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Abstract. We deal with incompactness. Assume the existence of non-
reflecting stationary set of cofinality x. We prove that one can define a graph G
whose chromatic number is > k, while the chromatic number of every subgraph
G’ C G, |G'| < |G| is £ k. The main case is kK = Ro.

§ 0. Introduction

§ 0(A). The questions and results. During the Hajnal conference
(June 2011) Magidor asked me on incompactness of “having chromatic num-
ber Wy”; that is, there is a graph G with A\ nodes, chromatic number > RXg
but every subgraph with < A nodes has chromatic number Ry when:

(+) {/\ is regular > N; with a non-reflecting stationary S € SQD,
1 possibly though better not, assuming some version of GCH.

Subsequently also when:
(*)2 A= Nerl.

Such problems were first asked by Erdés—-Hajnal, see [1]; we continue [4].
First answer was using BB, see [3, 3.24] so assuming
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B (a) A=pu"
(b) ™ = p
() SC {6 <A:cf(d) =No} is stationary not reflecting

or just

B (a) A=cf(\)

(b) a < A= |a™ < A
(c) as above.

However, eventually we get more: if A = A® = cf (A\) and S € S{go is sta-
tionary non-reflective then we have A-incompactness for Ng-chromatic. In
fact, we replace Rg by k = cf (k) < \ using a suitable hypothesis.

Moreover, if A" > X we still get (A", \)-incompactness for k-chromatic
number. In §2 we use quite free family of countable sequences.

In subsequent work we shall solve also the parallel of the second question
of Magidor, i.e.

number > k but every sub-graph with < N...41 nodes has

for regular k 2 RNy and £ < w there is a graph G of chromatic
(*)a
chromatic number < k.

We thank Menachem Magidor for asking, Péter Komjath for stimulating
discussion and Paul Larson, Shimoni Garti and the referee for some com-
ments.

§ 0(B). Preliminaries. DEFINITION 0.1. For a graph G, let ch (G),
the chromatic number of G be the minimal cardinal x such that there is
colouring ¢ of G with x colours, that is c is a function from the set of nodes
of G into x or just a set of of cardinality < x such that c¢(z) = c(y) = {z,y}
¢ edge (G).

DEFINITION 0.2. 1) We say “we have A-incompactness for the (< x)-
chromatic number” or INCg,, (A, < x) when: there is a graph G with A nodes,
chromatic number = x but every subgraph with < A nodes has chromatic
number < .

2) If x = ut we may replace “< x” by p; similarly in 0.3.

We also consider

DEFINITION 0.3. 1) We say “we have (i, \)-incompactness for (< x)-
chromatic number” or INCp, (¢, A, < Xx) when there is an increasing contin-
uous sequence (G;: i < A) of graphs each with < p nodes, G; an induced
subgraph of G with ch (G)) 2 x but i < A = ch(G;) < x.

2) Replacing (in part (1)) x by X = (< X0, x1) means ch (G,)) = x1 and
i <A — ch(G;) < xo; similarly in 0.2 and parts 3), 4) below.

3) We say we have incompactness for length A for (< x)-chromatic (or
X-chromatic) number when we fail to have (p, A)-compactness for (< x)-
chromatic (or y-chromatic) number for some pu.
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4) We say we have [u, A]-incompactness for (< x)-chromatic number or
INCene [, A, < x| when there is a graph G with u nodes, ch (G) = x but G* C
GA|GY <X=ch(GY) < x.

5) Let INCH (u, A\, < x) be as in part (1) but we add that even the
i), the colouring number of G; is < x for i < A, see below.

6) Let INC, [u, A, < x] be as in part (4) but we add G* S GA |G| < A
= cl(GY) < x.
7) If x = kT we may write k instead of “< x”.

DEFINITION 0.4. 1) For regular A > k let S) = {§ < A: cf (0) = Kk} .
2) We say C is a (2 0)-closed subset of a set B of ordinals when: if
d=sup (0N B) e B, ct(d) 20 and 6 =sup (CNJ) then o € C.

DEFINITION 0.5. For a graph G, the colouring number cl (G) is the min-
imal k such that there is a list (aq : @ < a(*)) of the nodes of G such that
a<alx) = k> {f<a: {ag a.} € edge(G)}.

§ 1. From non-reflecting stationary in cofinality N

CLAaM 1.1. There is a graph G with A nodes and chromatic number > K
but every subgraph with < A nodes have chromatic number < k when:
B (a) A, k are regular cardinals
(b) k< A=A
(c) S € S) is stationary, not reflecting.

PROOF. Stage A: Let X = (X; : i < )\) be a partition of \ to sets such
that | X;| = A or just |X;| = |i +2|" and min (X;) = ¢ and let Xo; = U{Xj :
j <i}and X<; = Xc(i41). For a < X let i(a) be the unique ordinal i < A
such that & € X;. We choose the set of points = nodes of G as Y = {(«, 3)
a<fB<N\i(fB) eSand a<i(f)} andlet Yo; = { (o, B) €Y : i(B) < i}.

