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not everything on cofinality is possible
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Abstract. We prove in ZF+DC, e.g. that: ifµ = |H (µ)| andµ > cf(µ) > ℵ0

then µ+ is regular but non measurable. This is in contrast with the results on
measurability forµ = ℵω due to Apter and Magidor [ApMg].

Annotated content

0 Introduction

[In addition to presenting the results and history, we gave some basic definitions
and notation.]

1 Exact upper bound

[We define some variants of least upper bound (lub, eub) in ((A∗)Ord, <D ) for
D a filter on A∗. We consider<D -increasing sequence indexed by ordinalsδ
or indexed by sufficiently directed partial ordersI , of members of(A

∗)Ord or of
members of(A

∗)Ord/D (and cases in the middle). We give sufficient conditions
for existence involving large cofinality (ofδ or I ) and some amount of choice.
Mostly we look at what theZFC proof gives without choice. Note in particular
1.8, which assumes onlyDC (ZF is not mentioned of course), the filter isℵ1-
complete and cofinality ofδ large and we find aneub only after extending the
filter.]

2 hpp

[We look at various ways to measure the size of the set
∏

a∈A∗
f (a)/D , like

supremum length of<D -increasing sequence in
∏

a∈A∗
f (a) (called ehppD ), or
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82 S. Shelah

in
∏

a∈A∗
f (a)/D (calledhppD ), or we can demand them to be cofinal (gettingepp

or pp); when we letD vary onΓ we writeehppΓ etc. So existence of<D −eub
give downward results onpp.]

3 Nice family of filters

[In this paper we can say little on products of countably many; we can say
something when we deal withℵ1-complete filters. So as in [Sh-g], V, we deal
with family E of filters on A∗ which is nice. Hence suitable ranks from function
f from A∗ to ordinal and filterD ∈ E are well defined (i.e. the values are ordinals
not infinity). The basic properties of those ranks are done here.

We then define some measures for the size of
∏

a∈A∗
f (a)/D (i.e. Tw, Ts,

T), looking at subsets of
∏

a∈A∗
f (a) or of

∏
a∈A∗

f (a)/D which are pairwise/=D . In

conclusion 3.12 we, under reasonable assumption, prove that some such measures
and sup{rk2

D (f ) : D ∈ E} are equal. In 3.14 we have a parallel of 1.8: sufficient
condition for the existence ofeub when we allow to increase the filter. We end
defining normal filters and a generalization.

The basic point is that for everyf ∈ (A∗)Ord (if E is nice) for someD ∈ E
we have rk2D (f ) = rk3

D (f ) and in this case the rank determinef /D , and order on
rank equal order among suchf ; so we can represent

∏
a∈A∗

f ∗(a)/D as the union

of ≤ |E| well ordered sets.]

4 Investigating strong limit singular

[We deal with⊗α,R, which means that we can regardR∩ α as a substitute of
the family of regulars (not just individually) i.e. we can find〈e(i ) : i < α〉, e(i )
is an unbounded subset ofi of order type which belongs toR. We give the basic
properties in 4.2, then move up fromµ to rk2

D (µ) with appropriate choice ofR.
With this we have a parallel of Galvin–Hajnal theorem (4.5). Here comes the
main theorem (4.6) assumingDC , µ singular of uncountable cofinality (andE a
set of filters on cf(µ) which is nice), ifµ = |H (µ)| (kind of strong limit) then
set theory “behave nicely” up to 2µ: 2µ is an aleph, there is no measurable≤ 2µ

andµ+ is regular.
We end defining some natural ideals in this context of⊗µ,R.]

5 The successor of a singular of uncountable cofinality

[Here we prove our second main theorem: if〈λi : i < κ〉 is increasing continuous
(E a nice family of filters onκ) then for at most oneλ, for stationarily many
i < κ, the cardinalλ+

i has cofinalityλ.]

6 Nice E exists

[The theorems so far have as a major assumption the existence of a niceE. Using
inner models we show that as in the situation with choice, if there is no niceE
then the universe is similar enough to some inner model to answer our questions
on the exponentiation and cofinality.]
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Set theory without choice 83

0 Introduction

Originally I disliked choiceless set theory but ([Sh 176]) discovering (the first
modern asymmetry of measure/category: a difference in consistency strength and)

[ZF + DC ]
if there is a set ofℵ1 reals then there is a Lebesgue non-measurable set

I have softened. Recently Gitik suggested to me to generalize the pcf theory to
the set theory without choice, or more exactly with limited choice. E.g.: is there
a restriction on〈cf(ℵn) : n < ω〉? By Gitik [Gi] ZF+ “every aleph has cofinality
ℵ0” is consistent.

It is known that if ZF + DC + AD then there is a very specific pattern of
cofinality, but we have no flexibility. So we do not know e.g. if

“ZF + DC + (∀δ)[cf(δ) ≤ ℵα] + (∀β < α)(ℵβ+1 is regular)”

is consistent forα = 1, or α = 2 etc. The general question is what are the
restrictions on the cofinality function; really it is appropriate to dedicate this
work to Azriel Levy, my teacher and my friend, who has contributed so much
to this direction.

Apter repeated the question above and told me of Apter and Magidor [ApMg]
in which the consistency ofZF + DCℵω + |H (ℵω)| = ℵω + “ℵω+1 is measurable”
was proved (for an earlier weaker result see Kafkoulis [Kf ]) and was quite
confident that a parallel theorem can be similarly proved forℵω1.

My feeling was that while the inner model theory and the descriptive set
theory are not destroyed by dropping AC, modern combinatorial set theory says
essentially nothing in this case, and it will be nice to have such a theory.

Our results may form a modest step in this direction. The main result is stated
in the abstract.

Theorem 0.1 (ZF + DC) If µ is singular of uncountable cofinality and is strong
limit in the sense thatH (µ) has cardinalityµ thenµ+ is regular and non mea-
surable.

Note that this work stress the difference between “bounds for cardinal arith-
metic for singulars with uncountable cofinality” and the same for countable co-
finality.

Another theorem (see section 5) says

Theorem 0.2 If 〈µi : i ≤ κ〉 is an increasing continuous sequence of alephs> κ,
then for at most oneλ, {i : cf(µ+

i ) = λ} is a stationary subset ofκ (see 3.17(3)).

We were motivated by a parallel question inZFC, asked by Magidor and to
which we do not know the answer: canℵω1 be strong limit and for̀ ∈ {1, 2}
there is a stationary setS̀ ⊆ ω1 such that

∏
δ∈S1

ℵδ+2/J bd
S has true cofinalityℵω1+`?

It was known that “there are two successive singulars” has large consistency
strength.
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84 S. Shelah

We do not succeed to solve Woodin’s problem (show consistency of “ZF +
DCω+ every aleph has cardinalityℵ0 or ℵ1”), and Specker’s problem (show con-
sistency of “ZF+ everyP (κ) is the union of countably many sets of cardinality
≤ κ”). For me the real problems are:

(a) (ZF) Is there an alephκ (i.e. suitable definition) such thatDCκ implies that
the class of regular alephs is unbounded?

(b) For whichκ < λ, doesDC<κ impliesλ is regular?
(c) (ZF) Is thereκ such thatDCκ implies that for everyµ for a class of alephsλ,

the setP (λ) is not the union of≤ µ sets each of cardinalityλ and cf(λ) > κ?

We try to assume only standard knowledge in set theory but we start by
discussing what part of pcf theory survives (see [Sh-g] and history there) so
knowledge of it will be helpful; in particular Sect. 6 imitates [Sh-g, V, Sect. 1]
so it also uses a theorem of Dodd and Jensen [DJ]. On set theory without full
choice see [J1], on cardinal arithmetic and its history [Sh-g]. Lately Apter and
Magidor got consistency results complementary to ours and we intend to return
to the problems here in [Sh 589, Sect. 5], for more and on 1.5, 2.5 and (c) above,
see [Sh: F239].

Definition 0.3 A cardinality is called an aleph if there is an ordinal with that
cardinality, or just the cardinality of a set which can be well ordered and then it
is identified with the least ordinal of that cardinality.

Notation 0.4 α, β, γ, ε, ζ, ξ, i , j are ordinals;δ a limit ordinal;λ, µ, κ, χ, θ, σ are
cardinals (not necessarily alephs),

Reg is the class of regular alephs (see Definition 1.1(7)),
D a filter on the set Dom(D),
A = ∅ modD means Dom(D) \ A ∈ D ,
D+ = {A : A⊆ Dom(D), andA /= ∅ modD},
D + A = {X ⊆ Dom(D) : X ∪ (Dom(D) \ A) ∈ D}.
For a filter D , θD = min{κ : there is no functionh : Dom(D) −→ κ such

that for everyi < κ we haveh−1(i ) /= ∅ modD}.
I ,J denote ideals on the set Dom(I ),Dom(J ) respectively; definitions

given for filters D apply also to the dual ideal{Dom(D) \ A : A ∈ D} but
I + A = {B ⊆ Dom(I ) : B \ A ∈ I }.

I , J are directed partial orders or just index sets.
A cone of a partial orderI is a subset of the form{a ∈ I : I |= a0 ≤ a} for

somea0 ∈ I .
For a setA let θ(A) be

sup{α : α is an ordinal and there is a function fromA ontoα or α is finite}.
Note that if|A| is an aleph thenθ(A) = |A|+. Also θ(A) is an aleph. Ifg : A−→ δ
has unbounded range then cf(δ) ≤ θ(A) (and |Rang(g)| is an aleph≤ θ(A)) see
Definition 1.1(7).
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Set theory without choice 85

Let θ−(A) be

min{α : α an ordinal and there is no one to one function fromα into A};

clearly θ−(A∗) is an aleph andθ−(A) ≤ θ(A).
For a directed partial orderI , J bd

I is the ideal of bounded subsets ofI and
D bd

I is the dual filter (usuallyI is a regular aleph).
If f , g : A∗ −→ Ord andD is a filter on A∗ then

f ≤D g means {a ∈ A∗ : f (a) ≤ g(a)} ∈ D ,

similarly for other relations (<D ,=D , /=D ). Note:≤D is a quasi order (as maybe
f0 ≤D f1 ≤D f0, f0 /= f1) but 〈(A∗)Ord/D , <D〉 is a partial order and/=D is not the
negation of =D .

Definition 0.5 Let |A| ≤∗ |B| mean thatthere is a function fromB onto A (so
|A| ≤ |B| ⇒ |A| ≤∗ |B| but not necessarily the converse). (Note: for well ordered
sets≤, <∗ are equal, in fact “B is well ordered” is enough.)

Definition 0.6

1. ACλ,µ̄ is the axiom of choice for every family{At : t ∈ I } of sets,|At | ≤ µt ,
whereµ̄ = 〈µt : t ∈ I 〉, I a set of cardinality≤ λ. If µt = µ for all t ∈ I
then we write ACλ,µ. We may write ACI ,µ, ACI ,Ā instead, similarly below.

2. If in part (1), I is a well ordering (e.g. an ordinal) then DCI ,µ̄ is the dependent
choice version.
DCI ,µ is DCI ,µ̄ where(∀t ∈ I )µt = µ.

3. Let ACλ mean∀µACλ,µ; and AC<λ ≡ (∀µ < λ) ACµ; and ACλ,<µ, AC<λ,µ,
AC<λ,<µ, ACλ,µ̄, AC<λ,µ̄, AC<λ,<µ̄, have the natural meanings.

4. DCα means∀µ DCα,µ, and DC<α, DCα,<µ, DC<α,µ and DC<α,<µ have the
natural meanings. DC is DCℵ0.

1 Exact upper bound

Definition 1.1

1. A partial order I is(≤ λ)-directed (or(< λ)-directed) if for every A⊆ I of
cardinality≤ λ (of cardinality< λ) there is an upper bound. Ifλ = 2 we omit
it. Note that2-directed is equivalent to(< ℵ0)-directed.

2. We say that J is cofinal in I if J⊆ I and (∀s ∈ I )(∃t ∈ J )[I � s ≤ t ].
3. I is endless if(∀s ∈ I )(∃t ∈ I )[I � s < t ].
4. We sayλ ≥ cf(I ) if there is a cofinal J⊆ I of cardinality≤ λ andλ = cf(I )

if λ is the smallest suchλ i.e. (∀λ1)(λ1 ≥ cf(I ) → λ1 ≥ λ) (it does not
necessarily exist, but is unique by the Cantor-Bernstein theorem).

5. Let F be a set of functions fromA∗ to ordinals, D a filter onA∗. We say
g : A∗ → Ord is a<D −eub (exact upper bound) of F if:
(i) f ∈ F ⇒ f ≤D g
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86 S. Shelah

(ii) If h : A∗ → Ord, h < max{g, 1}
then for some f ∈ F we have h<D max{f , 1} (where f∗ = max{f , 1}
means f∗ is a function,Dom(f ∗) = Dom(f ) and for every x∈ Dom(f ∗)
we have f∗(x) = max{f (x), 1}).

6. Let I be(≤ λ)∗-directed if in(1) we ask|A|≤∗λ. We define similarly “cf∗(I ) ≤
λ”, and also “I is (< λ)∗- directed”, “ cf∗(I ) < λ”, “ cf∗(I ) = λ” (e.g.
cf∗(I ) = λ means(∀λ1)[λ1 ≥ cf∗(I ) → λ ≤∗ λ1]) & cf∗(I ) ≥ λ, so actually
we should saycf∗(I ) = λ/≡∗ whereλ1≡∗λ2 iff λ1 ≤∗ λ2 ≤∗ λ1. Instead
“ (≤ λ)∗-” we may write “(≤∗ λ)-”. Let λ-directed mean(< λ)-directed, etc.

7. The ordinalδ is regular if δ = cf(δ) where

cf(α) = min{otp(A) : A⊆ α is unbounded}.
Clearly if I is well ordered thencf(I ) is a regular ordinal, and a regular
ordinal is a cardinal.

8. We say A is unbounded in I if A⊆ I and for no t ∈ I \ A do we have
(∀s ∈ A)(s ≤I t).

9. cf−(I ) ≤ λ if there is an unbounded A⊆ I , |A| ≤ λ; similarly cf∗−(I ) < λ,
cf∗−(I ) = λ.

10. hcf−(I ) ≤ λ (the hereditarycf−(I ) is ≤ λ) if for every J⊆ I , cf−(J ) ≤ λ;
similarly hcf∗−(I ) < λ, hcf∗−(I ) = λ.

Definition 1.2 Let I be a(< ℵ0)-directed (equivalently a directed) partial order
(often I will be a limit ordinalδ with its standard order, then we write justδ).

1. F̄ = 〈Ft : t ∈ I 〉 is <D -increasing (or≤D -increasing) if:
(a)

⋃
t∈I

Ft ⊆ Dom(D)Ord and Ft /= ∅,

(b) if fe ∈ Fte, (for e < 2) and t0 <I t1 then f0/D < f1/D (or f0/D ≤ f1/D).
2. F̄/D is smooth (orF̄ is D-smooth) if:

(a)
⋃
t∈I

Ft ⊆ Dom(D)Ord and Ft /= ∅,

(c) f1, f2 ∈ Ft ⇒ f1/D = f2/D.
3. LetF̄ = 〈Ft : t ∈ I 〉, we sayF̄/D is semi-smooth (or̄F is semi-D-smooth) if:

(a)
⋃
t∈I

Ft ⊆ Dom(D)Ord and Ft /= ∅,

(c)′ if I |= “t 0 < t1 < t2 < t3” and fl ∈ Ftl for l < 4 then

{a ∈ Dom(D) : f1(a) < f2(a)} ⊆ {a ∈ Dom(D) : f0(a) < f3(a)} modD ,

4. F̄ is almost D-smooth (or̄F/D is almost smooth) is defined similarly but
(c)′′ if I |= t0 < t1 and f0, f ′0 ∈ Ft0, and f1, f ′1 ∈ Ft1 then

{a ∈ Dom(D) : f0(a) < f1(a)} = {a ∈ Dom(D) : f ′0(a) < f ′1(a)} modD ,

5. f ∈ Dom(D)Ord is a lub (least upper bound) of̄F/D (or <D −lub of F̄ ) if:
(a) f ∈ ⋃

t∈I
Ft ⇒ f ≤D g,

(b) if g′ ∈ Dom(D)Ord satisfies (a) too theng ≤D g′.
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Set theory without choice 87

6. g ∈ Dom(D)Ord is the eub ofF̄/D (or <D −eub ofF̄ ) if
(a) f ∈ ⋃

t∈I
Ft ⇒ f <D g,

(b) if f ∗ <D max{g, 1A∗}, then f∗ <D max{f , 1A∗}; note that if for some
g ∈ F we haveg /=D 0A∗ then this is equivalent to: if f∗ <D g then

(∃f ∈
⋃
t∈I

Ft )(f
∗ <D f )

(note: if¬(g /=D 0A∗ ) this holds vacuously).

Observation 1.3 1. We havecf(0) = 0, cf(α + 1) = 1. For a limit ordinal δ,
cf(δ) = cf∗(δ) is regular and infinite; each regular ordinal is an aleph. For a
linear order I , cf∗(I ) ≤ λ iff I is not (≤ λ)∗-directed. For a limit ordinalδ
we have:cf(δ) ≤∗ |A| iff cf(δ) < θ(A).

