ON INCOMPACTNESS FOR CHROMATIC NUMBER OF GRAPHS

S. SHELAH^{1,2,*}

¹Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

²Department of Mathematics, Hill Center – Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA e-mail: shelah@math.huji.ac.il, url: http://shelah.logic.at

(Received May 2, 2012; revised July 9, 2012; accepted July 10, 2012)

Abstract. We deal with incompactness. Assume the existence of nonreflecting stationary set of cofinality κ . We prove that one can define a graph Gwhose chromatic number is $> \kappa$, while the chromatic number of every subgraph $G' \subseteq G$, |G'| < |G| is $\leq \kappa$. The main case is $\kappa = \aleph_0$.

§ 0. Introduction

§ $0(\mathbf{A})$. The questions and results. During the Hajnal conference (June 2011) Magidor asked me on incompactness of "having chromatic number \aleph_0 "; that is, there is a graph G with λ nodes, chromatic number \aleph_0 but every subgraph with $< \lambda$ nodes has chromatic number \aleph_0 when:

$$(*)_1 \quad \begin{cases} \lambda \text{ is regular} > \aleph_1 \text{ with a non-reflecting stationary } S \subseteq S_{\aleph_0}^{\lambda}, \\ \text{possibly though better not, assuming some version of GCH.} \end{cases}$$

Subsequently also when:

$$(*)_2 \qquad \qquad \lambda = \aleph_{\omega+1}$$

Such problems were first asked by Erdős–Hajnal, see [1]; we continue [4]. First answer was using BB, see [3, 3.24] so assuming

0236-5294/\$20.00 © 2012 Akadémiai Kiadó, Budapest, Hungary

 $^{^{\}ast}$ The author thanks Alice Leonhardt for the beautiful typing. The author would like to thank the Israel Science Foundation for partial support of this research (Grant no. 1053/11). Publication 1006.

 $Key\ words\ and\ phrases:$ set theory, graph, chromatic number, compactness, non-reflecting stationary set.

Mathematics Subject Classification: primary 03E05, secondary 05C15.

364

 \boxplus (a) $\lambda = \mu^+$ (b) $\mu^{\aleph_0} = \mu$ (c) $S \subseteq \{\delta < \lambda : cf(\delta) = \aleph_0\}$ is stationary not reflecting \mathbb{H}' (a) $\lambda = \operatorname{cf}(\lambda)$

or just

- (b) $\alpha < \lambda \Rightarrow |\alpha|^{\aleph_0} < \lambda$
- (c) as above.

However, eventually we get more: if $\lambda = \lambda^{\aleph_0} = \operatorname{cf}(\lambda)$ and $S \subseteq S^{\lambda}_{\aleph_0}$ is stationary non-reflective then we have λ -incompactness for \aleph_0 -chromatic. In fact, we replace \aleph_0 by $\kappa = cf(\kappa) < \lambda$ using a suitable hypothesis.

Moreover, if $\lambda^{\kappa} > \lambda$ we still get $(\lambda^{\kappa}, \lambda)$ -incompactness for κ -chromatic number. In $\S2$ we use quite free family of countable sequences.

In subsequent work we shall solve also the parallel of the second question of Magidor, i.e.

 $(*)_2 \quad \begin{cases} \text{for regular } \kappa \geqq \aleph_0 \text{ and } \varepsilon < \omega \text{ there is a graph } G \text{ of chromatic} \\ \text{number} > \kappa \text{ but every sub-graph with } < \aleph_{\kappa \cdot \varepsilon + 1} \text{ nodes has} \\ \text{chromatic number} \leqq \kappa. \end{cases}$

We thank Menachem Magidor for asking, Péter Komjáth for stimulating discussion and Paul Larson, Shimoni Garti and the referee for some comments.

§ 0(B). Preliminaries. DEFINITION 0.1. For a graph G, let ch (G), the chromatic number of G be the minimal cardinal χ such that there is colouring **c** of G with χ colours, that is **c** is a function from the set of nodes of G into χ or just a set of cardinality $\leq \chi$ such that $\mathbf{c}(x) = \mathbf{c}(y) \Rightarrow \{x, y\}$ \notin edge (G).

DEFINITION 0.2. 1) We say "we have λ -incompactness for the $(\langle \chi \rangle)$ chromatic number" or INC_{chr}($\lambda, < \chi$) when: there is a graph G with λ nodes, chromatic number $\geq \chi$ but every subgraph with $< \lambda$ nodes has chromatic number $< \chi$.

2) If $\chi = \mu^+$ we may replace "< χ " by μ ; similarly in 0.3.

We also consider

DEFINITION 0.3. 1) We say "we have (μ, λ) -incompactness for $(\langle \chi \rangle)$ chromatic number" or $INC_{chr}(\mu, \lambda, < \chi)$ when there is an increasing continuous sequence $\langle G_i : i \leq \lambda \rangle$ of graphs each with $\leq \mu$ nodes, G_i an induced subgraph of G_{λ} with $\operatorname{ch}(G_{\lambda}) \geq \chi$ but $i < \lambda \Rightarrow \operatorname{ch}(G_i) < \chi$.

