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Abstract. Motivated by the minimal tower problem, an earlier work
studied diagonalizations of covers where the covers are related to lin-
ear quasiorders (τ -covers). We deal with two types of combinatorial
questions which arise from this study.

1. Two new cardinals introduced in the topological study are ex-
pressed in terms of well known cardinals characteristics of the con-
tinuum.

2. We study the additivity numbers of the combinatorial notions cor-
responding to the topological diagonalization notions.

This gives new insights on the structure of the eventual dominance
ordering on the Baire space, the almost inclusion ordering on the Roth-
berger space, and the interactions between them.
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150 S. SHELAH and B. TSABAN

1. Introduction and overview

Let ω denote the set of natural numbers. We work with two spaces
which carry an interesting combinatorial structure: The Baire space ωω
with eventual dominance ≤∗ (f ≤∗ g if f(n) ≤ g(n) for all but finitely
many n), and the Rothberger space [ω]ω = {A ⊆ ω : A is infinite} with ⊆∗
(A ⊆∗ B if A \B is finite). We write A ⊂∗ B if A ⊆∗ B and B 6⊆∗ A.

A subset X of ωω is unbounded if it is unbounded with respect to ≤∗. X
is dominating if it is cofinal in ωω with respect to ≤∗. b is the minimal size
of an unbounded subset of ωω, and d is the minimal size of a dominating
subset of ωω.

An infinite set A ⊆ ω is a pseudo-intersection of a family F ⊆ [ω]ω if
for each B ∈ F , A ⊆∗ B. A family F ⊆ [ω]ω is a tower if it is linearly
quasiordered by ⊆∗, and it has no pseudo-intersection. t is the minimal
size of a tower. A family F ⊆ [ω]ω is centered if the intersection of each
(nonempty) finite subfamily of F is infinite. p is the minimal size of a
centered family which has no pseudo-intersection. A family F ⊆ [ω]ω is
splitting if for each infinite A ⊆ ω there exists S ∈ F which splits A, that
is, such that the sets A ∩ S and A \ S are infinite. s is the minimal size of
a splitting family.

Let c = 2ℵ0 . The following relations, where an arrow means ≤, are well-
known [3]:

b
↗ ↘

ℵ1 → p → t d → c
↘ ↗

s
No pair of cardinals in this diagram is provably equal, except perhaps p
and t. The Minimal Tower problem, which asks whether it is provable that
p = t, is one of the most important problems in infinite combinatorics, and
it goes back to Rothberger (see, e.g., [12]).

New cardinals. In [15], topological notions related to p and t were com-
pared. In [17] the topological notion related to t (called τ -covers) was stud-
ied in a wider context. This study led back to several new combinatorial
questions, one of which related to the minimal tower problem.

Definition 1. For a family F ⊆ [ω]ω and an infinite A ⊆ ω, define F � A =
{B∩A : B ∈ F}. If all sets in F � A are infinite, we say that F � A is a large
restriction of F . Let κωτ be the minimal cardinality of a centered family
F ⊆ [ω]ω such that there exists no infinite A ⊆ ω such that the restriction
F � A is large and linearly quasiordered by ⊆∗.
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COMBINATORIAL NOTIONS OF SMALLNESS AND ADDITIVITY 151

It is not difficult to see that p = min{κωτ , t} [17]. In Section 2 we show
that in fact, p = κωτ . This existence of a centered family with no large
linearly quasiordered restriction shows that p is combinatorially “larger”
than asserted in its original definition, and suggests an additional evidence
to the difficulty of separating p from the combinatorially “larger” cardinal
t: Now the consistency of κωτ < t must be established in order to solve the
Minimal Tower problem in the negative.