2. If F̄ is <D -increasing thenit is semi-D-smooth.
3. If F̄ is <D -increasing thenit is almost D-smooth.
4. If I is a partial order, |I | an aleph, then there is J⊆ I , linearly and well

ordered by<I with no upper bound in I\ J .
5. We are assuming that each Ft is a set; if we consider classes, intersect them

with H (χ) for χ large enough.
6. If Ȳ = 〈Yα : α < δ〉 is a sequence of subsets of A andα < β < δ implies

Yα ⊆ Yβ and cf(δ) ≥ θ(A) thenȲ is eventually constant i.e.

(∃α < δ)(∀β)(α ≤ β < δ → Yβ = Yα)

7. If F̄ = 〈Fα : α < δ〉 is ≤D -increasing, A∗ = Dom(D) and θ(P (A∗)/D) ≤
cf(δ), thenwe can define, in a uniform way, from̄F a club C ofδ and Y/D ∈
P (A∗)/D such that:
(a) F̄ � C is<D+Y –increasing,
(b) f1, f2 ∈

⋃
t∈C

Ft ⇒ f1 =D+(A∗\Y) f2.

8. If 〈Fα : α < δ〉 is <D -increasing, f is a≤D −lub of
⋃
α<δ

Fα

then{a ∈ A∗ : f (a) a limit ordinal} ∈ D.

Remark. Not θ(P (A∗)) ≥ θ(P (A∗)/D) as |P (A∗)|? ≥|P (A∗)/D |.
Proof. (1)–(6), (8) Check.
(7) Forα < β < δ let

E1
α,β = {Y/D : Y ⊆ A∗ and:Y = ∅ mod D or Y ∈ D+

and for somef1 ∈ Fα and f2 ∈ Fβ we havef1 <D+Y f2}
E0
α,β = {Y/D : Y ⊆ A∗,Y = ∅ mod D or Y ∈ D+

and for everyf1 ∈ Fα, f2 ∈ Fβ we havef1 <D+Y f2}
Clearly

(∗)1 E1
α,β ⊆ P (A∗)/D , ∅/D ∈ E0

α,β ⊆ E1
α,β , andα1 ≤ α2 < β2 ≤ β1 ⇒

E`
α2,β2

⊆ E`
α1,β1
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88 S. Shelah

and

(∗)2 if α1 < α2 < β2 < β1 thenE1
α2,β2

⊆ E0
α1,β1

.

As cf(δ) ≥ θ(P (A∗)/D), for ` ∈ {0, 1} andα < δ the sequence〈E`
α,β : β ∈

[α, δ)〉 is eventually constant (by 1.3(6)), so letγ`α ∈ (α, δ) be minimal such that
γ`α ≤ γ < δ ⇒ E`

α,γ = E`
α,γ`α

.

Let E`
α = E`

α,γ`α
. Clearly

(∗)3 E0
α ⊆ E1

α,
(∗)4 ` < 2 & α < β ⇒ E`

α ⊆ E`
β ⊆ P (A∗)/D ,

(∗)5 α < β ⇒ E1
α ⊆ E0

β ⊆ P (A∗)/D .

Applying again 1.3(6), by (∗)4, we find that for someα(∗) < δ we haveα(∗) ≤
α < δ ⇒ E0

α = E0
α(∗) so by (∗)3 + (∗)5 we getα(∗) < α < δ ⇒ E0

α = E1
α = E1

α(∗).
Choose by induction onε an ordinalβε < δ: for ε = 0 let βε = α(∗) + 1, for

ε = ζ + 1 let βε = max{γ0
βε
, γ1

βε
} < δ and forε limit βε =

⋃
ζ<ε

βζ . So for some

limit ordinal ε(∗) we have:βε is defined iff ε < ε(∗), and 〈βε : ε < ε(∗)〉 is
strictly increasing with limitδ.

Choosef ∗ ∈ Fβ0, f ∗ ∈ Fβ1 and letY∗ = {x ∈ A∗ : f ∗(x) < f ∗∗(x)}. Clearly
Y∗ ∈ E1

β0,β1
= E1

β0
= E1

α(∗) = E0
α(∗) hence

f ′ ∈ Fβ0 & f ′′ ∈ Fβ1 ⇒ f ′ <D+Y∗ f ′′.

So clearlyY∗/D does not depend on the choice off ∗, f ∗∗, i.e. f ′ ∈ Fβ0 & f ′′ ∈
Fβ1 ⇒ {x ∈ A∗ : f ′(x) < f ′′(x)} = Y∗ mod D .

In fact we can replace (β0, β1) by any (βε0, βε1) with ε0 < ε1 < ε(∗). So
clearly the conclusion holds withY = A∗ \ Y∗. ut1.3

Claim 1.4

1. If 〈fβ : β < δ〉 is such that: fβ : A∗ → Ord and1

δ ≥ θ−(
⋃

α<θ(A∗)

P (A∗ × α))

thenfor someβ < γ < δ we have fβ ≤ fγ .
2. [ACλ,|I |] If I is (≤ λ)∗-directed, H an increasing function from I to J, |J | ≤ λ

(I , J partial orders), thenH is constant on a cone of I .
3. If I is (< θ(J ))-directed,|I | an aleph, H an increasing function from I to J

andθ(J ) ≤ λ thenH is constant on a cone of I .
4. [ACλ,|I |,ACA,B] If I is (≤∗ λ)-directed, H an increasing function from I to

J = AB, B partially ordered set,hcf∗−(B) ≤ λ (J ordered by: f≤ g ⇐⇒
(∀a ∈ A)(f (a) ≤ g(a))), and |A| ≤ λ then H is constant on a cone.

5. In part (2), instead of|J | ≤ λ, actuallyhcf∗−(J ) ≤ λ suffices (see Definition
1.1(10)).

1 See 4.5 below
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Set theory without choice 89

6. [ACℵ0] If D is an ℵ1-complete filter onA∗ and F̄ = 〈Fα : α < δ〉 is almost
D-smooth, andδ ≥ θ−(

⋃{α(P (A∗)/D) : α < θ(P /A∗)/D or α < ω})
thenfor someβ < γ < δ, fβ ∈ Fβ , fγ ∈ Fγ we have fβ ≤D fγ .

Proof. 1) Assume not. For eachβ < δ choose by induction oni , α(β, i ) = αβ,i
as the first ordinalα such that:

(∗) α < β and for everyj < i , αβ,j < α and fora ∈ A∗

[fα(β,j )(a) > fβ(a) ⇐⇒ fα(β,j )(a) > fα(a)].

Soαβ,i is strictly increasing withi and is< β, henceαβ,i is defined iff i < iβ
for someiβ ≤ β. The sequence〈〈αβ,i : i < iβ〉 : β < δ〉 exists. Now forβ < δ,
i < j < iβ let uβ,i ,j =: {a ∈ A∗ : fα(β,i )(a) > fα(β,j )(a)}. For eacha ∈ A∗ and
β < δ we have:

vβ(a) =: {i < iβ : fα(β,i )(a) > fβ(a)} is a subset ofiβ and

〈fα(β,i )(a) : i ∈ vβ(a)〉
is a strictly decreasing sequence of ordinals; hencevβ(a) is finite.

Now iβ =
⋃

a∈A∗
vβ(a) (as if j ∈ iβ \

⋃
a∈A∗

vβ(a) thenαβ,j , β are as required). So

we have a functionvβ from A∗ onto {vβ(a) : a ∈ A∗}, a set of finite subsets of
iβ whose union isiβ . Now this set is well ordered of cardinality|iβ | (or both are
finite), so iβ < θ(A∗).

Let Aβ,i =: {a ∈ A∗ : i ∈ vβ(a)} = {a ∈ A∗ : fα(β,i )(a) > fβ(a)}; also for no
β1 /= β2 < δ do we have〈αβ1,i ,Aβ1,i : i < iβ1〉 = 〈αβ2,i ,Aβ2,i : i < iβ2〉: as by
symmetry we may assumeβ1 < β2; now β1 is a good candidate for beingαβ2,iβ2

soαβ2,iβ2
is well defined and≤ β1, contradicting the definition ofiβ2. Similarly

β1 < β2 < δ, ∀i < iβ2[i < αβ1 & αβ2,i = αβ1,i & Aβ2,i = Aβ1,i ]

is impossible. Clearly ifj < iγ , β = αγ,j then〈αβ,i : i < iβ〉 = 〈αγ,i : i < j 〉.
Now for everyβ < δ let us definecβ = {αβ,i : i < iβ}. So |cβ | < θ(A∗).

Let Xβ = {(i , a) : i < iβ anda ∈ Aβ,i } so Xβ ⊆ iβ × A∗ and iβ < θ(A∗). It is
also clear that forβ1 /= β2 (< δ), Xβ1 /= Xβ2. (Just letf be a one-to-one order
preserving function fromcβ1 ontocβ2, let α ∈ cβ1 be minimal such thatf (α) /= α
and we get a contradiction to the previous paragraph.)

So there is a one-to-one function fromδ into
⋃{P (A∗ × α) : α < θ(A∗)}.

But δ ≥ θ−(
⋃

α<θ(A∗)
P (A∗ × α)). So we are done.

2) Let for t ∈ J , It = {s ∈ I : H (s) = t}. So {It : t ∈ J , It /= ∅} is an
indexed family of≤ |J | nonempty subsets ofI , |It | ≤ |I |, so by assumption
there is a choice functionF for this family. Let A = {F (It ) : t ∈ J , It /= ∅},
so |A|≤∗|J |, so asI is (≤ λ)∗-directed and|J | ≤ λ there iss(∗) ∈ I such that
(∀t ∈ J )(F (It )≤I s(∗)).

ThusH (s(∗)) is the largest element in the range ofH . As H is increasing it
must be constant on the cone{s : s(∗) ≤I s}.
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3) Like part (2) (withF (It ) being the first member ofIt for some fixed well
ordering ofI ).

4) By the proof of part (5) below it suffices to prove cf∗
−(AB � Y ,≤) ≤ λ;

whereY = Rang(H ) ⊆ AB, clearly Y is (≤∗ λ)-directed (proved as in the proof
of (2)). Let for (a, b) ∈ A× B,

Y(a,b) = {h : h ∈ Y andb = h(a)}.
Let for eacha ∈ A, Ba = {b ∈ B : for someh ∈ Y we haveh(a) = b} ⊆ B.

Case 1 for somea ∈ A, Ba is a non empty subset ofA with no last element.
Ba has an unbounded subsetB∗, |B∗| ≤∗ λ. As Y is (≤∗ λ)-directed, to get
contradiction it suffices to findZ , |Z | ≤∗ λ, Z not disjoint from any set in
{Y(a,b) : b ∈ B∗}; by ACλ,|Y|, as|Y | ≤∗ |I |, one exists.

Case 2 not case 1.
Let h∗ ∈ AB be h(a) = the maximal element ofBa. If h∗ is in Y then it is the
maximal member ofY ; so cf∗−(AB � Y ,≤) = 1≤ λ. If not to get contradiction it
suffices to have a choice function for{Ya,h∗(a) : a ∈ A} which again exists.

5) Like the proof of part (2). LetJ1 = Rang(H ) andJ2 ⊆ J1 be unbounded
in J1, |J2| ≤ λ and chooseF as a choice function for{It : t ∈ J2, It /= ∅}.

6) Let for β < γ < δ, Yβ,γ ∈ P (A∗)/D be such that : for everyfβ ∈ Fβ

and fγ ∈ Fγ we haveYβ,γ =: {a ∈ A∗ : fβ(a) > fγ(a)}/D . We can assume
toward contradiction that the conclusion fails, soβ < γ < δ ⇒ Yβ,γ /= ∅/D . For
eachβ < δ we define by induction oni an ordinalαβ,i = α(β, i ) as the firstα
such that:

(∀j < i )(αβ,j < α < β) and (∀j < i )(Yαβ,i ,α = Yαβ,i ,β).

So clearlyαβ,i increase withi and is<β, hence for someiβ ≤ β we haveαβ,i
is defined iff i < iβ , and〈〈αβ,i : i < iβ〉 : β < δ〉 exists. Clearly fori < j < iβ ,
Yαβ,i ,αβ,j = Yαβ,i ,β . If for someβ andY the set{i < iβ : Yαβ,i ,β = Y} is infinite,
let jn the n-th member. ByACℵ0 we can find〈fjn : n < ω〉 with fjn ∈ Fjn , so
Yαβ,jn ,αβ,jn+1

= Y , so

An = {a ∈ A∗ : fαβ,jn (a) > fαβ,jn+1
(a)} ∈ Yαβ,jn ,αβ,jn+1

= Y .

Hence
⋂

n<ω
An /= ∅ (asD + A0 is a properℵ1-complete filter rememberingYβ,γ /=

∅/D) and we get a strictly decreasing sequence of lengthω of ordinals〈fαβ,jn (a) :
n < ω〉 for a ∈ ⋂

n<ω
An, a contradiction. Soiβ < θ(P (A∗)/D). (In fact let

bβ = {i < iβ : Yαβ,i ,β /∈ {Yαβ,j ,β : j < i }}, then |bβ | = |iβ | or both are finite,
and clearly otp(bβ) < θ−(P (A∗)/D), but θ−(P (A∗)/D) is an aleph or finite
number, hencein < ω ∨ in < θ−(P (A∗)/D)). So β 7→ 〈Yαβ,i : i < iβ〉
is a one-to-one function fromδ to

⋃
α<θ(P (A∗)/D)

α(P (A∗)/D) [why? because if

β1 /= β2 have the same image, without loss of generalityβ1 < β2 andβ1 could
have served asαβ1,iβ2

, contradiction so the mapping is really one-to-one].ut1.4

Claim 1.5 [DCκ, κ an aleph> |P (A∗)| and: ACP (A∗) or |I | is an aleph]
Assume:
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(i) D is a filter on the setA∗

(ii) I is a (≤ |P (A∗)|)∗-directed partial order
(e.g. an ordinalδ, cf(δ) ≥ θ(P (A∗)))

(iii) F = {ft : t ∈ I } is ≤D -increasing, ft : A∗ → Ord

ThenF has a≤D −eub

Proof. Let β∗ = (sup
⋃
t∈I

Rang(ft ) + 1, it is an ordinal, and letX = A∗
(β∗). By

DCκ as |P (A∗)| < κ, so without loss of generalityκ = |P (A∗)|+, |P (A∗)| an
aleph.

We can try to choose by induction onα < κ functionsgα ∈ X such that:

(a) (∀β < α)(¬gβ ≤D gα)
(b) (∀t ∈ I )(ft ≤D gα)
(c) g0(a) = sup{ft (a) : t ∈ I }

By 1.4(1) the construction cannot continue forκ steps; so asDCκ holds, for
someα = α(∗) < κ we have〈gα : α < α(∗)〉 and we cannot choosegα(∗). By
clause (c) clearlyα(∗) > 0. Let Ba =: {gβ(a) : β < α(∗)} so Ba is a set of
ordinals,|Ba| ≤ |α(∗)| (as |α(∗)| is an aleph) and〈Ba : a ∈ A∗〉 exists.

DefineH : I → ∏
a∈A∗

Ba as follows:

H (t)(a) = min(Ba\ft (a)) (well defined asg0(a) ∈ Ba).

Clearly |Rang(H )| ≤ |P (A∗)||A∗| = |P (A∗)| (as |A∗| is an infinite aleph hence
|A∗×A∗| = |A∗|) andI � s ≤ t ⇒ H (g) ≤ H (s) mod D . As I is (≤ |P (A∗)|)∗-
directed, by 1.4(2) ifACP (A∗) and 1.4(3) if|I | is an aleph we know thatH is
constant on some cone{t ∈ I : s∗ ≤ t}. Now considerH (s∗) as a candidate for
gα(∗): it satisfies clause (b), clause (c) is irrelevant so clause (a) necessarily fails,
i.e. for someβ < α∗, gβ≤D H (s∗) so necessarilyα(∗) = β + 1, and sogβ is as
required. ut1.5

Discussion 1.5A.In 1.5 the demandDCκ is quite strong, implyingP (A∗) is well
ordered. Clearly we need slightly less thanDCκ - only DCα(∗) but α(∗) is not
given a priori so what we need is more thanDC|P (A∗)|. Restricting ourselves to
ℵ1- complete filters we shall do better (see 1.7).

Claim 1.6 (1) [AC|P (A∗)|,|I |] If (i), (ii), (iii) of 1.5 hold, andg is a≤D -lub of
F then
(a) g is a≤D -eub of F

(1A) [ACP (A∗×A∗),I + ACA∗ ] Assume in addition
(ii )+ I is (≤ |P (A∗ × A∗)|)∗-directed partial order
Then
(b) for some A⊆ A∗ and t ∈ I we have:

(α) A ∈ D+ & t ≤I s ⇒ fs � A = g � A modD,

(β) a ∈ A ⇐⇒ [cf(g(a)) ≥ θ(P (A∗)) ∨ g(a) = ft (a)],

(γ) if A 6∈ D+, without loss of generality A= ∅, (changingg)
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(2) If (i), (ii), (iii) of 1.5 hold, |I | an aleph,g a≤D -lub of F then(a) above holds
and if ACA∗ also (b) above holds.