2) Replacing (in part (1)) χ by $\bar{\chi} = (\langle \chi_0, \chi_1)$ means ch $(G_{\lambda}) \geq \chi_1$ and $i < \lambda \rightarrow \operatorname{ch}(G_i) < \chi_0$; similarly in 0.2 and parts 3), 4) below.

3) We say we have incompactness for length λ for $(\langle \chi \rangle)$ -chromatic (or $\bar{\chi}$ -chromatic) number when we fail to have (μ, λ) -compactness for $(<\chi)$ chromatic (or $\bar{\chi}$ -chromatic) number for some μ .

4) We say we have $[\mu, \lambda]$ -incompactness for $(\langle \chi \rangle)$ -chromatic number or $\text{INC}_{chr}[\mu, \lambda, <\chi]$ when there is a graph G with μ nodes, ch $(G) \geq \chi$ but $G^1 \subseteq$ $G \wedge |G^1| < \lambda \Rightarrow \operatorname{ch}(G^1) < \chi.$

5) Let $INC_{chr}^+(\mu, \lambda, < \chi)$ be as in part (1) but we add that even the cl (G_i) , the colouring number of G_i is $\langle \chi \rangle$ for $i \langle \lambda \rangle$, see below.

6) Let INC⁺_{chr}[$\mu, \lambda, < \chi$] be as in part (4) but we add $G^1 \subseteq G \land |G^1| < \lambda$ \Rightarrow cl (G^1) < χ .

7) If $\chi = \kappa^+$ we may write κ instead of "< χ ".

DEFINITION 0.4. 1) For regular $\lambda > \kappa$ let $S_{\kappa}^{\lambda} = \{\delta < \lambda : \operatorname{cf}(\delta) = \kappa\}.$

2) We say C is a $(\geq \theta)$ -closed subset of a set B of ordinals when: if $\delta = \sup (\delta \cap B) \in B$, cf $(\delta) \ge \theta$ and $\delta = \sup (C \cap \delta)$ then $\delta \in C$.

DEFINITION 0.5. For a graph G, the colouring number cl(G) is the minimal κ such that there is a list $\langle a_{\alpha} : \alpha < \alpha(*) \rangle$ of the nodes of G such that $\alpha < \alpha(*) \implies \kappa > | \{\beta < \alpha : \{a_{\beta}, a_{\alpha}\} \in \operatorname{edge}(G) \}.$

§ 1. From non-reflecting stationary in cofinality \aleph_0

CLAIM 1.1. There is a graph G with λ nodes and chromatic number > κ but every subgraph with $< \lambda$ nodes have chromatic number $\leq \kappa$ when:

 \boxplus (a) λ , κ are regular cardinals

(b) $\kappa < \lambda = \lambda^{\kappa}$ (c) $S \subseteq S_{\kappa}^{\lambda}$ is stationary, not reflecting.

PROOF. Stage A: Let $\overline{X} = \langle X_i : i < \lambda \rangle$ be a partition of λ to sets such that $|X_i| = \lambda$ or just $|X_i| = |i+2|^{\kappa}$ and $\min(X_i) \ge i$ and let $X_{<i} = \bigcup \{X_i : X_i < i \leq k\}$ j < i and $X_{\leq i} = X_{<(i+1)}$. For $\alpha < \lambda$ let $\mathbf{i}(\alpha)$ be the unique ordinal $i < \lambda$ such that $\alpha \in X_i$. We choose the set of points = nodes of G as $Y = \{(\alpha, \beta) :$ $\alpha < \beta < \lambda, \mathbf{i}(\beta) \in S$ and $\alpha < \mathbf{i}(\beta)$ and let $Y_{< i} = \{(\alpha, \beta) \in Y : \mathbf{i}(\beta) < i\}$.

Stage B: Note that if $\lambda = \kappa^+$, the complete graph with λ nodes is an example (no use of the further information in \boxplus). So without loss of generality $\lambda > \kappa^+$.

Now choose a sequence satisfying the following properties (exists by [2, Ch. III]):

- \boxplus (a) $\bar{C} = \langle C_{\delta} : \delta \in S \rangle$
 - (b) $C_{\delta} \subseteq \delta = \sup (C_{\delta})$

(c) otp $(C_{\delta}) = \kappa$ such that $(\forall \beta \in C_{\delta})(\beta + 1, \beta + 2 \notin C_{\delta})$

(d) \overline{C} guesses¹ clubs.

Let $\langle \alpha_{\delta,\varepsilon}^* : \varepsilon < \kappa \rangle$ list C_{δ} in increasing order.

365

¹The guessing clubs are used only in Stage D.

