, let&s =min{3 : 6 = sup(f(v) : v < B}}, necessarily it is a limit ordinal.
Now, if &s < |o| we lete(d) = {f (v) : v < &s}. We are left with the casg = |«|.

In this case define by induction an< |«|, the ordinalg; = sup{g(y) : v < i}.

As & = |a| clearly (i < |a|)(8 < 6), also clearly {j < i)(5 < ). Hence

{Bi i < |a|} has order type< |a|; asé = sup{g(y) : v < ||}, clearly

6= U G, so€(s) & {6 i < |a|} is as required. Hence we have finished
i<l

defininge’ and the proof is completed.

6) Let®y, .[e]; by 4.2(4), 4.2(5) w.l.o.g = |¢]. We defineg by the induction
on G:

If B=~+1letfs(y)=0,fz(e) =1+f,(e) for e < 7.
If 8 is a limit ordinal, first defings:

gs(7) = (otply N &(B)), fmine@)\ (r+1))(7))-

So gg is a one-to-one function frond into otp(3)) x sup, 4 |v|. As usual we
can well order this set by<{(x is the lexicographic order):

(i1,i2) <j (i2,]2) <= (max{iy, iz}, i1,i2) < (MaxX{j1,jz2},]j1,]2)-

Let h; be the one-to-one order preserving function from (Ragpp(<j) onto
some ordinalys. Letfz = hg o gg; check thatys is a cardinal.

7) Similar proof. (We use the fact that there is a definable function giving
for any infinite ordinala a one-to-one function fronax x « into a: just let
Ba < « be the maximal limit ordinal such that{)(y < 6 — v x v < (), so
for somen, 8" > n, and as above we can define a one-to-one function fom
into 3 x ... x 8 and from it into3).

N————

n times
8) Included in the proof of (6).
9) Like the proof of part (5).
10) By (7). Us.2
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Lemma 4.3 Assumen, r and > 9(E x E x &*(A*)) and
o = sup{rk3 (ua~,E) : D € E} < oo,

and E,A* are as in hypothesis 3.0 ang\- stands for the constant function with
domainA* and valuey. Then®,- g+, where RC R* C RU [p, o*) and there is
a(Y, : 0 € R*\ R) (note thatc € R* \ R is just an ordinal not necessarily an
aleph) such that:

(@) Y, is a non empty set of pai(®, 6_) such that
D €E, 6_:<6a:aeA*>, 6a €R

and [] éa/D has the true cofinality (see Def 2.3(1)).
acA*

(b) The Y¥’s are pairwise disjoint. Moreover i(Dg,é_") €Y, for £ =1,2 and
D; =D, thens?! #b, 62,

Remark. Instead of r%(uA*,E) < oo for everyD € E it is enough to assume
rk3 (11, E) < oo for someD € E with

o =sup{r2(ua-,D): D € E and rk (ua-,D) < oo}

Proof. Fora < a* andD € E let
FO={f e pu:rk3(f)=rkd(f)=a} and Ap = {a < a*:FP #(1.
So (see 3.8):

(@) (o, D)+ FP andD + Ap are well defined (so there are such functions),
(b) o* = U Ao,

DEE
(C) if fl,fz € FaD thenfl/D = fz/D,
(d) if fe € FY fore=1,2 anday < a; thenf;/D < f,/D.

By 4.2(2)+(1) it suffices to prov®’a*7R*U(M+1). Let e be such thaty, r[€] holds.

For 6 € (1, a*), we try to define the truth value df € R* and €'(6) such that

@ reu(u+nl€] holds. We make three tries; an easier case is when the definition
gives an unbounded subset ®Pf order type< ¢: decideé ¢ R* and choose
this set ase’(6). If not, we assume we fail and continue, and if we fail in all
three of them then we decidec R*, and chooseéys.

First try: ey (6) % {sup6 NAp):D € E and sup§ N Ap) < 6}.

Clearly this set has cardinality 4(E) < u < |4|. So the problem is that it may
be bounded ir$. In this case, by (b) above, for soeec E, § = sup$ N Ap).
Second try: Let Es = {D : § = sup@p N &)}

So we can assumg;s # (). For eachDy € E; let

Es(Do) = {D € E: Do C D and there i € *") such thatf /D is
<p —lub of {g/D : g € F°, for somes € Ap, N 8}}.
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For D € Es(Dy) let

Féoo,o) = {fe®)yu:f/Dis <p —lub of
{g/D : g € F* for somef € Ap, N §}}.