(3) Assume:
(i) D is a filter on A∗

(ii) I is a partial order, θ(P (A∗)/D)-directed
(iii) F̄ = 〈Ft : t ∈ I 〉 is ≤D -increasing
(iv) |I | is an aleph
(v) g a ≤D -lub of F

Then(a) above holds. If ACA∗ then also (b) holds.
Even waving ACA∗ (but assuming (i)-(v)) we have
(b)′ for some A⊆ A∗ and t(∗)

(α) if A ∈ D+ and t(∗) ≤ t ∈ I and f ∈ Ft then
f � A = g � A modD

(β) assume(ii )+; for no C ⊆ Ord do we here|C | < θ(P (A)) and{a ∈
A∗ \ A : g(a) = sup(C ∩ g(a))} /= ∅ modD.

Remark. In 1.6(1A) instead A∗ × A∗ we can use A∗ × ζ for every ζ <
θ(P (A∗)/D). In 1.6(3) we could have usedθ−(P (A∗)/D) insteadθ(P (A∗)/D).

Proof. 1) (a) Let f ∈ A∗
Ord, f < max{g, 1A∗}. We define a functionH : I −→

P (A) by H (t) = {a ∈ A∗ : f (a) ≥ max{ft (a), 1}}. By 1.4(2) we know thatH
is constant on a cone ofI , more exactlyH ′, H ′(t) = H (t)/D is increasing and
is constant by the proof of 1.4(2). Lett ∈ I be in the cone. IfH (t) = ∅ modD
we are done, otherwise definef ∗ to be equal tog on A∗ \ H (t) and equal tof
on H (t). Now f ∗ contradicts the fact thatg is a <D −lub. Now check.

1 A) (b) for A ⊆ A∗ let IA = {t ∈ I : A = {a ∈ A∗ : ft (a) = g(a)}} if not
empty, andI otherwise. Let us applyACP (A∗),I to {IA : A ∈ P (A∗)} getting
{tA : A ∈ P (A)}. Let t(∗) ∈ I be an upper bound of{tA : A ∈ P (A)} (exists by
assumption (ii )). Let

A0 =: {a ∈ A∗ : ft(∗)(a) /= g(a)}
and

A1 = {a ∈ A0 : g(a) is a limit ordinal}
and lastly

A′ =: {a ∈ A1 : cf(g(a)) < θ(P (A∗))}.
Now clearly t(∗) ≤I s ∈ I ⇒ fs < g mod (D + A0) and A0 = A1 mod D .
If A′ = ∅ mod D we are done, so assumeA′ ∈ D+. By ACA∗ we can find
〈Ca : a ∈ A∗〉, such that fora ∈ A′ we have:Ca an unbounded subset ofg(a)
of order type cf[g(a)]. Let for a ∈ A∗ \ A′, Ca = {0}, and forh ∈ ∏

a∈A∗
Ca let

I ∗h =: {t ∈ I : h <D max{ft , 1A∗}}. Now the assumption of 1.6(1A) implies
that of 1.6(1), hence clause (a) holds, and henceI ∗h is not empty. As we have
ACA∗ clearly |A∗| is an aleph, andθ(P (A∗)) is an aleph with cofinality> |A∗|,

Sh:497



Set theory without choice 93

hence{otp(Ca) : a ∈ A∗} is a bounded subset ofθ(P (A∗)), so we can find a
function h∗ from P (A∗) onto ζ∗ = sup{otp(Ca) : a ∈ A∗}. Let ha be the unique
one-to-one order preserving function from otp(Ca) onto Ca, so 〈ha : a ∈ A∗〉
exists. Forh ∈ ∏

a∈A∗
Ca let

Xh =: {(a, b) : a ∈ A∗ andh−1
a ◦ h(a) = h∗(b)} ⊆ A∗ × A∗.

Clearly the mappingh 7→ Xh is one-to-one from
∏

a∈A∗
Ca into P (A∗ × A∗).

Hence byACP (A∗),I

|
∏

a∈A∗
Ca| ≤ |P (A∗ × A∗)| = |P (A∗)|,

so we can find a functionG, Dom(G) =
∏

a∈A∗
Ca, G(h) ∈ I ∗h . By (ii ) we get that

Rang(G) has an≤I -upper boundt(∗∗), and we can get a contradiction.
2) Follows by (3) (withFt =: {ft})
3) (a) Let <∗ be a well ordering ofI . Let f ∈ (A∗)Ord, f < max{g, 1A∗}.

For everyA ∈ D+ let tA/D be the<∗-first t ∈ I such that for someft ∈ Ft we
have{a ∈ A∗ : ft (a) ≥ f (a)} = A modD . Now A 7→ tA/D is a mapping (maybe
partial) fromP (A∗)/D into I and |I | is an aleph, so

|{tA/D : A ∈ D+}| < θ(P (A∗)/D) (≤ θ(P (A∗))).

But I is θ(P (A∗)/D)-directed so there ist(∗) ∈ I such that

(∀A ∈ D+)(tA/D ≤I t(∗))

Any ft(∗) ∈ Ft(∗) satisfiesf < max{ft(∗), 1A∗}.
(b) + (b)′ For eachA ∈ D+, let tA/D be the<∗-first t ∈ I such that

A⊆ {a ∈ A∗ : ft (a) = g(a)} modD

if there is one. So clearly

{tA/D : A ∈ D+ and tA/D is well defined}
is a set of<∗-order type< θ(P (A∗)/D), hence there ist(∗) ∈ I such that

A ∈ D+ & tA/D well defined ⇒ tA/D ≤I t(∗).

Let
A0 =: {a ∈ A∗ : ft(∗)(a) /= g(a)}

A1 =: {a ∈ A0 : f (a) a limit ordinal}
and

A′ =: {a ∈ A1 : cf(g(a)) < θ(P (A∗))},
as in the proof of 1.6(1A) we have forA = A0, clause (α) of (b) and of (b)′

holds, andA1 = A0 mod D , and if A′ = ∅ mod D we are done. As for clause
(b)(β) by ACA∗ , if it fails then (β) of (b)′ fails, so it suffices to prove (b)′. Now
clause (α) holds, and we prove (β) as in 1.6 (1A). ut1.6
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Claim 1.7 [DCℵ0 + ACP (A∗)] Assume:

(i) D is an ℵ1-complete filter on a set A∗,
(ii) I is a (≤ |P (A∗)|)∗-directed partial order,
(iii) F = {ft : t ∈ I } is ≤D -increasing, ft : A∗ → Ord.

ThenF has a≤D −eub

Remark 1.7A.

1. Given F̄ = 〈Ft : t ∈ I 〉 is ≤D -increasing (i.e. [I |= s < t & f ∈ Is & g ∈
It ⇒ f ≤D g]) we can useJ = (

⋃
t∈I

Ft ,≤D ) as the partial order insteadI with

fg = g for g ∈ ⋃
t∈I

Ft , so claim 1.7 applies tōF = 〈Ft : t ∈ I 〉 too; similarly

for 1.5 . Note that ifI is (≤ λ)∗-directed so isJ . Also 1.6 (1) (in the proof
replaceH by H ′ : H ′(t) = H (t)/D), concerning 1.6 (1A) check, and lastly
for 1.6 (2) see 1.6 (3))

2. If we want to demand onlyACP (A∗),λ, thenλ =
∏

α∈A∗
βa is large enough.

3. NoteACP (A∗) can be replaced byACP (A∗)/D .

Proof. By 1.6(1) it suffices to find a≤D -lub. Let for a ∈ A∗,

βa =: sup{ft (a) : t ∈ I } + 1 ∈ Ord.

For everyA ∈ D+, there is no decreasingω-sequence in (
∏

a∈A∗
βa, <D+A); hence

by DCℵ0 there is a functiong ∈ ∏
a∈A∗

βa satisfying:

(i )A (∀t ∈ I )[ft ≤D+A g]
(ii )A if g′ satisfies (i) then¬(g′ <D+A g).

By ACP (A∗) we can find〈gA : A ∈ D+〉 with gA ∈
∏

a∈A
βa that satisfies (i )A +(ii )A.

Let Ba = {gA(a) : A ∈ D+} ∪ {βa} so |Ba| ≤ |D+| ≤ |P (A∗)|
Let H : I −→ B∗ =

∏{Ba : a ∈ A∗} be H (t)(a) = min
(
Ba\ft (a)

)
. Clearly

H is an order preserving mapping from (I ,≤I ) to (B∗/D ,≤D ). Also

|B∗/D | ≤∗ |B∗| ≤∗
∏

a∈A∗
|D+| = |D+||A∗| ≤ |P (A∗)||A∗|.

But asACP (A∗) holds clearly A∗ is well ordered, hence|A∗|×|A∗| = |A∗|, hence
|P (A∗)||A∗| = |P (A∗)|.

By 1.4(2) we know thatH is constant on a cone, say{t : s(∗) ≤I t}.
Assumeg∗ =: H (s(∗)) is not a≤D -lub , so someg′ exemplifies it. Let

A = {a ∈ A∗ : g′(a) < g∗(a)}, so A ∈ D+ andgA is well defined.
By the choice ofgA andg′ clearly¬(g′ <D+A gA) hence

A1 = {a ∈ A∗ : g′(a) ≥ gA(a)} /= ∅ modD + A

So A2 = A1 ∩ A ∈ D+; andgA ≤D+A2 g
′. But by the choice ofg∗ = H (s(∗))

(as (∀a)(gA(a) ∈ Ba)) clearly g∗ ≤D+A gA. Together we getg∗ ≤D+A2 g
′, but this

contradicts the definition ofA asA2 ⊆ A. ut1.7
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Claim 1.8 [DCℵ0] Consider the conditions:

(i) D is an ℵ1-complete filter on A∗,
(ii) I is a (≤ |P (A∗)/D |)∗-directed partial order,
(iii) F̄ = 〈Ft : t ∈ I 〉 is ≤D -increasing, so f: A∗ → Ord for f ∈ ⋃

t∈I
Ft ,

(iv) g : A∗ → Ord and (∀t ∈ I )(∀f ∈ Ft )(f ≤D g),
(v) nog′ <D g satisfies (iv).

Thenthe following implications hold:

(1) If (i), (iii) then someg satisfies (iv).
(2) If (i), (iii), (iv) then someg∗ ≤ g satisfies clauses (iv), (v); if forg clauses (i),

(iii), (iv), ¬(v) hold, we can ask alsog∗ <D g.
(3) [ACP (A∗)/D,I ] If (i)-(v), and F̄ is D–smooth thenthere is D∗, such that

(a) D∗ an ℵ1-complete filter extending D,
(b) g is <D∗ −lub of F̄ .

(4) In (3) we can omit smoothness.
(5) If (i)-(v) and |I | is an aleph then for some D∗ clauses (a), (b) of (3) hold (i.e.
we can drop AC in part (3)).

Proof. (1), (2) are contained in the proof of 1.7
(3) Let D∗ = {A ⊆ A∗ : for D + (A∗\A), clause (v) fails}. Clearly D∗ is ℵ1-

complete filter and∅ /∈ D∗. Clearly F̄ is ≤D∗ -increasing andg is a≤D∗ -upper
bound ofF̄ . If g is not a≤D∗ -lub, there isg′ ∈ (A∗)Ord, a≤D∗ -upper bound of
F̄ such that¬[g ≤D∗ g′], so

A′ =: {a ∈ A∗ : g′(a) < g(a)} /= ∅ modD∗.

For eacht ∈ I , for everyft ∈ Ft let

Yt =: {a ∈ A∗ : ft (a) > g′(a)}/D ∈ D∗/D

(well defined asF̄ is D-smooth), andt 7→ Yt is an increasing function fromI to
(D∗/D ,≤D ), by 1.4(2) we get a contradiction.

(4) Use 1.9(3) below to regain smoothness.
(5) Left to the reader (just use 1.4(3) instead 1.4(2)). ut1.8

We have used

Observation 1.9 1. [ACP (A∗)/D,I or |I | is an aleph] If F̄ = 〈Ft : t ∈ I 〉 is
<D -increasing (where ft : A∗ =: Dom(D) −→ Ord), I is (≤ |P (A)/D |)∗-
directed thenfor everyg : A∗ −→ Ord for some t∗ ∈ I and A⊆ A∗, for all
f ∈ ⋃

t∗≤t∈I
Ft

{a ∈ A∗ : f (a) > g(a)} = A modD .

Similarly for f (a) = g(a), f (a) < g(a).
2. In (1) in the case|I | is an aleph, “I is (< θ(P (A)/D))∗- directed” suffices.
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3. [ACℵ0] AssumeF̄ = 〈Ft : t ∈ I 〉 is <D -increasing. Let I be a partial order
(≤ ℵ0)∗- directed,

J0 = {〈tn : n < ω〉 : tn ∈ I and tn <I tn+1 for n < ω},
t̄0 ≤J0 t̄1 ⇐⇒ [(∀n < ω)(∃m < ω)(t0

n ≤I t1
m)],

t̄0 <J t̄1 if t̄0 ≤J t̄1&¬(t̄1 ≤J t̄0).

Let F∗̄t = {supn<ω fn : 〈fn : n < ω〉 ∈ ∏
n<ω

Ftn} and F̄∗ = 〈F ∗̄
t : t̄ ∈ J〉 where

of course(sup
n<ω

fn)(a) = sup
n<ω

fn(a). Then

(a) F̄∗ is ≤D -increasing and smooth
(b) g is a≤D -lub of F̄ iff g is a≤D -lub of F̄∗

(c) g is a≤D -eub ofF̄ iff g is a≤D -eub ofF̄∗

(d) I , J are equi-directed, what means: there is an embedding H of I into J
(a partial order) such that its range is a cofinal subset of J [use H(t) =
〈t : n < ω〉].

4. [ACℵ0] Assume I= δ whereδ is a limit ordinal of cofinality> ℵ0, and let
F̄ = 〈Fα : α < δ〉 be<D -increasing (where each Fα ⊆ (A∗)Ord is not empty).
Let J = {α < δ : cf(α) = ℵ0}, and forα ∈ J let

F∗ =: {sup
n

fn : for some strictly increasing sequence〈αn : n < ω〉
of ordinals < α we haveα =

⋃
n<ω

αn, and fn ∈ Fαn}.

ThenF̄∗ = 〈F∗
α : α ∈ J〉 satisfies clauses (a)-(d) from part (3), and of course

J is well ordering.

Proof. Check.

2 hpp

Definition 2.1

1. LetΓ be a set of filters on A∗ = A∗Γ = Dom(Γ ). For an ordinalα, we let
hppΓ (α) be the supremum of the ordinalsβ + 1 for which there is a witness
(F̄ ,D), which means:
(i) D ∈ Γ ,
(ii) F = 〈Fγ : γ < β〉, with Fγ /= ∅,
(iii)

⋃
γ<β

Fγ ⊆ (A∗)α,

(iv) F̄ is <D -increasing.
2. ehppΓ (α) is defined similarly, but each Fγ a singleton; the definition of

shppΓ (α) is similar too, butF̄ is smooth. We can replaceα by f ∈ (A∗)Ord
in all these cases here (i.e. F⊆ ∏

a∈A∗
f (a)). If Fα = {fα} we may write

F = 〈fα : α < β〉 instead ofF̄ .
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3. If Γ = {D} then we write D instead ofΓ . We say thatΓ is ℵ1-complete if
each D∈ Γ is ℵ1-complete, and similarly for other properties.

4. We define ppΓ (α) as in (1) but add to(i)-(iv) also
(v) there exists〈αa : a ∈ Dom(D)〉 such that:

(α) θ(A∗) ≤ αa < α,

(β) cfD (〈αa : a ∈ A∗〉) = α (see below), eachαa a limit ordinal,

(γ) for everyg ∈ ∏
a∈A∗

αa there is f ∈ ⋃
γ<β

Fγ such thatg ≤D f .

5. eppΓ (α), sppΓ (α) are defined similarly.
6. For a filter D with the domainA∗,

cfD (〈αa : a ∈ A∗〉)
= inf{otp(C) : C ⊆ ⋃

a∈A∗
αa and{a ∈ A∗ : αa = sup(C ∩ αa)} ∈ D},

lim sup
D

(〈αa : a ∈ A∗〉) = min{α : {a ∈ A∗ : αa ≤ α} ∈ D}.

Remark. 1) Note that in 2.1(4) clause (β) (i.e. cfD (〈αa : a ∈ A∗〉) = α) is a
replacement to “〈αa : a ∈ A∗〉 is a sequence of limit ordinals with tlim〈cf(αa) :
a ∈ A∗〉 = α”.

2) Note pp stands for pseudo power,h for hereditary,s for smooth,e for
element (rather than set).

Observation 2.2 1. hppΓ (α), ehppΓ (α) and shppΓ (α) increase withα andΓ ;
and ppΓ (α), eppΓ (α) and sppΓ (α) increase withΓ .

