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ABSTRACT 

Under various set-theoretic hypotheses we construct families of maximal 
possible size of almost free abelian groups which are pairwise almost disjoint, 
i.e. there is no non-free subgroup embeddable in two of them. We show that 
quotient-equivalent groups cannot be almost disjoint, but we show how to 
construct maximal size families of quotient-equivalent groups of cardinality N~, 
which are mutually non-embeddable. 

Introduction 

In this paper we construct large families of abelian groups which are all 

"close" to being free groups and yet are pairwise non-isomorphic in some strong 

sense. The strongest sense of non-isomorphic which we consider is that of almost 

disjointness, i.e. the property of having no non-free subgroups in common. 

(Precise definitions are given below.) It is possible to construct maximal size 

families of almost disjoint groups all with the same F-invariant, which is an 

equivalence class of stationary sets (Section 1). If we also require the members of 

the family to be quotient-equivalent then the family cannot have more than one 

member  (Section 2), but still there are maximal size families of strongly o)~-free 

groups of cardinality o91 whose members are quotient-equivalent and non- 

isomorphic in a somewhat weaker - -  but still very strong - -  sense than almost 

disjointness (Section 3). 

* First and third authors acknowledge assistance from the US-Israel Binational Science Founda- 
tion, Grant No. 1110. First author partially supported by NSF Grant No. MCS-8003691. Second 
author acknowledges support from the National Science and Engineering Research Council of 
Canada, Grant No. U0075 

Received February 15, 1982 and in revised form October 22, 1982 

34 

Sh:145



Vol. 49, 1984 ABELIAN GROUPS 35 

We say that a subgroup B of an abelian group A is small if I B I < I A I, and 

call A almost free if every small subgroup of A is free. By a theorem of Shelah, 

an almost free group of singular cardinality is free (cf. [3; chap. 5]). So from now 

we consider only groups A of regular uncountable cardinality. 

We shall deal with almost free groups A which have the stronger property of 

being strongly almost free, i.e. A is almost free and every small subgroup of A is 

contained in a small subgroup B such that A / B  is almost free. We say that two 

almost free groups A and A '  are almost disjoint if whenever H is embeddable as 

a subgroup of both A and A' ,  then H is free. (For short we say that A and A '  

"have no non-free subgroup in common").  Obviously almost disjoint groups are 

non-isomorphic in a very strong way. 

There is a natural invariant which can be associated with an almost free group 

A, namely a certain equivalence class, F(A ), of subsets of I A 1. (Here two subsets 

of [AI are equivalent if they coincide on a closed unbounded subset of IA I; for 

more details see Section 0.) A is free if and only if F(A)  = the class of Q; but 

there are 2 ~ possibilities for the invariant of a non-free almost free group of 

cardinality K. 

It is not hard to construct pairwise almost disjoint strongly almost free groups 

of cardinality K by taking them to have almost disjoint F-invariants (see 0.7 and 

0.8), but in section 1 we are concerned with the more difficult problem of 

constructing families of size 2 ~ of strongly almost free groups of cardinality K all 

of which have the same invariant F yet any two of which are almost disjoint. For 

K = l~, (n E to) we obtain this result as a theorem of ZFC (Theorem 1.1). In 

order to obtain such results for cardinals > 1~ we invoke additional set theoretic 

hypotheses, viz. GCH and V = L (Theorems 1.7 and 1.8). In particular, 

Theorem 1.8 gives, under the assumption V = L, a complete characterization for 

all regular K of the classes of E C K which can be realized as F(A)  for some 

strongly almost free A of cardinality K (answering a question in [9], which gave 

the characterization for successor K). 

The method used in section 1 to obtain almost disjoint groups A and B of 

cardinality K is to construct them as the union of continuous chains, {A~ : u < K}, 

{B~ : v < K} respectively, of free groups such that for all ~,, A~+1~A~ and B,+~/B~ 

are almost disjoint. In section 2 we show that this is the only possible method: if 

A and B are such that there is a stationary set of u such that A~+~/A~ and 

B~+1/Bv are not almost disjoint then A and B are not almost disjoint. In 

particular, if A and B are quotient-equivalent (i.e. for all v, A,+~/A~ ~- Bv+I/B,) 
then they are not almost disjoint. However in section 3 we construct, for every 

possible non-free quotient-equivalence class, families of size 2 ~, of strongly 
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toj-free groups of cardinality Wl which are mutually non-embeddable  and 

pairwise almost disjoint for pure subgroups, i.e. they have no non-free pure 
subgroup in common.  

