# The Journal of Symbolic Logic 

## THE

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

## More on proper forcing

## Saharon Shelah

The Journal of Symbolic Logic / Volume 49 / Issue 04 / December 1984, pp 1034-1038
DOI: 10.2307/2274259, Published online: 12 March 2014
Link to this article: http://journals.cambridge.org/abstract_S0022481200042341
How to cite this article:
Saharon Shelah (1984). More on proper forcing . The Journal of Symbolic Logic, 49, pp 1034-1038 doi:10.2307/2274259

Request Permissions: Click here

# MORE ON PROPER FORCING 

SAHARON SHELAH

## §1. A counterexample and preservation of "proper +X ".

1.1. Theorem. Suppose $V$ satisfies $2^{\aleph_{0}}=\aleph_{1}, 2^{\aleph_{1}}=\aleph_{2}$, and for some $A \subseteq \omega_{1}$, every $B \subseteq \omega_{1}$ belongs to $L[A]$.

Then we can define a countable support iteration $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}: i<\beta\right\rangle$ such that the following conditions hold:
a) Each $\mathbf{Q}_{i}$ is proper and $\left.\right|_{P_{i}}$ " $\mathbf{Q}_{i}$ has power $\aleph_{1}$ ".
b) Each $\mathbf{Q}_{i}$ is $\mathfrak{\mathcal { D }}$-complete for some simple $\aleph_{1}$-completeness system.
c) Forcing with $P_{\alpha}=\operatorname{Lim} \bar{Q}$ adds reals.

Proof. We shall define $\mathbf{Q}_{i}$ by induction on $i$ so that conditions a) and b) are satisfied, and $\mathbf{C}_{i}$ is a $\mathbf{Q}_{i}$-name of a closed unbounded subset of $\omega_{1}$. Let $\left\langle f_{\xi}^{*}: \xi\left\langle\omega_{1}\right\rangle \in L[A]\right.$ be a list of all functions $f$ which are from $\delta$ to $\delta$ for some $\delta<\omega_{1}$, and let $h: \omega_{1} \rightarrow \omega_{1}, h \in L[A]$, be defined by $h(\alpha)=\operatorname{Min}\{\beta: \beta>\alpha$ and $\left.L_{\beta}[A] \vDash "|\alpha|=\aleph_{0} "\right\}$.

Suppose we have defined $\mathbf{Q}_{j}$ for every $j<i$; then $P_{i}$ is defined, is proper (as each $\mathbf{Q}_{j}, j<i$, is proper, and by III 3.2) and has a dense subset of power $\aleph_{1}$ (by III 4.1). ${ }^{1}$ Let $G_{i} \subseteq P_{i}$ be generic so clearly there is $B \subseteq \omega_{1}$ such that in $V\left[G_{i}\right]$ every subset of $\omega_{1}$ belongs to $L[A, B]$. The following now follows:

Fact. In $V\left[G_{i}\right]$, every countable $N \prec\left(H\left(\aleph_{2}\right), \in, A, B\right)$ is isomorphic to $L_{\beta}[A \cap \delta, B \cap \delta]$ for some $\beta<h(\delta)$, where $\delta=\delta(N)=\omega_{1} \cap N$.

We shall assume also that $V\left[G_{i}\right]$ has the same reals as $V$ (otherwise we already have an example).

We now define, by induction on $\alpha<\omega_{1}$, a set $T_{\alpha}$ such that the following conditions are satisfied:
i) Each $f \in T_{\alpha}$ is the characteristic function of a closed subset of some successor ordinal $\beta<\alpha$, i.e., $\operatorname{Dom} f=\beta$, and $f^{-1}(\{1\})$ is a closed subset of $\beta$ and is included in the set of limit points of $\bigcap_{j<i} C_{j} \cap \omega_{1}$.
ii) If $f \in T_{\alpha}, \gamma+1 \leq \operatorname{Dom} f$, then $f \upharpoonright(\gamma+1) \in T_{\alpha}$, and even $f \upharpoonright(\gamma+1) \in T_{\beta}$ for $\gamma+1 \leq \beta \leq \alpha$.
iii) If $f \in T_{\alpha}$, $\operatorname{Dom} f=\beta, \beta<\gamma<\alpha, \gamma$ a successor, then $f^{\prime}=f \cup 0_{[\beta, \gamma)} \in T_{\alpha}$, i.e.,