2. ehppΓ (α) ≤ shppΓ (α) ≤ hppΓ (α) ≤ θ(A∗α) and eppΓ (α) ≤ ppΓ (α) ≤
θ((A∗)α), and eppΓ (α) ≤ ehppΓ (α) and ppΓ (α) ≤ hppΓ (α).

3. xΓ (α) = sup{xD (α) : D ∈ Γ} for x ∈ {pp, epp, hpp, ehpp, spp, shpp}.
4. xD (α) = sup{xD (β) : θ(Dom(D)) ≤ β < α} for x ∈ {hpp, ehpp, shpp} if

θ(Dom(D)) ≤ cf(α).
5. If a /= b ⇒ αa /= αb thencfD (〈αa : a ∈ A∗〉) ≥ minA∈D |A|.
Remark 2.2A.1)If hppΓ (α) > β, and cf(β) ≥ θ(P (Dom(D)) and relevant crite-
rion for existence of<D −eub holds forD ∈ Γ thenfor someα′ ≤ α we have
ppΓ (α′) > β. See below. 2) In factshppΓ (α) = hppΓ (α) andsppΓ (α) = ppΓ (α)
by 1.9(4); ifα is a limit ordinal (hencexΓ (α) is a limit ordinal forx as in 2.2(3)).

Proof. Easy, e.g.
5) let C ⊆ ⋃

a∈A∗
αa exemplify cfD (〈αa : a ∈ A∗〉) = otp(C). Let

A′ = {a ∈ A∗ : Ca /= a} where

Ca = {β ∈ C : β ≤ αa but for nob ∈ A∗ do we haveβ ≤ αb < αa}.
So there is a one-to-one function fromA′ into C (simply a → min(Ca)) and

otp{αa : a ∈ A′} < otp{αa : a ∈ A′} + ω,

so we can finish.
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Definition 2.3

1. I has the true cofinalityδ, δ an ordinal if there is a cofinal J⊆ I and a
function h from J ontoδ such that h(f1) < h(f2) ⇒ f1 <I f2.

2. I has strict cofinalityδ, δ an ordinal if the function h above is one-to-one.

Claim 2.4 1. If I has the strict cofinalityδ then I has the true cofinalityδ and
cf(I ) ≤ δ.

2. If I has the true (strict) cofinalityδ thenI has the true (strict) cofinalitycf(δ)
(which is regular).

3. If F̄ = 〈Fα : α < δ〉, ⋃
α<δ

Fα ⊆ (A∗)Ord, F̄ is <D -increasing andF̄ has

<D -eub〈αa : a ∈ A∗〉 then
∏

a∈A∗
αa/D has the true cofinalitycf(δ).

4. If I has the true cofinalityδ1 andδ2 thencf(δ1) = cf(δ2).

Remark 2.4A. We did not say “I has the true cofinalityλ ⇒ cf(I ) ≤ λ”. But it
is true that:I has true cofinalityλ implies cf∗(I ) ≤∗ λ.

Claim 2.5 LetΓ , A∗ be as in 2.1(1).

1. [|A∗| an aleph, DC|P (A∗)|]+ Assumeδ < hppΓ (α), δ a cardinal andcf(δ) ≥
θ(P (A∗)). Then for some D∈ Γ and ᾱ = 〈αa : a ∈ A∗〉, with eachαa being
a limit ordinal ≤ α we have,

∏
a∈A∗

αa/D has the true cofinalityδ.

2. [ACA∗ ] If
∏

a∈A∗
αa/D has the true cofinalityµ then

∏
a∈A∗

cf(αa)/D also has

the true cofinalityµ.
3. [|A∗| an aleph and DC|P (A∗)|+ ] Assumeω ≤ α < ℵα andℵα > θ(P (A∗)).

If ℵγ ≤ hppD (ℵα) then (A∗)α can be mapped ontoγ. Similarly for ℵα0+γ ≤
ppD (ℵα0+α).

4. Similar claims hold for pp, shpp, spp, ehpp and epp.

Proof. 1) By the definition ofhppΓ (α) we can findD ∈ Γ and a<D -increasing
sequencēF = 〈Fα : α < δ〉, with Fα ⊆ (A∗)α non empty.
If g ∈ (A∗)(α + 1) is a<D −eub of F̄ then by 2.4(3),αa =: g(a) for a ∈ A∗ are
as required. Now suchg exists by 1.5 which is applicable by 1.7A(1).

2) Let F̄ = 〈Fα : α < µ〉 exemplify that
∏

a∈A∗
αa has true cofinalityµ. By

ACA∗ we can find〈Ca : a ∈ A∗〉 ∈ V, Ca a club ofαa of order type cf(αa). For
f ∈ ∏

a∈A∗
αa let f ⊗ ∈ ∏

a∈A∗
Ca be f ⊗(a) = min(Ca \ f (a)), so f ≤ f ⊗ ∈ ∏

a∈A∗
Ca

and f1 ≤D f2 ⇒ f ⊗1 ≤D f ⊗2 . Now apply 1.3(7) to〈{f ⊗ : f ∈ Fα} : α < µ〉.
3) It is enough to map(A

∗)α onto (γ − 1) \ α. We define a functionH
from (A∗)α into γ \ α. For f ∈ (A∗)α, if (

∏
a∈A∗

ℵf (a), <D ) has true cofinality

ℵα+β+1 ≤ ℵγ then letH (f ) = β. By ACA∗ and 2.5 (2) it is enough for everyβ
such thatℵα < ℵβ+1 < ℵγ to find f ∈ (A∗)(ℵα) such that (

∏
a∈A∗

f (a), <D ) has

the true cofinalityℵβ+1. Now we use part (1) of 2.5.
4) By 2.2 or repeating the proofs. ut2.5
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Claim 2.6 [DCℵ0 + (∀D ∈ Γ )ACP (Dom(D))] In 2.5(1), ifΓ is ℵ1- complete then
the conclusion holds.

Proof. We can use 1.7 instead of 1.5.

Definition 2.7

pcfΓ {αa : a ∈ A∗} =: {λ : λ is the true cofinality of
∏

αa/D
for some filter D on A∗ which belongs toΓ}.

Remark 2.7A.We could phrase 2.5 for pcfΓ .

Claim 2.8 1. If λ is an aleph,µ < λ < eppD (µ) andθ(Dom(D)) < λ thenλ is
not measurable

2. If λ is an aleph,µ < λ < eppD (λ),
thenthere is no(≤ |Dom(D)| + µ)-complete uniform ultrafilter onλ.

Proof. 1. Let (F̄ ,D) witnessλ < eppD (µ), so f ∈ α

⋃
Fα ⇒ Dom(f ) = A∗,

whereA∗ =: Dom(D); so letF = {fα : α < λ}, whereFα = {fα}. AssumeD∗ is
a λ-complete ultrafilter onλ. For eacha ∈ A∗, we have a functionga : λ→ µ,
defined byga(α) = fα(a). Soga is a one-to-one map

from s′ =: {α < λ : (∀β < α)(ga(β) /= ga(α))} onto Rang(ga) ⊆ µ,

so |Rang(ga)| is an aleph≤ µ (or finite). Hence|Rang(ga)| < λ. By the choice
of D∗ for some uniqueγa we haveBa =: {α < λ : fα(a) = γa} ∈ D∗, as
〈fα : α < λ〉 exists also〈γa : a ∈ A∗〉 exists as well as〈Ba : a ∈ A∗〉. Clearly
|{γa : a ∈ A∗}| < θ(A∗). As D∗ is (≤ |A∗|)-complete,B∗ =:

⋂
a∈A∗

Ba ∈ D∗, but

[α, β ∈ B∗ ⇒ fα = fβ ], a contradiction.
2. Same proof. ut2.8

Remark 2.8A. You can also phrase the theorem in terms ofλ-complete filters
on λ which are weaklyκ-saturated (i.e. for everyh : λ −→ λ′ < λ, for some
C ⊆ λ′ of cardinality≤ κ, {α < λ : h(α) ∈ C} ∈ D). Here instead of|A∗| < λ
we need:D is uniform and¬(λ ≤ |(A∗)κ|).

Definition 2.9 Let E be a set of filters on a setA∗.

1. E has the I -lub property (I a directed set) if:
for everyD0 ∈ E and F = {ft : t ∈ I } ⊆ (A∗)Ord such that{ft : t ∈ I } is
<D0-increasing,
there isD, D0 ⊆ D ∈ E such that there is a<D -lub for F .

2. “E has the I -eub property” is defined similarly. The I -∗eub is defined simi-
larly for <D -increasingF̄ = 〈Ft : t ∈ I 〉. Similarly I -∗lub.

3. If E = {D} we shall say D has this property.
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3 Nice families of filters

Hypothesis 3.0: E is a family ofℵ1-complete filters onA∗ = Dom(E), such that
(for simplicity) D ∈ E & A ∈ D+ ⇒ D + A ∈ E. Our main interest is in niceE
(defined below).

Definition 3.1 We call E nice if

⊕E (∀f : A∗ → Ord)(∀D ∈ E)(rk2
D (f ) <∞)

(see below). Let⊕A∗ mean⊕E for some E, with A∗ = Dom(E) and⊕κ[E] = ⊕E

with A∗ = κ.
Let E[D0] = {D : D0 ⊆ D ∈ E}.

Definition 3.2

1. The truth value ofrk2
D (f ,E) ≤ α (for α an ordinal f : A∗ → Ord, E usually

omitted):
rk2

D (f ) ≤ α if for every A∈ D+ and f1 <D+A f (and f1 : A∗ → Ord) there is
D1, D + A⊆ D1 ∈ E andβ < α such thatrk2

D1
(f1) ≤ β.

(So f =D 0A∗ impliesrk2(f ) ≤ 0)
2. rk2

D (f ) = α if rk2
D (f ) ≤ α and¬[rk2

d(f ) ≤ β] for β < α
rk2

D (f ) = ∞ if rk2
D (f ) ≤ α for noα

rk3
D (f ) = min{rk2

D1
(f ) : D ⊆ D1 ∈ E}

(really we should have writtenrk2
D (f ,E) etc.).

Remark. Why start with rk2? To be consistent with [Sh-g] Ch.V.

Convention 3.3 Let f , g vary on (A∗)Ord and D ∈ E and A,B ⊆ A∗.

Claim 3.4 1. rk2
D (f ) ≤ β, β ≤ α impliesrk2

D (f ) ≤ α; so rk2
D (f ) is well defined

as an ordinal or∞ (ZF is enough for the definition).
2. If f ≤ g or just f ≤D g and l = 2, 3 thenrkl

D (f ) ≤ rkl
D (g) (so f =D g implies

rkl
D (f ) = rkl

D (g)).
3. In 3.2(1) we can demand in addition f1 ≤ f .
4. rk3

D (f ) ≤ rk2
D (f ).

5. If D1 ⊆ D2 thenrk3
D1

(f ) ≤ rk3
D2

(f ).
6. For every f,D, for some D1 such that D⊆ D1 ∈ E we have

rk3
D (f ) = rk2

D1
(f ) = rk3

D1
(f ).

7. rk2
D (f ) = sup{rk3

D+A(g) + 1 : A ∈ D+ and g <D+A f }.
8. If A∈ D+ thenrk3

D (f ) ≤ rk3
D+A(f ) ≤ rk2

D+A(f ) ≤ rk2
D (f ).

[Why? By parts (5), (4), (7)+(4) respectively.]
9. If rk2

D (f ) = rk3
D (f ) thenfor every A∈ D+

rk2
D+A(f ) = rk3

D+A(f ) = rk2
D (f ) = rk3

D (f ).
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10. If f <D g thenrk3
D (f ) < rk3

D (g) or both are∞.
[Why? Apply part (6) tog, D and get D1. Now

rk3
D (f ) ≤ rk3

D1
(f ) < rk3

D1
(f ) + 1

≤ sup{rk3
D1+A(h) + 1 : h <D1+A g and A∈ D+

1}
= rk2

D1
(g) = rk3

D1
(g).

(Why the inequalities? by D⊆ D1, using part (5); trivially; as f<D g hence
f <D1 g; by definition ofrk2; and by the choice of D1 respectively.)]

11. ‖f ‖D ≤ rk3
D (f ) (‖.‖D – the Galvin–Hajnal rank which is defined by:‖f ‖D =

sup{‖g‖D + 1 : g <D f }).
[Why? part (10).]

12. If for l = 1, 2, rk2
D (fl ) = rk3

D (fl ) = αl andα1 < α2 thenf1 <D f2.
[Why? If not then for some A∈ D+ we have f2 ≤D+A f1, so by part (2) we
haverk2

D+A(f2) ≤ rk2
D+A(f1), but by part (9)rk2

D+A(f2) = α2 > α1 = rk2
D+A(f1),

a contradiction.]
13. If for l = 1, 2 rk2

d(fl ) = rk3(fl ) = αl andα1 = α2 thenf1 =D f2.
[Why? If not then by symmetry for some A∈ D+ we have f1 <D+A f2, so by part
(10) we haverk3

D+A(f1) < rk3
D+A(f2) and by part (9) we get a contradiction.]

14. If rk2
D0

(f ) <∞ and¬(g ≥D0 f ) thenfor some D1 ∈ E[D0] , rk2
D1

(g) < rk2
D0

(f ) <
∞. [Why? Clearly for some A∈ D0, g <D0+A f ; now for some D1, D0 + A ⊆
D1 ∈ E and rk2

D1
(g) = rk3

D1
(g) = rk3

D0+A(g), but rk3
D0+A(g) < rk3

D0+A(f ) ≤
rk2

D0+A(f ) ≤ rk2
D0

(f ) <∞.]
15. If {At : t ∈ I } ⊆ D+ and (∀D1)(D ⊆ D1 ∈ E → (∃t ∈ I )(At ∈ D+

1 )) (e.g. I
finite,

⋃
t∈I

At ∈ D) then

rk2
D (f ) = sup{rk2

D+At
(f ) : t ∈ I } and rk3

D (f ) = min{rk3
D+At

(f ) : t ∈ I }

[Why? The inequalities≥, ≤ by part (8), the other by the definition (or part
(7) and part (9)).]

Observation 3.5 1. (a) If f = g + 1, D ∈ E then rk2
D (f ) ≤ rk2

D (g) + 1; if in
addition rk3

D (g) = rk2
D (g) thenrk2

D (f ) = rk3
D (g) + 1.

(b) If every f(a) is a limit ordinal thenrk3
D (f ) is a limit ordinal.

(c) f =D 0A∗ iff rk2
D (f ) = 0.

(d) rk3
D (f ) = 0 iff ¬(0A∗ <D f ).

2. If f = g + 1 then:
(a) rk2

D (f ) ∈ {rk2
D (g), rk2

D (g) + 1},
(b) if rk2

D (f ) = rk2
D (g) < ∞ then rk2

D (g) is a limit ordinal of cofinality<
θ(P (A∗)) and even< θ(P (A∗)/D).

3. If Rang(f ) is a set of limit ordinals, F⊆ ∏
a∈A∗

f (a) is such that

[g < f ⇒ (∃h ∈ F )(g ≤ h)]

thenrk2
D (f ) = sup{rk3

D+A(h) : h ∈ F ,A ∈ D+}.
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4. If δ = rk2
D (f ), cf(δ) ≥ θ(E) then2 for some D1, D ⊆ D1 ∈ E,

∏
a∈A∗

f (a)/D1

has true cofinalityδ (moreover by a smooth sequence〈Fα : α < cf(δ)〉)
5. If rk2

D (f ) = α <∞ thenfor everyβ < α there are D,g such that D⊆ D1 ∈ E,
g <D1 f and rk2

D1
(g) = rk3

D1
(g) = β.

Proof. 1)(a) By 3.4(7), 3.4(2), 3.4(8) and common sense respectively

rk2
D (f ) = sup{rk3

D+A(g′) + 1 : A ∈ D+ andg′ <D+A f }
≤ sup{rk3

D+A(g) + 1 : A ∈ D+}
≤ sup{rk2

D (g) + 1} = rk2
D (g) + 1

and, for the second phrase, by 3.4(4) and 3.4(10) respectively

rk2
D (f ) ≥ rk3

D (f ) ≥ rk3(g) + 1.

Together we have finished.
(b) By part (c) proved below, rk3D (f ) > 0, so assume toward contradiction that
rk3

D (f ) = α + 1, so (by 3.4(6)) for someD1 we haveD ⊆ D1 (∈ E) and rk3D (f ) =
rk2

D1
(f ) = rk3

D1
(f ). By 3.4(7) for someA ∈ D+ andg <D1+A f we have rk3D1+A(g) =

α. By 3.4(10), 3.4(10), 3.4(9) and the choice ofα respectively

rk3
D1+A(g) < rk3

D1+A(g + 1) < rk3
D1+A(f ) = rk3

D (f ) = α + 1.

So rk3
D1+A(g) < α contradicting the choice ofA, andg.

(c) If f =D 0A∗ then the supremum in 3.4(7) (or the definition) is taken on an
empty set so rk2D (f ) = 0. If ¬(f =D 0A∗ ) then A =: {a ∈ A∗ : f (a) > 0} and
g ∈ (A∗)Ord, g(a) = 0 appears in the supremum in 3.4(7) (or the definition) so
rk2

D (f ) ≥ 0 + 1 = 1> 0.
(d) By (c) and the definition of rk3.

