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MORE ON PROPER FORCING 

SAHARON SHELAH 

§1. A counterexample and preservation of "proper + X". 
1.1. THEOREM. Suppose V satisfies 2Ho = Kl5 2Nl = K2, and for some A g col, 

every B £ co, belongs to L[A]. 
Then we can define a countable support iteration Q = (Pt,Qt:i < /?> such that the 

following conditions hold: 
a) Each Qf is proper and \\-Pi "Q, has power K,". 
b) Each Q; is ^-complete for some simple X ̂ completeness system. 
c) Forcing with Pa = Lim Q adds reals. 
PROOF. We shall define Q; by induction on i so that conditions a) and b) 

are satisfied, and C, is a Q,-name of a closed unbounded subset of io1. Let 
(f*:£, <f f l , )eL[ /4] be a list of all functions / ' which are from ^ to ^ for 
some S < calt and let h : coi —* Coi, h E L[/4], be defined by h(<x) — Min{ fl'.f} > tx 
andL^[A]l=" |a | = K0"}. 

Suppose we have defined Qj for every j < i; then Pf is defined, is proper (as each 
Qj,j < i, is proper, and by III 3.2) and has a dense subset of power Ki (by III 4.1).1 

Let Gf £ p be generic so clearly there is B £ co, such that in V[G,-] every subset of 
col belongs to L\_A, B], The following now follows: 

FACT. In ^[Gj], every countable N -<(H(K2), 6, A, B) is isomorphic to 
Lp[A r\ d,B r\ d"] for some fi < h{8), where S = 8{N) = w, n N. 

We shall assume also that F[G(] has the same reals as V (otherwise we already 
have an example). 

We now define, by induction on a < co^aset Ta such that the following conditions 
are satisfied: 

i) Each / e T„ is the characteristic function of a closed subset of some 
successor ordinal /J < a, i.e., Dom f = ft, and / ~ *({1}) is a closed subset of /? and is 
included in the set of limit points of Hi<i Cj n ffli • 

ii) If / e Tx, y + 1 < Dom/, then / \{y + 1) e re, and even / f (y + 1) g Tp for 
y + 1 < P < a. 

iii) If / e Ta, Dom / = ft, fi < y < a, y a successor, then / ' = / u 0[fli>) e Ta, i.e., 
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PROPER FORCING 1035 

Dom / ' = y, and 

m 10, p<i<y. 

iv) If f,g e T„ f(i) # g(i), then / " H j l } ) n a"1 ({1}) - i is finite, 
v) If / e Ta,y = Dom/, y + 1 < a and the order type of / 1 ({1}) has the form 

£ + 2 , then / ' = / u { < y , l > } £ T a . 
vi) If f eTx,d + 1 = Dom/, (5 limit, and / (0 = 1 for arbitrarily large i < 5, then 

Min{£:/ \5 = / J } is larger than Min{£:<5 < £ e C,} (for; < ;)• 
vii) If (5 < a is limit, <5 a limit point of P)j<iCJ-,^* < toj, a n d / G Ta n Lj[/4 n <5], 

then there is # e T„, S + 1 = Dom g, such that for every J e Lm [A n (5, B n t>] (an 
open dense subset of 7̂  n Lj[/4 n 5] (ordered by inclusion)), for some y < S we 
have a \ye J and g \S $ {/£:£ < £*} and / = g \Uom f. 

viii) For / e Ta, if /(<S) = \, 5 < fi, and /(/?) = 1, then for every j < i, for some 
y < /?, the characteristic function of C, restricted to b is / * ; and if <5, / \b and /? 
satisfy this t h e n / f(<5 + 1 ) U 0 [ H 1 I W U V.fl + u belongs to 7̂  + 1. 