Forf € FéDO’D), let B(f) = {a € A* : f(a) a limit ordinal}. Now B(f) € D by
1.3(8) because of the assumptidns a <p —lub andAp, N ¢ is unbounded in
6 and let

H(f)={g " u: (vaeB(f)(9(a)c e(f () & (vac A"\ B(f))(9(a) = 0)}.
(remembete is a witness forw), r). Note that

(e) for Dg € Eg, Es(Dg) is not empty [by 3.14(1)],
(f) if Do € Es, D € Es(Do) thenFPoP) 2 ¢,
(9) if f1,f, € F®P) thenf,/D =f,/D
(as<p-lub is unigue mod) hence
(9 Ho(f) = Hp(f2) whereHp (f) = {g/D : g € H(f)},
(h) if Dy € Es andf € F{®®) andg € H(f) theng <p f,
() if f eFPP thenH(E) < [I elf(i)).
i€By(f)

We now define, forf * ¢ FéDO’D) a functionh = hs - p, p from H(f*) to 6:
h(g) = min{a < 6 : a € Ap, and there i € F2 such that-(f <p g)}.

(by the way, equivalently for everfy € F2°). Now
() h(g) is well defined.

[Why? As otherwisey exemplify f * is not a<p-lub of (J{FPe : o € Ap, N 6}
(g is a smaller<p,-upper bound).]
Also

(k) Ranghs s+ p,p) is unbounded below.

[Why? For everya < 6 there isg € Ap, N («,6). Choosef ¢ FEO, and
defineg € A)Ord by g(a) = min(e(f*(a)) \ (f(a) + 1)). Now g € H(f*) and

h(g) > 8> o]

() Rangfs ¢+ p,p) does not depend of, i.e. is the same for afi* € F{Po:D),
[by (9)], and we denote it bys(Dg, D).
(m) h is a nondecreasing function froril (f *), <p) to é.

If |E| is an aleph, choose a fixed well orderirg: of E and if for ouré for
some pair Do, D) we have otp(Do, D)) < 8, choosee(6) = ts(Do, D) for the
first such pair; but this assumption ¢8| is not really necessary:

If for someDg € Es, D € Es(Do) we consider (i.e. if this set is O.K., we
choose it; easily it is an unbounded subseb)f



Sh:497

114 S. Shelah

{ts(Do,D) : Do € Es,D € Es(Dg) and for any other suctDg, D’)
we have ot (Do, D)) < otp(ts(Dg, D))}

This is an indexed family of unbounded subsetsépindexed by a subset of
E x E, all of the same order type, which we cglt. As we knowd(E x E) is
a cardinal< p < 6, by observation 4.3A below it is enough to hage < |§|.

Observationd.3A. 1) If.7 = {Bc : ¢ € C}, B C ¢ = supB), 6 a limit ordinal,
supotp®B.) < |§| andf(C) < & thenwe can define (uniformly) frons, .22 an
ceC

unbounded subs& of § such that ot#) < é.
2) If in part (1) we omit the assumptiof = sup@B;), the conclusion still holds
provided that-(x) where

(x) for everya* < § we haved = sup| J{B. : o* < sup@B) < 6}.

Proof. For eachi < 6 =: supotp(B;) define
ceC

B ={v: for somec € C the ordinaly is thei-th member ofB}.

So there is a partial function frol@ onto B;", hence otdg*) < 6(C) < 6. So
if for somei, the setB;* is unbounded ir then letB be B;* for the minimal
suchi. If there is no such then lety* = sup{otp®B;) : c € C}. By assumption
v < 8], let
B =:{sup@):i <"},

soB C ¢, and|B| <* |v*| hence|B| < |v| hence otpB) < |§] < ¢ and for
every3 < é for somec € C there isy € B. \ 3, so fori = otpB; N~) we have:
v € B hencey < supB*) < sup@), so supB) = 6. SoB is an unbounded
subset ofs of order type< é.
2) Clearly

B = {supB) : c € C and supB;) < 6}
has order type< 6(C) < 6, so if § = supB) we are done; if not letx* =
supB) < § andC’ ={c € C: § =supB)}, .’ =: {B. : c € C'} are as in the
assumption of 4.3A(1). 0424

Continuation of the proof 4.3.

