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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 59, Number 1, March 1994 

CONSEQUENCES OF ARITHMETIC FOR SET THEORY 

LORENZ HALBEISEN AND SAHARON SHELAH 

Abstract. In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of 
choice). In ZFC (set theory with AC), given any cardinals ^ and 31, either 8° < 3 or 9! < f. However, 
in ZF this is no longer so. For a given infinite set A consider seq1"1 (A), the set of all sequences of A 
without repetition. We compare | seq'"'(/4)|, the cardinality of this set. to | ^ ( J / ) | , the cardinality of the 
power set of A. What is provable about these two cardinals in ZF? The main result of this paper is that 
ZF h VX(| seq1"1 (.4)| jt \&(s()\), and we show that this is the best possible result. Furthermore, it is 
provable in ZF that if B is an infinite set, then | fin(B)| < |^(B)| even though the existence for some 
infinite set B* of a function / from fin(5*) onto 9>{,B*) is consistent with ZF. 

§0. Introduction, definitions, and basic theorems. 
Introduction. In ZFC the cardinality of ordinal numbers plays an important 

role, since by AC each set has the cardinality of some ordinal. 
We use "alephs" for the cardinalities of ordinals. Thus in ZFC each cardinal 

number is an aleph. However, this need not be the case in ZF. 
If we have a model M of ZF in which the axiom of choice fails, then we have 

more cardinals in M than in a model V of ZFC, even if we have fewer sets in 
M than in V. (This occurs when the choice-functions are not all in M.) This is 
because the ordinals are in M and, hence, the alephs as well. 

In this paper we are interested in the relation between three cardinals arising in 
connection with a set S, namely, 

(1) the cardinality of the power set of S, 
(2) the cardinality of the finite subsets of S, 
(3) the cardinality of the finite sequences without repetition of S. 
This section contains definitions and basic theorems provable in ZF. In the next 

section we present two relative consistency proofs illustrating possible relations 
between these cardinals. 

The last two sections contain three results provable in ZF. The proofs of these 
are based on the same idea originally from E. Specker, who used it to prove that 
the axiom of choice follows from the generalised continuum hypothesis [Spl]. As­
suming the existence of a function we derive a contradiction to Hartogs's Theorem. 
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CONSEQUENCES OF ARITHMETIC FOR SET THEORY 31 

Because we do not use AC, our proofs are constructive. But we will see that 
sometimes arithmetic is powerful enough for our constructions, making it an 
adequate substitute for AC. 

CARDINALS. A cardinal number ^ is the equivalence class of all sets which have 
the same size. (Two sets are said to have the same size iff there is a bijection 
between them.) 

ALEPHS. A cardinal number ^ is an aleph if it contains a well-ordered set. 
We use calligraphic letters to denote cardinals and N's to denote the alephs. 
We denote the cardinality of the set $ by | J | . 
RELATIONS BETWEEN CARDINALS. We say that the cardinal number g7 is less 

than or equal to the cardinal number 9 iff there are sets c z.% ,d 6 § and a 1-1 
function from c into d. 

In this case we write ^ < 91. We write ^ < 9 for f < 9 and % ^ 9. 
If c € 8% d e 9, and we have a function from d onto c, then we write %? <* 9. 
We also need some well-known facts provable in ZF. 
HARTOGS'S THEOREM. Given a cardinal '& there is a least aleph N(g') such that 

N(r) i V. 
PROOF. See[Jel,p. 25]. • 
CANTOR-BERNSTEIN THEOREM. Ifff and 9 are cardinals with % < 9 and 9 < &, 

then % = 9. 
PROOF. See[Jel, p. 23]. • 
CANTOR NORMAL FORM THEOREM. Any ordinal a can be written as 

j 

a = y~^ coa' • kt 

i=0 

with a > cto > a\ > • • • > atj > 0, I < kj < co, 0 < j < co. 
PROOF. See [Ba, p. 57 ff.]. • 