Stage B: Note that if A = k™, the complete graph with A nodes is an ex-
ample (no use of the further information in H). So without loss of generality
A> kT,

Now choose a sequence satisfying the following properties (exists by [2,

Ch. I11)):
B(a) C=(Cs:0€8)
(b) Cs S5 = sup (C5)
(c) otp (C5) = k such that (V8 € C5)(8+ 1,8+ 2 & Cs)
(d) C guesses!clubs.
Let {(aj. : € < k) list Cs in increasing order.

1 The guessing clubs are used only in Stage D.
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For ¢ € S let T's be the set of sequence 3 such that:
B (a) 3 has the form (3. : € < k)
(b) 3 is increasing with limit &
(¢) af . < Pocti <o g fori<2,e <k
(d) Baeti € X<O,36+1\X§a31€ fori<2,e <k
() (B2e,P2e41) €Y hence € Yeqar | € Yos for each e <k
(can ask less).

So |Ts] £16|" < | X5 £ X hence we can choose a sequence (3, : v € X}
C Xj;) listing T's.

Now we define the set of edges of G: edge(G)= {{(al, ag),
(min (C’(g),v)} : § €S, v € X} hence the sequence 3, = (B,.: e < k) is
well defined and we demand (a1, 2) € {(By,2:, 8y,2:41) : € < K} }

Stage C: Every subgraph of G of cardinality < A has chromatic num-
ber < k.

For this we shall prove that:

D1 ch (G [ Ys) Sk forevery i< .

This suffices as A is regular, hence every subgraph with < A nodes is
included in Y.; for some i < A.
For this we shall prove more by induction on 5 < A:

u € [k]" then there is a colouring ¢ of G | Y.; extending c; such

if i <j,i €S, c1 acolouring of G | Y, Rang (c1) € k and
D2,j
that Rang (ca [ (Y<;\Y<i)) € u.

Case 1: j = 0. Trivial.

Case 2: j successor, j —1 € S. By the induction hypothesis without loss
of generality j =i+ 1, but then every node from Y}\Y; is an isolated node
in G [ Ycj, because if { (o, 3),(¢/, ')} is an edge of G ['Y; then i(3),i(5)
€ S hence necessarily i(3) # j —1 =1, i(3') # j — 1 =i hence both («, 3),
(o, 3') are from ;.

Case 3: j successor, j—1 € S. Let j—1becalleddsod e S. But: & S
by the assumption in @ ; hence ¢ < §. Let €(x) < x be such that O () > -

Let (us : € < k) be a sequence of subsets of u, a partition of u to sets each
of cardinality k; actually the only disjointness used is that u, N (UE <k ug)
= 0.

We let ig =14, G141 = U{ 0} (1 +1: (<1+e} for e <k, i =4,
ihy1 =0+ 1=7.

Note that:

ec<Kk=>1 &Y.

[Why? For £ = 0 by the assumption on 4, for € successor i. is a successor

ordinal and for 4 limit clearly cf (i.) = cf (¢) < k and S € S2]
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We now choose ¢y ¢ by induction on ¢ < &+ 1 such that:

® Cp=2Ci

® cy¢ is a colouring of G | Y,

® Cy ¢ is increasing with ¢

e Rang (CQ,C I (Y<i£+1\Y<,~£)) € wug for every & < (.

For ( = 0,cgp is c; so is given.

For ( = e+ 1 < k: use the induction hypothesis, possible as necessarily
ic € S.

For ¢ £ k limit: take union.

For ¢ = k4 1, note that each node b of Y.; \Y.;_ is not connected to
any other such node and if the node b is connected to a node from Y.;_
then the node b necessarily has the form (min (Cs),7), v € X}, hence j3, is
well defined, so the node b = (min (C5),v) is connected in G, more exactly
in G | Y<; exactly to the x nodes {(8y.2,0y,2:41) : € < K}, but for every
e < k large enough, cg((8y,2¢; 3y,2e41)) € ue hence ¢ u, and |u,| = K so
we can choose a colour.

Case 4: j limit. By the assumption of the claim there is a club e of
Jj disjoint to S and without loss of generality min (e) =i. Now choose ¢3¢
a colouring of Y.¢ by induction on § € e U {j}, increasing with £ such that
Rang (co¢ [ (Yee\Y<i)) S uwand cop = ¢y

e For £ = min (e) = ¢ the colouring cy¢ = co; = ¢y is given,

e for ¢ successor in e, i.e. € nacc (e)\{i}, use the induction hypothesis
with £, max (eN &) here playing the role of j, ¢ there recalling max (eN¢) € e,
ensS =1,

e for £ =sup (eN§) take union.

