The Journal of Symbolic Logic

http://journals.cambridge.org/JSL

Additional services for *The Journal of Symbolic Logic:*

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

More on proper forcing

Saharon Shelah

The Journal of Symbolic Logic / Volume 49 / Issue 04 / December 1984, pp 1034 - 1038 DOI: 10.2307/2274259, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200042341

How to cite this article:

Saharon Shelah (1984). More on proper forcing . The Journal of Symbolic Logic, 49, pp 1034-1038 doi:10.2307/2274259

Request Permissions : Click here

THE JOURNAL OF SYMBOLIC LOGIC Volume 49, Number 4, Dec. 1984

MORE ON PROPER FORCING

SAHARON SHELAH

§1. A counterexample and preservation of "proper + X".

1.1. THEOREM. Suppose V satisfies $2^{\aleph_0} = \aleph_1, 2^{\aleph_1} = \aleph_2$, and for some $A \subseteq \omega_1$, every $B \subseteq \omega_1$ belongs to L[A].

Then we can define a countable support iteration $\overline{Q} = \langle P_i, \mathbf{Q}_i : i < \beta \rangle$ such that the following conditions hold:

a) Each \mathbf{Q}_i is proper and $\Vdash_{\mathbf{P}_i} \mathbf{``Q}_i$ has power $\mathbf{\aleph}_1$.

b) Each \mathbf{Q}_i is $\mathbf{\bar{D}}$ -complete for some simple \aleph_1 -completeness system.

c) Forcing with $P_{\alpha} = \text{Lim } \overline{Q}$ adds reals.

PROOF. We shall define \mathbf{Q}_i by induction on *i* so that conditions a) and b) are satisfied, and \mathbf{C}_i is a \mathbf{Q}_i -name of a closed unbounded subset of ω_1 . Let $\langle f_{\xi}^*: \xi < \omega_1 \rangle \in L[A]$ be a list of all functions *f* which are from δ to δ for some $\delta < \omega_1$, and let $h: \omega_1 \to \omega_1$, $h \in L[A]$, be defined by $h(\alpha) = \text{Min}\{\beta:\beta > \alpha \text{ and } L_{\beta}[A] \models ``|\alpha| = \aleph_0``\}.$

Suppose we have defined \mathbf{Q}_j for every j < i; then P_i is defined, is proper (as each \mathbf{Q}_j , j < i, is proper, and by III 3.2) and has a dense subset of power \aleph_1 (by III 4.1).¹ Let $G_i \subseteq P_i$ be generic so clearly there is $B \subseteq \omega_1$ such that in $V[G_i]$ every subset of ω_1 belongs to L[A, B]. The following now follows:

FACT. In $V[G_i]$, every countable $N \prec (H(\aleph_2), \in, A, B)$ is isomorphic to $L_{\beta}[A \cap \delta, B \cap \delta]$ for some $\beta < h(\delta)$, where $\delta = \delta(N) = \omega_1 \cap N$.

We shall assume also that $V[G_i]$ has the same reals as V (otherwise we already have an example).

We now define, by induction on $\alpha < \omega_1$, a set T_{α} such that the following conditions are satisfied:

i) Each $f \in T_{\alpha}$ is the characteristic function of a closed subset of some successor ordinal $\beta < \alpha$, i.e., Dom $f = \beta$, and $f^{-1}(\{1\})$ is a closed subset of β and is included in the set of limit points of $\bigcap_{j < i} C_j \cap \omega_1$.

ii) If $f \in T_{\alpha}$, $\gamma + 1 \leq \text{Dom } f$, then $f \upharpoonright (\gamma + 1) \in T_{\alpha}$, and even $f \upharpoonright (\gamma + 1) \in T_{\beta}$ for $\gamma + 1 \leq \beta \leq \alpha$.

iii) If $f \in T_{\alpha}$, Dom $f = \beta, \beta < \gamma < \alpha, \gamma$ a successor, then $f' = f \cup 0_{(\beta,\gamma)} \in T_{\alpha}$, i.e.,

Received October 19, 1982.