S. SHELAH

For $\delta \in S$ let Γ_{δ} be the set of sequence β such that:

 $\boxplus_{\bar{\beta}}$ (a) $\bar{\beta}$ has the form $\langle \beta_{\varepsilon} : \varepsilon < \kappa \rangle$

- (b) $\bar{\beta}$ is increasing with limit δ
- $\begin{array}{l} \text{(c)} & \alpha^*_{\delta,\varepsilon} < \beta_{2\varepsilon+i} < \alpha^*_{\delta,\varepsilon+1} \text{ for } i < 2, \varepsilon < \kappa \\ \text{(d)} & \beta_{2\varepsilon+i} \in X_{<\alpha^*_{\delta,\varepsilon+1}} \backslash X_{\leqq \alpha^*_{\delta,\varepsilon}} \text{ for } i < 2, \varepsilon < \kappa \end{array}$

(e) $(\beta_{2\varepsilon}, \beta_{2\varepsilon+1}) \in Y$ hence $\in Y_{<\alpha^*_{\delta_{\varepsilon+1}}} \subseteq Y_{<\delta}$ for each $\varepsilon < \kappa$

(can ask less).

366

So $|\Gamma_{\delta}| \leq |\delta|^{\kappa} \leq |X_{\delta}| \leq \lambda$ hence we can choose a sequence $\langle \bar{\beta}_{\gamma} : \gamma \in X'_{\delta}$ $\subseteq X_{\delta}$ listing Γ_{δ} .

Now we define the set of edges of G: edge $(G) = \{\{(\alpha_1, \alpha_2), (\alpha_2), (\alpha_3)\} \}$ $(\min(C_{\delta}), \gamma)$: $\delta \in S, \ \gamma \in X'_{\delta}$ hence the sequence $\bar{\beta}_{\gamma} = \langle \beta_{\gamma, \varepsilon} : \varepsilon < \kappa \rangle$ is well defined and we demand $(\alpha_1, \alpha_2) \in \{ (\beta_{\gamma, 2\varepsilon}, \beta_{\gamma, 2\varepsilon+1}) : \varepsilon < \kappa \} \}.$

Stage C: Every subgraph of G of cardinality $< \lambda$ has chromatic number $\leq \kappa$.

For this we shall prove that:

$$\oplus_1 \qquad \qquad \operatorname{ch}\left(G \upharpoonright Y_{\leq i}\right) \leq \kappa \quad \text{for every} \ i < \lambda.$$

This suffices as λ is regular, hence every subgraph with $< \lambda$ nodes is included in $Y_{\leq i}$ for some $i < \lambda$.

For this we shall prove more by induction on $j < \lambda$:

 $\oplus_{2,j} \quad \begin{cases} \text{if } i < j, i \notin S, \mathbf{c}_1 \text{ a colouring of } G \upharpoonright Y_{< i}, \operatorname{Rang}\left(\mathbf{c}_1\right) \leqq \kappa \text{ and} \\ u \in [\kappa]^{\kappa} \text{ then there is a colouring } \mathbf{c}_2 \text{ of } G \upharpoonright Y_{< j} \text{ extending } \mathbf{c}_1 \text{ such} \\ \text{that } \operatorname{Rang}\left(\mathbf{c}_2 \upharpoonright (Y_{< j} \backslash Y_{< i})\right) \leqq u. \end{cases}$

Case 1: j = 0. Trivial.

Case 2: j successor, $j-1 \notin S$. By the induction hypothesis without loss of generality j = i + 1, but then every node from $Y_j \setminus Y_i$ is an isolated node in $G \upharpoonright Y_{\leq j}$, because if $\{(\alpha, \beta), (\alpha', \beta')\}$ is an edge of $G \upharpoonright Y_j$ then $\mathbf{i}(\beta), \mathbf{i}(\beta')$ $\in S$ hence necessarily $\mathbf{i}(\beta) \neq j-1 = i$, $\mathbf{i}(\beta') \neq j-1 = i$ hence both (α, β) , (α, β') are from Y_i .

Case 3: j successor, $j - 1 \in S$. Let j - 1 be called δ so $\delta \in S$. But $i \notin S$ by the assumption in $\oplus_{2,j}$ hence $i < \delta$. Let $\varepsilon(*) < \kappa$ be such that $\alpha^*_{\delta,\varepsilon(*)} > i$.

Let $\langle u_{\varepsilon} : \varepsilon \leq \kappa \rangle$ be a sequence of subsets of u, a partition of u to sets each of cardinality κ ; actually the only disjointness used is that $u_{\kappa} \cap (\bigcup_{\varepsilon < \kappa} u_{\varepsilon})$ $= \emptyset$.

We let $i_0 = i$, $i_{1+\varepsilon} = \cup \left\{ \alpha^*_{\delta,\varepsilon(*)+1+\zeta} + 1 : \zeta < 1+\varepsilon \right\}$ for $\varepsilon < \kappa$, $i_{\kappa} = \delta$, $i_{\kappa+1} = \delta + 1 = j.$

Note that:

• $\varepsilon < \kappa \Rightarrow i_{\varepsilon} \notin S_j$.