Lastly, for £ = 7 we are done.

Stage D: ch(G) > k. Why? Toward a contradiction, assume c is a
colouring of G with set of colours & k. For each v < A let u, = {c( (e, B)) :
y<a<f<Aand (a,f) € Y}. So (uy : v < A) is &-decreasing sequence
of subsets of k and kK < A = cf (), hence for some y(*) < X and us & Kk we
have v € (7(x),A) = uy = us.

Hence E = {6 < A: ¢ is a limit ordinal > y(x) and (Vo < 6)(i(e) < 0)
and for every v < d and ¢ € u, there are a </ from (v,d) such that
(a,8) € Y and ¢((a,3)) =i} is a club of A.

Now recall that C' guesses clubs hence for some 6 € S we have Cs C E,
so for every € < Kk we can choose fa. < 2,41 from (aae, o +1) such that
(B2e, B2e41) €Y and € € u, = C((ﬁzs,ﬁ2€+l)) =¢. So (6. : € < k) is well de-
fined, increasing and belongs to I's, hence 3, = (8; : € < k) for some v € X,
hence (aj,7) belongs to Y and is connected in the graph to (82, B2e+1) for

e < k. Now if & € u, then ¢( (B2, Bac+1)) = ¢ hence c((aj,7)) # ¢ for ev-
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ery € € us, 80 ¢((j0,7)) € K\us. But uy = uq; and c((ajg,7)) € k\us,
so we get contradiction to the definition of uq; . Uil

Similarly

CLAM 1.2. There is an increasing continuous sequence (G;: i < \)
of graphs each of cardinality \* such that ch (Gy) >k and i < X\ implies
ch (G;) = k and even cl(G;) < k when:

B (a) A =cf ()

(b) SC{d < \: cf(6) =k} is stationary not reflecting.

PROOF. Like 1.1 but the X; are not necessarily € X or use 2.2. [y

§ 2. From almost free

DEFINITION 2.1. Suppose ng € "Ord for every 3 < o) and u & a(x),
and a < 3 < a*) = nq # 1.

1) We say {nq : o € u} is free when there exists a function h: v — K
such that <{17a(5) e € [h(a),k) } Ca€ u> is a sequence of pairwise disjoint
sets.

2) We say {n, : o € u} is weakly free when there exists a sequence (u. ¢ :
g,( < k) of subsets of u with union u, such that the function 7, — 1,/(g) is
a one-to-one function on wu. ¢, for each €,( < k.

CramM 2.2. 1) We have INCaye(p, A, 1) and even INCH (u, A, k), see
Definition 0.3(1), (5) when:
B (a) a(x) € [u,u™) and X is reqular < p and p = p*
n

(b) 7= (10 : @ < a(x))

()
(d) (u;: i £ A) is a S-increasing continuous sequence of subsets
of ax) with u>\ = a(x)
(e) 7 [ uq s free iff a < X\ iff 77 [ ug, is weakly free.
2) We have INCepe [, A, 6] and even INCY, [u, A, k], see Definition 0.3(4)
when

B, (a), (b
(d) 7 is
(e) 7

PROOF. We concentrate on proving part (1) the chromatic number case;
the proof of part (2) and the colouring number are similar. For .&# € *Ord,
we define 77 as the vocabulary {P,: n € &} U{F.: € < k} where P, is a
unary predicate, F. a unary function (will be interpreted as possibly partial).

Without loss of generality for each i < A, u; is an initial segment of a(x)
and let & = {7, : a < a(x)} and let <, be the well ordering { (na,73) :
a<fB<a(x)} of &.

(c) as in B from 2.2
s not free

w is free when u € [a(x)] <,

);
|
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We further let K, be the class of structures M such that (pedantically,
K depend also on the sequence (1, : o < a(*)):
Eﬂl (a) M = (‘M‘7F£M7P7§V[)s<m,n€£f
(b) (P : ne o) is a partition of [M], so for a € M let n, = n}! be
the unique n € & such that a € Pé\/[
(c) if ag € Prg\f for £ =1,2 and FM(a3) = a; then n;(g) = n2(¢) and
m < 12.
Let K7, be the class of M such that
o (a) M e Ky
(b) [|M] = 1
(c)ifne o, u< kand n. <z n,n:(c) =n(e) and a. € Pé‘f for e e u
then for some a € Pé‘/f we have ¢ € u = FM(a) = a. and ¢ € x\u = FM(a)
not defined.
Clearly
B3 there is M € K,.
[Why? As p = p® and |&7| = p.]
Hy for M € K., let Gjs be the graph with:
e set of nodes |M]|
e set of edges {{a,FSM(a)} :a€|M|, e < rwhen FM(a) is deﬁned}.

