ON INCOMPACTNESS FOR CHROMATIC NUMBER OF GRAPHS

S. SHELAH ${ }^{1,2, *}$
${ }^{1}$ Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
${ }^{2}$ Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA e-mail: shelah@math.huji.ac.il, url: http://shelah.logic.at

(Received May 2, 2012; revised July 9, 2012; accepted July 10, 2012)

Abstract

We deal with incompactness. Assume the existence of nonreflecting stationary set of cofinality κ. We prove that one can define a graph G whose chromatic number is $>\kappa$, while the chromatic number of every subgraph $G^{\prime} \cong G,\left|G^{\prime}\right|<|G|$ is $\leqq \kappa$. The main case is $\kappa=\aleph_{0}$.

§ 0. Introduction

§ 0(A). The questions and results. During the Hajnal conference (June 2011) Magidor asked me on incompactness of "having chromatic number \aleph_{0} "; that is, there is a graph G with λ nodes, chromatic number $>\aleph_{0}$ but every subgraph with $<\lambda$ nodes has chromatic number \aleph_{0} when:
$(*)_{1} \quad\left\{\begin{array}{l}\lambda \text { is regular }>\aleph_{1} \text { with a non-reflecting stationary } S \subseteq S_{N_{N}}^{\lambda}, \\ \text { possibly though better not, assuming some version of GCH. }\end{array}\right.$
Subsequently also when:
$(*)_{2}$

$$
\lambda=\aleph_{\omega+1} .
$$

Such problems were first asked by Erdős-Hajnal, see [1]; we continue [4].
First answer was using BB, see [3, 3.24] so assuming

[^0]\boxplus (a) $\lambda=\mu^{+}$
(b) $\mu^{\aleph_{0}}=\mu$
(c) $S \subseteq\left\{\delta<\lambda: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ is stationary not reflecting
or just
\boxplus^{\prime} (a) $\lambda=\operatorname{cf}(\lambda)$
(b) $\alpha<\lambda \Rightarrow|\alpha|^{\aleph_{0}}<\lambda$
(c) as above.

However, eventually we get more: if $\lambda=\lambda^{\aleph_{0}}=\operatorname{cf}(\lambda)$ and $S \subseteq S_{\aleph_{0}}^{\lambda}$ is stationary non-reflective then we have λ-incompactness for \aleph_{0}-chromatic. In fact, we replace \aleph_{0} by $\kappa=\operatorname{cf}(\kappa)<\lambda$ using a suitable hypothesis.

Moreover, if $\lambda^{\kappa}>\lambda$ we still get $\left(\lambda^{\kappa}, \lambda\right)$-incompactness for κ-chromatic number. In $\S 2$ we use quite free family of countable sequences.

In subsequent work we shall solve also the parallel of the second question of Magidor, i.e.
$(*)_{2} \quad\left\{\begin{array}{l}\text { for regular } \kappa \geqq \aleph_{0} \text { and } \varepsilon<\omega \text { there is a graph } G \text { of chromatic } \\ \text { number }>\kappa \text { but every sub-graph with }<\aleph_{\kappa \cdot \varepsilon+1} \text { nodes has } \\ \text { chromatic number } \leqq \kappa .\end{array}\right.$
We thank Menachem Magidor for asking, Péter Komjáth for stimulating discussion and Paul Larson, Shimoni Garti and the referee for some comments.
$\S \mathbf{0}(\mathbf{B})$. Preliminaries. Definition 0.1. For a graph G, let $\operatorname{ch}(G)$, the chromatic number of G be the minimal cardinal χ such that there is colouring \mathbf{c} of G with χ colours, that is \mathbf{c} is a function from the set of nodes of G into χ or just a set of of cardinality $\leqq \chi$ such that $\mathbf{c}(x)=\mathbf{c}(y) \Rightarrow\{x, y\}$ \notin edge (G).

Definition 0.2. 1) We say "we have λ-incompactness for the $(<\chi)$ chromatic number" or $\operatorname{INC}_{\text {chr }}(\lambda,<\chi)$ when: there is a graph G with λ nodes, chromatic number $\geqq \chi$ but every subgraph with $<\lambda$ nodes has chromatic number $<\chi$.
2) If $\chi=\mu^{+}$we may replace " $<\chi$ " by μ; similarly in 0.3 .