Definition 2. For functions f, g ∈ ωω, and a binary relation R on ω, define
a subset [f R g] of ω by:

[f R g] = {n : f(n)Rg(n)}.
Next, For functions f, g, h ∈ ωω, and binary relations R,S on ω, define
[hR g S f ] ⊆ ω by:

[f R g S h] = [f R g] ∩ [g S h] = {n : f(n)Rg(n) and g(n)Sh(n)}.
For a subset X of ωω and g ∈ ωω, we say that g avoids middles in X with
respect to 〈R,S〉 if:

1. for each f ∈ X, the set [f R g] is infinite;
2. for all f, h ∈ X at least one of the sets [f R g S h] and [hR g S f ] is

finite.
X satisfies the excluded middle property with respect to 〈R,S〉 if there
exists g ∈ ωω which avoids middles in X with respect to 〈R,S〉. xR,S is the
minimal size of a subset X of ωω which does not satisfy the excluded middle
property with respect to 〈R,S〉.

The cardinal x = x<,≤ was defined in [17]. In Section 3 we express all of
the four cardinals x≤,≤, x<,≤, x≤,<, and x<,< in terms of well-known cardinals.
This solves several problems raised in [17].

Additivity of combinatorial notions of smallness. For a finite subset
F of ωω, define max(F ) ∈ ωω by max(F )(n) = max{f(n) : f ∈ F} for each
n. A subset Y of ωω is finitely-dominating if the collection

maxfin(Y ) := {max(F ) : F is a finite subset of Y }
is dominating.

We will use the following notations:
B : the collection of all bounded subsets of ωω;
X : the collection of all subsets of ωω which satisfy the excluded middle

property with respect to 〈<,≤〉;
Dfin : the collection of all subsets of ωω which are not finitely dominating;

and
D : the collection of all subsets of ωω which are not dominating.
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152 S. SHELAH and B. TSABAN

Thus B ⊆ X ⊆ Dfin ⊆ D. The classes B, X, Dfin, and D are used to
characterize certain topological diagonalization properties [13, 16, 17].

Following [1], we define the additivity number for classes I ⊆ J ⊆ P (ωω)
with ∪I 6∈ J by

add(I, J) = min{|F| : F ⊆ I and ∪ F 6∈ J},

and write add(J) = add(J, J). If I contains all singletons, then add(I, J) ≤
non(J), where non(J) = min{|J | : J ⊆ ωω and J 6∈ J} (thus non(B) = b,
non(D) = non(Dfin) = d, and non(X) = x.)

For I, J ∈ {B,X,Dfin,D}, the cardinals add(I, J) bound from below the
additivity numbers of the corresponding topological diagonalizations. In
Section 4 we express add(I, J) for almost all I, J ∈ {B,X,Dfin,D} in terms
of well known cardinal characteristics of the continuum. In two cases for
which this is not done, we give consistency results.

2. The cardinal κωτ

For our purposes, a filter on a boolean subalgebra B of P (ω) is a family
U ⊆ B which is closed under taking supersets in B and finite intersections,
and does not contain finite sets as elements.

Theorem 3. p = κωτ .

Proof. Let F ⊆ [ω]ω be a centered family of size p which has no pseudo-
intersection. Let B be the boolean subalgebra of P (ω) generated by F .
Then |B| = p. Let U ⊆ B be a filter of B containing F . As U does not
contain finite sets as elements, U is centered. Moreover, |U| = p, and it has
no pseudo-intersection.

Towards a contradiction, assume that p < κωτ . Then there exists an
infinite A ⊆ ω such that the restriction U � A is large, and is linearly
quasiordered by ⊆∗. Fix any element D0 ∩ A ∈ U � A. As U � A does not
have a pseudo-intersection, there exist:

1. An element D1 ∩A ∈ U � A such that D1 ∩A ⊂∗ D0 ∩A; and
2. An element D2 ∩A ∈ U � A such that D2 ∩A ⊂∗ D1 ∩A.

Then the sets (D2 ∪ (D0 \ D1)) ∩ A and D1 ∩ A (which are elements of
U � A) contain the infinite sets (D0∩A) \ (D1∩A) and (D1∩A) \ (D2∩A),
respectively, and thus are not ⊆∗-comparable, a contradiction.