[^0]Dom $f^{\prime}=\gamma$, and

$$
f^{\prime}(i)= \begin{cases}f(i), & i<\beta \\ 0, & \beta \leq i<\gamma\end{cases}
$$

iv) If $f, g \in T_{\alpha}, f(i) \neq g(i)$, then $f^{-1}(\{1\}) \cap g^{-1}(\{1\})-i$ is finite.
v) If $f \in T_{\alpha}, \gamma=\operatorname{Dom} f, \gamma+1<\alpha$ and the order type of $f^{-1}(\{1\})$ has the form $\xi+2$, then $f^{\prime}=f \cup\{\langle\gamma, 1\rangle\} \in T_{\alpha}$.
vi) If $f \in T_{\alpha}, \delta+1=\operatorname{Dom} f, \delta$ limit, and $f(i)=1$ for arbitrarily large $i<\delta$, then $\operatorname{Min}\left\{\xi: f \upharpoonright \delta=f_{\xi}^{*}\right\}$ is larger than $\operatorname{Min}\left\{\xi: \delta<\xi \in C_{j}\right\}($ for $j<i$ ).
vii) If $\delta<\alpha$ is limit, $\delta$ a limit point of $\bigcap_{j<i} C_{j}, \xi^{*}<\omega_{1}$, and $f \in T_{\alpha} \cap L_{\delta}[A \cap \delta]$, then there is $g \in T_{\alpha}, \delta+1=\operatorname{Dom} g$, such that for every $\mathscr{I} \in L_{h(\delta)}[A \cap \delta, B \cap \delta]$ (an open dense subset of $T_{\delta} \cap L_{\delta}[A \cap \delta]$ (ordered by inclusion)), for some $\gamma<\delta$ we have $g \upharpoonright \gamma \in \mathscr{I}$ and $g \upharpoonright \delta \notin\left\{f_{\xi}^{*}: \xi<\xi^{*}\right\}$ and $f=g \upharpoonright \operatorname{Dom} f$.
viii) For $f \in T_{a}$, if $f(\delta)=1, \delta<\beta$, and $f(\beta)=1$, then for every $j<i$, for some $\gamma<\beta$, the characteristic function of $C_{j}$ restricted to $\delta$ is $f_{\gamma}^{*}$; and if $\delta, f \mid \delta$ and $\beta$ satisfy this then $f\left\lceil(\delta+1) \cup 0_{(\delta+1, \beta)} \cup 1_{(\beta, \beta+1)}\right.$ belongs to $T_{\beta+1}$.

Case A. $\alpha$ is limit, or $\alpha=\gamma+1, \gamma$ limit. Let $T_{\alpha}=\bigcup_{\beta<\alpha} T_{\beta}$ or $T_{\alpha}=\bigcup_{\beta<\gamma} T_{\beta}$.
Case B. $\alpha<\omega$. Let $T_{\alpha}=\{f: f$ a function from $\beta<\alpha$ to $\{0,1\}\}$.
Case C. $\alpha=\beta+3>\omega$. Let $T_{\alpha}=T_{\beta+2} \cup\left\{f: \operatorname{Dom} f=\beta+2, f \upharpoonright(\beta+1) \in T_{\beta+2}\right.$, provided that viii) is satisfied $\}$.