We also consider
Definition 0.3. 1) We say "we have (μ, λ)-incompactness for $(<\chi)$ chromatic number" or $\mathrm{INC}_{\text {chr }}(\mu, \lambda,<\chi)$ when there is an increasing continuous sequence $\left\langle G_{i}: i \leqq \lambda\right\rangle$ of graphs each with $\leqq \mu$ nodes, G_{i} an induced subgraph of G_{λ} with $\operatorname{ch}\left(G_{\lambda}\right) \geqq \chi$ but $i<\lambda \Rightarrow \operatorname{ch}\left(G_{i}\right)<\chi$.
2) Replacing (in part (1)) χ by $\bar{\chi}=\left(<\chi_{0}, \chi_{1}\right)$ means $\left.\operatorname{ch}\left(G_{\lambda}\right)\right) \geqq \chi_{1}$ and $i<\lambda \rightarrow \operatorname{ch}\left(G_{i}\right)<\chi_{0}$; similarly in 0.2 and parts 3$\left.), 4\right)$ below.
3) We say we have incompactness for length λ for $(<\chi)$-chromatic (or $\bar{\chi}$-chromatic) number when we fail to have (μ, λ)-compactness for $(<\chi)$ chromatic (or $\bar{\chi}$-chromatic) number for some μ.
4) We say we have $[\mu, \lambda]$-incompactness for $(<\chi)$-chromatic number or $\mathrm{INC}_{\text {chr }}[\mu, \lambda,<\chi]$ when there is a graph G with μ nodes, $\operatorname{ch}(G) \geqq \chi$ but $G^{1} \subseteq$ $G \wedge\left|G^{1}\right|<\lambda \Rightarrow \operatorname{ch}\left(G^{1}\right)<\chi$.
5) Let $\mathrm{INC}_{\mathrm{chr}}^{+}(\mu, \lambda,<\chi)$ be as in part (1) but we add that even the $\operatorname{cl}\left(G_{i}\right)$, the colouring number of G_{i} is $<\chi$ for $i<\lambda$, see below.
6) Let $\mathrm{INC}_{\text {chr }}^{+}[\mu, \lambda,<\chi]$ be as in part (4) but we add $G^{1} \subseteq G \wedge\left|G^{1}\right|<\lambda$ $\Rightarrow \operatorname{cl}\left(G^{1}\right)<\chi$.
7) If $\chi=\kappa^{+}$we may write κ instead of " $<\chi$ ".

Definition 0.4. 1) For regular $\lambda>\kappa$ let $S_{\kappa}^{\lambda}=\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$.
2) We say C is a $(\geqq \theta)$-closed subset of a set B of ordinals when: if $\delta=\sup (\delta \cap B) \in B, \operatorname{cf}(\delta) \geqq \theta$ and $\delta=\sup (C \cap \delta)$ then $\delta \in C$.

Definition 0.5. For a graph G, the colouring number $\mathrm{cl}(G)$ is the minimal κ such that there is a list $\left\langle a_{\alpha}: \alpha<\alpha(*)\right\rangle$ of the nodes of G such that $\alpha<\alpha(*) \Rightarrow \kappa>\mid\left\{\beta<\alpha:\left\{a_{\beta}, a_{\alpha}\right\} \in \operatorname{edge}(G)\right\}$.

\S 1. From non-reflecting stationary in cofinality \aleph_{0}

Claim 1.1. There is a graph G with λ nodes and chromatic number $>\kappa$ but every subgraph with $<\lambda$ nodes have chromatic number $\leqq \kappa$ when:
\boxplus (a) λ, κ are regular cardinals
(b) $\kappa<\lambda=\lambda^{\kappa}$
(c) $S \subseteq S_{\kappa}^{\lambda}$ is stationary, not reflecting.

Proof. Stage A : Let $\bar{X}=\left\langle X_{i}: i<\lambda\right\rangle$ be a partition of λ to sets such that $\left|X_{i}\right|=\lambda$ or just $\left|X_{i}\right|=|i+2|^{\kappa}$ and min $\left(X_{i}\right) \geqq i$ and let $X_{<i}=\cup\left\{X_{j}\right.$: $j<i\}$ and $X_{\leqq i}=X_{<(i+1)}$. For $\alpha<\lambda$ let $\mathbf{i}(\alpha)$ be the unique ordinal $i<\lambda$ such that $\alpha \in X_{i}$. We choose the set of points $=$ nodes of G as $Y=\{(\alpha, \beta)$: $\alpha<\beta<\lambda, \mathbf{i}(\beta) \in S$ and $\alpha<\mathbf{i}(\beta)\}$ and let $Y_{<i}=\{(\alpha, \beta) \in Y: \mathbf{i}(\beta)<i\}$.

Stage B : Note that if $\lambda=\kappa^{+}$, the complete graph with λ nodes is an example (no use of the further information in \boxplus). So without loss of generality $\lambda>\kappa^{+}$.

Now choose a sequence satisfying the following properties (exists by [2, Ch. III]):
\boxplus (a) $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$
(b) $C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right)$
(c) $\operatorname{otp}\left(C_{\delta}\right)=\kappa$ such that $\left(\forall \beta \in C_{\delta}\right)\left(\beta+1, \beta+2 \notin C_{\delta}\right)$
(d) \bar{C} guesses 1 clubs.

Let $\left\langle\alpha_{\delta, \varepsilon}^{*}: \varepsilon<\kappa\right\rangle$ list C_{δ} in increasing order.

[^1]For $\delta \in S$ let Γ_{δ} be the set of sequence $\bar{\beta}$ such that:
$\boxplus_{\bar{\beta}}$ (a) $\bar{\beta}$ has the form $\left\langle\beta_{\varepsilon}: \varepsilon<\kappa\right\rangle$
(b) $\bar{\beta}$ is increasing with limit δ
(c) $\alpha_{\delta, \varepsilon}^{*}<\beta_{2 \varepsilon+i}<\alpha_{\delta, \varepsilon+1}^{*}$ for $i<2, \varepsilon<\kappa$
(d) $\beta_{2 \varepsilon+i} \in X_{<\alpha_{\delta, \varepsilon+1}^{*}} \backslash X_{\leqq \alpha_{\delta, \varepsilon}^{*}}$ for $i<2, \varepsilon<\kappa$
(e) $\left(\beta_{2 \varepsilon}, \beta_{2 \varepsilon+1}\right) \in Y$ hence $\in Y_{<\alpha_{\delta, \varepsilon+1}^{*}} \subseteq Y_{<\delta}$ for each $\varepsilon<\kappa$
(can ask less).
So $\left|\Gamma_{\delta}\right| \leqq|\delta|^{\kappa} \leqq\left|X_{\delta}\right| \leqq \lambda$ hence we can choose a sequence $\left\langle\bar{\beta}_{\gamma}: \gamma \in X_{\delta}^{\prime}\right.$ $\left.\subseteq X_{\delta}\right\rangle$ listing Γ_{δ}.