A closely related problem from [17] remains open.
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COMBINATORIAL NOTIONS OF SMALLNESS AND ADDITIVITY 153

Definition 4. A family Y ⊆ [ω]ω is linearly refinable if for each y ∈ Y

there exists an infinite subset ŷ ⊆ y such that the family Ŷ = {ŷ : y ∈ Y }
is linearly ⊆∗-quasiordered. p∗ is the minimal size of a centered family in
[ω]ω which is not linearly refineable.

Again it is easy to see that p = min{p∗, t}. Thus, a solution of the
following problem may shed more light on the Minimal Tower problem.

Problem 5. Does p = p∗?

3. The excluded middle property

Lemma 6. b ≤ x≤,≤ ≤ x≤,< ≤ x<,≤ ≤ x<,< ≤ d.

Proof. The inequalities x≤,≤ ≤ x≤,< and x<,≤ ≤ x<,< are immediate from
the definitions. We will prove the other inequalities.

Assume that Y is a bounded subset of ωω. Let g ∈ ωω bound Y . Then g
avoids middles in Y with respect to 〈≤,≤〉. This shows that b ≤ x≤,≤.

Next, consider a subset Y of ωω which satisfies the excluded middle prop-
erty with respect to 〈<,<〉, and let g witness that. Then g witnesses that
Y is not dominating. Thus x<,< ≤ d.

It remains to show that x≤,< ≤ x<,≤. Assume that Y ⊆ ωω satisfies
the excluded middle property with respect to 〈≤, <〉, and let g ∈ ωω avoid
middles in Y with respect to 〈≤, <〉. Define g̃ ∈ ωω such that g̃(n) =
g(n) + 1 for each n. For each f, h ∈ Y we have that [f ≤ g] = [f < g̃], and
[f ≤ g < h] = [f < g̃≤ h]. Therefore, g̃ avoids middles in Y with respect to
〈<,≤〉.

Theorem 7. x≤,≤ = x≤,< = b.

Proof. By Lemma 6, it is enough to show that x≤,< ≤ b. Let 〈bα : α < b〉
be an unbounded subset of ωω. For each α < b define b0α, b

1
α ∈ ωω by{

b0α(2n) = bα(n)
b0α(2n+ 1) = 0

;

{
b1α(2n) = 0
b1α(2n+ 1) = bα(n)

for each n ∈ ω, and set Y = {b0α, b1α : α < b}. Then |Y | = b. We will show
that Y does not satisfy the excluded middle property with respect to 〈≤, <〉.
For each g ∈ ωω, let α < b be such that max{g(2n), g(2n+ 1)} < bα(n) for
infinitely many n. Then

[b0α≤ g < b1α] = {n : b0α(n) ≤ g(n) < b1α(n)}
⊇ {2n+ 1 : 0 ≤ g(2n+ 1) < bα(n)}
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154 S. SHELAH and B. TSABAN

is an infinite set. Similarly, [b1α≤ g < b0α] ⊇ {2n : 0 ≤ g(2n) < bα(n)} is also
infinite. That is, g does not avoid middles in Y with respect to 〈≤, <〉.

Lemma 8. s ≤ x<,≤.

Proof. Assume that Y ⊆ ωω is such that |Y | < s. Let F ⊆ P (ω) be the
family of all sets of the form [f < h], where f, h ∈ Y . |F| < s, thus there
exists an infinite subset A of ω such that for each X ∈ F , either A ∩X is
finite, or A \ X is finite. As |Y | < s ≤ d, there exists g ∈ ωω such that
for each f ∈ Y , g � A 6≤∗ f � A. (In particular, [f < g] is infinite for each
f ∈ Y .) We may assume that for n 6∈ A, g(n) = 0.

Consider any set [f < h] ∈ F . If A ∩ [f < h] is finite, then the set

[f < g≤ h] ⊆ {n : 0 < g(n), f(n) < h(n)}
⊆ {n ∈ A : f(n) < h(n)} = A ∩ [f < h]

is finite. Otherwise, A \ [f < h] is finite, so we get similarly that

[h< g≤ f ] ⊆ {n ∈ A : h(n) < f(n)}
⊆ {n ∈ A : h(n) ≤ f(n)} = A \ [f < h]

is finite. Thus Y satisfies the excluded middle property with respect to
〈<,≤〉.