The author would like to thank the NSF (U.S.A.) and the United States-Israel Binational Science Foundation for partially supporting this research.

¹ Such references are to [1].

© 1984, Association for Symbolic Logic 0022-4812/84/4904-0003/\$01.50 Dom $f' = \gamma$, and

$$f'(i) = \begin{cases} f(i), & i < \beta, \\ 0, & \beta \le i < \gamma. \end{cases}$$

iv) If $f, g \in T_{\alpha}$, $f(i) \neq g(i)$, then $f^{-1}(\{1\}) \cap g^{-1}(\{1\}) - i$ is finite.

v) If $f \in T_{\alpha}$, $\gamma = \text{Dom } f, \gamma + 1 < \alpha$ and the order type of $f^{-1}(\{1\})$ has the form $\xi + 2$, then $f' = f \cup \{\langle \gamma, 1 \rangle\} \in T_{\alpha}$.

vi) If $f \in T_{\alpha}, \delta + 1 = \text{Dom } f, \delta \text{ limit, and } f(i) = 1 \text{ for arbitrarily large } i < \delta, \text{ then } \text{Min}\{\xi: f \upharpoonright \delta = f_{\xi}^*\} \text{ is larger than } \text{Min}\{\xi: \delta < \xi \in C_i\} \text{ (for } j < i).$

vii) If $\delta < \alpha$ is limit, δ a limit point of $\bigcap_{j < i} C_j, \xi^* < \omega_1$, and $f \in T_\alpha \cap L_\delta[A \cap \delta]$, then there is $g \in T_\alpha, \delta + 1 = \text{Dom } g$, such that for every $\mathscr{I} \in L_{h(\delta)}[A \cap \delta, B \cap \delta]$ (an open dense subset of $T_\delta \cap L_\delta[A \cap \delta]$ (ordered by inclusion)), for some $\gamma < \delta$ we have $g \upharpoonright \gamma \in \mathscr{I}$ and $g \upharpoonright \delta \notin \{f_\xi^*: \xi < \xi^*\}$ and $f = g \upharpoonright \text{Dom } f$.

viii) For $f \in T_{\alpha}$, if $f(\delta) = 1$, $\delta < \beta$, and $f(\beta) = 1$, then for every j < i, for some $\gamma < \beta$, the characteristic function of C_j restricted to δ is f_{γ}^* ; and if δ , $f \upharpoonright \delta$ and β satisfy this then $f \upharpoonright (\delta + 1) \cup 0_{[\delta + 1, \beta]} \cup 1_{[\beta, \beta + 1]}$ belongs to $T_{\beta + 1}$.

Case A. α is limit, or $\alpha = \gamma + 1$, γ limit. Let $T_{\alpha} = \bigcup_{\beta < \alpha} T_{\beta}$ or $T_{\alpha} = \bigcup_{\beta < \gamma} T_{\beta}$. Case B. $\alpha < \omega$. Let $T_{\alpha} = \{f : f \text{ a function from } \beta < \alpha \text{ to } \{0, 1\}\}.$

Case C. $\alpha = \beta + 3 > \omega$. Let $T_{\alpha} = T_{\beta+2} \cup \{f: \text{Dom } f = \beta + 2, f \upharpoonright (\beta + 1) \in T_{\beta+2}, \text{ provided that viii) is satisfied}\}$.

Case D. $\alpha = \delta + 2$, $\delta \text{ limit}$, $\delta \in \bigcap_{j < i} C_j$. This is the main case. Let $\{f_e^*: e < \omega\}$ be a list of $T_\delta \cap L_\delta[A \cap \delta]$, each appearing \aleph_0 times, and $\{\mathscr{I}_e: e < \omega\}$ be a list of all open dense subsets of $T_\delta \cap L_\delta[A \cap \delta]$ which belong to $L_{h(\delta)}[A \cap \delta, B \cap \delta]$ and $\{f \in T_\delta \cap L_\delta[A \cap \delta], f \notin f_\xi^*\}$ for $\xi < h(\delta)$. We now define, by induction on $n < \omega$, an ordinal $\alpha_n < \delta$ and a finite set $F_n \subseteq \{f \in T_\delta \cap L_\delta[A \cap \delta]: \alpha_n = \text{Dom } f\}$ such that:

(*)
$$(\forall f \in F_n)(\exists g \in F_{n+1})(f \subseteq g) \text{ and}$$

 $(\forall f, g \in F_n)(f \upharpoonright \alpha_{n-1} \neq g_n \upharpoonright \alpha_{n-1} \rightarrow f^{-1}(\{1\}) \cap g^{-1}(\{1\}) \subseteq \alpha_{n-1}).$

Subcase α . If $n = 0 \mod 3$ then $\alpha_{n+1} = \alpha_n + 1$ and $F_n = \{f \cup \{\langle \alpha_n, 0 \rangle\}: l < 2, f \in F_n\}$; and if n = 0, then $F_n = \emptyset$ and $\alpha_n = 0$.

Subcase β . If $n = 1 \mod 3$, then $\alpha_{n+1} = \alpha_n + 1$; $F_{n+1} = F_n$ if $[\text{Dom } f^*_{(n-1)/3} > \alpha_n \text{ or } (\exists g \in F_n)(f^*_{(n-1)/3} \subseteq g)]$; otherwise

$$F_{n+1} = \{ f \cup 0_{[\alpha_n, \alpha_{n+1}]} : f \in F_n \} \cup \{ f_{(n-1)/3} \cup 0_{[\beta, \alpha_{n+1}]} : \beta = \text{Dom } f_{(n-1)/3} \}.$$

Subcase γ . If $n = 2 \mod 3$, $(n-2)/3 = m^2 + k$, $k \le 2m$, then every $f \in F_{n+1}$ belongs to \mathscr{I}_k . Note that we have to take care of (*); hence let $F_n = \{f_e^n : e < |F_n|\}$, and define α_e^n and g_e^n by induction on $e: \alpha_0^n = \alpha_n$; if α_e^n is defined, chose g_e^n , $f_e^n \cup 0_{[\alpha_{n-1}^n]} \subseteq g_e^n \in \mathscr{I}_k$, and $\alpha_{e+1}^n = \text{Dom } g_e^n$. Now let $\alpha_{n+1} = \alpha_{|F_n|}^n$ and $F_{n+1} = \{g_e^n \cup 0_{[\alpha_{e+1}^n], \alpha_{n+1}} : e < |F_n|\}$.

Note that only in Case D, Subcase γ , do we have a free choice, and we eliminate it by choosing the first candidate for F_{n+1} by the canonical well-ordering of L[A]. So we have finished defining the F_n 's and we let

$$T_{\delta+2} = T_{\delta} \cup \{f: \text{Dom } f = \delta + 1 \text{ and } either \ f = f' \cup 0_{[\gamma, \delta+1)}, \text{ where} \\ f' \in T_{\delta}, \gamma = \text{Dom } f', \text{ or } (\forall n > k)[f \upharpoonright \alpha_n \in F_n] \text{ for some } k < \omega, \\ f(\delta) = 1 \text{ iff } \delta = \sup f^{-1}(\{1\})\}.$$

1035

SAHARON SHELAH

It is easy to check that $T_{\delta+2}$ is as required. (Case β in the definition of F_n enables us to satisfy demand vii).)

Case E. $\alpha = \delta + 2$, $\delta \lim_{\alpha \to \infty} \delta \notin \bigcap_{j < i} C_j$. Let $T_{\alpha} = T_{\delta} \cup \{f: \text{Dom } f = \delta + 1, (\exists g \in T_{\delta})f \upharpoonright ((\delta + 1) - \text{Dom } g) \text{ is zero}\}.$

So we have defined T_{α} for $\alpha < \omega_1$, and let $Q_i \in V[G_i]$ be $\bigcup_{\alpha < \omega_1} T_{\alpha}$ ordered by inclusion (really we should have written T_{α}^i , β_i , etc.); and it is easy to see that \mathbf{Q}_i is as required (in a) and b)).