Third try: We are left with the case that evelg(Dg, D), when well defined, has
order types. Continue with ouf * € FéDO’D), h =hss- p,p. Foreachy € H(f*),
we know that there ard € D* andf ¢ FhD(‘;) such thaty [ A<f | A. Now turn
the table: forA e D* let

Hf*,A)={geH(@{"): for some (=all)f € F,?(‘;) we haveg<af }

(clearly the choice of is immaterial : some, all are the same). Now:
(H(f*,A), <p+a) is mapped byh into ts(Dg,D) C 6; moreover forg’,g" €
H(*,A) we have:h(¢) < h(¢”) = ¢ <p+« ¢"” (otherwise the mini-
mality of h(g”) is contradicted). SoH(f*,A), <p+a) has the true cofinality
otpt}(Do, D, A)), wheret}(Do,D,A) =: (Rangh | H(f*,A))). Now by obser-
vation 4.3A if we do not succeed, for son¥é < 6 we have
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(*) if (Do, D, A) above and}(Ds,D,A) € 3* thenotp(i(Do, D, A)) = 6.

So we assume that for son#® < 6 we have §). Without loss of generality
B is minimal. Consider such a tripldDg, D, A) and the appropriaté* = f;".
Notice thatH (f *, A) is cofinal in H (f*), <p+a), (we use clause (d) of 3.14).
Now consider whether the quadruple

X = (Do, D, A (otp(e(fs'(a))) : a € A")/(D +A))

was considered by some earli€t, if so, choose minimad®, and we shall finish
by the observation 4.3B below. To stress the dependency we may write
Hs(f5, A), and define Cal for oo < p such thatoe € Dom(g) onto e(a) as the
unique order preserving function from o)) ontoe(a). Let us define foi €

H (fs", A), the function CqJ with domainA*, Col,(a) being otpé(f,*(a)) N g(a))

if f,"(a) is a limit ordinal, zero otherwise. Of course Galepends on the choice
of " but Col,/D does not, and letHs(f;,A) = {Col, : g € H(f,A)}, so
Hs(A) =: (Hs(fs", A)/(D + A), <p+a) has order type) and Hs(A) is cofinal in

[1 otpfy"(a)/(D +A), andH andHs(A) were definable frond, (Do, D, A) in a
acA*
fixed way.

Similarly for Hse (A). So observation 4.3B below give us a definition of an
unbounded subséiy (Do, D, A, 8, 6%) of Hs(A) of order typed®, hence also of
otp(Hs(A), <p) = 6 which we callZ(Dg, D, A, §,6%). So

{Z (Do, D, A, 6,6%) : (Dg,D,A) =X | 3 for somex € ¢}

is a family of unbounded subsets &fof order types® so by observation 4.3A
we are done.

Fourth try: All previous ones failed, in particular there is 66 as above. We put
6 in R*, and letYs be the set of quadrupl@®o, D, A, (otpe(f,"(a)) : a € A*)/D)
as above (the last one is uniquely determined by the earlier ones).

Observation 4.3 B. If for | = 1,2 we haveY; C Ay is cofinal in [] ol /D
acA*

and [g1,92 € Yo = (91 =p 92) V (91 <p 92) V (92 <p 91)] and (Y¢/D, <p) is
well ordered of order typé, andé; < &, and{a € A* : ol = a2} € D (and
o > 0 for simplicity) thenfrom the parameter®, Y,/d, (o : a € A*)/D for
£ =1,2 we can (uniformly) define one of the following:

(@ Y C Yi/D cofinal in [ al/D and a functionh from Y into &, <p-

acA*
increasing such that, = supRand{ [ Y).

(b) cofinal X C 6, of order type< 6(°(A*)).

Proof. Forg; € Yy let

K(g1) =: {g2 € Y2: g1 <p g2 and there is ng} € Y, such that
95 <p g2 andgi <p g5},

Kp(g1) = {92/D : g2 € K(g1)},
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Kp(g1/D) = U{KD(QD tg91 € Yrandg; =p g1}

k(g1/D) is (if exists) the<p-minimal g,/D € Y, such that
92/D € Kp(91/D) = g5/D <p g2/D.