Now we define the set of edges of G : edge $(G)=\left\{\left\{\left(\alpha_{1}, \alpha_{2}\right)\right.\right.$, $\left.\left(\min \left(C_{\delta}\right), \gamma\right)\right\}: \delta \in S, \gamma \in X_{\delta}^{\prime}$ hence the sequence $\bar{\beta}_{\gamma}=\left\langle\beta_{\gamma, \varepsilon}: \varepsilon<\kappa\right\rangle$ is well defined and we demand $\left.\left(\alpha_{1}, \alpha_{2}\right) \in\left\{\left(\beta_{\gamma, 2 \varepsilon}, \beta_{\gamma, 2 \varepsilon+1}\right): \varepsilon<\kappa\right\}\right\}$.

Stage C : Every subgraph of G of cardinality $<\lambda$ has chromatic number $\leqq \kappa$.

For this we shall prove that:

$$
\begin{equation*}
\operatorname{ch}\left(G \upharpoonright Y_{<i}\right) \leqq \kappa \quad \text { for every } \quad i<\lambda \tag{1}
\end{equation*}
$$

This suffices as λ is regular, hence every subgraph with $<\lambda$ nodes is included in $Y_{<i}$ for some $i<\lambda$.

For this we shall prove more by induction on $j<\lambda$:
$\oplus_{2, j}\left\{\begin{array}{l}\text { if } i<j, i \notin S, \mathbf{c}_{1} \text { a colouring of } G \upharpoonright Y_{<i}, \operatorname{Rang}\left(\mathbf{c}_{1}\right) \subseteq \kappa \text { and } \\ u \in[\kappa]^{\kappa} \text { then there is a colouring } \mathbf{c}_{2} \text { of } G \upharpoonright Y_{<j} \text { extending } \mathbf{c}_{1} \text { such } \\ \text { that Rang }\left(\mathbf{c}_{2} \upharpoonright\left(Y_{<j} \backslash Y_{<i}\right)\right) \subseteq u .\end{array}\right.$
Case 1: $j=0$. Trivial.
Case 2: j successor, $j-1 \notin S$. By the induction hypothesis without loss of generality $j=i+1$, but then every node from $Y_{j} \backslash Y_{i}$ is an isolated node in $G \upharpoonright Y_{<j}$, because if $\left\{(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right)\right\}$ is an edge of $G \upharpoonright Y_{j}$ then $\mathbf{i}(\beta), \mathbf{i}\left(\beta^{\prime}\right)$ $\in S$ hence necessarily $\mathbf{i}(\beta) \neq j-1=i, \mathbf{i}\left(\beta^{\prime}\right) \neq j-1=i$ hence both (α, β), $\left(\alpha, \beta^{\prime}\right)$ are from Y_{i}.

Case 3: j successor, $j-1 \in S$. Let $j-1$ be called δ so $\delta \in S$. But $i \notin S$ by the assumption in $\oplus_{2, j}$ hence $i<\delta$. Let $\varepsilon(*)<\kappa$ be such that $\alpha_{\delta, \varepsilon(*)}^{*}>i$.

Let $\left\langle u_{\varepsilon}: \varepsilon \leqq \kappa\right\rangle$ be a sequence of subsets of u, a partition of u to sets each of cardinality $\bar{\kappa}$; actually the only disjointness used is that $u_{\kappa} \cap\left(\bigcup_{\varepsilon<\kappa} u_{\varepsilon}\right)$ $=\emptyset$.

We let $i_{0}=i, i_{1+\varepsilon}=\cup\left\{\alpha_{\delta, \varepsilon(*)+1+\zeta}^{*}+1: \zeta<1+\varepsilon\right\}$ for $\varepsilon<\kappa, i_{\kappa}=\delta$, $i_{\kappa+1}=\delta+1=j$.

Note that:

- $\varepsilon<\kappa \Rightarrow i_{\varepsilon} \notin S_{j}$.
[Why? For $\varepsilon=0$ by the assumption on i, for ε successor i_{ε} is a successor ordinal and for i limit clearly $\operatorname{cf}\left(i_{\varepsilon}\right)=\operatorname{cf}(\varepsilon)<\kappa$ and $S \subseteq S_{\kappa}^{\lambda}$.]

We now choose $\mathbf{c}_{2, \zeta}$ by induction on $\zeta \leqq \kappa+1$ such that:

- $\mathbf{c}_{2,0}=\mathbf{c}_{1}$
- $\mathbf{c}_{2, \zeta}$ is a colouring of $G \upharpoonright Y_{<i_{\zeta}}$
- $\mathbf{c}_{2, \zeta}$ is increasing with ζ
- Rang $\left(\mathbf{c}_{2, \zeta} \upharpoonright\left(Y_{<i_{\xi+1}} \backslash Y_{<i_{\xi}}\right)\right) \subseteq u_{\xi}$ for every $\xi<\zeta$.