So $\overline{Q} = \langle P_i, \mathbf{Q}_i : i < \omega^2 \rangle$ is defined, and it is easy to see that we can replace (in $V[G_i]$) B_i by $\overline{C}^i = \langle C_j : j < i \rangle$. Let $G \subseteq P_{\omega^2}$ be generic, and C_i the interpretation of \mathbf{C}_i . Let f_i be the characteristic function of C_i , and $C = \bigcap_{i < \omega^2} C_i$, $\{\alpha_{\zeta} : \zeta < \omega_1\}$ an enumeration of C (in increasing order). We shall suppose that forcing by P_{ω^2} does not add reals, and shall deduce that $\langle f_i : i < \omega^2 \rangle \in V$, which is clearly false, as $\| -Q_0 \ C_0 \notin V$.

By the assumption the $\langle f_i \upharpoonright \alpha_0 : i < \omega^2 \rangle$ belong to V, and we shall show how to compute $\langle f_i \upharpoonright \alpha_{\zeta} : i < \omega^2 \rangle$ for every ζ , by induction; as the computation is done in V we get the desired contradiction. More formalistically, there is a function F in V such that

$$\langle f_i \upharpoonright \alpha_{\zeta+1} : i < \omega^2 \rangle = F(\langle f_i \upharpoonright \alpha_{\zeta} : i < \omega^2 \rangle).$$

So suppose $\langle f_i | \alpha_{t} : i < \omega^2 \rangle$ is given, and let, for $i < \omega^2$,

$$\beta_i = \operatorname{Min} C_i - (\alpha_{\zeta} + 1), \qquad \xi_i = \operatorname{Min} \{\xi : f_i \upharpoonright \alpha_{\zeta} = f_{\xi}^* \}.$$

By demand i) in the definition of the $T_{\alpha}^{i,s}$, $C_i \subseteq \bigcap_{j < i} C_j$. So clearly $\beta_j \leq \beta_i$, and $\beta_i \in C_j$ for $j \leq i$. Also by demand vi) on the $T_{\alpha}^{i,s}$, $\beta_j < \xi_i$ for j < i, and by demand viii) on the $T_{\alpha}^{i,s}$, $\xi_j < \beta_i$ for j < i. We can conclude that $\sup\{\beta_i: i < \omega n\} = \sup\{\xi_i: i < \omega n\}$; but from $\langle f_i \upharpoonright \alpha_{\zeta}: i < \omega^2 \rangle$ we can compute $\gamma_n = \sup\{\xi_i: i < \omega n\}$. As $\beta_i \in C_j$ for j < i, $\gamma_n \in C_j$ when $j < \omega n$, and clearly $\gamma_n < \gamma_{n+1}$, we have $\gamma = \bigcup_{n < \omega} \gamma_n \in \bigcap_{j < \omega^2} C_j$. By the definition of the α_{ζ} 's, $\gamma = \alpha_{\xi+1}$. As we know $T_{\gamma}^0 \cap L_{\delta}[A]$, and we know $\{\gamma_n: n < \omega\} \subseteq C_0$; $f_0 \upharpoonright \delta$ is uniquely determined (by demand iv)). Similarly we continue to reconstruct $f_i \upharpoonright \gamma$ by induction on i, thus finishing the proof.

1.2. REMARKS. (1) We could weaken the demands on V (in 1.1) to $V \models CH$, provided that we also waive the requirement $\|-P_i^{"}|\mathbf{Q}_i| = \aleph_1^{"}$. For this it suffices to start with a forcing which makes those demands true, and such a forcing notion exists by Jensen and Solovay [2].

(2) The ω^2 in 1.1 is best possible.