Now K(g1) is a subset ofY,, Kp(g1) is a subset ofY,/D and ¢g; =p g7 =
Kb (91) = Ko (g7) henceKp (g1) = Kp (91/D).
Case 1for someg;/D € Y;/D, the setk)(g1/D) is unbounded inY2/D.

We can choose thelp-minimal suchg;/D, so Kj(g1/D) is a well de-
fined cofinal subset of,/D (rememberY,/D is <p-well ordered) and easily
otp(K4 (91/D), <p) < O({A/D : A€ D*}) < 6((A")).

Case 2:not case 1.

Sok is a well defined function fronY1/D into Y,/D, and easilyg; /D <p
97/D = k(g1/D) <p k(g7 /D).

Let

Y = {gl/D . gl/D S Y]_/D and
[91/D € Y1/D & g1/D <p g1/D = Kk(g1/D) <p k(91/D)I},

and leth(g1/D) = otp({g2/D € Y2 : g2/D <p k(g91/D)}), soh : Y — é,. Now
Y, h are as required. Oa.38
Ua.3

Claim 4.4 [DC + @,[E]] Assumeu > A* =cf(u) > Ro, u > 0(E) + ¥, @, R
and \ = |rk3 (11, E)|. Then) < X, for somey < A(E x E x 2(A*) x |R|IA™]).

Proof. By 4.3 and 4.2(10). O4.4

Observation 4.5 1. 6( |J Ax) < (6(X) + sup.x 0(A))*.

2. If X is regular, \ zXEeX(X), A > 0(AL) (for x € X) thend( U A) < \. So
e.g.0(A x A) = 6(A) if (A) is regular andf(A x B) < (6()(A€)x+ 6(B))*, and
0(A x B) = max{d(A),0(B)} (or all three are finite) when the later is regular.

Proof. 1) AsA<* B = 0(A) < 6(B) and UX A <* UX({x} x Ay) clearly

Xe Xe

without loss of generalityA, : x € X) is pairwise disjoint. LetA = |J A« and
XEX
onto

f:A— a, SO % otp(Rangf | Ay)) < 0(Ax) < sup, 8(A) and call the latter
A Soa =J{Bs: 8 < A} where

Bg =1 {a: for somex € X we havea € Rangf | A«) and
B = otple N Rang( | Ax))}-

Let
AP =1{ae |J Ac: forthex € X such thata € A, we have:
xeX
(3 is the order type off(b) : b € A andf(b) < f(a)}}.
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Let E be the relation orA defined bya E b < \/ {a,b} C A soE is an
xexX
equivalence relation, and th are the equivalence classes.

Now f | CA® N A, is constant, sé | A® respectsE, sof induces a function
from A% /E ontoBs. So

IBs| < O(A°/E) = 0({A : A’ N A £ (}) < 6(X).

Hence otpBg) < 6(X). So|a| < > |Bg| < A x 6(X) and
B<X

(| A < (A +0(X)" = [supd(A,) +O(X)]".
XEA XeX

2) We repeat the proof above. Cleary < 6(Ax) < A, SOX — ~ is a

function from X to A, so as) is regular, necessarily* = (supyx) < A. SoBg
xeX
is defined for3 < v* only and againBg| < 8(X) < A. Hence otpBs) < A and

hence by #* < A, A regular” we have3* = sup otp(Bs) < A and we finish as
B<y*
above.

The “e.g.” follows (withX = A, Ax = A x {x}, A = 6(A)). Oas
Theorem 4.6 [DC] Assume

(@) p > cf(u) = r > Ry,
b) | U Z() =w,

a<p
(c) @«(E). (l.e. E is a nice family of filters oR.)

Then

(o) 2" is an aleph,

(B) p* is regular, and®ou (s<oucf(s)>pu}s If 1 = Ry then®au g, where ROy =
Regnp and R\ u| < 0(y" x [E]),

(7) p < A <2 = X\ not measurable,

Remark 4.6Alnstead of (b)®,, suffices, if 2* is replaced by and|E| is well
ordered.