M € Ko then Gpr o, :=Gu 1 (U {Péw : € o,}) has
chromatic number < k; moreover has colouring number < k.
[Why? Let h: u — x witness that 77 [ u is free and for € < & let B, := {1, :
a€u and h(a) =€}, so B =U{B:: € <k}, hence it is enough to prove
for each ¢ < k that G, . has chromatic number =< k. To prove this, by
induction on o £ «(*) we choose ¢, such that:
Bs.1 (a) ¢, is a function
(b) (cg: B = «) is increasing continuous
(c) Dom (c;) = By :=U{ P} : 3 < aand ng € A}
(d) Rang (c2) C
(e) if a,b, € Dom (c,) and {a,b} € edge (Gar) then cq(a) # cq ().
Clearly this suffices. Why is this possible?
If @ =0 let ¢, be empty, if o is a limit ordinal let ¢, = U{cj : 8 < a}
and if a = B+ 1A a(f) # € let cq = cp.
Lastly, if « = 4+ 1 A h(8) = € we define c§, as follows for a € Dom (c§,),
c (a) is:
Case 1: a € Bj. Then cg(a) = cj(a). y
. £ £ £ — 3 13 .
MCase 2: a € Bi\Bj. .T.‘hen ¢ (a) = min (k\{c§(FM(a)) : ¢ <e and
F(a) € Dom (c3)} ). This is well defined as:
B52 (a) B, = B3 U PR,

Now
{ifu Cax), o ={na: acu}t & & and 7 [ uis free, and
H5
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(b) if @ € Bj then cj(a) is well defined (so case 1 is O.K.)
(c) if {a,b} € edge (Gpr),a € Pé\;[ and b€ B then b€ Bj and b€
a): (<e}
(d) c,(a) is well defined in Case 2, too
(e) &, is a function from BZ to k
(f) ¢, is a colouring.

[Why? Clause (a) by Hs1(c), clause (b) by the induction hypothesis and
clause (c) by Hj(c) +Hy. Next, clause (d) holds as {c%(FCM(a)) 1 (<e
and FCM(a) € B = Dom (c%)} is a set of cardinality < |¢| < k. Clause (e)
holds by the choices of the ¢ (a)’s. Lastly, to check that clause (f) holds
assume (a,b) is an edge of Gy | BE, for some ¢ < k we have b = FCM(a),

{F(

hence nM <, né‘/f . If a,b € Bj use the induction hypothesis. Otherwise,
¢ < € by the definition of “h witnesses 7 [ u is free” and the choice of B,
in Hs.1(c). Now use the choice of ¢ (a) in Case 2 above.]

So indeed H5 holds.]

He chr (Gar) > kif M € K7,.

Why? Toward contradiction assume c: Gy — & is a colouring. For each
neo ande <rklet Aye={v:ved, v<yn, vie)=n(e) and for some
a € PM we have c(a) =€} .

Let . ={ne o : |Aye| <k}. Now if & # U{%.: ¢ < r} then pick
any n € o/ \U{%: : € < k} and by induction on ¢ < k choose v, € A, \{v :
¢ < e}, possible as n ¢ Z. by the definition of %.. By the definition of A, .
there is a. € P} such that c(v.) = . So as M € K}, thereis a € P,gw such
that ¢ < k = FM(a) = a., but {a,a:.} € edge (Gps) hence c(a) # c(a.) = ¢
for every € < k, contradiction. So & = U{Z. : ¢ < k}.

For each € < k we choose ¢, < k for n € %. by induction on <, such
that ¢, € { (v :ve N, . NAB.}. Let Boe ={nePB.: (=} fore,( <rkso
o = U{PB.¢: e,( <k} and clearly n — n(e) is a one-to-one function with
domain %, ¢, contradiction to “7j = 7 [ uy is not weakly free”. [l 9

OBSERVATION 2.3. 1) If & C " andn#v € o = (Ve < k) (n(e) #
v(e)) then o is free iff < is weakly free.

2) The assumptions of 2.2(2) hold when: u = X > k are regular, S & S
stationary, 1= (ns : 0 € S), s an increasing sequence of ordinals of length k
with limit & such that uw S [\]* = (Rang (ns) : 7 € u) has a one-to-one
choice function.

CONCLUSION 2.4. Assume that for every graph G, if H S G A |H| < A
= chr (H) < k then chr (G) < k.
Then:
(A) if p>r=cf(n) and p =2 X then pp (u) = p*
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(B) if u>cf(n) 2k and p = X then pp () = pt, i.e. the strong hypo-
thesis
(C) if kK =Ng then above X the SCH holds.

PROOF. Clause (A): By 2.2 and [2, Ch. II], [2, Ch. IX, §1].
Clause (B): Follows from (A) by [2, Ch. VIII, §1].
Clause (C): Follows from (B) by [2, Ch. IX, §1]. a4
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