Case A. a is limit, or a = y + 1, y limit. Let Ta = {Jp<« T^or Tx = {Jp<y Tp. 
Case B. a < a). Let Tx = { / : / a function from /? < a to {0,1}}. 
CaseC. a = /? + 3 > co. Let Ta = T̂  + 2 u {/:Dom/ = $ + 2,/ \(fi + 1) e T„ + 2, 

provided that viii) is satisfied}. 
Case D.oi = d + 2,S limit, <5 e Q/'<' Q- ^ m s ' s t n e m a m c a s e - Let {/*:e < a)} be a 

list of T3 n L,,|\4 n &}, each appearing X0 times, and {Je:e < co) be a list of all open 
dense subsets of Tb n La[/1 n <5] which belong to Lm)\_A n S,B n S] and {/ e 
Ti n L,)|\4 n <5], / £ / | } for £ < h(5). We now define, by induction on n < co, an 
ordinal a„ < S and a finite set F„ £ {/ e 7̂  n L^[/l n <5]: a„ = Dom / } such that: 

(*) (V/G F„)(3a G F„ + , ) ( /£ ,g) and 

(V/ a G F „ ) ( / r a „ _ 1 ^ a n r a „ - 1 - / - 1 ( { l } ) n a - 1 ( { l } ) £«„_ , ) . 

Subcase a. If n = 0mod3 then a„+ 1 = a„ + 1 and F„ = { /u {<a„,0>}:/ < 2, 
/ G F„}; and if n = 0, then F„ = 0 and a„ = 0. 

Subcase fi. If n = 1 mod 3, then an+1 = a„ + 1; F„+, = F„ if [Dora /* _ l) /3 > <x„ or 
(3fif G F„)(/(* _ u / 3 £ a)]; otherwise 

^«+i = { /u0 [ B „ i I < H l : /eF„} u {/„_1)/3 u 0 | M n t l ) : | ! = Dom/(„_1) /3}. 

Subcase y. If n = 2mod3, (n — 2)/3 = m2 + /c, k<2m, then every / G F „ + 1 

belongs to ^ t . Note that we have to take care of (*); hence let F„ = {/":<? < |F„|}, 
and define a" and #" by induction on e:c<o = «„; if a" is defined, chose a", / " u 
O ^ ^ s ^ e A , and â  + 1 = Doma^. Now let an + 1=afF n l and F„ + 1 = 
{<?"u0w+i,a„ + l ) :e<|F„|}. 

Note that only in Case D, Subcase y, do we have a free choice, and we eliminate it 
by choosing the first candidate for F„ + 1 by the canonical well-ordering of L[Xj. So 
we have finished defining the F„'s and we let 

T5 + 2 = T ^ u { / : D o m / = 3+1 and either f = / ' u 0 w + 1 ] , where 

/ ' e Ts,y = Dom/ ' , or (Vn > fe)[/ f a„ G F„] for some fe < co, 

/ ( 5 ) = liff5 = sup/-1({l})}. 
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1036 SAHARON SHELAH 

It is easy to check that T6 + 2 is as required. (Case /? in the definition of F„ enables us 
to satisfy demand vii).) 

Case E. a = 8 + 2, 8 limit, 8 $ f]j<iCj. Let F, = Ts u {/:Dom /' = c> + 1, (3c/ e 
T a ) / r ( («5+D-Domg) i sze ro} . 

So we have defined Ta for a < coj, and let Q, e F[G,] be Ua < ( 0 l Ta ordered by 
inclusion (really we should have written T'a, ft, etc.); and it is easy to see that Q; is 
as required (in a) and b)). 

So Q = <P;,Q,:i < co2> is defined, and it is easy to see that we can replace (in 
F[G;]) B( by C' = (Cj-.j < i>. Let G E Pra2 be generic, and C, the interpretation of 
Cj. Let j \ be the characteristic function of Ch and C = P)I<t02C,-, {a?:( < cox} an 
enumeration of C (in increasing order). We shall suppose that forcing by Pw2 does 
not add reals, and shall deduce that </j:f < co2> e V, which is clearly false, as 
hQa "Co i v\ 

By the assumption the <_/]: f a0:i < co2> belong to K, and we shall show how to 
compute (/; \ a?:i < co2> for every (, by induction; as the computation is done in V 
we get the desired contradiction. More formahstically, there is a function F in V such 
that 

</, r«? + 1 : i < <o2> - F « / i r«?:« < « 2 » -

So suppose </; f a?:i < co2> is given, and let, for i < to2, 

ft = Min Q - (a< + 1), £, = Min{^:/; t «c = /?}. 
By demand i) in the definition of the T^'s, Ct £ f]j<iCj. So clearly ft < ft, and 

ft e Cj for j < i. Also by demand vi) on the F '̂s, ft,- < £; for j < i, and by demand viii) 
on the T„'s, ^ < ft for j < i. We can conclude that Sup{ft:i < con} = Sup{^:( < 
con}; but from </j f a?:i < co2> we can compute y„ = Sup{^:! < con}. As ft e C, 
for j < i, y„ s C, when j < con, and clearly y„ < y„ + 1, we have y = (J„<ray„ G 
P)J<0)2 Cj. By the definition of the oĉ 's, y = otj-j. i. As we know F^ n L ^ / l ] , and we 
know {y„:n < co} £ C0; / 0 f <5 is uniquely determined (by demand iv)). Similarly we 
continue to reconstruct / ; \ y by induction on i, thus finishing the proof. 