O. Preliminaries 

Here we collect together some definitions, conventions and simple lemmas 

that are required for what follows. The reader may wish to skip this section and 

consult it only as needed. We refer the reader to [3], chapters 1 and 2 for further 

details. 

0.1. Let  K be an uncountable cardinal. A group A is K-free if every subgroup 

of cardinality < K is free; it is strongly K-free if it is K-free and in addition every 

subset of A of cardinality < K is contained in a subgroup B of cardinality < K 

such that A / B  is K-free. A is called almost free if A is IA ]-free and strongly 
almost free if it is strongly I A [-free. 

For K = to, we define: A is to-free if[ A is strongly to-free iff A is torsion-free. 

0.2. A smooth chain of groups is a sequence {A, :/x < a} such that: (1) for all 

/ x < u < a ,  A ,  is a subgroup of A~; and (2) for all limit ordinals / x < a ,  

A ,  = (.J,<,A~. If [A [ _-< K a K-filtration of A is a smooth chain of subgroups of 

A indexed by K whose union is A, such that every member  of the chain has 

cardinality < K. If [A[= K we shall, for convenience, also assume that any 

K-filtration of A we consider is strictly increasing. If I A I =  < K and we write 

A = I..J~<,A~ we mean that {A~ Iv < K} is a K-filtration of A. If [ A I =  K, K 

regular, and A is strongly K-free. then it has a K-filtration {A~ t ~' < K} such that 

for all ~, < K, A/A~+] is K-free; from now on, we demand of any K-filtration of a 

strongly K-free group that it have this additional property.  

0.3. If K is a limit ordinal of uncountable cofinality, a subset C C_ K is called a 

cub (closed unbounded) set in K if s u p C  = K and for all XC_ C, if s u p X <  K, 

then sup X E C. For example,  lira(K), the set of limit ordinals, is a cub in K. 

Define D(K) to be the set of equivalence classes of subsets of K under the 

equivalence relation of equality on a cub (i.e. if E1 and E2 are subsets of K, E1 

and E2 are equivalent iff there is a cub C such that E~ A C = E2 A C). The 

equivalence class of E _C K is denoted/~.  D(K)  is a Boolean algebra under the 
def  

ordering induced by inclusion, with smallest element 0 = ~ ,  and largest element 
def 

1 = ~ = (7 (C any cub). We say E C__ K is stationary (in K) i f / ~ ¢  0, and E is thin 
otherwise. If cr is a limit ordinal of cofinality to, E C_ (r is stationary in (7 iff E 

contains a terminal segment of tT. 
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0.4. Let  K be a regular  uncountable  cardinal. If A is almost free of cardinali ty 

K, and A = U,<KA~ is a K-filtration of A, define F , ( A ) = / ~  where  U = 

{v ]A/A~ is not  K-free} = { u  [::lkt > v ( A , / A ,  is not free)}. Then  F,  is a well- 

defined funct ion from K-free groups of cardinali ty K to D(K)  and F , ( A ) =  0 iff 

A is free (cf. [3; lemma 2.1]). In fact we shall always write F instead of F,  since, 

in context ,  there  will be no ambiguity. Thus  if/~ @ D(K) ,  F 1(/~) is the class of all 

K-free groups A of cardinality n satisfying F ( A ) = / ~ .  

0.5. Le t  K be a regular  uncountable  cardinal. Two subsets X and Y of K (or 

two elements  /~ ,  /~: of D ( n ) )  are called almost disjoint if X N  Y is not 

s ta t ionary in K (resp. /~ f3/~2 = 0). Two functions f ,g : K----> A are almost disjoint 

if {u I f (u)  = g(u)} is not s tat ionary in K. In general ,  questions about  the maximal 

size of a family of pairwise almost disjoint sets or functions are not decidable in 

ZFC (cf. [7; §35]). Howeve r  we have the following well-known results. 