2) By 3.4(2), 3.5(a) respectively we have

rk2
D (g) ≤ rk2

D (f ) ≤ rk2
D (g) + 1.

Thus clause (a) holds. For clause (b) assume rk2
D (f ) = rk2

D (g), and call this
ordinalα. If α = 0 we get contradiction by 3.5(1)(c) as rk2

D (f ) = α, f = g + 1. If
α = β + 1 then for someA ∈ D+ and g1 <D+A g we have rk3D+A(g1) = β so by
3.4(7), 3.4(10), and the choice ofg1, A, and the choice ofβ respectively:

rk2
D (f ) ≥ rk3

D+A(g) + 1 > rk3
D+A(g1) + 1 = β + 1 =α;

contradiction. Soα is a limit ordinal and{rk3
D+A(g) : A ∈ D+} is an unbounded

subset ofα hence cf(α) < θ(P (A∗)) (in fact cf(α) < θ(P (A∗)/D)).

3) By 3.4(7) and 3.4(2).

4) By 3.4(7), and rk2D (f ) being a limit ordinal

2 We can use this to prove a result parallel to 2.5 (3)

Sh:497



Set theory without choice 103

δ = rk2
D (f ) = sup{rk3

D+A(g) + 1 : A ∈ D+ andg <D+A f }
= sup{rk3

D+A(g) : A ∈ D+ andg <D+A f andg ≤ f }
= sup{rk3

D1
(g) : for someA ∈ D+, g <D+A f andg ≤ f
andD + A⊆ D1 ∈ E and

rk3
D1

(g) = rk2
D1

(g) < δ}
= sup{rk3

D1
(g) : D ⊆ D1 ∈ E, g <D1 f andg ≤ f
and rk3D1

(g) = rk2
D1

(g) < δ}
= sup

D1∈E,D1⊇D
sup{rk3

D1
(g) : g <D1 f andg ≤ f

and rk3D1
(g) = rk2

D1
(g) < δ}.

As cf(δ) ≥ θ(E) necessarily for someD1 we haveD ⊆ D1 ∈ E and

δ = sup{rk3
D1

(g) : g <D1 f andg ≤ f and rk3D1
(g) = rk2

D1
(g) < δ}.

For α < δ let

Fα = {g : g ≤ f , g <D1 f , andα = rk3
D1

(g) = rk2
D1

(g)}
and S = {α < δ : Fα /= ∅}, it is necessarily unbounded inδ. Now by 3.4(12),
(13), F̄ = 〈Fα : α ∈ S〉 is <D1-increasing and smooth.
5) Supposeβ < α, f , D form a counterexample. Then we prove by induction
on γ ≥ β that

(∗)γ if g ∈ (A∗)Ord, andD ⊆ D1 ∈ E and g <D1 f and rk3D1
(g) ≥ β then

rk3
D (g) ≥ γ.

For γ = β clearly (∗)γ holds trivially.
For γ > β, we can findD2 such thatD1 ⊆ D2 ∈ E and rk3D1

(g) = rk2
D2

(g) =
rk3

D2
(g), butβ ≤ rk3

D1
(g) by assumption, so asβ, α, f , D form a counterexample

β < rk3
D1

(g) so by 3.4(7) applied to rk2D2
(g) we can findA ∈ D+

2 andg1 <D2+A g

such that rk3D2+A(g1) ≥ β, so by the induction hypothesis rk3
D1+A(g1) ≥ ⋃{γ1 :

β ≤ γ1 < γ}. Now by 3.4(9) we know rk3D2+A(g) = rk3
D2

(g) and by 3.4(10),
rk3D2+A(g1) < rk3

D2+A(g). Together we get the required conclusion in (∗). So
rk2

D (f ) = sup{rk3
D+A(g) + 1 : A ∈ D+ andg <D+A f } is α hence> β so for

someA ∈ D+ and g <D+A f we have rk3D+A(g) ≥ β hence by (∗) it is > α,
contradiction. ut3.5

Definition 3.6 For D a filter on A∗ and f : A∗ → Ord let

TsD (f ) = {F : F ⊆
∏

i∈A∗
f (i ) satisfies f1 ∈ F & f2 ∈ F & f1 /= f2 ⇒ f1 /=D f2}

TwD (f ) = {(F , e) : F ⊆ ∏
i∈A∗

f (i ), e is an equivalence relation on F,

¬f1 e f2 ⇒ f1 /=D f2},
TD (f ) = {(F , e) ∈ TwD (f ) : e is =D� F},

TsD (f ) = sup{|F | : F ∈ TsD (f )},
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TwD (f ) = sup{|F/e| : F/e∈ TwD (f )},
TD (f ) = sup{|F/e| : (F , e) ∈ TD (f )}

(it is a kind of cardinality; of course thesupdo not necessarily exist). We may write
F/e ∈ TwD (f ) instead of(F , e) ∈ TwD (f ) and also may writēF = 〈Ft : t ∈ I 〉
for (F , e) if F =

⋃
t

Ft , and feg ↔ (∃t)[{f , g} ⊆ Ft ] and so the Ft ’s are pairwise

disjoint.

Observation 3.7 1. F ∈ TsD (f ) ⇒ (F ,=) ∈ TwD (f ).
2. TsD (f ) ≤ TwD (f ).
3. If F̄ = 〈Fα : α < α∗〉 is <D -increasing,

⋃
Fα ⊆

∏
a∈A∗

f ∗(a) then rk3
D (f ∗) ≥

α∗; so hppD (f ∗) ≤ rk3
D (f ∗); also 〈Fα : α < α∗〉 ∈ TwD (f ) hence|α∗| ∈

TwD (f ).
4. [ACA∗ ] If f , g ∈ A∗

Ord and D is a filter onA∗ and{a ∈ A∗ : f (a) = g(a)} ∈
D and X∈ {Ts,Tw,T} thenXD (f ) = XD (g).

Claim 3.8 1. [E is nice] Assume F⊆ (A∗)Ord. We can find〈(FD , hD ) : D ∈ E〉
such that:
(a) F =

⋃
D∈E

FD

(b) hD : FD → Ord
(c) if f1, f2 ∈ FD thenhD (f1) ≤ hD (f2) ⇐⇒ f1 ≤D f2 and hence

hD (f1) = hD (f2) ⇐⇒ f1 =D f2, so

hD (f1) < hD (f2) ⇐⇒ f1 <D f2

(d) if F ⊆ ∏
i∈A∗

f (i ) then(FD ,=D ) ∈ Tw(f ).

2. Instead of “E is nice” it suffices that F⊆ ∏
a∈A∗

f ∗(a), rk2
D (f ∗) <∞.

Proof. 1) Let FD =: {f ∈ F : rk2
D (f ) = rk3

D (f )(< ∞)}, hD (f ) = rk2
D (f ). Now

clause (a) holds by 3.4 (6), clause (b) holds asE is nice (see 3.1). For (c): it
holds by 3.4(12), 3.4(13). Lastly clause (d) follows from (c).

2) Similar (see 3.4 (14)). ut3.8

Conclusion 3.9 Let D0 ∈ E.

1. [ E is nice ] Assume F⊆ ∏
a∈A∗

f ∗(a) is in TsD0(f ∗).

(a) If |E| is an aleph thenso is|F |.
(b) F can be represented as

⋃{FD : D0 ⊆ D ∈ E} such that FD ’s cardi-
nality is an aleph< ehppE(f ∗).

(c) |F | ≤∗ |E| × ehppE(f ∗)
2. [ E is nice ] Assume(F , e) is in TwD0(f ∗)

(any (F ,=D ) will do for F ⊆ (A∗)Ord).
(a) If |E| is an aleph thenso is|F/e|.
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(b) F/e can be represented as
⋃{FD/e : D0 ⊆ D ∈ E} such that|F/e| is

an aleph≤ hpp(f ∗).
(c) |F/e| ≤∗ |E| × hppE(f ∗)

3. Instead of “E is nice”, “rk2
D0

(f ∗) <∞” suffices.

Proof. 1) It follows from 2) as in this casee is the equality.
2) For D ∈ E[D0] , let

FD = {f ∈ F : rk2
D (f ) = rk3

D (f ) and: if f1 ∈ f /e and rk2D (f1) = rk3
D (f1)

then rk2D (f1) ≥ rk2
D (f )}.

Let hD : FD → Ord behD (f ) = rk2
D (f ). So (for f1, f2 ∈ FD ):

hD (f1) = hD (f2) iff f1/e = f2/e.

Also F/e =
⋃{FD/e : D ∈ E}. So clause (b) holds, for clause (c) letG(D , α)

be y iff y has the formf /e wheref ∈ FD , hD (f ) = α; so G is a partial function
from |E| × hppE(f ∗) onto F/e. Note that clause (a) follows as|X| ≤∗ |Y |, |Y |
is an aleph implies|X| is an aleph. (We can choose a well ordering< of E, we
can letF ′

D = {f : f ∈ FD and lettingf ∈ Ft , for no f ′ ∈ f /e and D ′ < D do
we havef ′ ∈ FD′}. Let h =

⋃{hD � F ′
D : D ∈ E} so lettingh(f /e) = hD (f ) for

f ∈ F ′
D , clearly h is one-to-one function fromF/e onto a set of ordinals.)

3) Similar proof (remember 3.4 (13)). ut3.9

Claim 3.10 1. If F is in TsD (f ) and rk3
D (f ) = α <∞ then|F | ≤∗ |α| × |E|.

2. Assume(F , e) ∈ TwD (f ) and rk3
D (f ) = α <∞. Then|F/e| ≤∗ |α| × |E|.

Proof. Included in the proof of 3.9.

Claim 3.11 If α = rk2
D0

(f ∗), D0 ∈ E thenwe can find〈AD : D ∈ E[D0]〉, α =⋃{AD : D ∈ E[D0]}, and 〈(FD , hD ) : D ∈ E[D0]〉 with (FD , hD ) as in 3.8, FD ⊆∏
a∈A∗

f ∗(a) with Rang(hD ) = AD and

hD (f ) = α ⇒ rk2
D (f ) = rk3

D (f ) = α.

Proof. Because there is “no hole in the possible ranks”. I.e. we apply 3.8 to
F =

∏
a∈A∗

(f ∗(a) + 1), and get〈(FD , hD ) : D ∈ E[D0]〉. Our main problem is that

someβ < α is not in
⋃

D∈E[D0]
Rang(hD ). Then use 3.5(5). ut3.11

Conclusion 3.12 AssumeE is nice and for simplicity|E| is an aleph,
f ∈ (A∗)Ord and (∀a ∈ Dom(E)) (f (a) ≥ |E|).
1. Then the cardinals

sup
D∈E[D0]

|rk2
D (f )|, sup

D∈E[D0]

(TD (f )), sup
D∈E[D0]

(TwD (f )) and sup
D∈E[D0]

{hppD (f )}

are equal.
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2. AssumeACA∗ . If f1, f2 are as in the assumption and{a ∈ A∗ : |f1(a)| =
|f2(a)|} ∈ D then

sup
D∈E[D0]

|rk2
D (f1)|, sup

D∈ED0

|rk2
D (f2)|

are the same cardinal.
3. AssumeACA∗ . Then rk2D0

(f +) ≤ sup
D∈E[D0]

|rk2
D (f )|+ where f + ∈ (A∗)Ord is

f +(a) =: |f (a)|+

Proof. 1)
Step A

(∗) sup
D∈E[D0]

(rk2
D (f ) + 1)≥ hppE[D0]

(f )

If β < hppE[D0]
(f ) then we can findD ∈ E[D0] and F̄ = 〈Fα : α < β〉 such

that Fα ⊆ ∏
a∈A∗

f (a) non empty andF̄ is <D -increasing. We can prove using

3.4(10) by induction onα < β that

(∗∗) g ∈ Fα ⇒ rk3
D (f ) ≥ α.

Now by 3.4(7) we have rk2D (f ) > α andα < β so rk2
D (f ) ≥ β.

Step B

rk2
D (f ) can be represented as the union ofE sets each of order type

< hppE[D0]
(f ).

By 3.10.
Step C

sup
D∈E[D0]

|rk2
D (f )| = hppE[D0]

(f ).

Why? By steps A, B as|E| is an aleph andf (a) ≥ |E| for everya.
Step D

hppE[D0]
(f ) ≤ TD (f ) ≤ TwD (f ).

By definition (true for eachD separately).
Step E

sup
D∈E[D0]

TD (f ) ≤ sup
D∈E[D0]

rk2
D (f ).

Why? By 3.8
2) By part (1) and 3.7(4).
3) By part (2) and the definition of rk2

D0
. ut3.12

Remark 3.12A.If we waive “|E| is an aleph” but still assumef (a) ≥ θ(E) we
get that those three cardinals are not too far.

Claim 3.13 Assume

(A) λ is an aleph,〈λi : i < δ〉 is a strictly increasing continuous sequence of
alephs with limitλ,
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(B) there is G∗ =
⋃

i<δ
Gi , Gi a one-to-one function from

∏
j<i

λj into someλ∗i <

λi +1 ( so if ACδ, we need just that each Gi exists, i.e.| ∏
j<i

λj | < λi +1).

Thenthere is F∈ TsDbd
δ

(〈λ∗i : i < δ〉), and |F | =
∏
i<δ

λi .

(Dbd
δ is the filter generated by the cobounded sets ofδ).

Remark. This goes back to Galvin, Hajnal [GH], see [Sh 386, 5.2A(1)].
Proof. Define a functionG :

∏
i<δ

λi −→
∏
i<δ

λ∗i by

G(f )(i ) = Gi (f � i ) and letF = Rang(G) ut3.13

Claim 3.14 Assume that D0 ∈ E and fα ∈ (A∗)Ord for α < α∗.

1. [ E is nice ] There areg ∈ (A∗)Ord and D such that:
(a) D0 ⊆ D ∈ E,
(b) rk2

D (g) = rk3
D (g),

(c) g is a<D -lub of {fα : α < α∗}, i.e. :

(i) α < α∗ ⇒ fα ≤D g

(ii) if g′ ∈ (A∗)Ord and fα ≤D g′ for all α < α∗ theng ≤D g′.
(d) Moreover for every A∈ D+, g is also a<D+A-lub of {fα : α < α∗}.

2. If fα ≤D0 f ∗ for α < α∗, rk2
D0

(B∗) < ∞ then there areg ∈ (A∗)Ord, D
satisfying (a)-(d) and we can add
(e) g ≤ f ∗.

Proof. 1) Follows by (2), just letf ∗(a) = supα<α∗ fα(a).
2) Clearly the set

K = {(D , g) : D0 ⊆ D ∈ E & (∀α < α∗)(fα ≤D g), rk2
D (g) <∞ and g ≤ f ∗}

is not empty (because the pair (D0, f ∗) is in it ). Choose among those pairs one
(D1, g) with rk3

D (g) minimal. So for someD , D1 ⊆ D ∈ E we have rk3D1
(g) =

rk2
D (g) = rk3

D (g) (see 3.4(6)), so also (D , g) ∈ K . Clearly (D , g) satisfies (a), (b),
(e) and (c)(i). If (c)(ii) fails then letg′ exemplify it and so

A = {a ∈ κ : g′(a) < g(a)} /= ∅ modD .

But clearly also (D + A, g′) is in the family and (see 3.4(10) and 3.4(9) respec-
tively):

rk3
D+A(g′) < rk3

D+A(g) = rk3
D (g)

- a contradiction.
Clause (d) follows from 3.4(9) replacingD by D + A. ut3.14

Definition 3.15 1. Let E be as in3.0, κ an aleph andκ = cf(κ) > ℵ0, and D⊕

a filter on κ. We say that E is [weakly] D⊕-normal if there is a functionι
witnessing it which means:
ι is a function from A∗ = Dom(E) to κ such that
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(a) for every D∈ E

i (D) =: {A⊆ κ : ι−1(A) ∈ D}
is a filter onκ extending D⊕,

(b) every D ∈ E is [weakly] ι-normal, which means: if f: A∗ −→ κ is
ι-pressing down (i.e. f(a) < 1 + ι(a) for a ∈ A∗) then on some A∈ D+,
the function f is constant [bounded].

2. We say that E is [weakly]κ-normal if this holds for someκ as above, filter
D⊕ overκ and functionι.

3. We say that E is [weakly](κ,S)-normal, where S⊆ κ, if this holds for some
filter D⊕ overκ such that S∈ D⊕.

4. We say that D isκ-normal (withι witnessing it) if E:= {D + A : A ∈ D+} is,
with ι witnessing it.
If Dom(E) = κ, ι the identity we omit it.
Omitting D from “D-normal” means omitting clause (a).

Remark 3.16 1. Note: for a filterD on κ the normality is also defined as the
closure under diagonal intersection; this is equivalent. But it is not enough
that the diagonal intersection of clubs is a club, we need that the diagonal
intersection of sets including clubs includes a club.

2. The club filterDcl
κ on a regularκ > ℵ0 is not necessarily normal, but there

is a minimal normal filter on it,D⊗
κ , but possibly∅ ∈ D⊗

κ , see below.