Proof. By the proof of 3.13 (and clause (b) of the assumption) ther€ is
exemplifying 2* € Tspea(p) @s if Ay < p = € Aj then 28 = ‘-5 Z(N)|.
K < 1<K

Let
Ao =:{a:FP#0} and FP={f ecF:rk3(f)=rk3(f)=0}.

Note thatF? is a singleton denoted bfP, soF = |J Fp whereFp = {f2 :
DeE
a € Ap}, so theFp are not neccessarily pairwise disjoint. By clause (b) we can

prove that as: < p also|=”(k)| < p hence|’(#°(k))| < pu and henceE| < u
so |E| is an aleph. AJE| is an aleph we can well orddt (say by <g) and
hence can well ordefF:
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f<*qg iff af)<alg) or aff) =al(g) and D(f) <g D(g)

wherea(f) is the uniquex such that for som® we havef = faD(f) andD(f) is
the <g-first D which is suitable. As is well ordered,|F| is an aleph, bufF
was chosen by 3.13 such th&t| = 2#, so we have proved clause)(

If A € (u,2"], there isF’ C F of cardinality A so as in 2.8,\ is not
measurable so clause)(holds.

Now we shall deal with clausesy.
By assumption (b) clearly,,, so 4.3 applies and we get. r- for R* as there.
Now suppose that fofo; : i < k) € "(RegN ), andD € E, [] oi/D has

1<K
the true cofinalityo. If for someA € D, supcaoi < i, [[oi/(D +A) is well

ordered by (b), s& < u. So assume tligo; = p (i.e. p = limsup(o; ;i < k) =
D
lim igf(ai 11 < k)), then[] i /D is u*-directed so cif) > u, hence cfg) > ™.

I
We concludeR* N " C R, hence, by 4.3R,+ r, SO, by 4.2(8),." is regular.
This gives the first phrase in clausg)(the second is straightforward. O4

Discussion 4.6B:

1. If |E| +|2”(k)| is an aleph and the situation is as in 4.6, then we can choose
A C 6(2*) which codes the relevant instances©f+ g, ®x r+ (OF ®2u r+)
and then work inL[A] and apply theorems on cardinal arithmetic (see in
[Sh-g]) as in 4.4 (so we can ask on weakly inaccessible etc.), but we have to
translate them back td, with A ensuring enough absoluteness.

2. If |[E| +|=(x)| is not an aleph, we can force this situation not collapsing
much, see Sect. 6.

Definition 4.7 For an ordinal é let
ID§ = {AC & :®;4a holds},
ID{,={RCé§:R\aelID;},

ID(;{R ={AC ¢ : there is a function e with domain A such that
the requirement in®s r [€] holds fora € A},
ID(%,R@ = ID527RU04'

Omitting R meanfegn §.

Claim 4.8 1. ID},=IDj andé € IDZ; <= ®spr.

2. ID§,, ID are ideals of subsets of

3. Assumey < ap < az€ Ordand ID; ¢, forl =1,2. Then ID, ¢,

4. 6 € |D§ if AC5’<|5|.

5

. [AC]] ID§7R7(X is |a|"-complete (see 4.3A, we need to choose the witnesses

er).
AcID} < A€IDZ,

7. [ACy] ID §, is |al*-complete.

o

We think that those ideals are very interesting.
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5 The successor of a singular of uncountable cofinality

Claim 5.1 Assumef(u) = k > No, 1 = |J wi wherey; increasing continuous,

1<K
p an aleph (; may be merely an ordinal). If*f € *Ord, f*(i) = |ui|* then
[ */lope > p* (hencerk3 (f*) > u* when De E extend [39).

Proof. Leta < p* and we shall prove

(x) there is(fs : 3 < ), fg € [] £7(i), such that3 < v < a = fz <pwm f,
i<k

Let g be a one-to-one function from into u. For everys < « let
fa(i) = otp{y < [mi[" : g(7) < B}
Us.a

Observation 5.2 [DC + AC, + ®,[E], E normal,x an aleph] Assume

(@) (wi :i < k) is strictly increasing continuous sequence of alephs,
(b) fe [](uf +1), Do € E andrkd (f,E) = rk3 (f,E) = ",

1<K
() Twp(ui) < pforD e E andi< k.
Then{i : f(i) =y} € D.