[Why? For $\varepsilon = 0$ by the assumption on *i*, for ε successor i_{ε} is a successor ordinal and for *i* limit clearly cf $(i_{\varepsilon}) = cf(\varepsilon) < \kappa$ and $S \subseteq S_{\kappa}^{\lambda}$.

We now choose $\mathbf{c}_{2,\zeta}$ by induction on $\zeta \leq \kappa + 1$ such that:

• $c_{2,0} = c_1$

• $\mathbf{c}_{2,\zeta}$ is a colouring of $G \upharpoonright Y_{\langle i_{\zeta} \rangle}$

• $\mathbf{c}_{2,\zeta}$ is increasing with ζ

• Rang $(\mathbf{c}_{2,\zeta} \upharpoonright (Y_{\langle i_{\xi+1}} \setminus Y_{\langle i_{\xi} \rangle})) \subseteq u_{\xi}$ for every $\xi < \zeta$.

For $\zeta = 0, \mathbf{c}_{2,0}$ is \mathbf{c}_1 so is given.

For $\zeta = \varepsilon + 1 < \kappa$: use the induction hypothesis, possible as necessarily $i_{\varepsilon} \notin S$.

For $\zeta \leq \kappa$ limit: take union.

For $\zeta = \kappa + 1$, note that each node b of $Y_{\langle i_{\zeta}} \setminus Y_{\langle i_{\kappa}}$ is not connected to any other such node and if the node b is connected to a node from $Y_{\langle i_{\kappa}}$ then the node b necessarily has the form $(\min(C_{\delta}), \gamma)$, $\gamma \in X'_{\delta}$, hence $\bar{\beta}_{\gamma}$ is well defined, so the node $b = (\min(C_{\delta}), \gamma)$ is connected in G, more exactly in $G \upharpoonright Y_{\leq \delta}$ exactly to the κ nodes $\{(\beta_{\gamma,2\varepsilon}, \beta_{\gamma,2\varepsilon+1}) : \varepsilon < \kappa\}$, but for every $\varepsilon < \kappa$ large enough, $\mathbf{c}_{2,\kappa}((\beta_{\gamma,2\varepsilon}, \beta_{\gamma,2\varepsilon+1})) \in u_{\varepsilon}$ hence $\notin u_{\kappa}$ and $|u_{\kappa}| = \kappa$ so we can choose a colour.

Case 4: j limit. By the assumption of the claim there is a club e of j disjoint to S and without loss of generality $\min(e) = i$. Now choose $\mathbf{c}_{2,\xi}$ a colouring of $Y_{<\xi}$ by induction on $\xi \in e \cup \{j\}$, increasing with ξ such that Rang $(\mathbf{c}_{2,\xi} \upharpoonright (Y_{<\varepsilon} \setminus Y_{<i})) \subseteq u$ and $\mathbf{c}_{2,0} = \mathbf{c}_1$

• For $\xi = \min(e) = i$ the colouring $\mathbf{c}_{2,\xi} = \mathbf{c}_{2,i} = \mathbf{c}_1$ is given,

• for ξ successor in e, i.e. $\in \operatorname{nacc}(e) \setminus \{i\}$, use the induction hypothesis with ξ , max $(e \cap \xi)$ here playing the role of j, i there recalling max $(e \cap \xi) \in e$, $e \cap S = \emptyset$,

• for $\xi = \sup(e \cap \xi)$ take union.

Lastly, for $\xi = j$ we are done.

Stage D: $\operatorname{ch}(G) > \kappa$. Why? Toward a contradiction, assume **c** is a colouring of G with set of colours $\subseteq \kappa$. For each $\gamma < \lambda$ let $u_{\gamma} = \{ \mathbf{c}((\alpha, \beta)) : \gamma < \alpha < \beta < \lambda \text{ and } (\alpha, \beta) \in Y \}$. So $\langle u_{\gamma} : \gamma < \lambda \rangle$ is \subseteq -decreasing sequence of subsets of κ and $\kappa < \lambda = \operatorname{cf}(\lambda)$, hence for some $\gamma(*) < \lambda$ and $u_* \subseteq \kappa$ we have $\gamma \in (\gamma(*), \lambda) \Rightarrow u_{\gamma} = u_*$.

Hence $E = \{\delta < \lambda : \delta \text{ is a limit ordinal } > \gamma(*) \text{ and } (\forall \alpha < \delta) (\mathbf{i}(\alpha) < \delta)$ and for every $\gamma < \delta$ and $i \in u_*$ there are $\alpha < \beta$ from (γ, δ) such that $(\alpha, \beta) \in Y$ and $\mathbf{c}((\alpha, \beta)) = i\}$ is a club of λ .