Theorem 9. x<,≤ = x<,< = max{s, b}.

Proof. By Lemmas 6 and 8, we have that max{s, b} ≤ x<,≤ ≤ x<,<. We
will prove that x<,< ≤ max{s, b}. The argument is an extension of the proof
of Theorem 7.

Let b∗ be the minimal size of a subset B of ωω such that B is unbounded
on each infinite subset of ω. According to [3], b = b∗. Thus there exists a
subset B = 〈bα : α < b〉 of ωω such that B is increasing with respect to ≤∗
and unbounded on each infinite subset of ω. Let S = 〈Sα : α < s〉 ⊆ [ω]ω

be a splitting family. For each α < s and β < b define b0α,β, b
1
α,β ∈ ωω by

b0α,β(n) =

{
bβ(n) n ∈ Sα
0 n 6∈ Sα

; b1α,β(n) =

{
0 n ∈ Sα
bβ(n) n 6∈ Sα

and set Y = {biα,β : i < 2, α < s, β < b}. Then |Y | = 2 · s · b = max{s, b}.
We will show that Y does not satisfy the excluded middle property with
respect to 〈<,<〉. Assume that g ∈ ωω avoids middles in Y with respect
to 〈<,<〉. Then the set A = [0<g] is infinite; thus there exists α < s
such that the sets A ∩ Sα and A \ Sα are infinite. Pick γ < b such that
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COMBINATORIAL NOTIONS OF SMALLNESS AND ADDITIVITY 155

bγ � A ∩ Sα 6≤∗ g � A ∩ Sα, and β > γ such that bβ � A \ Sα 6≤∗ g � A \ Sα.
Then

[b0α,β <g < b
1
α,β] ⊇ {n ∈ A \ Sα : b0α,β(n) < g(n) < b1α,β(n)}

= {n ∈ A \ Sα : 0 < g(n) < bβ(n)}
= {n ∈ A \ Sα : g(n) < bβ(n)}

is an infinite set. Similarly, the set

[b1α,β <g < b
0
α,β] ⊇ {n ∈ A ∩ Sα : b1α,β(n) < g(n) < b0α,β(n)}

= {n ∈ A ∩ Sα : 0 < g(n) < bβ(n)}
= {n ∈ A ∩ Sα : g(n) < bβ(n)}

is also infinite, because bγ ≤∗ bβ; a contradiction.

Remark 10. The cardinal max{s, b} is also equal to the finitely splitting
number fs studied in [8].

Several variations of the excluded middle property are studied in the
appendix to the online version of this paper [14].

4. Additivity of combinatorial properties

The additivity number add(I, J) is monotone decreasing in the first coor-
dinate and increasing in the second. Our task in this section is to determine,
when possible, the cardinals in the following diagram in terms of the usual
cardinal characteristics b, d, etc. (In this diagram, an arrow means ≤.)

add(D,D) → add(Dfin,D) → add(X,D) → add(B,D)
↑ ↑ ↑

add(Dfin,Dfin) → add(X,Dfin) → add(B,Dfin)
↑ ↑

add(X,X) → add(B,X)
↑

add(B,B)

4.1. Results in ZFC.

Theorem 11. The following equalities hold:
1. add(B,Dfin) = add(B,D) = d;
2. add(Dfin,Dfin) = add(X,X) = add(X,Dfin) = 2; and
3. add(D,D) = add(B,B) = add(B,X) = b.
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156 S. SHELAH and B. TSABAN

Proof. (1) As non(D) = d, it is enough to show that add(B,Dfin) ≥ d.
Assume that |I| < d, and that Y =