0.6 LEMMA. Let K be a regular uncountable cardinal and let E be a stationary 

subset of K contained in lim(K). 

(i) E is the disjoint union of K stationary sets. 

(ii) Assume ~ (E). Then there is a family of size 2* of pairwise almost disjoint 

subsets of E. 

(iii) Assume ©*(E).  Then there is a K-Kurepa tree on E, i.e. a family 

{f, l i < K +} of pairwise almost disjoint functions: E---~ K+ s.t. for all i < K + and all 

v ~ E ,  f, g v ) e l v ] .  

PROOF. For  (i) see e.g. [7; thin. 85]. For  (ii), suppose {S~ : ,  E E} is a d iamond 

sequence (see e.g. [3; p. 21]). Then  for every  subset X C K, let Ex = 

{L, E E : X  7 /u  = S.}. It is easy to check that the Ex form the desired family. 

(iii) Suppose {{P~:0 < Y < I ~' I}: L, E E} is given by O * ( E ) ,  i.e. for all ~, ~ E, 

0 <  y < [~'l, P ~ C  ~, and for all X C K, there is a c u b C  C i< such that  for  all 

~ , ~ E A C ,  X N ,  @{P,~:0< y <l~,l}. Then  for every  subset X C K ,  for ~ , E E  

define f x ( , )  = "y if X 71 ~, = P~ and f×(L,) = 0 if there is no such % Then  if X ~  Y 

- -  say a E ( X -  Y ) - -  there  is a cub C such that if • E C (q E, then X A ~, and 

Y f q v  are both in { P ~ : O < y < ] , ] } .  But then f x ( ~ , ) = f ~ ( t , )  implies 

~, ~ (E - C)  U { u E E : ~, _<- ~ } so fx and fy agree only on a thin set. [ ]  

We conclude with a simply observat ion of how one can use almost disjoint sets 

to p roduce  almost disjoint groups.  

0.7 LEMMA. Let A, B, A ' be almost free groups of the same regular uncount- 

able cardinality. 
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(i) I f  B is a subgroup of A, then F ( B ) C F ( A ) .  

(ii) I f  F(A ) and F(A ') are almost disjoint then A and A ' are almost disjoint. 

PROOF. (i) Given a K-filtration A = U~< ,A ,  define a K-filtration of B by 

B, = B  A A~. If B , / B ,  is not free, then A, /A , ,  is not free since B,/B,,  is 

isomorphic to a subgroup of A,/A~.  Hence {u [B/B~ is not K-free} C {u I A /A~  is 

not K-free}. 

(ii) If B is embeddable in both A and A' ,  then by (i) F(B)C_F(A) and 

F(B)  _C F(A '). Thus by hypothesis F(B) = 0, so B is free. [] 

In section 2 we show that for A strongly K-free of cardinality K, every 

E _CF(A) is realizable as F(B) for some subgroup B of A (Corollary 2.3). 

An immediate consequence of 0.7 (ii), 0.6 (ii) and the methods of [2] is the 

following. 

0.8 COROLLARY. Assume V = L. If  K is a regular uncountable cardinal which 

is not weakly compact, there are 2* pairwise almost disjoint strongly almost free 

groups of cardinality K. [] 

This result will be improved in the next section (cf. Theorem 1.8). 

1. Constructing almost disjoint groups 

In this section we shall show how to construct the maximal number of pairwise 

almost disjoint groups with the same value of F. The first result, for groups of 

cardinality ~ ,  (n @ ~o), is a theorem of ZFC. For the later results we need to 

assume some extra set theoretic hypothesis just to insure that non-free almost 

free groups exist for cardinals > N~. Theorems 1.5-1.7 deal with cardinals < ~ 

and assume only GCH. Theorem 1.8 (which does not depend on 1.5-l.7) 

assumes V = L and deals with arbitrarily large cardinals. 

1.1 THEOREM. For every n E ~o and every IE E D ( o~,) with E ~ 0 there exist 

2 ~- pairwise almost disjoint strongly w,-free groups in F -~ (E). 