Now recall that \overline{C} guesses clubs hence for some $\delta \in S$ we have $C_{\delta} \subseteq E$, so for every $\varepsilon < \kappa$ we can choose $\beta_{2\varepsilon} < \beta_{2\varepsilon+1}$ from $(\alpha^*_{\delta,\varepsilon}, \alpha^*_{\delta,\varepsilon+1})$ such that $(\beta_{2\varepsilon}, \beta_{2\varepsilon+1}) \in Y$ and $\varepsilon \in u_* \Rightarrow \mathbf{c}((\beta_{2\varepsilon}, \beta_{2\varepsilon+1})) = \varepsilon$. So $\langle \beta_{\varepsilon} : \varepsilon < \kappa \rangle$ is well defined, increasing and belongs to Γ_{δ} , hence $\overline{\beta}_{\gamma} = \langle \beta_{\varepsilon} : \varepsilon < \kappa \rangle$ for some $\gamma \in X_{\delta}$, hence $(\alpha^*_{\delta,0}, \gamma)$ belongs to Y and is connected in the graph to $(\beta_{2\varepsilon}, \beta_{2\varepsilon+1})$ for $\varepsilon < \kappa$. Now if $\varepsilon \in u_*$ then $\mathbf{c}((\beta_{2\varepsilon}, \beta_{2\varepsilon+1})) = \varepsilon$ hence $\mathbf{c}((\alpha^*_{\delta,0}, \gamma)) \neq \varepsilon$ for ev-

S. SHELAH

ery $\varepsilon \in u_*$, so $\mathbf{c}((\alpha_{\delta,0}^*, \gamma)) \in \kappa \setminus u_*$. But $u_* = u_{\alpha_{\delta,0}^*}$ and $\mathbf{c}((\alpha_{\delta,0}^*, \gamma)) \in \kappa \setminus u_*$, $\square_{1.1}$ so we get contradiction to the definition of $u_{\alpha_{\delta,\alpha}^*}$.

Similarly

368

CLAIM 1.2. There is an increasing continuous sequence $\langle G_i : i \leq \lambda \rangle$ of graphs each of cardinality λ^{κ} such that $\operatorname{ch}(G_{\lambda}) > \kappa$ and $i < \lambda$ implies $\operatorname{ch}(G_i) \leq \kappa \text{ and even } \operatorname{cl}(G_i) \leq \kappa \text{ when:}$

$$\exists (a) \ \lambda = cf(\lambda)$$

(b) $S \subseteq \{\delta < \lambda : cf(\delta) = \kappa\}$ is stationary not reflecting.

PROOF. Like 1.1 but the X_i are not necessarily $\subseteq \lambda$ or use 2.2. $\square_{1,2}$

§ 2. From almost free

DEFINITION 2.1. Suppose $\eta_{\beta} \in {}^{\kappa}$ Ord for every $\beta < \alpha(*)$ and $u \subseteq \alpha(*)$, and $\alpha < \beta < \alpha(*) \Rightarrow \eta_{\alpha} \neq \eta_{\beta}$.

1) We say $\{\eta_{\alpha} : \alpha \in u\}$ is free when there exists a function $h : u \to \kappa$ such that $\left\langle \left\{ \eta_{\alpha}(\varepsilon) : \varepsilon \in [h(\alpha), \kappa) \right\} : \alpha \in u \right\rangle$ is a sequence of pairwise disjoint sets.

2) We say $\{\eta_{\alpha} : \alpha \in u\}$ is weakly free *when* there exists a sequence $\langle u_{\varepsilon,\zeta} :$ $\varepsilon, \zeta < \kappa$ of subsets of u with union u, such that the function $\eta_{\alpha} \mapsto \eta_{\alpha}(\varepsilon)$ is a one-to-one function on $u_{\varepsilon,\zeta}$, for each $\varepsilon, \zeta < \kappa$.

CLAIM 2.2. 1) We have $INC_{chr}(\mu, \lambda, \kappa)$ and even $INC^+_{chr}(\mu, \lambda, \kappa)$, see Definition 0.3(1), (5) when:

 \boxplus (a) $\alpha(*) \in [\mu, \mu^+)$ and λ is regular $\leq \mu$ and $\mu = \mu^{\kappa}$

(b)
$$\bar{\eta} = \langle \eta_{\alpha} : \alpha < \alpha(*) \rangle$$

(c)
$$\eta_{\alpha} \in {}^{\kappa}\mu$$

(d) $\langle u_i : i \leq \lambda \rangle$ is a \subseteq -increasing continuous sequence of subsets of $\alpha(*)$ with $u_{\lambda} = \alpha(*)$

(e) $\bar{\eta} \upharpoonright u_{\alpha}$ is free iff $\alpha < \lambda$ iff $\bar{\eta} \upharpoonright u_{\alpha}$ is weakly free. 2) We have $\text{INC}_{chr}[\mu, \lambda, \kappa]$ and even $\text{INC}_{chr}^+[\mu, \lambda, \kappa]$, see Definition 0.3(4) when:

- \boxplus_2 (a), (b), (c) as in \boxplus from 2.2
 - (d) $\bar{\eta}$ is not free
 - (e) $\bar{\eta} \upharpoonright u$ is free when $u \in \left[\alpha(*)\right]^{<\lambda}$.