(3) Alternatively, we can weaken the demand on V to: CH and

(*) There is a sequence $\langle f_{\delta} : \delta < \omega_1, \delta | \text{imit} \rangle$, f_{δ} a function from δ to δ , such that for every $f : \omega_1 \to \omega_1$ for a closed unbounded set of $\delta < \omega_1$,

$$(\exists \alpha < \delta)(\forall \beta) [\alpha < \beta < \delta \rightarrow f(\beta) < f_{\delta}(\beta)].$$

For this we need some forcing like our P_i preserving CH + (*), which seems to be a demand on V, and we must make some changes in the proof

(4) We can improve 1.1 in the following way. Let ε be a countable limit ordinal such that $(\forall \alpha < \varepsilon)$ $(\alpha + \alpha < \varepsilon)$ (equivalently ε has the form ω^{α} (ordinal exponentiation)). Then we can construct a CS iteration $\overline{Q} = \langle P_i, \mathbf{Q}_i : i < \omega \varepsilon \rangle$ such that:

a)' Each \mathbf{Q}_i is α -proper for $\alpha < \varepsilon$ and $\parallel_{P_i} \mathbf{Q}_i$ has power \aleph_1 ".

- b)' Each \mathbf{Q}_i is \mathfrak{D} -complete for some simple \aleph_1 -completeness system.
- c)' Forcing with $P_{\alpha} = \text{Lim } Q$ adds reals.

1036

PROPER FORCING

We again assume $G_i \subseteq P_i$ generic is given; hence $\langle C_j : j < i \rangle$, and by induction on α we define T^i_{α} , so that in the definition of T^i_{α} we use A and $\langle C_j \cap \alpha : j < i \rangle$ only (and the list $\{f^{*}_{\xi}: \xi < \omega_1\} \in L[A]$), so that a variant of i)-viii) holds. The changes are:

iv)' If $f, g \in T^i_{\alpha}, f(i) \neq g(i)$, then $f^{-1}(\{1\}) \cap g^{-1}(\{1\}) - i$ has order-type $< \varepsilon$.

vii)' In addition to vii), if $\langle \delta_{\zeta} : \zeta \leq \zeta^* \rangle$ is an increasing sequence of limit points of $\bigcap_{j < i} C_j$, $\langle \delta_{\xi} : \xi \leq \zeta \rangle \in L_{\delta_{\zeta+1}}[A \cap \delta_{\zeta+1}]$, $f \in T^i_{\delta_0} \cap L_{\delta_0}[A]$, $f_m \in T^i_{\zeta^*+1}$ for $m < \omega$ and $m^* < \omega, \zeta^* < \varepsilon$, then there is $g \in T^i_{\zeta^*+2}$, $f \subseteq g$, Dom $g = \zeta^* + 1$, such that the following conditions hold:

(a) For every $\mathscr{I} \in L_{h(\delta)}[A \cap \delta, B \cap \delta]$ (an open dense subset of $T_{\delta}^{i} \cap L_{\delta}[A \cap \delta]$ (ordered by inclusion)), for some $\gamma < \delta, g \upharpoonright \gamma \in \mathscr{I}$, where $\delta \in \{\delta_{\zeta}: \zeta \leq \zeta^*\}$.

(β) For every $m < \omega$, $g^{-1}(\{1\}) \cap f_m^{-1}(\{1\}) - \{\delta_{\zeta}: \zeta \le \zeta^*\}$ is a bounded subset of δ_{ζ^*} .

(y) For every $m < m^*$, $g^{-1}(\{1\}) \cap f_m^{-1}(\{1\}) - \{\delta_{\zeta}: \zeta \le \zeta^*\} \subseteq \text{Dom } f$.

In the proof of Case D, we use the canonical well-ordering of $H(\aleph_1)^{L[A]}$ on our assignments (for the existence of $g \in T^i_{\delta+2}$, Dom $g = \delta + 1$), and construct a witness, preserving and using vii)'.

1.3. THEOREM. (1) Suppose (D, R) is a smooth strong covering model, $\overline{Q} = \langle P_i, \mathbf{Q}_i: i < \delta \rangle$ a countable support iteration of proper forcing notion (or at least P_{α}/P_{β} is proper for $\beta < \alpha < \delta$, β nonlimit) and each P_i is (D, R)-preserving for $i < \delta$. Then Lim \overline{Q} is (D, R)-preserving. (See VI, §1, for definitions, and VI, §2, for applications.)