Proof. Otherwise without loss of generalityvi)(0 < f(i) < u) hence
(Vi)(cf[f(i)] < wi). By AC, there is{(gi : i < k), gi is a one-to-one func-
tion from f(i) into ;. By the normality and the possibility to replaéz by

D +A (for any A € D*), for everyf; € [] f(i) andD,, Do C D; € E, for some

A€ Df, andj < x we have i € B)(g: <oﬁfl(i) < pj), so we conclude
ut :U{WDJ}A Do CD€E,j <k BeD},
(Fpj.Aq €W ja)is <p-increasing and-smooth, where
Fojae= {fiifie JTF().[i €e A= g ofi(i) <] and
3 (12, E) = 1 (12 E)).
Woja=i{a:FpjaaZ0}
As Twp (1j) < p, clearly |Wp j a| < p. So
p = J{Mbja:DoCD€EE,j <rAC K}

with each set of cardinality p, asf(E) < u, 0(&°(x)) < p (as in 4.3), we get
a contradiction. Os.»

Conclusion 5.3 Under the hypothesis and the assumptions (a)-(c) of 5.2, for the
f* ¢ ~Ord defined by f(i) =: u, for every D € E we have:irk3(f,E) =
rkd (f,E) = u*.
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Theorem 5.4 [DC + AC, + @,(E) + Xg < k = cf(x), E normal or just weakly
normal as witnessed hy Assume (a)—(c) of 5.2 and

(d) S={i < r:cf(u) = \} is stationary (see 3.17 (2)), moreover(S)
Do € E for some [3.

Thencf(ul) = A

Proof. By 5.1 + 3.14 we know rk((i" : i < k),E) > u* so by 3.4(6) there

aref € J[ (i +1) andD € E such thatS € D, rk3 (f) = rk3 (f) = x1*. Without
i<k

loss of generality eacl; is singular; apply 5.2. BAC, there is(g : i < k),

e C u cofinal, otpg) = cf(i"). Now as in the proof of 5.3 we knoyrk3 (h) :

D € E,h e ][ &} is cofinal inu™, hence

1<K
{rk3(h) : D € E, h(i) the y-th member ofg fori € S, 0 otherwisé
is a cofinal subset of.*. Os.4

Conclusion 5.5 [as 5.4+(a), (b), (c) of 5.2] If{u; : i < k) is a strictly increasing
continuous sequence of alephs thifen at most one\ > « the set{i < & :
cf(i’) = A} is stationary

Remark. We can prove that for alD € E, [] cf(1")/D has the same cofinality.
i<k

Question 5.6Under the hypothesis and assumptions of 5.4 can we in addition
have a stationar$ C « such that(cf(x;) : i € S) is with no repetition?

6 NiceE exists

Observation 6.1 For an aleph) and a set A, A"l is equal to

Z A8l |6
)

B<OA*

|A%]

provided thatky < |A*| (otherwise replacés|A" ! by |{f € A" : Rangf) = 5})).

Convention 6.2 x, o are alephsg an uncountable cardinal such that Rg, f,
g, h will be functions fronk to Ord.

Definition 6.3 Assumecf(x) > 6.

1. P7, = {f : f afunction from some ordinal < o intox U “a} partially
ordered byC is regarded as a forcing notion andsa  or simply G denote
the generic. "

2.h=U Geg (is forced to be a function from onto x U "a).
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3. &[Gpga] = {qg; :i < o) lists in increasing order
{supt N Rangp [ 7)) : v < o}

4. Y ={(7:00)) v < o,b(y) € K} U{(n,1.0) 1y < o,i <randiy) €
"o, (b)) = B}
5. D7 , is the club filter on the ordinak in K[Y] (K - the core model, see Dodd

K?

and Jensen [DJ]).
6. We can replacey, "a by f € "Ord, [] (f(i) + 1) respectively.

1<K

Remark. On forcing for models oZF only see e.g. [Bu].

Observation 6.4 1. D7, = D7 , N Z’(r)V does not depend on the generic
subset G of P ,.