Case D. $\alpha=\delta+2, \delta$ limit, $\delta \in \bigcap_{j<i} C_{j}$. This is the main case. Let $\left\{f_{e}^{*}: e<\omega\right\}$ be a list of $T_{\delta} \cap L_{\delta}[A \cap \delta]$, each appearing $\aleph_{0}$ times, and $\left\{\mathscr{I}_{e}: e<\omega\right\}$ be a list of all open dense subsets of $T_{\delta} \cap L_{\delta}[A \cap \delta]$ which belong to $L_{h(\delta)}[A \cap \delta, B \cap \delta]$ and $\{f \in$ $\left.T_{\delta} \cap L_{\delta}[A \cap \delta], f \nsubseteq f_{\xi}^{*}\right\}$ for $\xi<h(\delta)$. We now define, by induction on $n<\omega$, an ordinal $\alpha_{n}<\delta$ and a finite set $F_{n} \subseteq\left\{f \in T_{\delta} \cap L_{\delta}[A \cap \delta]: \alpha_{n}=\operatorname{Dom} f\right\}$ such that:

$$
\begin{align*}
& \left(\forall f \in F_{n}\right)\left(\exists g \in F_{n+1}\right)(f \subseteq g) \text { and }  \tag{*}\\
& \left(\forall f, g \in F_{n}\right)\left(f \upharpoonright \alpha_{n-1} \neq g_{n} \upharpoonright \alpha_{n-1} \rightarrow f^{-1}(\{1\}) \cap g^{-1}(\{1\}) \subseteq \alpha_{n-1}\right) .
\end{align*}
$$

Subcase $\alpha$. If $n=0 \bmod 3$ then $\alpha_{n+1}=\alpha_{n}+1$ and $F_{n}=\left\{f \cup\left\{\left\langle\alpha_{n}, 0\right\rangle\right\}: l<2\right.$, $\left.f \in F_{n}\right\}$; and if $n=0$, then $F_{n}=\varnothing$ and $\alpha_{n}=0$.

Subcase $\beta$. If $n=1 \bmod 3$, then $\alpha_{n+1}=\alpha_{n}+1 ; F_{n+1}=F_{n}$ if $\left[\operatorname{Dom} f_{(n-1) / 3}^{*}>\alpha_{n}\right.$ or $\left.\left(\exists g \in F_{n}\right)\left(f_{(n-1) / 3}^{*} \subseteq g\right)\right]$; otherwise

$$
F_{n+1}=\left\{f \cup 0_{\left[\alpha_{n}, \alpha_{n+1}\right.}: f \in F_{n}\right\} \cup\left\{f_{(n-1) / 3} \cup 0_{\left[\beta, \alpha_{n+1}\right]}: \beta=\operatorname{Dom} f_{(n-1) / 3}\right\} .
$$

Subcase $\gamma$. If $n=2 \bmod 3,(n-2) / 3=m^{2}+k, k \leq 2 m$, then every $f \in F_{n+1}$ belongs to $\mathscr{I}_{k}$. Note that we have to take care of (*); hence let $F_{n}=\left\{f_{e}^{n}: e<\left|F_{n}\right|\right\}$, and define $\alpha_{e}^{n}$ and $g_{e}^{n}$ by induction on $e: \alpha_{0}^{n}=\alpha_{n}$; if $\alpha_{e}^{n}$ is defined, chose $g_{e}^{n}, f_{e}^{n} \cup$ $0_{\left[\alpha_{n}, \alpha_{j}\right)} \subseteq g_{e}^{n} \in \mathscr{I}_{k}$, and $\alpha_{e+1}^{n}=\operatorname{Dom} g_{e}^{n}$. Now let $\alpha_{n+1}=\alpha_{\left|F_{n}\right|}^{n}$ and $F_{n+1}=$ $\left\{g_{e}^{n} \cup 0_{\left\{\alpha_{e+1}^{n}, \alpha_{n+1}\right.}: e<\left|F_{n}\right|\right\}$.