⋃
i∈I Yi where each Yi is bounded. For

each i ∈ I let gi bound Yi. As |I| < d, the family maxfin({gi : i ∈ I}) is
not dominating; let h be a witness for that. For each finite F ⊆ Y , let Ĩ be
a finite subset of I such that F ⊆

⋃
i∈Ĩ Yi. Then max(F ) ≤∗ max({gi : i ∈

Ĩ}) 6≥∗ h. Thus max(F ) 6≥∗ h, so Y ∈ Dfin.
(2) It is enough to show that add(X,Dfin) = 2. Thus, let

Y0 = {f ∈ ωω : (∀n)f(2n) = 0 and f(2n+ 1) ≥ 1}
Y1 = {f ∈ ωω : (∀n)f(2n) ≥ 1 and f(2n+ 1) = 0}.

Then the constant function g ≡ 1 witnesses that Y0, Y1 ∈ X, but Y0 ∪ Y1 is
2-dominating, and in particular finitely dominating.

(3) It is folklore that add(D,D) = add(B,B) = b – see, e.g., [2, full
version] for a proof. It remains to show that add(B,X) ≤ b. Let B be a
subset of ωω which is unbounded on each infinite subset of ω, and such that
|B| = b. For each f ∈ B let Yf = {g ∈ ωω : g ≤∗ f}. (Thus each Yf is
bounded.) We claim that Y =

⋃
f∈B Yf 6∈ X. To this end, consider any

function g ∈ ωω which claims to witness that Y ∈ X. In particular, [0<g]
must be infinite. Choose f ∈ B such that f � [0<g] 6≤∗ g � [0<g], that is,
[0<g < f ] is infinite. Let A0, A1 be a partition of [0<g < f ] into two infinite
sets, and define f0 ∈ Yf by f0(n) = g(n) when n ∈ A0 and 0 otherwise;
similarly define f1 ∈ Yf by f1(n) = g(n) when n ∈ A1 and 0 otherwise.
Then f0, f1 ∈ Y , but both of the sets [f0 <g≤ f1] and [f1 <g≤ f0] are
infinite.

4.2. Consistency results.
The only cases which we have not solved yet are add(Dfin,D) and add(X,D).

In [2, full version] it was proved that b ≤ add(Dfin,D). In Theorem 2.2 of
[10] it is (implicitly) proved that g ≤ add(Dfin,D). Thus

max{b, g} ≤ add(Dfin,D) ≤ add(X,D) ≤ d.

Moreover, for any I ⊆ J, cf(add(I, J)) ≥ add(J), and therefore

cf(add(Dfin,D)), cf(add(X,D)) ≥ add(D,D) = b.

The notion of ultrafilter will be used to obtain upper bounds on
add(Dfin,D) and add(X,D). A family U ⊆ [ω]ω is a nonprincipal ultrafilter
if it is closed under taking supersets and finite intersections, and cannot
be extended, that is, for each infinite A ⊆ ω, either A ∈ U or ω \ A ∈ U .
Consequently, a linear quasiorder ≤U can be defined on ωω by

f ≤U g if [f ≤ g] ∈ U .
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COMBINATORIAL NOTIONS OF SMALLNESS AND ADDITIVITY 157

The cofinality of the reduced product ωω/U is the minimal size of a subset
C of ωω which is cofinal in ωω with respect to ≤U .

Theorem 12. For each cardinal number κ, the following are equivalent:
1. κ < add(Dfin,D);
2. for each κ-sequence 〈(gα,Uα) : α < κ〉 with each Uα an ultrafilter on
ω and each gα ∈ ωω there exists g ∈ ωω such that for each α < κ,
[gα≤ g] ∈ Uα.

Proof. 1 ⇒ 2: For each α < κ let Yα = {f ∈ ωω : [f < gα] ∈ Uα}. Then
each Yα ∈ Dfin, thus by (1) Y =

⋃
α<κ Yα is not dominating. Let g ∈ ωω be

a witness for that. In particular, for each α g 6∈ Yα, that is, [g < gα] 6∈ Uα.
As Uα is an ultrafilter, we have that [gα≤ g] = ω \ [g < gα] ∈ Uα.