(2) Suppose $P * \mathbf{Q} \in N_0$, P, Q are proper and $P * \mathbf{Q}$ is ω^{ω} -bounding: $N_0 \prec N_1 \prec (H(\lambda), \epsilon) (\lambda \text{ big enough}), N_0 \in N_1, ||N_e|| \leq \aleph_0, \text{ and } p \in P \text{ is } (N_e, P)\text{-generic}$ for e = 0, 1 and $\mathbf{q} \in N_1$ is a P-name of a member of $\mathbf{Q}, (p, \mathbf{q})$ is (N_0, \mathbf{Q}) -generic and for some F for every predense $\mathscr{I} \subseteq P, \mathscr{I} \in N_0, F(\mathscr{I}) \subseteq \mathscr{I} \cap N_0$ is predense above p (in P) and $F(\mathscr{I})$ is finite.

Then there is \mathbf{q}' such that $(p, \mathbf{q}) \leq (p, \mathbf{q}')$, (p, \mathbf{q}') is $(N_1, P * \mathbf{Q})$ -generic and for some function F', for every predense $\mathscr{I} \subseteq P * \mathbf{Q}$, $\mathscr{I} \in N_0$, $F(\mathscr{I})$ is predense above (p, \mathbf{q}') (in $P * \mathbf{Q}$) and $F(\mathscr{I})$ is finite.

PROOF. (1) The proof is very similar to the proof of VI.1.6, so we mention only the changes. Instead of choosing $\langle N_e : e < \omega \rangle \in SQS^1_{\omega}(\lambda)$, we just choose $N_1 \prec (H(\lambda), \epsilon)$ such that $\langle x_n : n < \omega \rangle$, $\langle P_e, \mathbf{Q}_e : e < \omega \rangle$, f, $\langle q_e^n : e < n < \omega \rangle$ and $\langle t_{n,m} : m \le n < \omega \rangle$ belong to it. We now replace a), b) by

a)' $p \upharpoonright n \le r^n$; r^n is (N_1, P_n) -generic.

b)' For some $T_n \in D$, $r^n \Vdash \text{``f}_n \in \text{Lim } T_n$ '' and $x_{2n}RT_n$, $T_n \subseteq T_{n+1}$.

Toward the end we know that some $t \in \mathscr{I} \cap N_1$ (not $\mathscr{I} \cap N_{8^{n+2^n}}$) belongs to the generic subset of P_n , and we let $\mathscr{I} \cap N_1 = \{t_k : 0 < k < \omega\}$.

Then, later, T_{n+1} does not necessarily belong to N_1 ; in (*), q' is also $(N_1[G_n], \mathbf{Q}_n[G_n])$ -generic.

(2) The proof is essentially included in the proof of (1).

Note that N_1 has a list $\langle \tau_e : e < \omega \rangle$ of the $P * \mathbf{Q}$ -names of ordinals, and there is a sequence $\langle \mathbf{q}_e : e < \omega \rangle (\in N_1)$, $\Vdash_P ``\mathbf{q}_e \in \mathbf{Q}$ and $q \leq q_e \leq q_{e+1}$ and $(p, q_e) \Vdash ``\tau_e = \sigma_e$ for some *P*-name σ_e (of an ordinal) from N_1 .

REMARK. We can replace proper by semi-proper as in Chapter X.

§2. Intermediate forcing. In §1 we showed that just excluding the forcing notions like the one from Example V.5.1 (by demanding $\overline{\mathfrak{D}}$ -completeness for a simple 2-completeness system) is not enough to ensure that the iterated forcing does not add reals. In VIII, §4, on the other hand, we have quite weak restrictions on each Q_i

SAHARON SHELAH

ensuring $\text{Lim}\langle P_i, \mathbf{Q}_i : i < \alpha \rangle$ does not add reals. However, here we shall represent forcing notions which fall in between (and the corresponding consistency problems).