COROLLARY 1. The Cantor Normal Form Theorem does not depend on AC. 
PROOF. The proof of the Cantor Normal Form Theorem requires no infinite 

choices. • 
COROLLARY 2. If a = J2J

i=0coai • kt is a Cantor normal form, then define a by 

o 
a :=^coai -kt =coa°-k0. 

i=j 

Then (in ZF) \a\ = \a\. 
PROOF. See [Ba, p. 60]. • 

COROLLARY 3. For any ordinal a, ZF implies the existence of the following 
bijections: 

F"u : a —>seq1_1(c*) (=: finite sequences of a without repetition), 

-̂ seq : a ~* seq(a) (=: finite sequences of a), 

Ffi" : a —>fin(a) (=: finite subsets of a). 
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32 LORENZ HALBEISEN AND SAHARON SHELAH 

PROOF. Use the Cantor Normal Form Theorem, Corollary 2, order the finite 
subsets of a, and then use the Cantor-Bernstein Theorem. • 

§1. Consistency results. In this section we work in the Mostowski permutation 
model to derive some relative consistency results. The permutation models are 
models of ZFA, set theory with atoms (see [Je2, p. 44 ff.]). 

The atoms x e A may also be considered to be sets which contain only them­
selves. This means x £ A => x = {x} (see [Sp2, p. 197] or [La, p. 2]). Thus, the 
permutation models are models for ZF without the axiom of foundation. However, 
the Jech-Sochor Embedding Theorem (see [Je, p. 208 ff.]) implies consistency 
results for ZF. 

In the permutation models we have a set of atoms A and a group 'S of permu­
tations of A. Let & be a normal filter on "§ (see [Jel, p. 199]). We say that x is 
symmetric if the group symg.(x) := {n £ &: n{x) — x} belongs to 9r. 

Let us further assume that sym&(a) £ & for every atom a, that is, all atoms 
are symmetric (with respect to 'S and IF), and let 38 be the class of all hereditarily 
symmetric objects. The class 38 is both a permutation model and a transitive class: 
all atoms are in 38 and A e 38. Moreover, 38 is a transitive model of ZFA. 

Given a finite set E c A, let fix^(£) := {n £ "§: na — a for all a £ E} and 
let & be the filter on 3/ generated by {fixg>(is) : E c A is finite}. 9~ is a normal 
filter and x is symmetric iff there is a finite set of atoms Ex such that n(x) — x 
whenever n £ 'S and na = a for each a £ Ex. Such an Ex is called a support for 
x. 

Now the Mostowski model is constructed as follows (see also [Je2, p. 49 ff.]): 
(1) The set of atoms A is infinite. 
(2) R is an order-relation on A. 
(3) With respect to R, A is a dense linearly ordered set without end points. 
(4) Let Autj? be the group of all permutations of A such that for all atoms x, 

y £ A and each n £ AUIR, if Rxy then Rn{x)n{y). 
(5) Let ^ be generated by {fix(is) : E G 4̂ is finite}. 
We will write x < y instead of Rxy. 
The subsets of A (in the Mostowski model) are symmetric sets. Hence, each 

subset of A has a finite support. 
If x C A (in the Mostowski model) and x has nonempty support Ex, then an 

a e Ex may or may not belong to x. 
FACT. Ifb ^ x U Ex and there are two elements ao, a\ € Ex with ao < b < a\ 

such that Vc(ao < c < a\ —> c ^ £*), ?Aen Vc(ao < c < «i —> c £ x). 
Proof. Otherwise, we construct a n e Aut/{ such that rca, = a, for all a, e isl­

and 7rc = 6. Then rc(jc) ^ x, which is a contradiction. 
We can similarly show that if ao < b < a\ and b € x\Ex, then Vc(ao < c < 

«i —> c 6 x). The cases when -i3ai(tfi £ Ex Ab < a\) or -i3ao(«o £ Ex Ab > ao) 
are similar. 