2⇒ 1: Assume that Y =
⋃
α<κ Yα where each Yα ∈ Dfin. For each α, let

Uα be an ultrafilter such that Yα/Uα is bounded, say by gα ∈ ωω [13]. By
(2) let g ∈ ωω be such that for each α < κ, [gα≤ g] ∈ Uα. Then g witnesses
that Y is not dominating: For each f ∈ Y , let α be such that f ∈ Yα. Then
[f ≤ gα] ∈ Uα, thus [f < g] ⊇ [f < gα] ∩ [gα≤ g] ∈ Uα; therefore [f < g] is
infinite.

Corollary 13. Assume that U is a nonprincipal ultrafilter on ω. Then
add(Dfin,D) ≤ cof(ωω/U).

Proof. Assume that κ < add(Dfin,D) and let 〈gα : α < κ〉 be any κ-
sequence of elements of ωω. For each α set Uα = U . Then by Theorem
12 there exists g ∈ ωω such that for each α, [gα≤ g] ∈ Uα = U . Thus
〈gα : α < κ〉 is not cofinal in ωω/U .

Corollary 14. add(Dfin,D) ≤ cf(d).

Proof. Canjar [7] proved that there exists a nonprincipal ultrafilter U with
cof(ωω/U) = cf(d). Now use Corollary 13.

Lemma 15. g ∈ ωω avoids middles in Y if, and only if, for each f ∈ Y
[f < g] is infinite, and the family {[f < g] : f ∈ Y } is linearly quasiordered
by ⊆∗.

Theorem 16. For any cardinal κ, the following are equivalent:
1. κ < add(X,D);
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158 S. SHELAH and B. TSABAN

2. for each κ-sequence 〈(gα,Fα) : α < κ〉, such that each gα ∈ ωω, and for
each α the restriction Fα � [0<gα] is large and linearly quasiordered
by ⊆∗, there exists h ∈ ωω such that for each α < κ, the restriction
Fα � [gα≤ h] is large.

Proof. 2⇒ 1: Assume that Y =
⋃
α<κ Yα where each Yα ∈ X. For each α

let gα ∈ ωω be a function avoiding middles in Yα, and set Fα = {[f < gα] :
f ∈ Yα}. By Lemma 15, Fα ⊆ [ω]ω is linearly quasiordered by ⊆∗. As
Fα � [0<gα] = Fα, the restriction is large and linearly quasiordered by
⊆∗. By the assumption (2), there exists h ∈ ωω such that for each α < κ
and each f ∈ Yα, [f < gα] ∩ [gα≤ h] is infinite; therefore h 6≤∗ f . Thus h
witnesses that Y ∈ D.

1 ⇒ 2: Replacing each Fα with Fα � [0<gα], we may assume that each
A ∈ Fα is an infinite subset of [0<gα].

For each α < κ let

Yα = {f ∈ ωω : [f < gα] ∈ Fα}.
For each A ∈ Fα and each h ∈ ωω, define

h̃(n) =

{
gα(n)− 1 n ∈ A
max{gα(n), h(n)} otherwise.

(4.1)

Then [h̃ < gα] = A, and [h̃ < h] ⊆ A. Thus, for each α,

Fα = {[h< gα] : h ∈ Yα} ⊆ [ω]ω.

As Fα is linearly quasiordered by ⊆∗, we have by Lemma 15 that gα avoids
middles in Yα. By (1), Y =

⋃
α<κ Yα is not dominating; let h ∈ ωω be a

witness for that.
For each α < κ and A ∈ Fα, let h̃ ∈ Yα be the function defined in

Equation (4.1). Then h̃ ∈ Y , therefore [h̃ < h] is infinite. By the definition of
h̃, [h̃ < h] ⊆ A∩ [gα≤ h]; therefore the restriction Fα � [gα≤ h] is large.