Note that only in Case D, Subcase $\gamma$, do we have a free choice, and we eliminate it by choosing the first candidate for $F_{n+1}$ by the canonical well-ordering of $L[A]$. So we have finished defining the $F_{n}$ 's and we let

$$
\begin{aligned}
& T_{\delta+2}=T_{\delta} \cup\left\{f: \operatorname{Dom} f=\delta+1 \text { and } \text { either } f=f^{\prime} \cup 0_{[\gamma, \delta+1)},\right. \text { where } \\
& f^{\prime} \in T_{\delta}, \gamma=\operatorname{Dom} f^{\prime}, \text { or }(\forall n>k)\left[f \upharpoonright \alpha_{n} \in F_{n}\right] \text { for some } k<\omega, \\
& \left.f(\delta)=1 \mathrm{iff} \delta=\sup f^{-1}(\{1\})\right\} .
\end{aligned}
$$

It is easy to check that $T_{\delta+2}$ is as required. (Case $\beta$ in the definition of $F_{n}$ enables us to satisfy demand vii).)
Case E. $\alpha=\delta+2, \delta$ limit, $\delta \notin \bigcap_{j<i} C_{j}$. Let $T_{\alpha}=T_{\delta} \cup\{f:$ Dom $f=\delta+1,(\exists g \in$ $\left.T_{\delta}\right) f\{((\delta+1)-$ Dom $g)$ is zero $\}$.

So we have defined $T_{\alpha}$ for $\alpha<\omega_{1}$, and let $Q_{i} \in V\left[G_{i}\right]$ be $\bigcup_{\alpha<\omega_{1}} T_{\alpha}$ ordered by inclusion (really we should have written $T_{\alpha}^{i}, \beta_{i}$, etc.); and it is easy to see that $\mathbf{Q}_{i}$ is as required (in a) and $b$ )).

So $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}: i<\omega^{2}\right\rangle$ is defined, and it is easy to see that we can replace (in $\left.V\left[G_{i}\right]\right) B_{i}$ by $\bar{C}^{i}=\left\langle C_{j}: j\langle i\rangle\right.$. Let $G \subseteq P_{\omega^{2}}$ be generic, and $C_{i}$ the interpretation of $\mathrm{C}_{i}$. Let $f_{i}$ be the characteristic function of $C_{i}$, and $C=\bigcap_{i<\omega^{2}} C_{i},\left\{\alpha_{\zeta}: \zeta<\omega_{1}\right\}$ an enumeration of $C$ (in increasing order). We shall suppose that forcing by $P_{\omega^{2}}$ does not add reals, and shall deduce that $\left\langle f_{i}: i\left\langle\omega^{2}\right\rangle \in V\right.$, which is clearly false, as $\forall Q_{0} " C_{0} \notin V$ ".

By the assumption the $\left\langle f_{i} \mid \alpha_{0}: i<\omega^{2}\right\rangle$ belong to $V$, and we shall show how to compute $\left\langle f_{i} \upharpoonright \alpha_{\zeta}: i<\omega^{2}\right\rangle$ for every $\zeta$, by induction; as the computation is done in $V$ we get the desired contradiction. More formalistically, there is a function $F$ in $V$ such that

$$
\left\langle f_{i} \mid \alpha_{\zeta+1}: i<\omega^{2}\right\rangle=F\left(\left\langle f_{i} \mid \alpha_{\zeta}: i<\omega^{2}\right\rangle\right) .
$$

So suppose $\left\langle f_{i} \mid \alpha_{饣}: i<\omega^{2}\right\rangle$ is given, and let, for $i<\omega^{2}$,

$$
\beta_{i}=\operatorname{Min} C_{i}-\left(\alpha_{\zeta}+1\right), \quad \xi_{i}=\operatorname{Min}\left\{\xi: f_{i} \mid \alpha_{\zeta}=f_{\xi}^{*}\right\}
$$