Hence, given a finite set E c 4̂ ( |£ | := n), we can construct 2" • 2"+1 = 22"+1 

subsets x C A such that £ is a support of x. 
Given a finite subset E of A, consider the set % of subsets of A with support 

E. We use R to order g* as follows. Given E\ = {a\,...,a„} and £2 = 
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CONSEQUENCES OF ARITHMETIC FOR SET THEORY 33 

{ai,...,a„,...,a„+k} with a,- < a,- whenever i < j are given x e %, if x is 
the /th subset with support £t, then x is also the /th subset with support £2-

Finally, we define the function 

F :fmU) - > ^ U ) b y 

£ i-» \E\Xh subset of ,4 constructible with support E. 

It is easy to see that F is onto. 
If E c 4̂ is finite, then use R to order the subsets of E and use the corre­

sponding lexicographic order on the set of permutations of subsets of E. The set 
of permutations of subsets of E is isomorphic to seq1"1 (E). In fact, we can order 
seq1"1 (E) for each finite E c A. 

For each subset x C A there is exactly one smallest support Ex{=: supp(x)). 
If I supp(x)| = n, then put x := \{y C A : supp(j) = supp(x)}| < 22n+1 and 

for / < x define as above the /th element of {y C A : supp(y) = supp(x)}. We say 
that: "y C A is the /th subset of A with support supp(x)". 

Now choose 24 distinct elements ao,..., a-a 6 A and define ^24 := {«o, • • •, 
an}. A simple calculation shows that 

(*) i f«> 12, then2-22"+1 <n\ 

Take a finite subset E of A, and let >» C A be the /th subset of A with supp(y) = E. 
Put D := supp(y)A^24 (where A denotes symmetric difference) and d := \D\. 
Define the function Seq^ :3°(A) —• seq1"1 (,4) by 

, . f the/th permutation of supp(y) if |supp(y)| > 12, 
Seq^(jj := < 

I. the (d\ — / — l)th permutation of supp(y) otherwise. 
Seq,) is well defined because of (*) and d > 13. 
It is easy to see that Seq^ is 1-1. If there is a bijection between tP{A) and 

seq1"1 (.4), then we find an co-sequence1"1 in A using an analogous construction. 
But this is a contradiction (see §3). 

Even more is true in the Mostowski model ($f := |Atoms|); 

sf < finCsO < &>(sf) < seq1"1^) < fin(fin(j/)) < seq(^) < &>{&>(&)). 

(We omit the proof.) 
Our interest there is in the following result. 
THEOREM 1. The following theories are equiconsistent: 
(i) ZF, 
(ii) ZF + 3tf (&>(&) < SeqM(.aO), 
(iii) ZF + 3tf(&>(tf) <* fin(.«0). 
PROOF. It was shown above that in the Mostowski model there is a cardinal sf; 

namely, the cardinality of the set of atoms, for which both (ii) and (iii) hold. 
Unfortunately, the Mostowski model is only a model of ZFA. But it is well 

known that Con(ZF) => Con(ZFC), and the Jech-Sochor Embedding Theorem 
provides a model of (ii) and (iii). • 

THEOREM 2. The following theories are equiconsistent: 
(i) ZF 
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34 LORENZ HALBEISEN AND SAHARON SHELAH 

(ii) ZF + 3.af(seqO) < fin(^f)). 
PROOF. By the Jech-Sochor Embedding Theorem it is enough to construct a 

permutation model 38 in which there is a set A, such that 
(a) there is a 1-1 function from seq(^4) into fin(/l), 
(b) there is no bijection between seq{A) and fin04)-
We construct, by induction on n G co, the following: 
(a) AQ := {{0}}; Sqo({0}) :=the empty sequence; Go := the group of all 

permutations of Ao-
Let kn be the number of elements of G„, and let W„ be the set of sequences of 