Definition 3.17 1. For an ordinalδ

Dbd
δ = {A⊆ δ : A bounded inδ}

Dcl
δ = {A⊆ δ : A contains a club ofδ}.

2. For P ⊆ P (δ) we define Dnor
δ,ζ [P ] by induction onζ as follows:

ζ = 0 Dnor
δ,ζ [P ] is the filter of subsets ofδ generated byP ∪ Dcl

δ .
ζ > 0 limit D nor

δ,ζ [P ] =
⋃
ξ<ζ

Dnor
δ,ξ [P ].

ζ = ξ + 1 Dnor
δ,ζ [P ] = {δ \B : there is a function with domain B, regressive

(i.e. f (α) < 1 +α), such that for everyβ < δ the set{α ∈ δ \ B : f (α) =
β} = ∅ modDnor

δ,ξ [P ]}
Dnor
δ [P ] =

⋃
ζ

Dnor
δ,ζ [P ]

Above we replacenorbywnr if for ζ = ξ+1 we replace f(α) = β by f (α) ≤ β
If P = ∅ we may omit it.

3. We call A⊆ κ stationary if A/= ∅ modDnor
κ .

Claim 3.18 1. Dnor
δ,ζ [P ] increases withζ and is constant forζ ≥ θ(P (δ)) (so

Dnor
δ [P ] = Dnor

δ,θ(P (δ))[P ]), moreover it is constant forζ ≥ ζnor
δ for some

ζnor
δ < θ(P (δ)). Note that we get Dcl

δ ⊆ Dnor
δ,1 [P ] even if we redefine Dnor

δ,0 [P ]
as the filter generated byP ∪ Dbd

δ . Clearly Dnor
δ [P ] is the minimal normal

filter on δ which includesP .
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2. Dwnr
δ,ζ [P ] increases withζ and it is constant forζ ≥ θ(P (δ)) (consequently

Dwnr
δ [P ] = Dwnr

δ,θ(P (δ))[P ] and Dwnr
δ,ζ [P ] ⊆ Dnor

δ,ζ [P ]), moreover forζ ≥
ζwnr
δ for someζwnr

δ < θ(P (δ)). Also we get Dcl
δ ⊆ Dwnr

δ,1 even if we redefine
Dwnr
δ,0 [P ] as the filter generated byP ∪Dbd

δ . Clearly Dwnr
δ [P ] is the minimal

weakly-normal filter onδ which includesP
3. In 1), 2) if cf(δ) = δ1, the filters Dwnr

δ , Dwnr
δ1

(and also Dwnr
δ,ζ , Dwnr

δ1,ζ
) are es-

sentially the same. I.e. let h: δ1 −→ δ (strictly) increases continuously with
unbounded range, then

if A ⊆ δ, A1 ⊆ δ1, A∩ Rang(h) = h′′(A1)
then A∈ Dwnr

δ,ζ [P ] ⇐⇒ A1 ∈ Dwnr
δ1,ζ

[P ].
4. If δ is not a regular uncountable cardinal then Dnor

δ = P (δ).
5. [ACδ,P (δ) + DC ] If δ regular uncountable, then in 1), 2) we have∅ /∈ Dnor

δ .
Moreover for every regularσ < δ,

S = {α < δ: cf(α) = σ} /= ∅ modDnor
δ .

Proof. 1) - 4) Check.
5) We use the variant of the definition starting withDbd

δ . Assume toward con-
tradiction thatδ \ S ∈ Dnor

δ . We choose by induction onn < ω, an equivalence
relationEn on S such that:

(i) E0 is {(α, β) : α, β ∈ S},
(ii) En+1 refineEn,
(iii) the function fn is regressive where

fn(α) = otp{β : βEnα but β < α & ¬βEn+1α andβ = min(β/En+1)}

(so it is definable fromEn, En+1),
(iv) for eachα < δ andn < ω

ζn+1
α =: min{ζ : α/En+1 = ∅modDnor

δ,ζ} < ζn
α =: min{ζ : α/En = ∅modDnor

δ,ζ}

or both are zero.

We can carry the induction byDC . For n = 0 use clause (i) to defineE0.
For the choice ofEn+1, for eachα < δ, fn � (α/En) as required exists by the
inductive definition ofDnor

δ,ζ (does not matter if we letDnor
δ,0 be Dcl

δ or Dbd
δ ), but

we have to choose

〈fn � (α/En) : α < δ, α = min(α/En)〉;

so we have to make≤ |δ| choices, each among the family of regressive function
on δ. But as we have a pairing function onδ, this is equivalent to a choice of a
subset ofδ, soACδ,P (δ) which we assume is enough. LetC = {α < δ: if β < α,
m < ω, /υβm = 0 then sup(β/Em) < α}. Clearly it is closed. Letγ < δ.

Now by DC we can choose by induction onn < ω, an ordinalαn < δ such
thatα0 ≥ γ and
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(∗) if β ≤ αn, m < ω andζβm = 0 then sup(β/Em) < αn+1 (noteβ/Em is bounded
in δ).

(Not hard to show thatαn+1 exists.) Now letting
⋃

n<ω
αn < δ, belongs toC \ γ;

as γ < δ was arbitrary,C is a closed unbounded subset ofδ. Let α(∗) be the
σ-th member ofC we get easy contradiction as〈ζα(∗)

n : n < ω〉 is eventually
zero. ut3.18

4 Investigating strong limit singular µ

Definition 4.1

1. ⊗α,R means: there is a function e exemplifying it which means:
⊗α,R[e] e is a function,Dom(e) = {δ : δ < α a limit ordinal } and for

every limitδ < α, e(δ) is an unbounded subset ofδ such that it is of order
type from R. (It follows that R⊇ α ∩ Reg).

2. If R ∩ α is the set of infinite regular cardinals≤ α we may omit it (then
otp(e(δ)) = cf(δ)).
If R is the set of regular cardinals< α union withσ (not {σ}!) we write σ
instead of R.

3. Let⊗∗α,R means⊗α,R∪(α∩Reg).

Observation 4.2

1. If ⊗α,R, σ ∈ R is not regular and R′ = R \ {σ} then⊗α,R′ .
2. If there is e satisfying⊗′α,R[e] below then⊗α,R holds (for another e)
⊗′α,R[e] e is a function,Dom(e) = {δ : δ < α a limit ordinal, δ /∈ R} and

for every limit δ ∈ Dom(e), e(δ) is an unbounded subset ofδ, of order
type< δ.

3. Also the converse of (2) is true.
4. If ⊗α2,α1∪R1 and⊗α1,α0∪R0 then⊗α2,α0∪R0∪R1.
5. For any ordinalα letting j|α| be 1 if|α| is regular and zero otherwise we have
⊗α,|α|+j , hence if⊗α,β then⊗α,|β|+jβ .

6. If ⊗∗α,ζ then we can define〈fβ : β ∈ [ζ, α]〉, fβ a one-to-one function fromβ
onto |β|.

7. If ⊗α,R then we can definēf = 〈fβ : β < α〉, fβ a one-to-one function fromβ
onto sup(β ∩ R).

8. If ⊗α,σ andσ < λ+ ≤ α (soλ+ is a successor) thenλ+ is regular.
9. If we have: R⊆ α closed,f̄ = 〈fβ : β < α〉, fβ a one to one function from

sup(R∩ β) ontoβ then⊗α,R.
10. If⊗α,R andβ < γ < α and [β, γ] ∩ R = ∅ then|β| = |γ|.
Proof. 1) By part 2) it suffices to have⊗′α,R′ [e]. Now there ise satisfying
⊗α,R[e]. We define a functione′ ⊇ e � (α \ R) such that Dom(e′) = α \ R′: just
choose fore′(σ) a club ofσ of order type cf(σ).

2) We are givene such that⊗′α,R[e]. We definee′(δ) for δ ∈ α limit by
induction onδ such that⊗α,R[e′] holds.
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Case 1: δ ∈ R
We let e′(δ) = δ.

Case 2: δ /∈ R
We let γδ = otp(e(δ)) so γδ < δ. Let gδ be the unique order preserving
function fromγδ onto e(δ). Necessarilyγδ is a limit ordinal (ase(δ) has no
last element), and hencee′(γδ) is a well defined unbounded subset ofγδ of
the order type fromR. Let

e′(δ) =: {gδ(β) : β ∈ e′(γδ)}.
3) Straightforward.
4) Let e′l exemplify⊗′αl +1,αl∪Rl (see (3)), thene′0 ∪ e′1 exemplifies

⊗′α2,α0∪R0∪R1
and by part 2) we can finish.

5) Let f be a one-to-one function fromα onto |α|. Define a functione′,
Dom(e′) = {δ : |α|+ j|α| ≤ δ < α, δ a limit ordinal} which will satisfy⊗′α,|α|+j|α|
(enough by part 2)).

If δ = |α| choosee′(δ) as an unbounded subset of|α| of order type cf(|α|). If
δ > |α|, let ξδ = min{β : δ = sup{f (γ) : γ < β}}, necessarily it is a limit ordinal.
Now, if ξδ < |α| we lete(δ) = {f (γ) : γ < ξδ}. We are left with the caseξδ = |α|.
In this case define by induction oni < |α|, the ordinalβi = sup{g(γ) : γ < i }.
As ξδ = |α| clearly (∀i < |α|)(βi < δ), also clearly (∀j < i )(βi ≤ βj ). Hence
{βi : i < |α|} has order type≤ |α|; as δ = sup{g(γ) : γ < |α|}, clearly

δ =
⋃

i<|α|
βi , so e′(δ)

def
= {βi : i < |α|} is as required. Hence we have finished

defininge′ and the proof is completed.
6) Let⊗∗α,ζ [e]; by 4.2(4), 4.2(5) w.l.o.gζ = |ζ|. We definefβ by the induction

on β:

If β = γ + 1 let fβ(γ) = 0, fβ(ε) = 1 + fγ(ε) for ε < γ.
If β is a limit ordinal, first definegβ :

gβ(γ) = (otp(γ ∩ e(β)), fmin(e(β)\(γ+1))(γ)).

So gβ is a one-to-one function fromβ into otp(e(β))× supγ<β |γ|. As usual we
can well order this set by (<lx is the lexicographic order):

(i1, i2) <∗
β (i2, j2) ⇐⇒ (max{i1, i2}, i1, i2) <lx (max{j1, j2}, j1, j2).

Let hβ be the one-to-one order preserving function from (Rang(gβ), <∗
β) onto

some ordinalγβ . Let fβ = hβ ◦ gβ ; check thatγβ is a cardinal.
7) Similar proof. (We use the fact that there is a definable function giving

for any infinite ordinalα a one-to-one function fromα × α into α: just let
βα ≤ α be the maximal limit ordinal such that (∀γ)(γ < β → γ × γ < β), so
for somen, βn > n, and as above we can define a one-to-one function fromα
into β × . . .× β︸ ︷︷ ︸

n times

and from it intoβ).

8) Included in the proof of (6).
9) Like the proof of part (5).
10) By (7). ut4.2
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Lemma 4.3 Assume⊗µ,R andµ ≥ θ(E × E ×P (A∗)) and

α∗ = sup{rk2
D (µA∗ ,E) : D ∈ E} <∞,

and E,A∗ are as in hypothesis 3.0 andµA∗ stands for the constant function with
domainA∗ and valueµ. Then⊗α∗,R∗ , where R⊆ R∗ ⊆ R∪ [µ, α∗) and there is
a 〈Yσ : σ ∈ R∗ \ R〉 (note thatσ ∈ R∗ \ R is just an ordinal not necessarily an
aleph) such that:

(a) Yσ is a non empty set of pairs(D , δ̄) such that

D ∈ E, δ̄ = 〈δa : a ∈ A∗〉, δa ∈ R

and
∏

a∈A∗
δa/D has the true cofinalityσ (see Def 2.3(1)).

(b) The Yσ ’s are pairwise disjoint. Moreover if(D`, δ̄
`) ∈ Yσ` for ` = 1, 2 and

D1 = D2 then δ̄1 /=D1 δ̄
2.

Remark. Instead of rk2D (µA∗ ,E) <∞ for everyD ∈ E it is enough to assume
rk2

D (µ,E) <∞ for someD ∈ E with

α∗ = sup{r 2
D (µA∗ ,D) : D ∈ E and rk2D (µA∗ ,D) <∞}.

Proof. For α < α∗ andD ∈ E let

F D
α = {f ∈ A∗

µ : rk2
D (f ) = rk3

D (f ) = α} and AD = {α < α∗ : F D
α 6= ∅}.

So (see 3.8):

(a) (α,D) 7→ F D
α andD 7→ AD are well defined (so there are such functions),

(b) α∗ =
⋃

D∈E
AD ,

(c) if f1, f2 ∈ F D
α then f1/D = f2/D ,

(d) if fe ∈ F D
αe

for e = 1, 2 andα1 < α2 then f1/D < f2/D .

By 4.2(2)+(1) it suffices to prove⊗′α∗,R∗∪(µ+1). Let e be such that⊗µ,R[e] holds.
For δ ∈ (µ, α∗), we try to define the truth value ofδ ∈ R∗ and e′(δ) such that
⊗′α∗,R∗∪(µ+1)[e

′] holds. We make three tries; an easier case is when the definition
gives an unbounded subset ofδ of order type< δ: decideδ /∈ R∗ and choose
this set ase′(δ). If not, we assume we fail and continue, and if we fail in all
three of them then we decideδ ∈ R∗, and chooseYδ.

First try: e1(δ)
def
= {sup(δ ∩ AD ) : D ∈ E and sup(δ ∩ AD ) < δ}.

Clearly this set has cardinality< θ(E) ≤ µ ≤ |δ|. So the problem is that it may
be bounded inδ. In this case, by (b) above, for someD ∈ E, δ = sup(δ ∩ AD ).

Second try: Let Eδ = {D : δ = sup(AD ∩ δ)}.
So we can assumeEδ /= ∅. For eachD0 ∈ Eδ let

Eδ(D0) = {D ∈ E : D0 ⊆ D and there isf ∈ (A∗)µ such thatf /D is
≤D −lub of {g/D : g ∈ F D0

β , for someβ ∈ AD0 ∩ δ}}.
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For D ∈ Eδ(D0) let

F (D0,D)
δ = {f ∈ (A∗)µ : f /D is ≤D −lub of

{g/D : g ∈ F D0
β for someβ ∈ AD0 ∩ δ}}.

For f ∈ F (D0,D)
δ , let B(f ) = {a ∈ A∗ : f (a) a limit ordinal}. Now B(f ) ∈ D by

1.3(8) because of the assumptionsf is a≤D −lub andAD0 ∩ δ is unbounded in
δ and let

H (f ) = {g ∈ A∗
µ : (∀a∈B(f ))(g(a)∈ e(f (a))) & (∀a∈A∗ \ B(f ))(g(a) = 0)}.

(remembere is a witness for⊗µ,R). Note that

(e) for D0 ∈ Eδ, Eδ(D0) is not empty [by 3.14(1)],
(f) if D0 ∈ Eδ, D ∈ Eδ(D0) thenF (D0,D)

δ /= ∅,
(g) if f1, f2 ∈ F (D0,D)

δ then f1/D = f2/D
(as<D -lub is unique modD) hence

(g)′ HD (f1) = HD (f2) whereHD (f ) = {g/D : g ∈ H (f )},
(h) if D0 ∈ Eδ and f ∈ F (D0,D)

δ andg ∈ H (f ) theng <D f ,
(i) if f ∈ F (D0,D)

δ then |H (f )| ≤ ∏
i∈B2(f )

e(f (i )).

We now define, forf ∗ ∈ F (D0,D)
δ a functionh = hδ,f ∗,D0,D from H (f ∗) to δ:

h(g) = min{α < δ : α ∈ AD0 and there isf ∈ F D0
α such that¬(f <D g)}.

(by the way, equivalently for everyf ∈ F D0
α ). Now

(j) h(g) is well defined.

[Why? As otherwiseg exemplify f ∗ is not a<D -lub of
⋃{F D0

α : α ∈ AD0 ∩ δ}
(g is a smaller<D0-upper bound).]

Also

(k) Rang(hδ,f ∗,D0,D ) is unbounded belowδ.

[Why? For everyα < δ there isβ ∈ AD0 ∩ (α, δ). Choosef ∈ F D0
β , and

defineg ∈ (A∗)Ord by g(a) = min(e(f ∗(a)) \ (f (a) + 1)). Now g ∈ H (f ∗) and
h(g) > β > α.]

(l) Rang(hδ,f ∗,D0,D ) does not depend onf ∗, i.e. is the same for allf ∗ ∈ F (D0,D)
α ,

[by (g)], and we denote it bytδ(D0,D).
(m) h is a nondecreasing function from (H (f ∗),≤D ) to δ.

If |E| is an aleph, choose a fixed well ordering<∗
E of E and if for our δ for

some pair (D0,D) we have otp(tδ(D0,D)) < δ, choosee(δ) = tδ(D0,D) for the
first such pair; but this assumption on|E| is not really necessary:

If for some D0 ∈ Eδ, D ∈ Eδ(D0) we consider (i.e. if this set is O.K., we
choose it; easily it is an unbounded subset ofδ):
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{tδ(D0,D) : D0 ∈ Eδ,D ∈ Eδ(D0) and for any other such (D ′
0,D

′)
we have otp(tδ(D0,D)) ≤ otp(tδ(D ′

0,D
′))}.