1.2. REMARKS. (1) We could weaken the demands on V (in 1.1) to F N CH, 
provided that we also waive the requirement Ihp/'IQil = ^ i" - For this it suffices to 
start with a forcing which makes those demands true, and such a forcing notion 
exists by Jensen and Solovay [2]. 

(2) The co2 in 1.1 is best possible. 
(3) Alternatively, we can weaken the demand on V to: CH and 

(*) There is a sequence </a: 8 < (»l, 8 limit), ft a function from 8 to 8, 
such that for every /:a>i -» cox for a closed unbounded set of (5 < coj, 

(3a < c))(Vft) [a < p < 8 -> /(ft) < /,(j8)]. 

For this we need some forcing like our F; preserving CH + (*), which seems to be a 
demand on V, and we must make some changes in the proof 

(4) We can improve 1.1 in the following way. Let e be a countable limit ordinal 
such that (Va < e) (a + a < e) (equivalently e has the form co" (ordinal exponen
tiation)). Then we can construct a CS iteration Q = <CPf, Q;:i < coc> such that: 

a)' Each Q, is a-proper for a < £ and \\-P. "Q, has power Kj". 
b)' Each Qj is ^-complete for some simple Xs-completeness system. 
c)' Forcing with Pa = Lim Q adds reals. 
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PROPER FORCING 1037 

We again assume G, £ P; generic is given; hence <C,:j < i), and by induction on a, 
we define T'x, so that in the definition of T\ we use A and <C, n a:j < i) only (and 
the list {/J: ^ w ^ e L[/TJ), so that a variant of i)-viii) holds. The changes are: 

ivy If fig e Ti,ffl * g(i), then f~'({I}) ng~'({I}) - i has order-type < s. 
vii)' In addition to vii), if <<5?:C < (*> is an increasing sequence of limit points of 

(V< C,, < ^ : ^ < O e ^ c + 1 [ ^ n « 5 c + 1 ] , / e ^ n L J X ] , / . e ^ , for m < co 
and m* < a>, £* < e, then there is g e T£» + 2, / £ 3, Dom# = £* + 1, such that the 
following conditions hold: 

(a) For every J e Lm[A n <S, B n <5] (an open dense subset of T|> nLd\_An <5] 
(ordered by inclusion)), for some y < 3,g \y e J, where <5 e {(5?:( < £*}. 

(/?) For every m < co, g~l({l}) n / m ' ( { l} ) — {<5c:f <C*} is abounded subset of 
dp. 

(y) For every m < m*, ^ ( { l } ) n / m *({1}) - {5?:f < C*} £ D o m / 
In the proof of Case D, we use the canonical well-ordering of H(i<l)

LlA] on our 
assignments (for the existence of g e T'i + 2,Domg = 3 + 1), and construct a witness, 
preserving and using vii)'. 

1.3. THEOREM. (1) Suppose (D,R) is a smooth strong covering model, Q = <[PhQi: 
i < 3} a countable support iteration of proper forcing notion (or at least PJPp is 
proper for fi < a < d, fi nonlimit) and each P, is (D, R)-preserving for i < 3. Then 
Lim Q is (D, R)-preserving. (See VI, §1, for definitions, and VI, §2, for applications.) 

(2) Suppose P*QeN0, P, Q are proper and P * Q is co™-bounding: 
N0<Nl< (H(X), e) (X big enough), N0e Nx, \\ Ne || < K0, and pe Pis (Ne, P)-generic 
for e = 0,1 and q E N± is a P-name of a member of Q, (p, q) is (N0, Q)-generic and for 
some F for every predense J £ P, J e N0, F(J) £ J n N0 is predense above p (in P) 
and F(J) is finite. 