A„ in length less than or equal to n which are not in range(S'^„). Then 
0?) An+l := A„ U {(« + U , i): f G g„ and i < *„ + *„}• 
(S) Sqn+\ is a function from A„+\ to seq(^4„) defined as follows: 

c I \ _ / StfnM i f x € ^ « ' 
^an+\{x) — < 

LC l f x = (« + l , C , 0 e ^ n + l \ ^ n -

(y) G„+i is the subgroup of the group of permutations of A„+\ containing all 
permutations h such that for some g/, G G„ and 7V, < k„+ kn we have 

I (« + l,gh(0,i+njh) if* = (« + 1,C»0 Gv4„+i\^„, 

where g„(C)(m) := gv,(C(m)) and +„ is the addition modulo fc„ + A:„. Let ^ := 
\J{An : « £ » } and S# := [j{Sq„: n G co}. Then Sq is a function from A onto 
seqG4). 

Further, define for each natural number n partial functions / „ from A to A U 
{0} as follows. If lg(x) denotes the length of Sq(x) and n < lg(x), then fn{x) := 
Sq(x)(n); otherwise, let /«(*) = 0 . 

Let Aut(A) be the group of all permutations of A. Then "§ := {// G Aut(v4) : 
Vn 6 co(/f |^n G G„)} is a group of permutations of A. Let !? be the normal 
filter on 'S generated by {fix(£) : E c A is finite}, and let 38 be the class of all 
hereditarily symmetric objects. 

Now A e 38 and for each n e co, supp(/„) = 0 ; hence, / „ belongs to 38 too. 
Now define on A an equivalence relation as follows: 

X~y iff Mfn(x)=fn(y)). • 

FACTS. (1) Every equivalence class of A is finite. {Because of each A„ is finite; 
hence, each kn). 

(2) seqU) = {(x:xe A}, where &(«) := / „ (* ) (iff„(x) + 0 ) . 
(3) For every finite subset B of A there are finite subsets C, Y of A and a natural 

number k > 1 such that B C C, Vx G A\C{\{H{x) : H G fixs?(C)}| > k) and 
\{H[Y] : H G fixgr(C)}| = k. {Choose A„ {n > 1) such that B C A„, and let 
C :~ A„. Let k := kn + k„ and Y := {{n + l,C,i) G A„+\ : i is even}. Then 
Y has exactly two images under {h : h e fix^(C)} andWx G A\C{\{h{x) : h G 
fix^(C)}|>£„+1+*:„+,).) 
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CONSEQUENCES OF ARITHMETIC FOR SET THEORY 35 

Now the function 

¥ : seqU)-> finU) 

is a 1-1 function in 3§ from seq(A) into fin(A) (by Facts 1 and 2). Hence, (a) 
holds in @. 

To prove (b) assume there is a 1-1 function O e J from fin(,4) into seq(^4). 
Let B be a support of $, and let C, Y, k be as in Fact 3. 

If the sequence <!>( Y) belongs to seq(C), then for some H 6 fix^(C), H [Y] ^ Y; 
hence, <P{H[Y]) ^ <S>(Y). But this contradicts the fact that H maps <D to itself 
(by definition of C, Y, and H). 

Otherwise, there exists a n m e a such that x := <$>(Y)(m) does not belong to 
the set C. 

Hence, \{H(x): H € fix^(C)}| > k and |{i /[r] : # 6 fix»(C)}| = fc (by Fact 
3). Every / / e fix^(C) maps <D to itself and, hence, <b(Y) to 0>(/f[F]). So we 
have a mapping from a set with & members onto a set with more than k members. 
But this is a contradiction. • 

§2. ZF \- (| fin(S)| < \9>(S)\) for any Infinite set S. 
THEOREM 3. ZF h fin(g') < &(%). 
PROOF. Take S e f . The natural map from fin(S') into &>{S) is a 1-1 function; 

hence, | fin(S)| < \&>(S)\ is always true. 
Assume that there is a bijective function B: fin(S) —> ̂ (S1)- Then given 

any ordinal a, we can construct an a-sequence1"1 in fin(S). But this contradicts 
Hartogs's Theorem. 