This is an indexed family of unbounded subsets ofδ, indexed by a subset of
E × E, all of the same order type, which we callβ∗. As we knowθ(E × E) is
a cardinal≤ µ < δ, by observation 4.3A below it is enough to haveβ∗ < |δ|.
Observation4.3A. 1) If B = {Bc : c ∈ C}, Bc ⊆ δ = sup(Bc), δ a limit ordinal,
sup
c∈C

otp(Bc) < |δ| and θ(C) ≤ δ then we can define (uniformly) fromδ, B an

unbounded subsetB of δ such that otp(B) < δ.
2) If in part (1) we omit the assumptionδ = sup(Bc), the conclusion still holds
provided that¬(∗) where

(∗) for everyα∗ < δ we haveδ = sup
⋃{Bc : α∗ < sup(Bc) ≤ δ}.

Proof. For eachi < δ =: sup
c∈C

otp(Bc) define

B∗
i = {γ : for somec ∈ C the ordinalγ is the i -th member ofBc}.

So there is a partial function fromC onto B∗
i , hence otp(B∗

i ) < θ(C) ≤ δ. So
if for some i , the setB∗

i is unbounded inδ then letB be B∗
i for the minimal

suchi . If there is no suchi then letγ∗ = sup{otp(Bc) : c ∈ C}. By assumption
γ∗ < |δ|, let

B =: {sup(B∗
i ) : i < γ∗},

so B ⊆ δ, and |B| ≤∗ |γ∗| hence|B| ≤ |γ| hence otp(B) < |δ| ≤ δ and for
everyβ < δ for somec ∈ C there isγ ∈ Bc \β, so for i = otp(Bc ∩ γ) we have:
γ ∈ B∗

i henceγ ≤ sup(B∗
i ) ≤ sup(B), so sup(B) = δ. So B is an unbounded

subset ofδ of order type< δ.
2) Clearly

B = {sup(Bc) : c ∈ C and sup(Bc) < δ}
has order type< θ(C) ≤ δ, so if δ = sup(B) we are done; if not letα∗ =
sup(B) < δ and C ′ = {c ∈ C : δ = sup(B)}, B ′ =: {Bc : c ∈ C ′} are as in the
assumption of 4.3A(1). ut4.3A

Continuation of the proof 4.3.

Third try: We are left with the case that everytδ(D0,D), when well defined, has

order typeδ. Continue with ourf ∗ ∈ F (D0,D)
δ , h = hδ,f ∗,D0,D . For eachg ∈ H (f ∗),

we know that there areA ∈ D+ and f ∈ F D0
h(g) such thatg � A≤ f � A. Now turn

the table: forA ∈ D+ let

H (f ∗,A) = {g ∈ H (f ∗) : for some (=all)f ∈ F D0
h(g) we haveg≤Af }

(clearly the choice off is immaterial : some, all are the same). Now:
(H (f ∗,A),≤D+A) is mapped byh into tδ(D0,D) ⊆ δ; moreover forg′,g′′ ∈
H (f ∗,A) we have: h(g′) < h(g′′) ⇒ g′ <D+A g′′ (otherwise the mini-
mality of h(g′′) is contradicted). So (H (f ∗,A),≤D+A) has the true cofinality
otp(t1

δ (D0,D ,A)), where t1
δ (D0,D ,A) =: (Rang(h � H (f ∗,A))). Now by obser-

vation 4.3A if we do not succeed, for someβ∗ < δ we have
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(∗) if (D0,D ,A) above andt1
δ (Dδ,D ,A) 6⊆ β∗ thenotp(t1

δ (D0,D ,A)) = δ.

So we assume that for someβ∗ < δ we have (∗). Without loss of generality
β∗ is minimal. Consider such a triple (D0,D ,A) and the appropriatef ∗ = f ∗δ .
Notice thatH (f ∗,A) is cofinal in (H (f ∗), <D+A), (we use clause (d) of 3.14).
Now consider whether the quadruple

x̄ = (D0,D ,A, 〈otp(e(f ∗δ (a))) : a ∈ A∗〉/(D + A))

was considered by some earlierδ⊗, if so, choose minimalδ⊗, and we shall finish
by the observation 4.3B below. To stress the dependency onδ we may write
Hδ(f ∗δ ,A), and define Colα for α < µ such thatα ∈ Dom(e) onto e(α) as the
unique order preserving function from otp(e(α)) onto e(α). Let us define forg ∈
H (f ∗δ ,A), the function Colg with domainA∗, Colg(a) being otp(e(f ∗δ (a))∩ g(a))
if f ∗δ (a) is a limit ordinal, zero otherwise. Of course Colg depends on the choice
of f ∗δ but Colg/D does not, and letHδ(f ∗δ ,A) = {Colg : g ∈ H (f ∗δ ,A)}, so
Hδ(A) =: (Hδ(f ∗δ ,A)/(D + A), <D+A) has order typeδ and Hδ(A) is cofinal in∏
a∈A∗

otpf ∗δ (a)/(D + A), andH andHδ(A) were definable fromδ, (D0,D ,A) in a

fixed way.
Similarly for Hδ⊗ (A). So observation 4.3B below give us a definition of an

unbounded subsetZ0(D0,D ,A, δ, δ⊗) of Hδ(A) of order typeδ⊗, hence also of
otp(Hδ(A), <D ) = δ which we callZ(D0,D ,A, δ, δ⊗). So

{Z(D0,D ,A, δ, δ⊗) : (D0,D ,A) = x̄ � 3 for some ¯x ∈ C}
is a family of unbounded subsets ofδ of order typeδ⊗ so by observation 4.3A
we are done.

Fourth try: All previous ones failed, in particular there is noδ⊗ as above. We put
δ in R∗, and letYδ be the set of quadruple〈D0,D ,A, 〈otp(e(f ∗δ (a)) : a ∈ A∗〉/D〉
as above (the last one is uniquely determined by the earlier ones).

Observation 4.3 B. If for l = 1, 2 we haveYl ⊆ (A∗)µ is cofinal in
∏

a∈A∗
αl

a/D

and [g1, g2 ∈ Ỳ ⇒ (g1 =D g2) ∨ (g1 <D g2) ∨ (g2 <D g1)] and (Ỳ /D , <D ) is
well ordered of order typeδ` and δ1 < δ2 and {a ∈ A∗ : α1

a = α2
a} ∈ D (and

α`a > 0 for simplicity) thenfrom the parametersD , Ỳ /d, 〈α`a : a ∈ A∗〉/D for
` = 1, 2 we can (uniformly) define one of the following:

(a) Y ⊆ Y1/D cofinal in
∏

a∈A∗
α1

a/D and a functionh from Y into δ2, <D -

increasing such thatδ2 = sup Rang(h � Y).
(b) cofinalX ⊆ δ2 of order type< θ(P (A∗)).

Proof. For g1 ∈ Y1 let

K (g1) =: {g2 ∈ Y2 : g1 ≤D g2 and there is nog′2 ∈ Y2 such that
g′2 <D g2 andg1 ≤D g′2},

KD (g1) =: {g2/D : g2 ∈ K (g1)},
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K ′
D (g1/D) =

⋃
{KD (g′1) : g′1 ∈ Y1 andg′1 =D g1}.

k(g1/D) is (if exists) the≤D -minimal g2/D ∈ Y2 such that

g′2/D ∈ K ′
D (g1/D) ⇒ g′2/D ≤D g2/D .

Now K (g1) is a subset ofY2, KD (g1) is a subset ofY2/D and g′1 =D g′′1 ⇒
KD (g′1) = KD (g′′1 ) henceKD (g1) = K ′

D (g1/D).
Case 1:for someg1/D ∈ Y1/D , the setK ′

D (g1/D) is unbounded inY2/D .
We can choose the<D -minimal suchg1/D , so K ′

D (g1/D) is a well de-
fined cofinal subset ofY2/D (rememberY2/D is <D -well ordered) and easily
otp(K ′

D (g1/D), <D ) < θ({A/D : A ∈ D+}) ≤ θ(P (A∗)).
Case 2:not case 1.

So k is a well defined function fromY1/D into Y2/D , and easilyg′1/D ≤D

g′′1 /D ⇒ k(g′1/D) ≤D k(g′′1 /D).
Let

Y =: {g1/D : g1/D ∈ Y1/D and
[g′1/D ∈ Y1/D & g′1/D <D g1/D ⇒ k(g′1/D) <D k(g1/D)]},

and leth(g1/D) = otp({g2/D ∈ Y2 : g2/D <D k(g1/D)}), so h : Y → δ2. Now
Y , h are as required. ut4.3B

ut4.3

Claim 4.4 [DC +⊕κ[E]] Assumeµ > A∗ = cf(µ) > ℵ0, µ > θ(E) + κ+, ⊗µ,R

andλ = |rk2
D (µ,E)|. Thenλ < ℵγ , for someγ < θ(E × E ×P (A∗)× |R||A∗|).

Proof. By 4.3 and 4.2(10). ut4.4

Observation 4.5 1. θ(
⋃

x∈X
Ax) ≤ (θ(X) + supx∈X θ(Ax))+.

2. If λ is regular, λ ≥ θ(X), λ ≥ θ(Ax) (for x ∈ X ) thenθ(
⋃

x∈X
Ax) ≤ λ. So

e.g.θ(A× A) = θ(A) if θ(A) is regular andθ(A× B) ≤ (θ(A) + θ(B))+, and
θ(A×B) = max{θ(A), θ(B)} (or all three are finite) when the later is regular.

Proof. 1) As A ≤∗ B ⇒ θ(A) ≤ θ(B) and
⋃

x∈X
Ax ≤∗

⋃
x∈X

({x} × Ax) clearly

without loss of generality〈Ax : x ∈ X〉 is pairwise disjoint. LetA =
⋃

x∈X
Ax and

f : A
onto−→ α, soγx

def
= otp(Rang(f � Ax)) < θ(Ax) ≤ supx θ(Ax) and call the latter

λ. Soα =
⋃{Bβ : β < λ} where

Bβ =: {α : for somex ∈ X we haveα ∈ Rang(f � Ax) and
β = otp(α ∩ Rang(f � Ax))}.

Let

Aβ =: {a ∈ ⋃
x∈X

Ax : for the x ∈ X such thata ∈ Ax we have:

β is the order type of{f (b) : b ∈ Ax and f (b) < f (a)}}.
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Let E be the relation onA defined bya E b ⇐⇒ ∨
x∈X

{a, b} ⊆ Ax so E is an

equivalence relation, and theAx are the equivalence classes.
Now f � CAβ ∩Ax is constant, sof � Aβ respectsE, so f induces a function

from Aβ/E onto Bβ . So

|Bβ | < θ(Aβ/E) = θ({Ax : Aβ ∩ Ax /= ∅}) ≤ θ(X).

Hence otp(Bβ) < θ(X). So |α| ≤ ∑
β<λ

|Bβ | ≤ λ× θ(X) and

θ(
⋃
x∈A

Ax) ≤ (λ + θ(X))+ = [sup
x∈X

θ(Ax) + θ(X)]+.

2) We repeat the proof above. Clearlyγx < θ(Ax) ≤ λ, so x 7→ γx is a
function from X to λ, so asλ is regular, necessarilyγ∗ = (sup

x∈X
γx) < λ. So Bβ

is defined forβ < γ∗ only and again|Bβ | < θ(X) ≤ λ. Hence otp(Bβ) < λ and
hence by “γ∗ < λ, λ regular” we haveβ∗ = sup

β<γ∗
otp(Bβ) < λ and we finish as

above.
The “e.g.” follows (withX = A, Ax = A× {x}, λ = θ(A)). ut4.5

Theorem 4.6 [DC ] Assume

(a) µ > cf(µ) = κ > ℵ0,
(b) | ⋃

α<µ
P (α)| = µ,

(c) ⊕κ(E). (I.e. E is a nice family of filters onκ.)

Then

(α) 2µ is an aleph,
(β) µ+ is regular, and⊗2µ,{δ<2µ:cf (δ)>µ}; if µ = ℵγ then⊗2µ,R, where R∩ µ =

Reg∩ µ and |R \ µ| ≤ θ(γκ × |E|2),
(γ) µ < λ ≤ 2µ ⇒ λ not measurable,

Remark 4.6A.Instead of (b),⊗µ suffices, if 2µ is replaced byµκ and|E| is well
ordered.

Proof. By the proof of 3.13 (and clause (b) of the assumption) there isF
exemplifying 2µ ∈ TsDbd

κ
(µ) as if λi < µ = ε

j<k
λj then 2µ = | π

i<κ
P (λ)|.

Let

AD =: {α : F D
α /= ∅} and F D

α =: {f ∈ F : rk2
D (f ) = rk3

D (f ) = α}.
Note thatF D

α is a singleton denoted byf D
α , so F =

⋃
D∈E

FD whereFD = {f D
α :

α ∈ AD}, so theFD are not neccessarily pairwise disjoint. By clause (b) we can
prove that asκ < µ also |P (κ)| < µ hence|P (P (κ))| < µ and hence|E| < µ
so |E| is an aleph. As|E| is an aleph we can well orderE (say by<E) and
hence can well orderF :
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f <∗ g iff α(f ) < α(g) or α(f ) = α(g) and D(f ) <E D(g)

whereα(f ) is the uniqueα such that for someD we havef = f D
α(f ) andD(f ) is

the <E-first D which is suitable. AsF is well ordered,|F | is an aleph, butF
was chosen by 3.13 such that|F | = 2µ, so we have proved clause (α).

If λ ∈ (µ, 2µ], there is F ′ ⊆ F of cardinality λ so as in 2.8,λ is not
measurable so clause (γ) holds.

Now we shall deal with clause (β).
By assumption (b) clearly⊗µ, so 4.3 applies and we get⊗2µ,R∗ for R∗ as there.
Now suppose that for〈σi : i < κ〉 ∈ κ(Reg∩ µ), and D ∈ E,

∏
i<κ

σi /D has

the true cofinalityσ. If for someA ∈ D+, supi∈A σi < µ,
∏

σi /(D + A) is well
ordered by (b), soσ < µ. So assume tlimDσi = µ (i.e. µ = lim sup

D
〈σi : i < κ〉 =

lim inf
D
〈σi : i < κ〉), then

∏
i
σi /D is µ+-directed so cf(σ) > µ, hence cf(σ) ≥ µ+.

We concludeR∗ ∩ µ+ ⊆ R, hence, by 4.3,⊗µ+,R, so, by 4.2(8),µ+ is regular.
This gives the first phrase in clause (β), the second is straightforward. ut4.6

Discussion 4.6B:

1. If |E| + |P (κ)| is an aleph and the situation is as in 4.6, then we can choose
A ⊆ θ(2µ) which codes the relevant instances of⊗µ+,R, ⊗λ,R∗ (or ⊗2µ,R∗ )
and then work inL[A] and apply theorems on cardinal arithmetic (see in
[Sh-g]) as in 4.4 (so we can ask on weakly inaccessible etc.), but we have to
translate them back toV, with A ensuring enough absoluteness.

2. If |E| + |P (κ)| is not an aleph, we can force this situation not collapsing
much, see Sect. 6.

Definition 4.7 For an ordinalδ let

ID 1
δ = {A⊆ δ : ⊗δ,δ\A holds},

ID 1
δ,α = {R⊆ δ : R \ α ∈ ID 1

δ},
ID 2

δ,R = {A⊆ δ : there is a function e with domain A such that

the requirement in⊗δ,R [e] holds forα ∈ A},
ID 2

δ,R,α = ID 2
δ,R∪α.

Omitting R meansReg∩ δ.

Claim 4.8 1. ID1
δ,0 = ID 1

δ andδ ∈ ID 2
δ,R ⇐⇒ ⊗δ,R.

2. ID1
δ,α, ID 2

δ are ideals of subsets ofδ.
3. Assumeα1 < α2 < α3 ∈ Ord and ID2

δl +1,R,αl
for l = 1, 2. Then ID2

α3,R,α1
.

4. δ ∈ ID 2
δ if ACδ,<|δ|.

5. [AC|α|] ID 2
δ,R,α is |α|+-complete (see 4.3A, we need to choose the witnesses

e1).
6. A∈ ID 1

δ ⇐⇒ A ∈ ID 2
δ,δ\A

7. [AC|α|] ID 1
δ,α is |α|+-complete.

We think that those ideals are very interesting.
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5 The successor of a singular of uncountable cofinality

Claim 5.1 Assumecf(µ) = κ > ℵ0, µ =
⋃

i<κ
µi whereµi increasing continuous,

µ an aleph (µi may be merely an ordinal). If f∗ ∈ κOrd, f ∗(i ) = |µi |+ then
‖f ∗‖Dbd

κ
≥ µ+ (hencerk2

D (f ∗) ≥ µ+ when D∈ E extend Dbd
κ ).