2.1. PROBLEM. Let $f_{\delta}: \delta \to \delta$ for any limit $\delta < \omega_1$. Is there $f: \omega_1 \to \omega_1$ such that for every $\delta < \omega_1$, for arbitrarily large $\alpha < \delta$, $f_{\delta}(\alpha) < f(\alpha)$?

2.2. DEFINITION. For any sequence $\overline{f} = \langle f_{\delta} : \delta < \omega_1 \rangle$, $f_{\delta} : \delta \to \delta$, let $P_{\overline{f}}^0 = \{g : g \text{ a function from some } \alpha < \omega_1 \text{ into } \omega_1$, such that for every $\delta \le \alpha$, for arbitrarily large $\beta < \delta$, $f_{\delta}(\beta) < g(\beta)\}$; ordered by inclusion.

2.3. PROBLEM. Let $C_{\delta} \subseteq \delta$ be a subset of δ , for $\delta < \omega_1$. Is there a closed unbounded $C \subseteq \omega_1$ such that for no δ , $C_{\delta} \subseteq C$? Consider in particular the cases when we restrict ourselves to

a) C_{δ} has order-type ω , $\delta = \operatorname{Sup} C_{\delta}$,

b)_{ξ} C_{δ} has order-type ξ , $\delta = \operatorname{Sup} C_{\delta} (\xi \operatorname{limit})$,

c) C_{δ} has order-type $<\delta, \delta = \sup C_{\delta},$

d) $C_{\delta} = \phi \mod D_{\delta}$, D_{δ} a filter on δ , $\delta = \operatorname{Sup} C_{\delta}$, $\overline{D} = \langle D_{\delta} : \delta < \omega_1 \rangle$.

2.4. DEFINITION. For $\overline{C} = \langle C_{\delta} : \delta < \omega_1 \rangle$, $C \subseteq \omega$, let $P_{\overline{C}}^1 = \{f : f \text{ a function from some } \alpha < \omega_1 \text{ to } \{0, 1\}$, and for no $\delta \le \alpha$ is $C_{\delta} \subseteq f^{-1}(\{1\})\}$.

2.5. PROBLEM. Let C_{δ} be an unbounded subset of δ , for $\delta < \omega_1$. Is there a closed unbounded $C \subseteq \omega_1$ such that for every δ , $C \cap C_{\delta}$ is a bounded subset of δ , when we restrict ourselves as in 2.3?

2.6. DEFINITION. For a sequence $\overline{C} = \langle C_{\delta} : \delta < \omega_1 \rangle$, C_{δ} an unbounded subset of δ , let $P_{\overline{C}}^2 = \{g : g \text{ a function from some } \alpha < \omega_1 \text{ to } \omega_1$, so for every $\delta \leq \alpha$, $\operatorname{Sup}[C_{\delta} \cap g^{-1}(\{1\})] < \delta\}$.

2.7. CLAIM. $P_{\bar{f}}^0$, $P_{\bar{C}}^1$ and $P_{\bar{C}}^2$ (when one of the Cases A-D from 1.1 holds) are proper and $\bar{\mathfrak{D}}$ -complete for some simple \aleph_1 -completeness system.

CONCLUDING REMARK. We shall later conclude that a positive answer is consistent with ZFC + GCH. The point is that though the corresponding forcing notions are not α -proper for many $\alpha < \omega_1$, still a reasonable weakening holds, i.e. for suitable $\langle N_i: i \leq \delta \rangle$ and $p \in N_0 \cap P$ there is a $q \geq p$ such that $q \Vdash_P$ "{*i*: $N_i[G] \cap \text{ord} = N_i \cap \text{ord}$ } is large".

REFERENCE

 S. SHELAH, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.
R. B. JENSEN and R. SOLOVAY, Some applications of almost disjoint forcing, Mathematical logic and the foundations of set theory (Y. Bar-Hillel, editor), North-Holland, Amsterdam, 1968, pp. 84-104.

the hebrew university jerusalem, israel university of california berkeley, california 94720

1038