For $\zeta=0, \mathbf{c}_{2,0}$ is \mathbf{c}_{1} so is given.
For $\zeta=\varepsilon+1<\kappa$: use the induction hypothesis, possible as necessarily $i_{\varepsilon} \notin S$.

For $\zeta \leqq \kappa$ limit: take union.
For $\zeta=\kappa+1$, note that each node b of $Y_{<i_{\zeta}} \backslash Y_{<i_{\kappa}}$ is not connected to any other such node and if the node b is connected to a node from $Y_{<i_{\kappa}}$ then the node b necessarily has the form $\left(\min \left(C_{\delta}\right), \gamma\right), \gamma \in X_{\delta}^{\prime}$, hence $\bar{\beta}_{\gamma}$ is well defined, so the node $b=\left(\min \left(C_{\delta}\right), \gamma\right)$ is connected in G, more exactly in $G \upharpoonright Y_{\leqq \delta}$ exactly to the κ nodes $\left\{\left(\beta_{\gamma, 2 \varepsilon}, \beta_{\gamma, 2 \varepsilon+1}\right): \varepsilon<\kappa\right\}$, but for every $\varepsilon<\kappa$ large enough, $\mathbf{c}_{2, \kappa}\left(\left(\beta_{\gamma, 2 \varepsilon}, \beta_{\gamma, 2 \varepsilon+1}\right)\right) \in u_{\varepsilon}$ hence $\notin u_{\kappa}$ and $\left|u_{\kappa}\right|=\kappa$ so we can choose a colour.

Case 4: j limit. By the assumption of the claim there is a club e of j disjoint to S and without loss of generality $\min (e)=i$. Now choose $\mathbf{c}_{2, \xi}$ a colouring of $Y_{<\xi}$ by induction on $\xi \in e \cup\{j\}$, increasing with ξ such that $\operatorname{Rang}\left(\mathbf{c}_{2, \xi} \upharpoonright\left(Y_{<\varepsilon} \backslash Y_{<i}\right)\right) \subseteq u$ and $\mathbf{c}_{2,0}=\mathbf{c}_{1}$

- For $\xi=\min (e)=i$ the colouring $\mathbf{c}_{2, \xi}=\mathbf{c}_{2, i}=\mathbf{c}_{1}$ is given,
- for ξ successor in e, i.e. $\in \operatorname{nacc}(e) \backslash\{i\}$, use the induction hypothesis with $\xi, \max (e \cap \xi)$ here playing the role of j, i there recalling $\max (e \cap \xi) \in e$, $e \cap S=\emptyset$,
- for $\xi=\sup (e \cap \xi)$ take union.

Lastly, for $\xi=j$ we are done.
Stage $D: \operatorname{ch}(G)>\kappa$. Why? Toward a contradiction, assume \mathbf{c} is a colouring of G with set of colours $\subseteq \kappa$. For each $\gamma<\lambda$ let $u_{\gamma}=\{\mathbf{c}((\alpha, \beta))$: $\gamma<\alpha<\beta<\lambda$ and $(\alpha, \beta) \in Y\}$. So $\left\langle u_{\gamma}: \gamma<\lambda\right\rangle$ is \subseteq-decreasing sequence of subsets of κ and $\kappa<\lambda=\operatorname{cf}(\lambda)$, hence for some $\gamma(*)<\lambda$ and $u_{*} \subseteq \kappa$ we have $\gamma \in(\gamma(*), \lambda) \Rightarrow u_{\gamma}=u_{*}$.

Hence $E=\{\delta<\lambda: \delta$ is a limit ordinal $>\gamma(*)$ and $(\forall \alpha<\delta)(\mathbf{i}(\alpha)<\delta)$ and for every $\gamma<\delta$ and $i \in u_{*}$ there are $\alpha<\beta$ from (γ, δ) such that $(\alpha, \beta) \in Y$ and $\mathbf{c}((\alpha, \beta))=i\}$ is a club of λ.

Now recall that \bar{C} guesses clubs hence for some $\delta \in S$ we have $C_{\delta} \subseteq E$, so for every $\varepsilon<\kappa$ we can choose $\beta_{2 \varepsilon}<\beta_{2 \varepsilon+1}$ from $\left(\alpha_{\delta, \varepsilon}^{*}, \alpha_{\delta, \varepsilon+1}^{*}\right)$ such that $\left(\beta_{2 \varepsilon}, \beta_{2 \varepsilon+1}\right) \in Y$ and $\varepsilon \in u_{*} \Rightarrow \mathbf{c}\left(\left(\beta_{2 \varepsilon}, \beta_{2 \varepsilon+1}\right)\right)=\varepsilon$. So $\left\langle\beta_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is well defined, increasing and belongs to Γ_{δ}, hence $\bar{\beta}_{\gamma}=\left\langle\beta_{\varepsilon}: \varepsilon<\kappa\right\rangle$ for some $\gamma \in X_{\delta}$, hence $\left(\alpha_{\delta, 0}^{*}, \gamma\right)$ belongs to Y and is connected in the graph to $\left(\beta_{2 \varepsilon}, \beta_{2 \varepsilon+1}\right)$ for $\varepsilon<\kappa$. Now if $\varepsilon \in u_{*}$ then $\mathbf{c}\left(\left(\beta_{2 \varepsilon}, \beta_{2 \varepsilon+1}\right)\right)=\varepsilon$ hence $\mathbf{c}\left(\left(\alpha_{\delta, 0}^{*}, \gamma\right)\right) \neq \varepsilon$ for ev-
ery $\varepsilon \in u_{*}$, so $\mathbf{c}\left(\left(\alpha_{\delta, 0}^{*}, \gamma\right)\right) \in \kappa \backslash u_{*}$. But $u_{*}=u_{\alpha_{\delta, 0}^{*}}$ and $\mathbf{c}\left(\left(\alpha_{\delta, 0}^{*}, \gamma\right)\right) \in \kappa \backslash u_{*}$, so we get contradiction to the definition of $u_{\alpha_{\delta, 0}^{*}} . \quad \square_{1.1}$