PROOF. We concentrate on proving part (1) the chromatic number case; the proof of part (2) and the colouring number are similar. For $\mathscr{A} \subseteq {}^{\kappa}\operatorname{Ord}$, we define $\tau_{\mathscr{A}}$ as the vocabulary $\{P_{\eta} : \eta \in \mathscr{A}\} \cup \{F_{\varepsilon} : \varepsilon < \kappa\}$ where P_{η} is a unary predicate, F_{ε} a unary function (will be interpreted as possibly partial).

Without loss of generality for each $i < \lambda, u_i$ is an initial segment of $\alpha(*)$ and let $\mathscr{A} = \{\eta_{\alpha} : \alpha < \alpha(*)\}$ and let $<_{\mathscr{A}}$ be the well ordering $\{(\eta_{\alpha}, \eta_{\beta}):$ $\alpha < \beta < \alpha(*) \}$ of \mathscr{A} .

We further let $K_{\mathscr{A}}$ be the class of structures M such that (pedantically, $K_{\mathscr{A}}$ depend also on the sequence $\langle \eta_{\alpha} : \alpha < \alpha(*) \rangle$:

 $\boxplus_1 \text{ (a) } M = \left(|M|, F_{\varepsilon}^M, P_{\eta}^M \right)_{\varepsilon < \kappa, \eta \in \mathscr{A}}$

(b) $\langle P_{\eta}^{M} : \eta \in \mathscr{A} \rangle$ is a partition of |M|, so for $a \in M$ let $\eta_{a} = \eta_{a}^{M}$ be the unique $\eta \in \mathscr{A}$ such that $a \in P_{\eta}^{M}$

(c) if $a_{\ell} \in P_{\eta_{\ell}}^{M}$ for $\ell = 1, 2$ and $F_{\varepsilon}^{M}(a_{2}) = a_{1}$ then $\eta_{1}(\varepsilon) = \eta_{2}(\varepsilon)$ and $\eta_{1} < \mathcal{A} \eta_{2}$.

Let $K^*_{\mathscr{A}}$ be the class of M such that

 \boxplus_2 (a) $M \in K_{\mathscr{A}}$

(b) $||M|| = \mu$

(c) if $\eta \in \mathscr{A}, u \subseteq \kappa$ and $\eta_{\varepsilon} <_{\mathscr{A}} \eta, \eta_{\varepsilon}(\varepsilon) = \eta(\varepsilon)$ and $a_{\varepsilon} \in P_{\eta_{\varepsilon}}^{M}$ for $\varepsilon \in u$ then for some $a \in P_{\eta}^{M}$ we have $\varepsilon \in u \Rightarrow F_{\varepsilon}^{M}(a) = a_{\varepsilon}$ and $\varepsilon \in \kappa \setminus u \Rightarrow F_{\varepsilon}^{M}(a)$ not defined.

Clearly

 $\boxplus_3 \text{ there is } M \in K^*_{\mathscr{A}}.$

[Why? As $\mu = \mu^{\kappa}$ and $|\mathscr{A}| = \mu$.]

 \boxplus_4 for $M \in K_{\mathscr{A}}$ let G_M be the graph with:

• set of nodes |M|

• set of edges $\{ \{a, F_{\varepsilon}^{M}(a)\} : a \in |M|, \varepsilon < \kappa \text{ when } F_{\varepsilon}^{M}(a) \text{ is defined} \}.$ Now,

Now for a function of the fun

[Why? Let $h: u \to \kappa$ witness that $\bar{\eta} \upharpoonright u$ is free and for $\varepsilon < \kappa$ let $\mathscr{B}_{\varepsilon} := \{\eta_{\alpha} : \alpha \in u \text{ and } h(\alpha) = \varepsilon\}$, so $\mathscr{B} = \bigcup \{\mathscr{B}_{\varepsilon} : \varepsilon < \kappa\}$, hence it is enough to prove for each $\varepsilon < \kappa$ that $G_{\mu,\mathscr{B}_{\varepsilon}}$ has chromatic number $\leq \kappa$. To prove this, by induction on $\alpha \leq \alpha(*)$ we choose $\mathbf{c}_{\alpha}^{\varepsilon}$ such that:

 $\boxplus_{5.1}$ (a) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a function

(b) $\langle \mathbf{c}_{\beta} : \beta \leq \alpha \rangle$ is increasing continuous

(c) Dom $(\mathbf{c}_{\alpha}^{\varepsilon}) = B_{\alpha}^{\varepsilon} := \cup \{ P_{\eta_{\beta}}^{M} : \beta < \alpha \text{ and } \eta_{\beta} \in \mathscr{B}_{\varepsilon} \}$

(d) Rang $(\mathbf{c}_{\alpha}^{\varepsilon}) \subseteq \kappa$

(e) if $a, b \in \text{Dom}(\mathbf{c}_{\alpha})$ and $\{a, b\} \in \text{edge}(G_M)$ then $\mathbf{c}_{\alpha}(a) \neq \mathbf{c}_{\alpha}(b)$. Clearly this suffices. Why is this possible?