First, we construct an co-sequence1"1 in fin(5') as follows: S e &(S) and because 
S is infinite, S <£ fin(S). But B~l(S) e fin(S). So put s0 := B~l(S) and 
j„+i := B~l(s„) (n £ co). Then the set {st : i < co} is an infinite set of finite 
subsets of S, and the sequence (so,s\,...,s„,... )m is an co-sequence1"1 in fin(S). 

If we have already constructed an a-sequence1"1^*!,---,^,• ••)<* m fin(5') 
(with a >co), then we define an equivalence relation on S by 

x ~ y iff V/3 < a(x £ sp <$• y e sp). 

Take x s 5 and, suppose that// < a. Define 

DXj, :=f]{s,: x e s,}, 

g(x) : = {JJ. <a: x & sM A (s^ D DXifl 7̂  DXJi)}. 

FACT. Given x,y &S, g(x) = g(y) <=> x ~j>. (/« o?Aer words, x~ = j ~ whenever 
g(x) — g(y)-) Hence, there is a bijection between {x~: x e S} awrf {g(x): x G 5}. 
Furthermore, g(x) e fin(a). 

Since {g(x)\ x e S} C.fin(a), apply Fga to obtain Fgn[{g(x): x e 5}] C a. 
Let y be the order-type of F^[{g(x): x € S}]. Then y < a and for eachg(x) we 
obtain an ordinal number 77 (g(*)) < y-
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36 LORENZ HALBEISEN AND SAHARON SHELAH 

Each s, (i < a) is the union of at most finitely many equivalence classes. Thus, 
there is a 1-1 function 

h: a —> fin(y) 

i ^ {£• i(g(x)) = £ AX e s,}. 

Since F£n is a bijection between fin(y) and y, Ffi
y
n o h is a 1-1 function from a into 

y, and because y < a, we also have a 1-1 function from y into a. 
The Cantor-Berstein Theorem yields a bijection between y and a and, hence, a 

bijection G from {^(g(x)): x e S } onto {s, : i < a}. 
Now consider the function T: B oG or\o g from S into 3s (S): 

r . S ^ {g(x):x G S} -^ {r,(g(x)):xeS} - ^ {*: i < a } - ^ ( S ) . 

FACT. S a := {x G S: x $ Y{x)} £ {B(s,): i < a}. 
Proof. Otherwise, take Sa = B(sp) (for some /? < a ) . We identify each x~ with 

g(x) using the bijection above. Then there is a g(x) such that G o rj({g(x)) = sp. 
Now if y G x~, then T{y) = Sa. But j G 5Q <=> J ^ T(j) <=> j ^ Sa , which is a 
contradiction. 

But Sa C S and B~l(Sa) =: sa G fin(5') with sa £ {st: i < a}, and we have 
an (a + l)-sequenceM in fin(5'); namely, (so,s\,... ,sp,.. .,sa)a+\. We now see 
that for an infinite set S there is no bijection between fln(S) and &>(S), and this 
completes the proof. 

We note the following facts. 
Given a natural number n, Z F h ( « x fin(f) = &>{%) -> n = 2k for a k G to). 
Moreover, for each it G to, Con(ZF) =» Con(ZF + 3W{2k x fin(ff) = &>(W)). 

(If fc = 0, then this is obvious for finite cardinals.) 
Sketch of the proof of the facts. For the consistency result, consider the permu­

tation model with an infinite set of atoms A and the empty relation. Then the 
automorphism group is the complete permutation group. It is not hard to see that 
any subset of A in this model is either finite or has a finite complement. Take a 
natural number k, and consider (in this model) the set k x A. The cardinality of 
the set @>{k x A) is the same as that of the set 2k x fm{A). 