Similarly
CLAIM 1.2. There is an increasing continuous sequence $\left\langle G_{i}: i \leqq \lambda\right\rangle$ of graphs each of cardinality λ^{κ} such that $\operatorname{ch}\left(G_{\lambda}\right)>\kappa$ and $i<\lambda$ implies $\operatorname{ch}\left(G_{i}\right) \leqq \kappa$ and even $\operatorname{cl}\left(G_{i}\right) \leqq \kappa$ when:
\boxplus (a) $\lambda=\operatorname{cf}(\lambda)$
(b) $S \subseteq\{\delta<\lambda: \operatorname{cf}(\delta)=\kappa\}$ is stationary not reflecting.

Proof. Like 1.1 but the X_{i} are not necessarily $\subseteq \lambda$ or use $2.2 . \quad \square_{1.2}$

§ 2. From almost free

Definition 2.1. Suppose $\eta_{\beta} \in{ }^{\kappa}$ Ord for every $\beta<\alpha(*)$ and $u \subseteq \alpha(*)$, and $\alpha<\beta<\alpha(*) \Rightarrow \eta_{\alpha} \neq \eta_{\beta}$.

1) We say $\left\{\eta_{\alpha}: \alpha \in u\right\}$ is free when there exists a function $h: u \rightarrow \kappa$ such that $\left\langle\left\{\eta_{\alpha}(\varepsilon): \varepsilon \in[h(\alpha), \kappa)\right\}: \alpha \in u\right\rangle$ is a sequence of pairwise disjoint sets.
2) We say $\left\{\eta_{\alpha}: \alpha \in u\right\}$ is weakly free when there exists a sequence $\left\langle u_{\varepsilon, \zeta}\right.$: $\varepsilon, \zeta<\kappa\rangle$ of subsets of u with union u, such that the function $\eta_{\alpha} \mapsto \eta_{\alpha}(\varepsilon)$ is a one-to-one function on $u_{\varepsilon, \zeta}$, for each $\varepsilon, \zeta<\kappa$.

Claim 2.2. 1) We have $\operatorname{INC}_{\mathrm{chr}}(\mu, \lambda, \kappa)$ and even $\mathrm{INC}_{\mathrm{chr}}^{+}(\mu, \lambda, \kappa)$, see Definition 0.3(1), (5) when:
$\boxplus\left(\right.$ a) $\alpha(*) \in\left[\mu, \mu^{+}\right)$and λ is regular $\leqq \mu$ and $\mu=\mu^{\kappa}$
(b) $\bar{\eta}=\left\langle\eta_{\alpha}: \alpha<\alpha(*)\right\rangle$
(c) $\eta_{\alpha} \in{ }^{\kappa} \mu$
(d) $\left\langle u_{i}: i \leqq \lambda\right\rangle$ is $a \leqq$-increasing continuous sequence of subsets of $\alpha(*)$ with $u_{\lambda}=\alpha(*)$
(e) $\bar{\eta} \upharpoonright u_{\alpha}$ is free iff $\alpha<\lambda$ iff $\bar{\eta} \upharpoonright u_{\alpha}$ is weakly free.
2) We have $\mathrm{INC}_{\mathrm{chr}}[\mu, \lambda, \kappa]$ and even $\mathrm{INC}_{\mathrm{chr}}^{+}[\mu, \lambda, \kappa]$, see Definition 0.3(4) when:
\boxplus_{2} (a), (b), (c) as in \boxplus from 2.2
(d) $\bar{\eta}$ is not free
(e) $\bar{\eta} \upharpoonright u$ is free when $u \in[\alpha(*)]^{<\lambda}$.

Proof. We concentrate on proving part (1) the chromatic number case; the proof of part (2) and the colouring number are similar. For $\mathscr{A} \subseteq{ }^{\kappa}$ Ord, we define $\tau_{\mathscr{A}}$ as the vocabulary $\left\{P_{\eta}: \eta \in \mathscr{A}\right\} \cup\left\{F_{\varepsilon}: \varepsilon<\kappa\right\}$ where P_{η} is a unary predicate, F_{ε} a unary function (will be interpreted as possibly partial).