By demand i) in the definition of the $T_{\alpha}^{i}$ 's, $C_{i} \subseteq \bigcap_{j<i} C_{j}$. So clearly $\beta_{j} \leq \beta_{i}$, and $\beta_{i} \in C_{j}$ for $j \leq i$. Also by demand vi) on the $T_{\alpha}$ 's, $\beta_{j}<\xi_{i}$ for $j<i$, and by demand viii) on the $T_{\alpha}$ 's, $\xi_{j}<\beta_{i}$ for $j<i$. We can conclude that $\operatorname{Sup}\left\{\beta_{i}: i<\omega n\right\}=\operatorname{Sup}\left\{\xi_{i}: i<\right.$ $\omega n\}$; but from $\left\langle f_{i} \mid \alpha_{\zeta}: i<\omega^{2}\right\rangle$ we can compute $\gamma_{n}=\operatorname{Sup}\left\{\xi_{i}: i<\omega n\right\}$. As $\beta_{i} \in C_{j}$ for $j<i, \gamma_{n} \in C_{j}$ when $j<\omega n$, and clearly $\gamma_{n}<\gamma_{n+1}$, we have $\gamma=\bigcup_{n<\omega} \gamma_{n} \in$ $\bigcap_{j<\omega)^{2}} C_{j}$. By the definition of the $\alpha_{\zeta}$ 's, $\gamma=\alpha_{\xi+1}$. As we know $T_{\gamma}^{0} \cap L_{\delta}[A]$, and we know $\left\{\gamma_{n}: n<\omega\right\} \subseteq C_{0} ; f_{0} \upharpoonright \delta$ is uniquely determined (by demand iv)). Similarly we continue to reconstruct $f_{i} \upharpoonright \gamma$ by induction on $i$, thus finishing the proof.
1.2. Remarks. (1) We could weaken the demands on $V$ (in 1.1) to $V \vDash \mathrm{CH}$, provided that we also waive the requirement $\| \vdash_{P_{i}}$ " $\left|\mathbf{Q}_{i}\right|=\aleph_{1}$ ". For this it suffices to start with a forcing which makes those demands true, and such a forcing notion exists by Jensen and Solovay [2].
(2) The $\omega^{2}$ in 1.1 is best possible.
(3) Alternatively, we can weaken the demand on $V$ to: CH and
$\left.{ }^{*}\right) \quad$ There is a sequence $\left\langle f_{\delta}: \delta<\omega_{1}, \delta\right.$ limit $\rangle$, $f_{\delta}$ a function from $\delta$ to $\delta$, such that for every $f: \omega_{1} \rightarrow \omega_{1}$ for a closed unbounded set of $\delta<\omega_{1}$,

$$
(\exists \alpha<\delta)(\forall \beta)\left[\alpha<\beta<\delta \rightarrow f(\beta)<f_{\delta}(\beta)\right] .
$$

For this we need some forcing like our $P_{i}$ preserving $\mathrm{CH}+\left({ }^{*}\right)$, which seems to be a demand on $V$, and we must make some changes in the proof
(4) We can improve 1.1 in the following way. Let $\varepsilon$ be a countable limit ordinal such that $(\forall \alpha<\varepsilon)(\alpha+\alpha<\varepsilon)$ (equivalently $\varepsilon$ has the form $\omega^{\alpha}$ (ordinal exponentiation)). Then we can construct a CS iteration $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}: i<\omega \varepsilon\right\rangle$ such that:
a) Each $\mathbf{Q}_{i}$ is $\alpha$-proper for $\alpha<\varepsilon$ and $\Vdash_{P_{i}}$ " $\mathbf{Q}_{i}$ has power $\aleph_{1}$ ".
b) ${ }^{\prime}$ Each $\mathbf{Q}_{i}$ is $\overline{\mathfrak{D}}$-complete for some simple $\aleph_{1}$-completeness system.
c)' Forcing with $P_{\alpha}=\operatorname{Lim} \bar{Q}$ adds reals.