A nonprincipal ultrafilter U is a simple Pκ point if it is generated by a
κ-sequence 〈Aα : α < κ〉 ⊆ [ω]ω which is decreasing with respect to ⊆∗.
U is a pseudo-Pκ point if every family F ⊆ U with |F| < κ has a pseudo-
intersection. Clearly every simple Pκ point is a pseudo-Pκ point.

Corollary 17. If U is a simple Pκ point, then add(X,D) ≤ cof(ωω/U).

Proof. Assume that λ < add(X,D). Let 〈Aβ : β < κ〉 ⊆ [ω]ω be a κ-
sequence which generates U and is linearly quasiordered by ⊆∗, and set
Fα = F = {Aβ : β < κ} for all α < λ. Assume that gα ∈ ωω, α < λ, are
given. We will show that these functions gα are not cofinal in ωω/U .
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COMBINATORIAL NOTIONS OF SMALLNESS AND ADDITIVITY 159

We may assume that for each α < λ, [0<gα] = ω. Use Theorem 16
to obtain a function h ∈ ωω such that for each α < λ, the restriction
F � [gα≤ h] is large. Assume that for some α < λ, [gα≤ h] 6∈ U . Then
[h< gα] ∈ U , thus there exists β < κ such that Aβ ⊆∗ [h< gα], therefore
Aβ∩[gα≤ h] is finite, a contradiction. Thus h+1 witnesses that the functions
gα are not cofinal in ωω/U , therefore λ < cof(ωω/U).

In the remaining part of the paper we will consider the remaining standard
cardinal characteristics of the continuum (see [3]). Let u denote the minimal
size of an ultrafilter base.

Theorem 18. It is consistent (relative to ZFC) that the following holds:

u = add(Dfin,D) = add(X,D) = ℵ1 < ℵ2 = s = c.

Thus, it is not provable that s ≤ add(X,D).

Proof. In [5] a model of set theory is constructed where c = ℵ2 and there
exist a simple Pℵ1 point and a simple Pℵ2 point. The simple Pℵ1 point is
generated by ℵ1 many sets, thus u = ℵ1. As b ≤ u, b = ℵ1 as well.

Nyikos proved that if there exists a pseudo Pκ point U and κ > b, then
cof(ωω/U) = b (see [4]). Thus by Corollary 17, add(X,D) ≤ b = ℵ1 in this
model. In [4] it is proved that if there exists a pseudo Pκ point U , then
s ≥ κ. Therefore s ≥ ℵ2 in this model.

Depth+([ω]ω) is defined as the minimal cardinal κ such that there exists
no ⊂∗-decreasing κ-sequence in [ω]ω. (Thus, e.g., t < Depth+([ω]ω).) Each
linearly quasiordered family F ⊆ [ω]ω has a cofinal subfamily which forms
a ⊂∗-decreasing sequence of length < Depth+([ω]ω).

Theorem 19.
1. If Depth+([ω]ω) < d, then add(X,D) = d.
2. If Depth+([ω]ω) = d, then cf(d) ≤ add(X,D).

Proof. To prove (1) it is enough to show that for each κ satisfying
Depth+([ω]ω) ≤ κ < d, we have that κ < add(X,D). To prove (2) we
will show that for each κ < cf(d), κ < add(X,D). We will use Theorem 16,
and prove both cases simultaneously.

Assume that Depth+([ω]ω) ≤ κ < d (respectively, κ < cf(d)). Consider
any κ-sequence 〈(gα,Fα) : α < κ〉 where each gα ∈ ωω, each Fα ⊆ [ω]ω is
linearly quasiordered by ⊆∗, and the restriction Fα � [0<gα] is large. We
must show that there exists h ∈ ωω such that for each α < κ, the restriction
Fα � [gα<h] is large.
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Use the fact that Depth+([ω]ω) ≤ κ (respectively, Depth+([ω]ω) = d) to
choose for each α < κ a cofinal subfamily F̃α of Fα such that |F̃α| < κ

(respectively, |F̃α| < d).
We may assume that each gα is increasing. For each α and each A ∈ Fα,

let ~A ∈ ωω be the increasing enumeration of A. The collection {gα ◦ ~A :
α < κ, A ∈ Fα} has less than d many elements and therefore cannot be
dominating. Let h ∈ ωω be a witness for that. Fix α < κ. For all A ∈ Fα,
there exist infinitely many n such that

gα( ~A(n)) = gα ◦ ~A(n) < h(n) ≤ h( ~A(n)),

that is, A ∩ [gα<h] is infinite.