Without loss of generality for each $i<\lambda, u_{i}$ is an initial segment of $\alpha(*)$ and let $\mathscr{A}=\left\{\eta_{\alpha}: \alpha<\alpha(*)\right\}$ and let $<_{\mathscr{A}}$ be the well ordering $\left\{\left(\eta_{\alpha}, \eta_{\beta}\right)\right.$: $\alpha<\beta<\alpha(*)\}$ of \mathscr{A}.

We further let $K_{\mathscr{A}}$ be the class of structures M such that (pedantically, $K_{\mathscr{A}}$ depend also on the sequence $\left\langle\eta_{\alpha}: \alpha<\alpha(*)\right\rangle$:
\boxplus_{1} (a) $M=\left(|M|, F_{\varepsilon}^{M}, P_{\eta}^{M}\right)_{\varepsilon<\kappa, \eta \in \mathscr{A}}$
(b) $\left\langle P_{\eta}^{M}: \eta \in \mathscr{A}\right\rangle$ is a partition of $|M|$, so for $a \in M$ let $\eta_{a}=\eta_{a}^{M}$ be the unique $\eta \in \mathscr{A}$ such that $a \in P_{\eta}^{M}$
(c) if $a_{\ell} \in P_{\eta_{\ell}}^{M}$ for $\ell=1,2$ and $F_{\varepsilon}^{M}\left(a_{2}\right)=a_{1}$ then $\eta_{1}(\varepsilon)=\eta_{2}(\varepsilon)$ and $\eta_{1}<\mathscr{A} \eta_{2}$.

Let $K_{\mathscr{A}}^{*}$ be the class of M such that
\boxplus_{2} (a) $M \in K_{\mathscr{A}}$
(b) $\|M\|=\mu$
(c) if $\eta \in \mathscr{A}, u \subseteq \kappa$ and $\eta_{\varepsilon}<\mathscr{A} \eta, \eta_{\varepsilon}(\varepsilon)=\eta(\varepsilon)$ and $a_{\varepsilon} \in P_{\eta_{\varepsilon}}^{M}$ for $\varepsilon \in u$ then for some $a \in P_{\eta}^{M}$ we have $\varepsilon \in u \Rightarrow F_{\varepsilon}^{M}(a)=a_{\varepsilon}$ and $\varepsilon \in \kappa \backslash u \Rightarrow F_{\varepsilon}^{M}(a)$ not defined.

Clearly
\boxplus_{3} there is $M \in K_{\mathscr{A}}^{*}$.
[Why? As $\mu=\mu^{\kappa}$ and $|\mathscr{A}|=\mu$.]
\boxplus_{4} for $M \in K_{\mathscr{A}}$ let G_{M} be the graph with:

- set of nodes $|M|$
- set of edges $\left\{\left\{a, F_{\varepsilon}^{M}(a)\right\}: a \in|M|, \varepsilon<\kappa\right.$ when $F_{\varepsilon}^{M}(a)$ is defined $\}$.

Now
$\boxplus_{5}\left\{\begin{array}{l}\text { if } u \subseteq \alpha(*), \mathscr{A}_{u}=\left\{\eta_{\alpha}: \alpha \in u\right\} \subseteq \mathscr{A} \text { and } \bar{\eta} \upharpoonright u \text { is free, and } \\ M \in K_{\mathscr{A}} \text { then } G_{M, \mathscr{A}_{u}}:=G_{M} \upharpoonright\left(\cup\left\{P_{\eta}^{M}: \eta \in \mathscr{A}_{u}\right\}\right) \text { has } \\ \text { chromatic number } \leqq \kappa ; \text { moreover has colouring number } \leqq \kappa\end{array}\right.$
[Why? Let $h: u \rightarrow \kappa$ witness that $\bar{\eta} \upharpoonright u$ is free and for $\varepsilon<\kappa$ let $\mathscr{B}_{\varepsilon}:=\left\{\eta_{\alpha}\right.$: $\alpha \in u$ and $h(\alpha)=\varepsilon\}$, so $\mathscr{B}=\cup\left\{\mathscr{B}_{\varepsilon}: \varepsilon<\kappa\right\}$, hence it is enough to prove for each $\varepsilon<\kappa$ that $G_{\mu, \mathscr{B}_{\varepsilon}}$ has chromatic number $\leqq \kappa$. To prove this, by induction on $\alpha \leqq \alpha(*)$ we choose $\mathbf{c}_{\alpha}^{\varepsilon}$ such that:
$\boxplus_{5.1}$ (a) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a function
(b) $\left\langle\mathbf{c}_{\beta}: \beta \leqq \alpha\right\rangle$ is increasing continuous
(c) $\operatorname{Dom}\left(\mathbf{c}_{\alpha}^{\varepsilon}\right)=B_{\alpha}^{\varepsilon}:=\cup\left\{P_{\eta_{\beta}}^{M}: \beta<\alpha\right.$ and $\left.\eta_{\beta} \in \mathscr{B}_{\varepsilon}\right\}$
(d) $\operatorname{Rang}\left(\mathbf{c}_{\alpha}^{\varepsilon}\right) \subseteq \kappa$
(e) if $a, b, \in \operatorname{Dom}\left(\mathbf{c}_{\alpha}\right)$ and $\{a, b\} \in \operatorname{edge}\left(G_{M}\right)$ then $\mathbf{c}_{\alpha}(a) \neq \mathbf{c}_{\alpha}(b)$.