We again assume $G_{i} \subseteq P_{i}$ generic is given; hence $\left\langle C_{j}: j\langle i\rangle\right.$, and by induction on $\alpha$ we define $T_{\alpha}^{i}$, so that in the definition of $T_{\alpha}^{i}$ we use $A$ and $\left\langle C_{j} \cap \alpha: j<i\right\rangle$ only (and the list $\left.\left\{f_{\xi}^{*}: \xi<\omega_{1}\right\} \in L[A]\right)$, so that a variant of i)-viii) holds. The changes are:
iv)' If $f, g \in T_{\alpha}^{i}, f(i) \neq g(i)$, then $f^{-1}(\{1\}) \cap g^{-1}(\{1\})-i$ has order-type $<\varepsilon$.
vii)' In addition to vii), if $\left\langle\delta_{\zeta}: \zeta \leq \zeta^{*}\right\rangle$ is an increasing sequence of limit points of $\bigcap_{j<i} C_{j},\left\langle\delta_{\xi}: \zeta \leq \zeta\right\rangle \in L_{\delta_{\xi+1}}\left[A \cap \delta_{\zeta+1}\right], f \in T_{\delta_{0}}^{i} \cap L_{\delta_{0}}[A], f_{m} \in T_{\zeta^{*+1}}^{i}$ for $m<\omega$ and $m^{*}<\omega, \zeta^{*}<\varepsilon$, then there is $g \in T_{\zeta^{*}+2}^{i}, f \subseteq g$, $\operatorname{Dom} g=\zeta^{*}+1$, such that the following conditions hold:
( $\alpha$ ) For every $\mathscr{I} \in L_{h(\delta)}[A \cap \delta, B \cap \delta]$ (an open dense subset of $T_{\delta}^{i} \cap L_{\delta}[A \cap \delta]$ (ordered by inclusion)), for some $\gamma<\delta, g \upharpoonright \gamma \in \mathscr{I}$, where $\delta \in\left\{\delta_{\zeta}: \zeta \leq \zeta^{*}\right\}$.
( $\beta$ ) For every $m<\omega, g^{-1}(\{1\}) \cap f_{m}^{-1}(\{1\})-\left\{\delta_{\zeta}: \zeta \leq \zeta^{*}\right\}$ is a bounded subset of $\delta_{\zeta^{*}}$.
$(\gamma)$ For every $m<m^{*}, g^{-1}(\{1\}) \cap f_{m}^{-1}(\{1\})-\left\{\delta_{\zeta}: \zeta \leq \zeta^{*}\right\} \subseteq \operatorname{Dom} f$.
In the proof of Case D, we use the canonical well-ordering of $H\left(\aleph_{1}\right)^{[[A]}$ on our assignments (for the existence of $g \in T_{\delta+2}^{i}$, $\operatorname{Dom} g=\delta+1$ ), and construct a witness, preserving and using vii)'.
1.3. Theorem. (1) Suppose ( $D, R$ ) is a smooth strong covering model, $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}\right.$ : $i<\delta\rangle$ a countable support iteration of proper forcing notion (or at least $P_{\alpha} / P_{\beta}$ is proper for $\beta<\alpha<\delta, \beta$ nonlimit) and each $P_{i}$ is $(D, R)$-preserving for $i<\delta$. Then $\operatorname{Lim} \bar{Q}$ is $(D, R)$-preserving. (See VI, §1, for definitions, and VI, §2, for applications.)
(2) Suppose $P * \mathbf{Q} \in N_{0}, P, \mathbf{Q}$ are proper and $P * \mathbf{Q}$ is $\omega^{\omega}$-bounding: $N_{0}<N_{1} \prec(H(\lambda), \epsilon)\left(\lambda\right.$ big enough), $N_{0} \in N_{1},\left\|N_{e}\right\| \leq \aleph_{0}$, and $p \in P$ is $\left(N_{e}, P\right)$-generic for $e=0,1$ and $\mathbf{q} \in N_{1}$ is a $P$-name of a member of $\mathbf{Q},(p, \mathbf{q})$ is $\left(N_{0}, \mathbf{Q}\right)$-generic and for some $F$ for every predense $\mathscr{I} \subseteq P, \mathscr{I} \in N_{0}, F(\mathscr{I}) \subseteq \mathscr{I} \cap N_{0}$ is predense above $p($ in $P$ ) and $F(\mathscr{I})$ is finite.