To prove the other fact, assume that n is a natural number which is not a power 
of 2 and that for some infinite set S there is a bijection B between n x fin(>S) 
and @>{S). Use the function B to construct an co-sequence1"1 in fin(S). Then, 
using Theorem 3, to < fin(S) < &>(S) and it is easy to see that n x fin(S) < 
fin(S) x M(S) =: fin(S)2. Then co < &>{S) = nx fin(5*) < fin(5')2 contradicts the 
fact that if H0 < &>{&), then for any natural number n, &>{%) £ fin(f)". (Here 
Ho denotes the cardinality of co.) The proof of this fact is similar to the proof of 
Theorem 3. • 

§3. seq1"1^), seq(iS), and &{S) when S is an arbitrary set. 
We show that ZF h seq1"1^) j= &>(&) for every cardinal g' > 2. But we first 

need the following result. 
LEMMA. ZF h H0 < &{%) - • &{%) £ seq1"1^). 
PROOF. Take S G %. Then because H0 < 3°(W). we have a 1-1 function 
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CONSEQUENCES OF ARITHMETIC FOR SET THEORY 37 

Assume that there is a 1-1 function J: 3°{S) —> seq1"1 (5). Then / o fm: co —> 
seq1"1 (S) is also 1-1, and we get an co-sequence1"1 in seq1"1 (5). Using this co-
sequence1"1 in seq1"1 in S we can easily construct an co-sequence1"1 in S. If we 
already have constructed an a-sequence1"1 (so,s\,...,sp,...)a (a > co) in S, put 
T := {s,: i < a } . This gives rise to bijective functions, 

ho: T —> a, 

hi: seq 1 " 1 (a )^seq ' " 1 ( r ) . 

Let J~l be the inverse of J, and denote the inverse of Fs"q by invFs"q. Further, 
define 

r ^ y - ' o ^ o i n v i ^ o / j Q . 

Note, dom(r) C T and range(r) C &>{S) (because J is 1-1). • 
FACT. Sa := {x € S: X i T{x)} £ J~l[sequl(T)]. 
Proof. Assume not; then x e S such that J(Sa) = h\ o invFs^q o ho(x) yields a 

contradiction. Because J{Sa) <£ sequl(T), the sequence J(Sa) has a first element 
which is not in T, say sa. Finally, the sequence {so,s\,...,sa)a+\ is an (a + 
^-sequence1"1 in S. So the existence of a 1-1 function / : &>{S) —> seq1"1^) 
contradicts Hartogs's Theorem. 

THEOREM 4. T/'g' > 2 w a«>' cardinal, then ZF \- (seq1"1^) ^ ^ ( C ) ) . 
PROOF. By the lemma it is enough to prove that if f > 2, then seq1"1 ( f ) = 

&>(W) => K0 < ^ . For finite cardinals W > 2 the statement is obvious. So let S e f 
be an infinite set, and assume that there is a bijective function 

B: seq"(S)->&>(S). 

We use this function to construct an co-sequence1"1 in 5". Let n* (n < co) be the 
cardinality of seq1"1 («). 

Then 0* = 1, 1* = 2, 2* = 5,..., 16* = 56 874 039 553 217,. . . (see [SI, no. 
589]), and in general, 

I '=0 

We begin by choosing four distinct elements of S, S4 := {so,s\,s2,s-}} and then 
use these elements to construct a 4-sequence1"1 (so,s\,S2, ^3)4 in S. This sequence 
will give us an order on the set seq 1 " 1 ^) (e.g., we order seq1"1 (54) by length and 
lexicographically). 

If we have already constructed an w-sequence1"1 {so, s\,..., s„-i)„ in S [n > 4), 
put S„ := {si : i < n}. Then 5[seqM (£•„)] C J?(S) has cardinality «*.. 

We now define an equivalence relation on S by 

x ~ . y iff Vq €seqUi(Sn)(xeB(q)^y e B(q)). 

It is easy to see that for each q e seq1"1^,,) 

(1) B(q) is the disjoint union of less than n* equivalence classes. 