2. If k is regular inVP<.« (e.g.x successor itV) then D7 . is normal, minimal
among the normal filters on.

Claim 6.5 Assume that

X, for some/every GZ P7 , generic ovelV, in K[Y] there are arbitrarily
large Ramsey cardinals

ThenrkZDc_vA(a) < oo for E = Eg the family of filters ons, or E = E; the family
of normal filters onx in the case of 6.4(2), or even

E=Ex=={D:lFp,  “there is a normal filter D on x
such that BN (x)¥ =D" }.

Proof. As P/, is a homogeneous forcing, “son@’ and “everyG” are equiv-
alent. The proof is as in [Sh-g], Ch.V 1.6, 2.9. Oe.5

Remark. In [Sh-g] Ch.V we almost get away witk (Y), Y C (2%1)*. We shall
return to this later.

Claim 6.6 Assume thaK, ,. . fails.

1. IfinV, A =", pis singular> 6(°~ (")) then X is regular but not measur-
able.
2. Bounds to cardinal arithmetic : j > s then\* < 2# x A*

Proof. LetG C P! , be generic oveW. First we shall prove that
(*)1 A is still a cardinal inV[G].

3 Or considerably less
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Assume not. S&/[G] F |A| = |u|, and hence for somB-nameH andp € P,
p Ikp “H is a one-to-one function from onto \”.

Fora < u let
Ac={B<A:ipkeH(x) 75}

So (A, :a < p) €V and easily otpf,) < 0(P7 ) (mapq € P to 3if p <q,
q Ik H(a) = 3, and mapg € P to min(A,) otherwise). But(P; ,) < p, so (as
the sets are well ordered) this implies

VEA=] [ A <D otp@) <[> 0PZ ) < pxp < i

a<p a<p a<p

a contradiction.
Really we have proved

(x)7  every aleph> 0(°(*a)) in V is a cardinal invV[G].
Next we prove
()2 A is regular inV.

Assume not. So there af® C X = sup@y), otp(Az) = cf(\), Ag C u = sup@y),
otp(Ao) = cf(u). Let p* = (u")*YICI and let inV we haveA; C u* = sup@y),
otp(A) = cf(u*). Let now A = (Ao, A1, Az). In V[G], p, A are still cardinals.
Hence inK[Y[G]] too p, A are cardinals and even K[Y[G], A] we have) is
a cardinal. Alsop* € (i, A), hence cf(*) < p henceK[Y[G],A] F cf(u*) <
1. Now K[Y[G]], K[Y[G], A] are models ofZFC, and in the latter cf(*) <
otp(Az) < pu.

As KJ[YJGG]] does not have unboundedly many Ramsey cardinals and
NY = Ny Y ”, by Dodd and Jensen [DJ] there B € K[Y[G]] such that
KIYI[G] E “ |B| < (Ju/"HKXICIA” and A; C B, and so we get contradiction to
KIY[G]] E “p* a successor cardinab p”.

Next:

()3 if p is singular,\ is not measurable;

[as by the proof of £),, K[Y[G]] E “\ = u*" so there ise as in Sect.4]. Ogp

Claim 6.7 [AC»(»(x) + DC] ~ Assume E is a family of filters on, D, =
min(E) (that is D, € E, and[D € E = D, C D]) and for some f € *Ord,
rk3_(f*) = co. Thenrk3 _(a) = oo for somea, a < 0(°(°(x)) (and essentially
a < 8(#(k))) (i.e. a stands for the function from to Ord which is constantly
Q).

Proof. We first prove that there is sueh< 0(°((x))). If D € E, rk3(f) = 0o
then for every ordinak there areA = A; , € D" andg = gt o <p+a ., f such
that rl%+A(g) > a. Without loss of generalitys , < f; so we have only a set of
possible & ., g.) (for givenf).



Sh:497

Set theory without choice 123

By the “F” of ZF there arefs, gr <p+a f, g < such that rEJ,Af (g9¢) = o0, SO
rk3, (gr) = oo for everyDy, D +A; C D; € E. Note:

k+r=k, [ PEP=2E), PSR = 2P
(really Al + 1 =|A] = |[2(A) = [Z(A)]). By AC (s
(x) if F C~Ord has cardinalitx |(#°(x))| then we can find
{(Arp,gip):f €F,DcE,k3(f) =00}

such that 1§, , (9r,0) =0, gr.p <psa, fr g0 <F.