Then there is $\mathbf{q}^{\prime}$ such that $(p, \mathbf{q}) \leq\left(p, \mathbf{q}^{\prime}\right),\left(p, \mathbf{q}^{\prime}\right)$ is $\left(N_{1}, P * \mathbf{Q}\right)$-generic and for some function $F^{\prime}$, for every predense $\mathscr{I} \subseteq P * \mathbf{Q}, \mathscr{I} \in N_{0}, F(\mathscr{I})$ is predense above $\left(p, \mathbf{q}^{\prime}\right)$ (in $P * \mathbf{Q})$ and $F(\mathscr{I})$ is finite.

Proof. (1) The proof is very similar to the proof of VI.1.6, so we mention only the changes. Instead of choosing $\left\langle N_{e}: e\langle\omega\rangle \in \operatorname{SQS}_{\omega}^{1}(\lambda)\right.$, we just choose $N_{1} \prec(H(\lambda), \epsilon)$ such that $\left\langle x_{n}: n<\omega\right\rangle,\left\langle P_{e}, \mathbf{Q}_{e}: e<\omega\right\rangle, \mathbf{f},\left\langle q_{e}^{n}: e<n<\omega\right\rangle$ and $\left\langle t_{n, m}: m \leq n<\omega\right\rangle$ belong to it. We now replace a), b) by
a) $p \upharpoonright n \leq r^{n} ; r^{n}$ is $\left(N_{1}, P_{n}\right)$-generic.
b)' For some $T_{n} \in D, r^{n} \|$ " $\mathrm{f}_{n} \in \operatorname{Lim} T_{n}$ " and $x_{2 n} R T_{n}, T_{n} \subseteq T_{n+1}$.

Toward the end we know that some $t \in \mathscr{I} \cap N_{1}$ (not $\mathscr{I} \cap N_{8^{n}+2^{n}}$ ) belongs to the generic subset of $P_{n}$, and we let $\mathscr{I} \cap N_{1}=\left\{t_{k}: 0<k<\omega\right\}$.

Then, later, $T_{n+1}$ does not necessarily belong to $N_{1}$; in (*), $q^{\prime}$ is also ( $N_{1}\left[G_{n}\right], \mathbf{Q}_{n}\left[G_{n}\right]$ )-generic.
(2) The proof is essentially included in the proof of (1).

Note that $N_{1}$ has a list $\left\langle\tau_{e}: e<\omega\right\rangle$ of the $P * \mathbf{Q}$-names of ordinals, and there is a sequence $\left\langle\mathbf{q}_{e}: e<\omega\right\rangle\left(\in N_{1}\right), \vdash_{P}$ " $\mathbf{q}_{e} \in \mathbf{Q}$ and $q \leq q_{e} \leq q_{e+1}$ " and $\left(p, q_{e}\right) \Vdash$ " $\tau_{e}=\sigma_{e}$ " for some $P$-name $\sigma_{e}$ (of an ordinal) from $N_{1}$.