Proof. Let α < µ+ and we shall prove

(∗) there is〈fβ : β ≤ α〉, fβ ∈
∏

i<κ
f ∗(i ), such thatβ < γ < α⇒ fβ <Dbd

κ
fγ

Let g be a one-to-one function fromα into µ. For everyβ ≤ α let

fβ(i ) =: otp{γ < |µi |+ : g(γ) < β}.
ut5.1

Observation 5.2 [DC + ACκ +⊕κ[E], E normal,κ an aleph] Assume

(a) 〈µi : i ≤ κ〉 is strictly increasing continuous sequence of alephs,
(b) f ∈ ∏

i<κ
(µ+

i + 1), D0 ∈ E andrk2
D0

(f ,E) = rk3
D0

(f ,E) = µ+,

(c) TwD (µi ) < µ for D ∈ E and i < κ.

Then{i : f (i ) = µ+
i } ∈ D.

Proof. Otherwise without loss of generality (∀i )(0 < f (i ) < µ+
i ) hence

(∀i )(cf[f (i )] < µi ). By ACκ there is 〈gi : i < κ〉, gi is a one-to-one func-
tion from f (i ) into µi . By the normality and the possibility to replaceD by
D + A (for any A ∈ D+), for everyf1 ∈

∏
i<κ

f (i ) andD1, D0 ⊆ D1 ∈ E, for some

A ∈ D+
1 , and j < κ we have (∀i ∈ B)(gi ◦ f1(i ) < µj ), so we conclude

µ+ =
⋃
{WD,j ,A : D0 ⊆ D ∈ E, j < κ,B ∈ D},

〈FD,j ,A,α : α ∈ WD,j ,A〉 is <D -increasing andD-smooth, where

FD,j ,A,α = {f1 : f1 ∈
∏

i<κ
f (i ), [i ∈ A⇒ gi ◦ f1(i ) < µj ] and

rk2
D (f1,E) = rk3

D (f1,E)},
WD,j ,A =: {α : FD,j ,A,α /= ∅}.

As TwD (µj ) ≤ µ, clearly |WD,j ,A| ≤ µ. So

µ+ =
⋃
{WD,j ,A : D0 ⊆ D ∈ E, j < κ,A⊆ κ}

with each set of cardinality< µ, asθ(E) < µ, θ(P (κ)) < µ (as in 4.3), we get
a contradiction. ut5.2

Conclusion 5.3 Under the hypothesis and the assumptions (a)-(c) of 5.2, for the
f ∗ ∈ κOrd defined by f∗(i ) =: µ+

i , for every D ∈ E we have:rk2
D (f ,E) =

rk3
D (f ,E) = µ+.
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Theorem 5.4 [DC + ACκ + ⊕κ(E) + ℵ0 < κ = cf(κ), E normal or just weakly
normal as witnessed byι] Assume (a)–(c) of 5.2 and

(d) S = {i < κ : cf(µ+
i ) = λ} is stationary (see 3.17 (2)), moreoverι−1(S) ∈

D0 ∈ E for some D0.

Thencf(µ+
κ) = λ

Proof. By 5.1 + 3.14 we know rk3D (〈µ+
i : i < κ〉,E) ≥ µ+ so by 3.4(6) there

are f ∈ ∏
i<κ

(µ+
i + 1) andD ∈ E such thatS ∈ D , rk2

D (f ) = rk3
D (f ) = µ+. Without

loss of generality eachµi is singular; apply 5.2. ByACκ there is〈ei : i < κ〉,
ei ⊆ µ+

i cofinal, otp(ei ) = cf(µ+
i ). Now as in the proof of 5.3 we know{rk3

D (h) :
D ∈ E, h ∈ ∏

i<κ
ei } is cofinal inµ+, hence

{rk3
D (h) : D ∈ E, h(i ) the γ-th member ofei for i ∈ S, 0 otherwise}

is a cofinal subset ofµ+. ut5.4

Conclusion 5.5 [as 5.4+(a), (b), (c) of 5.2] If〈µi : i ≤ κ〉 is a strictly increasing
continuous sequence of alephs thenfor at most oneλ > κ the set{i < κ :
cf(µ+

i ) = λ} is stationary

Remark. We can prove that for allD ∈ E,
∏

i<κ
cf(µ+

i )/D has the same cofinality.

Question 5.6.Under the hypothesis and assumptions of 5.4 can we in addition
have a stationaryS ⊆ κ such that〈cf(µ+

i ) : i ∈ S〉 is with no repetition?

6 Nice E exists

Observation 6.1 For an alephλ and a set A∗, λ|A
∗| is equal to∑

β<θ(A∗)

λ|β| × |β||A∗|

provided thatℵ0 ≤ |A∗| (otherwise replace|β||A∗| by |{f ∈ A∗β : Rang(f ) = β}|).
Convention 6.2 κ, σ are alephs,σ an uncountable cardinal such that DC<σ, f ,
g, h will be functions fromκ to Ord.

Definition 6.3 Assumecf(κ) ≥ θ.

1. Pσ
κ,α = {f : f a function from some ordinalγ < σ into κ ∪ κα} partially

ordered by⊆ is regarded as a forcing notion and GPσκ,α or simply G denote
the generic.

2. h
˜

=
⋃

GPσκ,α (is forced to be a function fromσ ontoκ ∪ κα).
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3. ᾱ
˜

[GPσκ,α ] = 〈α
˜

i : i < σ〉 lists in increasing order

{sup(κ ∩ Rang(h
˜
� γ)) : γ < σ}.

4. Y
˜

= {〈γ, h
˜

(γ)〉 : γ < σ, h
˜

(γ) ∈ κ} ∪ {〈γ, i , β〉 : γ < σ, i < κ and h
˜

(γ) ∈
κα, (h

˜
(γ))(i ) = β}.

5. D
˜
σ
κ,θ is the club filter on the ordinalκ in K [Y

˜
] (K - the core model, see Dodd

and Jensen [DJ]).
6. We can replaceα, κα by f ∈ κOrd,

∏
i<κ

(f (i ) + 1) respectively.

Remark. On forcing for models ofZF only see e.g. [Bu].

Observation 6.4 1. Dσ
κ,α = D

˜
σ
κ,α ∩ P (κ)V does not depend on the generic

subset G of Pσκ,α.

2. If κ is regular in VPσκ,α (e.g.κ successor inV) thenDσ
κ,α is normal, minimal

among the normal filters onκ.

Claim 6.5 Assume that

�σ,κ,α for some/every G⊆ Pσ
κ,α generic overV, in K [Y

˜
] there are arbitrarily

large Ramsey cardinals3.

Thenrk2
Dσ
κ,λ

(α) < ∞ for E = E0 the family of filters onκ, or E = E1 the family

of normal filters onκ in the case of 6.4(2), or even

E = E2 == {D :
Pσκ,α “there is a normal filter D′ on κ

such that D′ ∩P (κ)V = D” }.

Proof. As Pσ
κ,α is a homogeneous forcing, “someG” and “everyG” are equiv-

alent. The proof is as in [Sh-g], Ch.V 1.6, 2.9. ut6.5

Remark. In [Sh-g] Ch.V we almost get away withK (Y), Y ⊆ (2ℵ1)+. We shall
return to this later.

Claim 6.6 Assume that�σ,κ,α fails.

1. If in V, λ = µ+, µ is singular> θ(σ>(κα)) thenλ is regular but not measur-
able.

2. Bounds to cardinal arithmetic : ifµ ≥ κ thenλµ ≤ 2µ × λ+

Proof. Let G ⊆ Pθ
κ,α be generic overV. First we shall prove that

(∗)1 λ is still a cardinal inV[G].

3 Or considerably less
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Assume not. SoV[G] |= |λ| = |µ|, and hence for someP-nameH
˜

andp ∈ P,

p 
P “H
˜

is a one-to-one function fromµ ontoλ”.

For α < µ let
Aα = {β < λ : p 1P H

˜
(α) /= β}.

So 〈Aα : α < µ〉 ∈ V and easily otp(Aα) < θ(Pσ
κ,α) (mapq ∈ P to β if p ≤ q,

q 
 H
˜

(α) = β, and mapq ∈ P to min(Aα) otherwise). Butθ(Pσ
κ,α) ≤ µ, so (as

the sets are well ordered) this implies

V |= λ = |
⋃
α<µ

Aα| ≤ |
∑
α<µ

otp(Aα)| ≤ |
∑
α<µ

θ(Pσ
κ,α)| ≤ µ× µ ≤ µ;

a contradiction.
Really we have proved

(∗)+
1 every aleph≥ θ(σ(κα)) in V is a cardinal inV[G].

Next we prove

(∗)2 λ is regular inV.

Assume not. So there areA2 ⊆ λ = sup(A2), otp(A2) = cf(λ), A0 ⊆ µ = sup(A0),
otp(A0) = cf(µ). Let µ∗ = (µ+)K [Y

˜
[G]] and let inV we haveA1 ⊆ µ∗ = sup(A1),

otp(A1) = cf(µ∗). Let now Ā = 〈A0,A1,A2〉. In V[G], µ, λ are still cardinals.
Hence inK [Y

˜
[G]] too µ, λ are cardinals and even inK [Y

˜
[G], Ā] we haveλ is

a cardinal. Alsoµ∗ ∈ (µ, λ), hence cf(µ∗) < µ henceK [Y
˜

[G], Ā] |= cf(µ∗) <
µ. Now K [Y

˜
[G]], K [Y

˜
[G], Ā] are models ofZFC, and in the latter cf(µ∗) ≤

otp(A2) < µ.
As K [Y

˜
[G]] does not have unboundedly many Ramsey cardinals andµ >

ℵV
1 = ℵK [Y

˜
[G]]

1 , by Dodd and Jensen [DJ] there isB ∈ K [Y
˜

[G]] such that
K [Y

˜
[G]] |= “ |B| < (|µ|+)K [Y

˜
[G],Ā] ” and A1 ⊆ B, and so we get contradiction to

K [Y
˜

[G]] |= “µ∗ a successor cardinal> µ” .
Next:

(∗)3 if µ is singular,λ is not measurable;

[as by the proof of (∗)2, K [Y
˜

[G]] |= “λ = µ+” so there ise as in Sect. 4]. ut6.6

Claim 6.7 [ACP (P (κ)) + DC ] Assume E is a family of filters onκ, D∗ =
min(E) (that is D∗ ∈ E, and [D ∈ E ⇒ D∗ ⊆ D ]) and for some f∗ ∈ κOrd,
rk2

D∗ (f ∗) = ∞. Thenrk2
D∗ (α) = ∞ for someα, α < θ(P (P (κ)) (and essentially

α < θ(P (κ))) (i.e. α stands for the function fromκ to Ord which is constantly
α).

Proof. We first prove that there is suchα < θ(P (P (κ))). If D ∈ E, rk2
D (f ) = ∞

then for every ordinalα there areA = Af ,α ∈ D+ and g = gf ,α <D+Af ,α f such
that rk3

D+A(g) > α. Without loss of generalitygf ,α ≤ f ; so we have only a set of
possible (Af ,α, gf ,α) (for given f ).
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By the “F ” of ZF there areAf , gf <D+Af f , gf ≤ f such that rk3D+Af
(gf ) = ∞, so

rk2
D1

(gf ) = ∞ for everyD1, D + Af ⊆ D1 ∈ E. Note:

κ + κ = κ, |P (κ)|2 = |P (κ)|, |P (P (κ))|2 = |P (P (κ))|
(really |A| + 1 = |A| ⇒ |P (A)|2 = |P (A)|). By ACP (P (κ)):

(∗) if F ⊆ κOrd has cardinality< |P (P (κ))| then we can find

{〈Af ,D , gf ,D〉 : f ∈ F ,D ∈ E, rk2
D (f ) = ∞}

such that rk3D+Af ,D
(gf ,D ) = ∞, gf ,D <D+Af ,D f , gf ,D ≤ f .

By DC we can find〈Fn : n < ω〉, Fn ⊆ κOrd, such that in (∗) for F = Fn we
haveFn+1 = Fn∪{gf ,D : f ∈ Fn,D ∈ E}, andF0 = {f ∗}. Let F =

⋃
n<ω

Fn, and let

Ā = 〈Ai : i < κ〉 be defined byAi = {f (i ) : f ∈ F}. Clearly |Fn| ≤∗ |P (P (κ))|
and hence|Ai | ≤∗ |P (P (κ))|. Henceh∗(i ) =: otp(Ai ) < θ(P (P (κ))) and
sup Rang(h∗) < θ(P (P (κ))). Now for every f ∈ F we definehf ∈

∏
i<κ

g(i )

by hf (i ) = otp(Ai ∩ f (i )) < g(i ). It is now easy to check that rk2
D∗ (hf ∗ ) = ∞ as

required.
Next we prove that for someα < θ(P (κ)) we have rk2D∗ (α) = ∞. As

ACP (P (κ)), clearly P (κ) can be well ordered, so leth0 : P (κ) → |P (κ)| be
one-to-one onto|P (κ)|, an aleph. By the first part there isα∗ < θ(P (P (κ)))

with rk2
D∗ (α∗) = ∞. Hence we can findh∗1 : P (P (κ))

onto−→ α∗ + 1.

Observation 6.7A.[ACκ] If α < θ(P (A∗)), |A∗| × κ = |A∗| thenκ(α + 1) is a
set of cardinality≤∗ P (A∗).

[Why? Let h1 : P (A∗)
onto−→ α + 1 and leth2 : A∗ × κ → A∗ be one to one.

For eachf ∈ κ(α + 1) we can choosēB = 〈Bi : i < κ〉, h1(Bi ) = f (i ), so
Bi ⊆ P (A∗), and 〈Bi : i < κ〉 encodesf and it in turn can be coded by
{(i , x) : i < κ andx ∈ Bi } ⊆ κ × A∗, but it is not clearly if we have also the
function f 7→ B̄f . However we can define a functionH , Dom(H ) = P (A∗) and
Rang(H ) ⊆ κ(α + 1) by

(H (A))(i ) = h1({a ∈ A∗ : h2(a, i ) ∈ A}).

Clearly H is a function fromP (A) ontoκ(α+ 1), hence|κ(α+ 1)| ≤∗ |P (A∗)|.]
ut6.7A

Of course, apply 6.7A toA∗ = P (κ).
Also |Fil(κ)| ≤ |P (P (κ))| and|P (P (κ))|2 = |P (P (κ))|, so byACP (P (κ))

we can findY0 = 〈(Af ,D , gf ,D ) : f ∈ κ(α∗ + 1),D ∈ E〉 such that:

(∗) if rk 2
D (f ) = ∞ then rk3D+Af ,D

(gf ,D ) = ∞, Af ,D ∈ D+,
gf ,D ∈ κ(α∗ + 1), gf ,D <D+Af ,D f

Similarly by ACP (P (κ)) we can findY1 = 〈df ,D : f ∈ κ(α∗ + 1),D ∈ E〉 such
that:
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D ⊆ df ,D ∈ E and rk3D (f ) = rk2
dD

(f ).

We now define the modelC with the universeP (P (κ)) - just put all the infor-
mation needed below.

Clearly |C| = |P (P (κ))|, so we have a choice functionH ∗ on the family
of definable (inC) non empty subsets ofC. So for A ⊆ C we have the Skolem
hull. Now we define by induction onα ≤ κ+ (an aleph) submodelsMα of C
increasing continuously inα and of cardinality≤ |P (κ)|.

For α = 0: the Skolem hull of{γ : γ ≤ |P (κ)|}
For α limit :

⋃
β<α

Mβ

For α = β + 1: the Skolem hull of|Mα| ∪ {x : x ∈ κ|Mα|}
Now κ(Mκ+) ⊆ Mκ+ (as κ+ is regular as|P (κ)| is an aleph). LetH : Mκ+ ∩
Ord

onto−→ β∗ < |P (κ)|+ be order preserving. So as we are assuming that the
conclusion fails, for everyf ∈ κ(α∗ + 1)∩Mκ+ ,

H ◦ f ∗ ∈ κβ∗ satisfies rk2D∗ (H ◦ f ∗) <∞.

Whereas rk2D∗ (f ∗) = ∞. We can conclude as in [Sh 386, 1.13]. ut6.7

We can generalize 6.1-6.7

Claim 6.8 [DC<σ, σ = cf(σ) > ℵ0] Assume:

(a) D∗ is a σ-complete filter on A∗

(b) A∗ = A∗ × σ, andι : A∗ → σ is ι(a, α) = α
(c) D∗ is the following filter on A∗; for A ⊆ A∗:

A ∈ D∗ ⇐⇒ {i < σ : {a ∈ A∗ : (i , a) ∈ A∗} ∈ D∗} ∈ Dσ where
Dσ is the minimal normal filter onσ.

(d) E= the family ofι-normal filters on A∗.

Then for every f∈ A∗α(∗), rk2
D (f ) <∞, provided that⊗σ

|A∗|,α(∗).

Concluding Remark.We can deal with fc(ω>ω) as in [Sh 386], [Sh 420]. Also
concerning 6.7 change|A∗|.

Also as in [Sh 386] we can define1rk2(f ,E ) and so improve 3.12 (as in [Sh
386, Sect. 2]).
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