By DC we can find(F, : n < w), F, C “Ord, such that in«) for F = F, we
haveFn: =FaU{gip : f € Fn,D € E}, andFo = {f*}. LetF = |J Fy, and let

n<w
A= (A i < k) be defined bys, = {f (i) : f € F}. Clearly |F,| <* |Z°(#°(k))|
and hencgA| <* |2°(¥°(k))|. Henceh*(i) =: otp(A) < 6(=(#°(x))) and
sup Rangdt*) < 6(°(#°(x))). Now for everyf € F we definehs € [] g(i)
1<K
by hi (i) = otp(A Nf(i)) < ¢(i). It is now easy to check that %I*((hf*) = oo as
required.

Next we prove that for somer < 6(~(k)) we have r%* (@) = 0. As
AC(»(w), Clearly (k) can be well ordered, so lé : (k) — |2°(k)| be
one-to-one ontd="(x)|, an aleph. By the first part there is" < 6(=°(°(k)))
with rk3_(a*) = co. Hence we can finth; : 2(2(x)) 22 o + 1.

Observation 6.7A[AC,] If a < 8(°(AY)), |A*| x k =|A*| then”(a +1) is a
set of cardinality<* &°(A*).

[Why? Leth; : &2(A*) oM & +1 and leth, : A* x kK — A* be one to one.
For eachf € “(a + 1) we can choos® = (B : i < k), m(B;) = f(i), so
Bi C &(A*), and (B; : i < k) encodesf and it in turn can be coded by
{(i,x) ;i < kandx € Bj} C k x A", but it is not clearly if we have also the
functionf — Bf. However we can define a functidgth, DomH ) = ’(A*) and
Rangf) C "(a +1) by

(HA)) =h({aecA” 1 hy(a,i) € A}).
ClearlyH is a function from=’(A) onto *(a + 1), hencd”(a + 1) <* |Z°(A*)|.]
Us.7a

Of course, apply 6.7A t&\* = (k).
Also [Fil(x)| < |2(27())| and| (2 (x))|? = |2(7(x))], 50 BYAC /(7 ()
we can findYp = ((As p,grp) : f € “(a* +1),D € E) such that:

(x) if rk3(f) = co then V%JrA,,D(QLD) =00, Arp € DY,
gip € (@ +1),9tp <psap f

Similarly by AC () we can findYy = (dkp : f € “(a* +1),D € E) such
that:
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D Cdip € E and i (f) = ri, (F).

We now define the modet with the universe”’(’(x)) - just put all the infor-
mation needed below.

Clearly |€| = |#°(#°(k))|, sO we have a choice functidd* on the family
of definable (in€) non empty subsets @. So for A C ¢ we have the Skolem
hull. Now we define by induction o < x* (an aleph) submodelsl, of ¢
increasing continuously i and of cardinality< |=°(x)|.

For a = 0: the Skolem hull of{~ : v < |Z°(k)|}
For o limit: |J Mg
B<a
Fora = § + 1. the Skolem hull offM,| U {X : X € ®"|M,[}

Now “(M,+) C M.+ (as«™ is regular ag=°(x)| is an aleph). LeH : M.+ N
ord 2™ g* < |(k)|* be order preserving. So as we are assuming that the

conclusion fails, for every € “(a* + 1) N M+,
Hof* € *3* satisfies rg_(H of*) < cc.

Whereas rﬁ* (f*) = co. We can conclude as in [Sh 386, 1.13]. 0.7
We can generalize 6.1-6.7

Claim 6.8 [DC.,, o =cf(c) > Ng] Assume:

() D, is aco-complete filter on A
(b) A=A, xo,and. : A* - gisua,a) =«
(c) D* is the following filter on A; for A C A*:
AeD* <= {i<o:{aeA,:(i,a) €A} € D.} € D, where
D, is the minimal normal filter ow.
(d) E=the family ofi-normal filters on A.
Then for every fe A" a(x), rk2D (f) < oo, provided tha@@*‘_a(*).
Concluding Remark.We can deal with f¢(~w) as in [Sh 386], [Sh 420]. Also
concerning 6.7 changé\*|.
Also as in [Sh 386] we can defiffek?(f , &) and so improve 3.12 (as in [Sh
386, Sect. 2]).
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