Remark. We can replace proper by semi-proper as in Chapter X.
§2. Intermediate forcing. In $\S 1$ we showed that just excluding the forcing notions like the one from Example V.5.1 (by demanding $\overline{\mathcal{D}}$-completeness for a simple 2completeness system) is not enough to ensure that the iterated forcing does not add reals. In VIII, $\$ 4$, on the other hand, we have quite weak restrictions on each $\mathbf{Q}_{i}$
ensuring $\operatorname{Lim}\left\langle P_{i}, \mathbf{Q}_{i}: i<\alpha\right\rangle$ does not add reals. However, here we shall represent forcing notions which fall in between (and the corresponding consistency problems).
2.1. Problem. Let $f_{\delta}: \delta \rightarrow \delta$ for any limit $\delta<\omega_{1}$. Is there $f: \omega_{1} \rightarrow \omega_{1}$ such that for every $\delta<\omega_{1}$, for arbitrarily large $\alpha<\delta, f_{\delta}(\alpha)<f(\alpha)$ ?
2.2. Definition. For any sequence $\bar{f}=\left\langle f_{\delta}: \delta\left\langle\omega_{1}\right\rangle, f_{\delta}: \delta \rightarrow \delta\right.$, let $P_{\bar{f}}^{0}=\{g: g$ a function from some $\alpha<\omega_{1}$ into $\omega_{1}$, such that for every $\delta \leq \alpha$, for arbitrarily large $\left.\beta<\delta, f_{\delta}(\beta)<g(\beta)\right\}$; ordered by inclusion.
2.3. Problem. Let $C_{\delta} \subseteq \delta$ be a subset of $\delta$, for $\delta<\omega_{1}$. Is there a closed unbounded $C \subseteq \omega_{1}$ such that for no $\delta, C_{\delta} \subseteq C$ ? Consider in particular the cases when we restrict ourselves to
a) $C_{\delta}$ has order-type $\omega, \delta=\operatorname{Sup} C_{\delta}$,
b) ${ }_{\xi} C_{\delta}$ has order-type $\xi, \delta=\operatorname{Sup} C_{\delta}(\xi$ limit $)$,
c) $C_{\delta}$ has order-type $<\delta, \delta=\operatorname{Sup} C_{\delta}$,
d) $C_{\delta}=\phi \bmod D_{\delta}, D_{\delta}$ a filter on $\delta, \delta=\operatorname{Sup} C_{\delta}, \bar{D}=\left\langle D_{\delta}: \delta\left\langle\omega_{1}\right\rangle\right.$.
2.4. Definition. For $\bar{C}=\left\langle C_{\delta}: \delta<\omega_{1}\right\rangle, C \subseteq \omega$, let $P_{\bar{C}}^{1}=\{f: f$ a function from some $\alpha<\omega_{1}$ to $\{0,1\}$, and for no $\delta \leq \alpha$ is $\left.C_{\delta} \subseteq f^{-1}(\{1\})\right\}$.
2.5. Problem. Let $C_{\delta}$ be an unbounded subset of $\delta$, for $\delta<\omega_{1}$. Is there a closed unbounded $C \subseteq \omega_{1}$ such that for every $\delta, C \cap C_{\delta}$ is a bounded subset of $\delta$, when we restrict ourselves as in 2.3 ?
2.6. Definition. For a sequence $\bar{C}=\left\langle C_{\delta}: \delta<\omega_{1}\right\rangle, C_{\delta}$ an unbounded subset of $\delta$, let $P_{\bar{C}}^{2}=\left\{g: g\right.$ a function from some $\alpha<\omega_{1}$ to $\omega_{1}$, so for every $\delta \leq \alpha$, $\left.\operatorname{Sup}\left[C_{\delta} \cap g^{-1}(\{1\})\right]<\delta\right\}$.
2.7. Claim. $P_{f}^{0}, P_{C}^{1}$ and $P_{C}^{2}$ (when one of the Cases A-D from 1.1 holds) are proper and $\overline{\mathfrak{D}}$-complete for some simple $\aleph_{1}$-completeness system.

Concluding Remark. We shall later conclude that a positive answer is consistent with $\mathrm{ZFC}+\mathrm{GCH}$. The point is that though the corresponding forcing notions are not $\alpha$-proper for many $\alpha<\omega_{1}$, still a reasonable weakening holds, i.e. for suitable $\left\langle N_{i}: i \leq \delta\right\rangle$ and $p \in N_{0} \cap P$ there is a $q \geq p$ such that $q \vdash_{p}$ " $\{i$ : $N_{i}[G] \cap$ ord $=N_{i} \cap$ ord $\}$ is large".

## REFERENCE

[1] S. Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.
[2] R. B. Jensen and R. Solovay, Some applications of almost disjoint forcing, Mathematical logic and the foundations of set theory (Y. Bar-Hillel, editor), North-Holland, Amsterdam, 1968, pp. 84-104.

[^1]
[^0]:    Received October 19, 1982.
    The author would like to thank the NSF (U.S.A.) and the United States-Israel Binational Science Foundation for partially supporting this research.
    ${ }^{1}$ Such references are to [1].

[^1]:    THE HEBREW UNIVERSITY
    JERUSALEM, ISRAEL
    UNIVERSITY OF CALIFORNIA
    BERKELEY, CALIFORNIA 94720