Theorem 20. Assume that V is a model of CH and ℵ1 < κ = κℵ0. Let
Cκ be the forcing notion which adjoins κ many Cohen reals to V . Then in
the Cohen model V Cκ, the following holds:

add(Dfin,D) = s = a = non(M) = ℵ1 < cov(M) = add(X,D) = c.

Proof. The assertions s = a = non(M) = ℵ1 < cov(M) = c are well-
known to hold in V Cκ , see [3]. It was proved by Kunen [9] that V Cκ |=
Depth+([ω]ω) = ℵ2. As cov(M) ≤ d, we have that d = c = κ in this model.
If κ = ℵ2, use Theorem 19(1) and the fact that d is regular in this model
to obtain d ≤ add(X,D). Otherwise use Theorem 19(2) and the fact that
Depth+([ω]ω) = ℵ2 < κ = d to obtain this.

In [6, 11] it is proved that there exists a nonprincipal ultrafilter U in V Cκ
such that cof(ωω/U) = ℵ1. By Corollary 13, we have that add(Dfin,D) = ℵ1
in V Cκ .

In particular, the cardinals add(Dfin,D) and add(X,D) are not provably
equal.

Corollary 21. It is not provable that add(X,D) ≤ cf(d).

Proof. Use Theorem 20 with κ = ℵℵ1 . In V Cκ , d = c = ℵℵ1 , therefore
cf(d) = ℵ1 < add(X,D) in this model.

Remark 22. In the remaining canonical models of set theory which are
used to distinguish between the various cardinal characteristics of the contin-
uum (see [3]), max{b, g} = d holds, and therefore add(Dfin,D) = add(X,D) =
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d too. These models show that none of the following is provable:

min{cov(N ), r} ≤ add(X,D) (Random reals model),

add(Dfin,D) ≤ max{cov(N ), s} (Hechler reals model),

add(Dfin,D) ≤ max{non(N ), cov(N )} (Laver reals model), and

add(Dfin,D) ≤ max{u, a, non(N ), non(M)} (Miller reals model).

Collecting all of the consistency results, we get that the only possible
additional lower bounds on add(X,D) are cov(M) and e (observe that e ≤
cov(M) [3].)

Problem 23. Is cov(M) ≤ add(X,D)? And if not, is e ≤ add(X,D)?

No additional cardinal characteristic can serve as an upper bound on
add(Dfin,D).

Another question of interest is whether add(Dfin,D) or add(X,D) appear
in the lattice generated by the cardinal characteristics with the operations
of maximum and minimum. In particular, we have the following.

Problem 24. Is it provable that add(Dfin,D) = max{b, g}?

We have an indication that the answer to Problem 24 is negative, but
this is a delicate matter which will be treated in a future work.
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[8] Kamburelis, A., Wȩglorz, B., Splittings, Arch. Math. Logic 35 (1996), 263–277.
[9] Kunen, K., Inaccessibility Properties of Cardinals, Doctoral Dissertation, Stanford,

1968.

Brought to you by | University of Georgia Libraries
Authenticated

Download Date | 5/26/15 11:01 PM

Sh:768



162 S. SHELAH and B. TSABAN

[10] Mildenberger, H., Groupwise dense families, Arch. Math. Logic 40 (2001), 93–112.
[11] Roitman, J., Non-isomorphic H-fields from non-isomorphic ultrapowers, Math. Z.

181 (1982), 93–96.
[12] Rothberger, F., On some problems of Hausdorff and of Sierpiński, Fund. Math. 35
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