Take the above order on seq1"1 (S„). This induces an order on the set of equivalence 
classes eq := {x~: x e S} and also an order on ^ (eq) . 
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38 LORENZ HALBEISEN AND SAHARON SHELAH 

If there is a first r G ^"(eq) such that r £ 5[seq1"1(5,«)], then qr := B~x{r) is a 
"new" sequence in S. This is qr £ seq1"1^,,), and we choose the first element s„ 
of qr which is not in S„. Hence, the sequence (so, S\,..., S„)„+\ is now an (n + 1)-
sequence1"1 in S. 

Ifthereisanj, eS„ such that {J, } .̂B[seq1"1('S'„)], then use B({$,-}) to construct 
an (« + l)-sequenceM in 5*. 

Otherwise, our construction stops at S„ and we write stop(S„). Our construc­
tion only stops if 

for each s, G Sn, {*,•} e eq 
and 

for each r G ^(eq), there is a qr G seqM(S„) such that B(qr) = r. 
If K (K < ta) is the cardinality of eq, then 2* is the cardinality of .5s(eq), and 

because of (1), we have stop(5„) =>• 2K = n*. 
It is known that 0* = 1 = 2°, 1* = 2 = 21, 3* = 16 = 24, and if n* is a power 

of 2 for some n > 3, then « has to be bigger than 108. 
If there are only finitely many k, n < co such that 2k = n*, then there is a least 

«o such that 2k = «J a nd V« > «o(~"Stop(5„)). 
Refining our construction removes the need for this strong arithmetic condition. 
Assume stop(5„). If x £ S„, then let Sx

+l := S„ U {*}, and let Sx
+k := 

^n+i U {Y} w ' t n ^ of cardinality A: - 1. Because (n is even)=> (n* is odd) and 
stop(s„), we cannot have stop(S*+1) for any x $. Sn. 

Now we recommence our construction with the set Sx
+l and construct an (« 4-

k)-sequenceul {s0, si,..., s„+k-i)n+k {k > 2) in S. If the construction also stops 
at the (« + stop)th stage at the set Sx

+stop (stop > 2), then we write Sx instead of 

^n+stop)-

If there is an x G S such that Sx is infinite, then our construction does not 
stop when we recommence with Sx

+i, and we can construct an co- sequence1"1 in 
S. But this contradicts our Lemma. Thus, there cannot be such an x, and each 
x G S is in exactly one finite set Sx. If for each x G S, Sx is the union of some 
elements of eq, then S must be finite because eq is finite. But this contradicts our 
assumption that S is infinite. 

A subset of S is called good if it cannot be written as the union of elements of 
eq. 

Consider the set 7 ^ := {x: Sx is good and of least cardinality}, and let mj be 
the cardinality of Sx for some x in Tm\B. Further for x G Tmjn let x= := {y: Sy = 
Sx} (the elements of Sx that we cannot distinguish), and let m= denote the least 
cardinality of the sets x=. 

If Tmin is good, use B~l{Tmin) to construct an (« + ^-sequence1'1 in S. Other­
wise, take x G Tmin. Because Sx is good we, have 

Thus, there is a first y in B~l(Sx) which is not in S„. It is easy to see that 
Sy C Sx, and if Sy ^ S* then Sy is not good (because x G rmin). But then 
B~l(Sx\Sy) £ seq1"1(5-v), and we may proceed. So for each x G rmjn construct 
an wr-sequence M SEQ* in S such that 

Sh:488



CONSEQUENCES OF ARITHMETIC FOR SET THEORY 39 

Sx = Sy => SEQ* = SEC?. 

For i <mj define 

Q,< = {s e S: s is the ith element in SEQA for some x s S } . 

Assume there is some j < mj such that Qj is good. Then B~1(Qj) £ seqM(<S>i)-
But B~l(Qj) £ seqM(S) and we get an (« + l)-sequenceM in S. 