If $\alpha = 0$ let $\mathbf{c}_{\alpha}^{\varepsilon}$ be empty, if α is a limit ordinal let $\mathbf{c}_{\alpha}^{\varepsilon} = \bigcup \{ \mathbf{c}_{\beta}^{\varepsilon} : \beta < \alpha \}$ and if $\alpha = \beta + 1 \land \alpha(\beta) \neq \varepsilon$ let $\mathbf{c}_{\alpha} = \mathbf{c}_{\beta}$.

Lastly, if $\alpha = \beta + 1 \wedge h(\beta) = \varepsilon$ we define $\mathbf{c}_{\alpha}^{\varepsilon}$ as follows for $a \in \text{Dom}(\mathbf{c}_{\alpha}^{\varepsilon})$, $\mathbf{c}_{\alpha}^{\varepsilon}(a)$ is:

Case 1: $a \in B^{\varepsilon}_{\beta}$. Then $\mathbf{c}^{\varepsilon}_{\alpha}(a) = \mathbf{c}^{\varepsilon}_{\beta}(a)$.

Case 2: $a \in B^{\varepsilon}_{\alpha} \setminus B^{\varepsilon}_{\beta}$. Then $\mathbf{c}^{\varepsilon}_{\alpha}(a) = \min\left(\kappa \setminus \{\mathbf{c}^{\varepsilon}_{\beta}(F^{M}_{\zeta}(a)) : \zeta < \varepsilon \text{ and } F^{M}_{\zeta}(a) \in \operatorname{Dom}\left(\mathbf{c}^{\varepsilon}_{\beta}\right)\}\right)$. This is well defined as: $\boxplus_{5.2}$ (a) $B^{\varepsilon}_{\alpha} = B^{\varepsilon}_{\beta} \cup P^{M}_{\eta_{\beta}}$

370

S. SHELAH

(b) if $a \in B^{\varepsilon}_{\beta}$ then $\mathbf{c}^{\varepsilon}_{\beta}(a)$ is well defined (so case 1 is O.K.)

(c) if $\{a, b\} \in \text{edge}(G_M), a \in P^M_{\eta_\beta}$ and $b \in B^{\varepsilon}_{\alpha}$ then $b \in B^{\varepsilon}_{\beta}$ and $b \in F^M_{\zeta}(a) : \zeta < \varepsilon\}$

(d) $\mathbf{c}_{\alpha}^{\varepsilon}(a)$ is well defined in Case 2, too

- (e) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a function from B_{α}^{ε} to κ
- (f) $\mathbf{c}_{\alpha}^{\varepsilon}$ is a colouring.

[Why? Clause (a) by $\boxplus_{5,1}(c)$, clause (b) by the induction hypothesis and clause (c) by $\boxplus_1(c) + \boxplus_4$. Next, clause (d) holds as $\{\mathbf{c}^{\varepsilon}_{\beta}(F^M_{\zeta}(a)) : \zeta < \varepsilon$ and $F^M_{\zeta}(a) \in B^{\varepsilon}_{\beta} = \text{Dom}(\mathbf{c}^{\varepsilon}_{\beta})\}$ is a set of cardinality $\leq |\varepsilon| < \kappa$. Clause (e) holds by the choices of the $\mathbf{c}^{\varepsilon}_{\alpha}(a)$'s. Lastly, to check that clause (f) holds assume (a,b) is an edge of $G_M \upharpoonright B^{\varepsilon}_{\alpha}$, for some $\zeta < \kappa$ we have $b = F^M_{\zeta}(a)$, hence $\eta^M_a <_{\mathscr{A}} \eta^M_b$. If $a, b \in B^{\varepsilon}_{\beta}$ use the induction hypothesis. Otherwise, $\zeta < \varepsilon$ by the definition of "h witnesses $\bar{\eta} \upharpoonright u$ is free" and the choice of B^{ε}_{α} in $\boxplus_{5,1}(c)$. Now use the choice of $\mathbf{c}^{\varepsilon}_{\alpha}(a)$ in Case 2 above.]

So indeed \boxplus_5 holds.]

 $\boxplus_6 \operatorname{chr}(G_M) > \kappa \text{ if } M \in K^*_{\mathscr{A}}.$

Why? Toward contradiction assume $\mathbf{c} : G_M \to \kappa$ is a colouring. For each $\eta \in \mathscr{A}$ and $\varepsilon < \kappa$ let $\Lambda_{\eta,\varepsilon} = \{ \nu : \nu \in \mathscr{A}, \nu <_{\mathscr{A}} \eta, \nu(\varepsilon) = \eta(\varepsilon) \text{ and for some } a \in P_{\nu}^M \text{ we have } \mathbf{c}(a) = \varepsilon \}.$