Before giving the proof we give two elementary lemmas, the first of which 

provides the initial step of the inductive construction, and the second of which 

provides the combinatorial fact which is the key to the inductive step. (Z (K) 

denotes the direct sum of K copies of Z.) 

1.2 LEMMA. There exists a family {H1 : i < 2 "°} of 2"" countable torsion-free 

groups such that for all i ~  j, I-I, O Z  ~ and ~ ~]~Z ~ are almost disjoint. 
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PROOF. Let {S, ]l < 2 ~''} be a family of subsets of w such that for all i / j .  

& N S, is finite. For  each i < 2 ~'' let H, be the rank one torsion-free g roup  of type 

t, = ( k ; , k ~ , . . . )  

where k', = 1 if n ~ S, and k', = 0 otherwise (cf. [5; 85]). Now let F = Z ~ and 

suppose A is embeddable  in both H , @ F  and H j @ F  for some i / j .  If 

e~:H~ ~ tit @ F  and m : H t  @F--+F are the canonical  injection and project ion,  

respectively (1 = i or  ]). then e l ( A ) @  ~r, ( A )  ~ A ~ e , '  ( A ) @  rr,(A ). Let  u be 

a non-zero  e lement  of e T ' ( A ) ;  then under  the preceding isomorphisms u is 

carried to an e lement  of the form v + w where v C e, *(A), w E ~rl(A ). Assume 

the type of u (in e.~(A))  is not equivalent  to ( 0 . 0 . . . . , 0 . - . . ) ;  then we must  have 

w = 0 and type of u = type of v (in e j '  (A)).  But this is impossible since S, N S, is 

finite. We conclude that e , '  (A) ,  and hence A, is free. [ ]  

The following is a s tandard  result (cf. [7; p. 431]). 

1.3 LEMMA. Let n E ~o. There is a family {f,, ] a  < 2 "°°+'} of pairwise almost 

disjoint functions: ~On+l--+2""; in fact, if a / fl 3 ~  < w,,+, such that for all v > m 

f ,~(P)/  fi3("). 

PROOF. Enumera t e  the subsets of ~o.+, of power  --< o2. as a sequence { 1/, : i < 

2~,,}. For  every XC~o .+ ,  define a function f,~:o).~,--~2 ~o by: f~-(v)= L where 

Y, = X N v. If X, / X~, choose o- E (XI - X2) U (X~ - XI);  then f-¢,(v) ~ ](~.(v) if 

v > or. Since a subset of w.+j of cardinality _-< o),, is thin, this family is almost  

disjoint in the sense of 0.5. [ ]  

Finally, before proving the theorem we recall a definition and a theorem due 

to P. Hill [6]. For  each n E ~o Hill defined a class of groups  ~, .  The  class ~,, 

consists of all countable  torsion-free groups.  If ~ ,  has been defined, then 

G C .~,+, iff G = U,,<,G,. (smooth)  where /x  =< o),+, and for all p < /x ,  G.  is free 

and G.~,/G,, E ~n. Hill proved that every e lement  of ~ ,  is ~o,-free. Mekler  [9] 

showed how to construct  e lements  of ~,, which are strongly o),-free. 

PROOF OF 1.1. We shall prove by induct ion on n Eo2 that there are 2 ~o 

strongly ~o,-free e lements  of ~, ,  {/-L : i < 2 ~o} with the proper ty  that if i / j ,  then 

H, @ Z  ~'°o~ and / 4 / @ Z  ~o~ are almost  disjoint. The  initial case, n = 0. is L e m m a  

1.2, so assume the result is true for n (with the family {H~ : i  < 2 ~o} as above)  and 

we shall prove it for n + 1. Let  E E D(o~ ,+ , ) -  {0}. We shall assume E consists of 

limit ordinals. Let  {f~la  < 2 ~o''} be a family of almost  disjoint functions as in 

Lemma 1.3. For  each a < 2 ~o~, we shall define by transfinite induct ion a 

cont inuous  chain {A~,7~: v < oJ,+,} of free groups  of cardinali ty o~, such that  
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def  

A <~> = I,.J . . . . . .  A~ ) is strongly o),+rfree and F(A (")) =/~. (Here  ' ( a ) '  is an index, 

and does not denote  direct sum of a copies.) 