Clearly this suffices. Why is this possible?
If $\alpha=0$ let $\mathbf{c}_{\alpha}^{\varepsilon}$ be empty, if α is a limit ordinal let $\mathbf{c}_{\alpha}^{\varepsilon}=\cup\left\{\mathbf{c}_{\beta}^{\varepsilon}: \beta<\alpha\right\}$ and if $\alpha=\beta+1 \wedge \alpha(\beta) \neq \varepsilon$ let $\mathbf{c}_{\alpha}=\mathbf{c}_{\beta}$.

Lastly, if $\alpha=\beta+1 \wedge h(\beta)=\varepsilon$ we define $\mathbf{c}_{\alpha}^{\varepsilon}$ as follows for $a \in \operatorname{Dom}\left(\mathbf{c}_{\alpha}^{\varepsilon}\right)$, $\mathbf{c}_{\alpha}^{\varepsilon}(a)$ is:

Case 1: $a \in B_{\beta}^{\varepsilon}$. Then $\mathbf{c}_{\alpha}^{\varepsilon}(a)=\mathbf{c}_{\beta}^{\varepsilon}(a)$.
Case 2: $a \in B_{\alpha}^{\varepsilon} \backslash B_{\beta}^{\varepsilon}$. Then $\mathbf{c}_{\alpha}^{\varepsilon}(a)=\min \left(\kappa \backslash\left\{\mathbf{c}_{\beta}^{\varepsilon}\left(F_{\zeta}^{M}(a)\right): \zeta<\varepsilon\right.\right.$ and $\left.\left.F_{\zeta}^{M}(a) \in \operatorname{Dom}\left(\mathbf{c}_{\beta}^{\varepsilon}\right)\right\}\right)$. This is well defined as:
$\boxplus_{5.2}$ (a) $B_{\alpha}^{\varepsilon}=B_{\beta}^{\varepsilon} \cup P_{\eta_{\beta}}^{M}$
(b) if $a \in B_{\beta}^{\varepsilon}$ then $\mathbf{c}_{\beta}^{\varepsilon}(a)$ is well defined (so case 1 is O.K.)
(c) if $\{a, b\} \in \operatorname{edge}\left(G_{M}\right), a \in P_{\eta_{\beta}}^{M}$ and $b \in B_{\alpha}^{\varepsilon}$ then $b \in B_{\beta}^{\varepsilon}$ and $b \in$ $\left\{F_{\zeta}^{M}(a): \zeta<\varepsilon\right\}$
(d) $\mathbf{c}_{\alpha}^{\varepsilon}(a)$ is well defined in Case 2, too
(e) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a function from B_{α}^{ε} to κ
(f) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a colouring.
[Why? Clause (a) by $\boxplus_{5.1}(c)$, clause (b) by the induction hypothesis and clause (c) by $\boxplus_{1}(c)+\boxplus_{4}$. Next, clause (d) holds as $\left\{\mathbf{c}_{\beta}^{\varepsilon}\left(F_{\zeta}^{M}(a)\right): \zeta<\varepsilon\right.$ and $\left.F_{\zeta}^{M}(a) \in B_{\beta}^{\varepsilon}=\operatorname{Dom}\left(\mathbf{c}_{\beta}^{\varepsilon}\right)\right\}$ is a set of cardinality $\leqq|\varepsilon|<\kappa$. Clause (e) holds by the choices of the $\mathbf{c}_{\alpha}^{\varepsilon}(a)$'s. Lastly, to check that clause (f) holds assume (a, b) is an edge of $G_{M} \upharpoonright B_{\alpha}^{\varepsilon}$, for some $\zeta<\kappa$ we have $b=F_{\zeta}^{M}(a)$, hence $\eta_{a}^{M}<\mathscr{A} \eta_{b}^{M}$. If $a, b \in B_{\beta}^{\varepsilon}$ use the induction hypothesis. Otherwise, $\zeta<\varepsilon$ by the definition of " h witnesses $\bar{\eta} \upharpoonright u$ is free" and the choice of B_{α}^{ε} in $\boxplus_{5.1}(c)$. Now use the choice of $\mathbf{c}_{\alpha}^{\varepsilon}(a)$ in Case 2 above.]

So indeed \boxplus_{5} holds.]
$\boxplus_{6} \operatorname{chr}\left(G_{M}\right)>\kappa$ if $M \in K_{\mathscr{A}}^{*}$.
Why? Toward contradiction assume $\mathbf{c}: G_{M} \rightarrow \kappa$ is a colouring. For each $\eta \in \mathscr{A}$ and $\varepsilon<\kappa$ let $\Lambda_{\eta, \varepsilon}=\{\nu: \nu \in \mathscr{A}, \nu<\mathscr{A} \eta, \nu(\varepsilon)=\eta(\varepsilon)$ and for some $a \in P_{\nu}^{M}$ we have $\left.\mathbf{c}(a)=\varepsilon\right\}$.