Let $\mathscr{B}_{\varepsilon} = \{ \eta \in \mathscr{A} : |\Lambda_{\eta,\varepsilon}| < \kappa \}$. Now if $\mathscr{A} \neq \bigcup \{ \mathscr{B}_{\varepsilon} : \varepsilon < \kappa \}$ then pick any $\eta \in \mathscr{A} \setminus \bigcup \{ \mathscr{B}_{\varepsilon} : \varepsilon < \kappa \}$ and by induction on $\varepsilon < \kappa$ choose $\nu_{\varepsilon} \in \Lambda_{\eta,\varepsilon} \setminus \{ \nu_{\zeta} : \zeta < \varepsilon \}$, possible as $\eta \notin \mathscr{B}_{\varepsilon}$ by the definition of $\mathscr{B}_{\varepsilon}$. By the definition of $\Lambda_{\eta,\varepsilon}$ there is $a_{\varepsilon} \in P_{\nu_{\varepsilon}}^{M}$ such that $\mathbf{c}(\nu_{\varepsilon}) = \varepsilon$. So as $M \in K_{\mathscr{A}}^{*}$ there is $a \in P_{\eta}^{M}$ such that $\varepsilon < \kappa \Rightarrow F_{\varepsilon}^{M}(a) = a_{\varepsilon}$, but $\{a, a_{\varepsilon}\} \in \text{edge}(G_{M})$ hence $\mathbf{c}(a) \neq \mathbf{c}(a_{\varepsilon}) = \varepsilon$ for every $\varepsilon < \kappa$, contradiction. So $\mathscr{A} = \bigcup \{ \mathscr{B}_{\varepsilon} : \varepsilon < \kappa \}$.

For each $\varepsilon < \kappa$ we choose $\zeta_{\eta} < \kappa$ for $\eta \in \mathscr{B}_{\varepsilon}$ by induction on $<_{\mathscr{A}}$ such that $\zeta_{\eta} \notin \{\zeta_{\nu} : \nu \in \Lambda_{\eta,\varepsilon} \cap \mathscr{B}_{\varepsilon}\}$. Let $\mathscr{B}_{\varepsilon,\zeta} = \{\eta \in \mathscr{B}_{\varepsilon} : \zeta_{\eta} = \zeta\}$ for $\varepsilon, \zeta < \kappa$ so $\mathscr{A} = \bigcup \{\mathscr{B}_{\varepsilon,\zeta} : \varepsilon, \zeta < \kappa\}$ and clearly $\eta \mapsto \eta(\varepsilon)$ is a one-to-one function with domain $\mathscr{B}_{\varepsilon,\zeta}$, contradiction to " $\bar{\eta} = \bar{\eta} \upharpoonright u_{\lambda}$ is not weakly free". $\Box_{2,2}$

OBSERVATION 2.3. 1) If $\mathscr{A} \subseteq {}^{\kappa}\mu$ and $\eta \neq \nu \in \mathscr{A} \Rightarrow (\forall^{\infty}\varepsilon < \kappa) \ (\eta(\varepsilon) \neq \nu(\varepsilon))$ then \mathscr{A} is free iff \mathscr{A} is weakly free.

2) The assumptions of 2.2(2) hold when: $\mu \geq \lambda > \kappa$ are regular, $S \subseteq S_{\kappa}^{\mu}$ stationary, $\bar{\eta} = \langle \eta_{\delta} : \delta \in S \rangle$, η_{δ} an increasing sequence of ordinals of length κ with limit δ such that $u \subseteq [\lambda]^{<\lambda} \Rightarrow \langle \operatorname{Rang}(\eta_{\delta}) : \eta \in u \rangle$ has a one-to-one choice function.

CONCLUSION 2.4. Assume that for every graph G, if $H \subseteq G \land |H| < \lambda$ $\Rightarrow \operatorname{chr}(H) \leq \kappa$ then $\operatorname{chr}(G) \leq \kappa$.

Then:

(A) if $\mu > \kappa = cf(\mu)$ and $\mu \ge \lambda$ then $pp(\mu) = \mu^+$

(B) if $\mu > cf(\mu) \ge \kappa$ and $\mu \ge \lambda$ then $pp(\mu) = \mu^+$, i.e. the strong hypothesis

(C) if $\kappa = \aleph_0$ then above λ the SCH holds.

PROOF. Clause (A): By 2.2 and [2, Ch. II], [2, Ch. IX, §1]. Clause (B): Follows from (A) by [2, Ch. VIII, §1]. Clause (C): Follows from (B) by [2, Ch. IX, §1]. $\Box_{2.4}$

References

- P. Erdős and A. Hajnal, Solved and unsolved problems in set theory, in: L. Henkin (Ed.) Proc. of the Symp. in honor of Tarski's seventieth birthday in Berkeley 1971, Proc. Symp in Pure Math XXV (1974), pp. 269–287.
- [2] S. Shelah, *Cardinal Arithmetic*, Oxford Logic Guides 29, Oxford University Press (1994).
- [3] S. Shelah, *Black Boxes*, 0812.0656.
- [4] S. Shelah, Incompactness for chromatic numbers of graphs, in: A tribute to Paul Erdős, Cambridge Univ. Press (Cambridge, 1990), pp. 361–371.