Then there is q' such that (p,q) < (p,q'), (p,q') is (NlfP* Q)-generic and for some 
function F', for every predense J> £ P * Q, J e N0, F(J) is predense above (p, q') (in 
P*Q) and F(J) is finite. 

PROOF. (1) The proof is very similar to the proof of VI. 1.6, so we mention only the 
changes. Instead of choosing (Ne:e < co) e SQSl(X), we just choose Nt -< (H(X), e) 
such that <x„:n < co), <Pe,Qe:e < co}, f, <[q"e:e < n < co) and (tnm:m < n < co} 
belong to it. We now replace a), b) by 

a)' p \ n < r"; r" is (iV,, P„)-generic. 
b)' For some Tn e D, rn |(-"f„ € Lim T„" and x2nRT„, Tn £ Tn + l. 
Toward the end we know that some t e J n Nt (not J n N8„+2„) belongs to the 

generic subset of P„, and we let J n Nt = {tk:0 < k < co}. 
Then, later, Tn+1 does not necessarily belong to NL; in (*), q' is also 

(^[GJ.Q^GJJ-gener ic . 
(2) The proof is essentially included in the proof of (1). 
Note that N} has a list (j.e:e < co) of the P * Q-names of ordinals, and there is a 

sequence (qe:e < co) (e NJ, |(-P "qe e Q and q < qe < qe+1" and (p, qe) \\- "re = tr" 
for some P-name <je (of an ordinal) from Nt. 

REMARK. We can replace proper by semi-proper as in Chapter X. 

§2. Intermediate forcing. In §1 we showed that just excluding the forcing notions 
like the one from Example V.5.1 (by demanding ^-completeness for a simple 2-
completeness system) is not enough to ensure that the iterated forcing does not add 
reals. In VIII, §4, on the other hand, we have quite weak restrictions on each Q, 
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1038 SAHARON SHELAH 

ensuring Lim<P;,Q;:i < oc> does not add reals. However, here we shall represent 
forcing notions which fall in between (and the corresponding consistency problems). 

2.1. PROBLEM. Let fd:8 -»<5 for any limit d < u)x. Is there / : cDj —> co j such that for 
every 8 < a>x, for arbitrarily large a < 8, fd(tx) < /(a)? 

2.2. DEFINITION. For any sequence / = (fs:8 < a ^ ) , f6:8 -* 8, let P° = {g : ga 
function from some a < a^ into a>1, such that for every 3 < a, for arbitrarily large 
P < 3, fd(P) < g(P)}; ordered by inclusion. 

2.3. PROBLEM. Let Cs £ 8 be a subset of d, for 8 < m l. Is there a closed 
unbounded C s a^ such that for no 8, C5 £ C? Consider in particular the cases 
when we restrict ourselves to 

a) C6 has order-type a>, 8 = Sup Q , 
b)? Q has order-type £, 8 = Sup C,, (£ limit), 
c) Cb has order-type <<5, 8 — Sup Q , 
d) Q = c/> mod Dg, £>a a filter on <5, 8 = Sup Q , D = <Da : (5 < cox >. 
2.4. DEFINITION. For C = <Q : 8 < ct^), C £ w, let P^ = {/ : / a function from 

some a < a>1to {0,1}, and for no 8 < a is Q £ /_ 1({1})}-
2.5. PROBLEM. Let Q be an unbounded subset of <5, for 8 < ot^. Is there a closed 

unbounded C £ co^ such that for every 8, C n Q is a bounded subset of (5, when we 
restrict ourselves as in 2.3? 

2.6. DEFINITION. For a sequence C •= (Cb:8 < <%>, Q an unbounded subset of 
8, let P\ = {g:g a function from some tx<col to co,, so for every 8 < a, 
S u p [ Q n ^ 1 ( { l } ) ] < ^ } . 

2.7. CLAIM. P^ , P£ and P§ (when one of the Cases A-D from 1.1 holds) are 
proper and ^-complete for some simple Kx-completeness system. 

CONCLUDING REMARK. We shall later conclude that a positive answer is consistent 
with ZFC + GCH. The point is that though the corresponding forcing notions 
are not a-proper for many a < co1, still a reasonable weakening holds, i.e. for 
suitable (Nt: i < 8} and p e A / 0 n P there is a q > p such that q \\-P "{i: 
iVf[G] n ord = N(n ord} is large". 
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