It remains to justify our assumption. Note that if for some i ^ j , z e QtC\ Qj, 
then Sz cannot be good. Furthermore, for each x e rmin there is exactly one ix 

such that x € Q,v and if z, ye x=, z ^ y, then ix ^ iy. If there are no good 
Qi's, m= cannot exceed K (the cardinality of eq). But by the following this is a 
contradiction. . 

An easy calculation modulo 2r (r < 4) shows that for each n, if 2r\n*, 
then 2r\(n + 2rf and 2r \ (n + t)* if 0 < / < 2r. 

Assume there is a smallest k (k > 4) such that 2k+i\n* and 2k+l\{n + t)* for 
some t with 0 < t < 2k+l. Then because 2*|2i+1, we have 2k\n* and 2k\(n + t)*. 
Since k is by definition the smallest such number, we know that t must be 2k. 

(n + 2k)* = Z"=o ^ = l-2---2*.(2* + l)--- (2k+n) (i) 

+2---2k--- ••• (2k + n) (2) 

' +2k (2k + n) (2k) 

+(2k + n) (2k+n) 

+ 1 (2t+«+l) 

It is easy to see that 2k+l divides lines (i)-(2*) since k > 2 and n > 2. If we calculate 
the products of lines (2*+i)-(2*+«+i), then we only have to consider sums which are 
not obviously divisible by 2k+l. So for a suitable natural number e we have 

(2) {n + 2kT = 2k. ( E E 7 7 1 ] +n* + 2k+l-e. 
\j=0 i>j ' 'JJ 

We know that 2k+l \n* with n > 3, k > 4. And because n* is even, n has to be odd. 
If j is n — 1, n — 2, or n — 3, then J2"i>j J7f\ *s °dd. Moreover, if 0 < j < (n - 4), 

then Z">j fj\ i s even- S o E"=o E">;- 7T7T is odd. Hence, 2k+l \ (n + 2k)* (by (2) 
and 2k+x \n*). We return to the proof. 
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(**) We know that if 2k = n* and (n + t)* is a power of 2, then 2k divides t. 

Take x e rmjn such that |x=| = m=. IfyeSx, then 
{i)\Sy\=n + ty with 2K divides ty, 
(ii) either y e x= or 5^ is not good. 
This is because 2K = n* and (**). 
Hence (for a suitable natural number e), mT = \SX\ = n + 2K •£ + m= (by (ii))', 

and 2K divides m= (by (i)). But this implies that m= must be larger than K, which 
justifies our assumption. • 

The statement obtained when seq1"1 is replaced by seq is much easier to prove. 
THEOREM 5. ZF \- seq(^) ^ &>{%) for all cardinals such that </> 7 ^ . 
PROOF. Take S e ? . First, note the fact that if H0 < &, then seq(f) ^ &>{&). 

(The proof is the same as the proof of the Lemma except that we can skip the first 
lines of the proof of the Lemma.) 

Assume there is a bijection B from seq(S) onto &>(S). Choose an so S 5, 
and define a 1-1 function fSa from co into &>(S) by / H4 ^, := B((so,so,... ,s0)) 
(/-times). Use the ,̂-'s to construct pairwise disjoint subsets c, C S (i < co). 

Given an «-sequenceM (so,su...,s„-i)„ in 5, let, S„ := {.?,•: / < «} and the 
natural order on Sn induce a well-ordering on the set seq(5'„) with order type co. 
Then there is a bijection h: co —> seq(5„). Now the function r := B o h is a 1-1 
function from co into &{S) with ? := tj{c, : c; C T{i)} $. {T{k) : k Eco}. Hence, 
B~l(t) is a sequence in 5 which does not belong to S„. Choose s„ £ S to be the 
first element of B~l(t) not in S„. Then (JO,*i,• • -,Sn)n+i is an (n + l)-sequence1_1 

in the set S. 
We thus construct an w-sequence1"1 in S, contradicting the previous fact. • 
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