Let $\mathscr{B}_{\varepsilon}=\left\{\eta \in \mathscr{A}:\left|\Lambda_{\eta, \varepsilon}\right|<\kappa\right\}$. Now if $\mathscr{A} \neq \cup\left\{\mathscr{B}_{\varepsilon}: \varepsilon<\kappa\right\}$ then pick any $\eta \in \mathscr{A} \backslash \cup\left\{\mathscr{B}_{\varepsilon}: \varepsilon<\kappa\right\}$ and by induction on $\varepsilon<\kappa$ choose $\nu_{\varepsilon} \in \Lambda_{\eta, \varepsilon} \backslash\left\{\nu_{\zeta}\right.$: $\zeta<\varepsilon\}$, possible as $\eta \notin \mathscr{B}_{\varepsilon}$ by the definition of $\mathscr{B}_{\varepsilon}$. By the definition of $\Lambda_{\eta, \varepsilon}$ there is $a_{\varepsilon} \in P_{\nu_{\varepsilon}}^{M}$ such that $\mathbf{c}\left(\nu_{\varepsilon}\right)=\varepsilon$. So as $M \in K_{\mathscr{A}}^{*}$ there is $a \in P_{\eta}^{M}$ such that $\varepsilon<\kappa \Rightarrow F_{\varepsilon}^{M}(a)=a_{\varepsilon}$, but $\left\{a, a_{\varepsilon}\right\} \in \operatorname{edge}\left(G_{M}\right)$ hence $\mathbf{c}(a) \neq \mathbf{c}\left(a_{\varepsilon}\right)=\varepsilon$ for every $\varepsilon<\kappa$, contradiction. So $\mathscr{A}=\cup\left\{\mathscr{B}_{\varepsilon}: \varepsilon<\kappa\right\}$.

For each $\varepsilon<\kappa$ we choose $\zeta_{\eta}<\kappa$ for $\eta \in \mathscr{B}_{\varepsilon}$ by induction on $<_{\mathscr{A}}$ such that $\zeta_{\eta} \notin\left\{\zeta_{\nu}: \nu \in \Lambda_{\eta, \varepsilon} \cap \mathscr{B}_{\varepsilon}\right\}$. Let $\mathscr{B}_{\varepsilon, \zeta}=\left\{\eta \in \mathscr{B}_{\varepsilon}: \zeta_{\eta}=\zeta\right\}$ for $\varepsilon, \zeta<\kappa$ so $\mathscr{A}=\cup\left\{\mathscr{B}_{\varepsilon, \zeta}: \varepsilon, \zeta<\kappa\right\}$ and clearly $\eta \mapsto \eta(\varepsilon)$ is a one-to-one function with domain $\mathscr{B}_{\varepsilon, \zeta}$, contradiction to " $\bar{\eta}=\bar{\eta} \upharpoonright u_{\lambda}$ is not weakly free". $\square_{2.2}$

Observation 2.3. 1) If $\mathscr{A} \subseteq{ }^{\kappa} \mu$ and $\eta \neq \nu \in \mathscr{A} \Rightarrow\left(\forall^{\infty} \varepsilon<\kappa\right)(\eta(\varepsilon) \neq$ $\nu(\varepsilon))$ then \mathscr{A} is free iff \mathscr{A} is weakly free.
2) The assumptions of $2.2(2)$ hold when: $\mu \geqq \lambda>\kappa$ are regular, $S \subseteq S_{\kappa}^{\mu}$ stationary, $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle, \eta_{\delta}$ an increasing sequence of ordinals of length κ with limit δ such that $u \subseteq[\lambda]^{<\lambda} \Rightarrow\left\langle\operatorname{Rang}\left(\eta_{\delta}\right): \eta \in u\right\rangle$ has a one-to-one choice function.

Conclusion 2.4. Assume that for every graph G, if $H \subseteq G \wedge|H|<\lambda$ $\Rightarrow \operatorname{chr}(H) \leqq \kappa$ then $\operatorname{chr}(G) \leqq \kappa$.

Then:
(A) if $\mu>\kappa=\operatorname{cf}(\mu)$ and $\mu \geqq \lambda$ then $\operatorname{pp}(\mu)=\mu^{+}$
(B) if $\mu>\operatorname{cf}(\mu) \geqq \kappa$ and $\mu \geqq \lambda$ then $\operatorname{pp}(\mu)=\mu^{+}$, i.e. the strong hypothesis
(C) if $\kappa=\aleph_{0}$ then above λ the $S C H$ holds.

Proof. Clause (A): By 2.2 and [2, Ch. II], [2, Ch. IX, $\S 1]$.
Clause (B) : Follows from (A) by [2, Ch. VIII, §1].
Clause (C) : Follows from (B) by [2, Ch. IX, §1]. $\square_{2.4}$

References

[1] P. Erdős and A. Hajnal, Solved and unsolved problems in set theory, in: L. Henkin (Ed.) Proc. of the Symp. in honor of Tarski's seventieth birthday in Berkeley 1971, Proc. Symp in Pure Math XXV (1974), pp. 269-287.
[2] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford University Press (1994).
[3] S. Shelah, Black Boxes, 0812.0656.
[4] S. Shelah, Incompactness for chromatic numbers of graphs, in: A tribute to Paul Erdős, Cambridge Univ. Press (Cambridge, 1990), pp. 361-371.

[^0]: * The author thanks Alice Leonhardt for the beautiful typing. The author would like to thank the Israel Science Foundation for partial support of this research (Grant no. 1053/11). Publication 1006.

 Key words and phrases: set theory, graph, chromatic number, compactness, non-reflecting stationary set.

 Mathematics Subject Classification: primary 03E05, secondary 05C15.

[^1]: ${ }^{1}$ The guessing clubs are used only in Stage D.