Suppose that A ~  ) has been constructed for all tx < v. If v is a limit ordinal,  let 

A(") I I  a(~') I f v  r + l and .tf~ E, let A ~ ") c~ . . . .  . . . . < , , . . . .  A .  @ F .  where  F is the free  

g roup  of rank w.; if r E E  choose A~°)D_A~ '> such that 

A ~ / A  ~) = Hro(.> 

and moreove r  such that if /z < r a n d / x f f  E then A ~ / A  (~ " . is free;  this is possible 

by lemma 5.5 of [9]. Clearly, by construction,  A (~) is strongly w.+~-free and 

F ( A ( ° ) ) = / ~  so it remains only to observe that if a / / 3  then A ( ~ @ F  and 

A ( ~ ) O F  are almost disjoint, where  F =  Z (~,,*,>. 

Let  F = [._J . . . . . .  F. be an w.+~-filtration of F by direct summands;  define 

A(~)=  A ~ ) @ F , ,  f i ,~ )=  A~")@F~. This defines w,~rfi l t rat ions of A ~ @ F  and 

A ( ~ ) O F  respectively. Now suppose,  in o rder  to obtain a contradict ion,  that 

there  are embeddings  4~ :B---~A~°~OF, c~¢ : B - - - , A ( ~ @ F  and suppose B is not 

free.  Let  B = U . . . . . .  B.  be an w.+rfi l t rat ion;  then S = a~{vlB~ is not w.+~-pue 

in B} is a s tat ionary subset of w.+, (cf. [3; lemma 2.1 (2)]). There  is a cub C in 

~o.+, such that for  all / x@C,  ~b.(B~)=4~.(B)f3fi ,~2 ' and 4,~(B.) = 

~b~(B) fh A ~  ). Choose  r ~ C A S such that f ~ ( r ) #  f~(r). Let  /z ~ C such that 

> r and B . / B .  is not free. By choice of C, for i =  a or /3, &, induces an 

embedding  

But 

since A(1)~A ( I ) ~ 1  ,+, is free ( z + l ~ E ) .  So we have embeddings  of B~/B, into 

Hr~( . )~  Z (~o) and into Hf~(.)@ Z (~), which is impossible since f,, ( r )  / f~ (z). [ ]  

The  methods  of 1.1 combined  with those of [9] yield: 

1.4 THEOREM. Suppose that for some a there are 2 °',, strongly o95-free groups of 

cardinality o9,,, {Hi I < 2~}, such that for i #  j, I-I, ~ Z (~o) and ~ @ Z  C~,,) are almost 

disjoint. Then for every n E ~o - {0} and every stationary E C {o- E lira (w,, . . )  : cf 

(o.) > - ~o~}, there are 2 ~+o pairwise almost disjoint strongly o)~+.-free groups in 

r - ' ( E ) .  [ ]  

In particular,  we shall show that,  assuming G C H ,  the hypothesis  of T h e o r e m  

1.4 holds for  a = wn + 1 for all n E w. We make use of the following result of 

Shelah. 
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If for all /3 < a, we have /3 + A < a, we shall say that Ato divides a. Suppose 

A ={ap~:p<to ,  v < t o , . } C a ,  where ao,<a~,~ if v < / x  or u = / z  a n d o < y ; w e  
say A* C_A is big if there is a cub CCto , ,  and a function f:C--->to such that 

A*={apo:p>=f(u) ,  u ~ C } .  

1.5 THEOREM (Shelah [11]). Assume GCH and let )t =t~, ,  for some fixed 

n ~ to - { 0 } .  

(1) There is a stationary S C_A + such that either: 

(a) S is sparse in A + (i.e. for all limit ordinals cr < A +, S N o- is not stationary in 

or) and consists of elements of uncountable cofinality ; or 

(b) S = {a < A+; cf (a ) ~ to and Xto divides a}, and there ate sets {A.  : a E S} 

such that: the order type of A~ is to cf la) ;  and for all u < A  + there is 

{A*(u) : a  ~ v n S} where each A ] ( u )  is a big subset of A~, and for a < fl in 

u n s, A * (v )N  A *~(u)=(~. 

(2) I f  S is as in (1), then for every E C_ S, there is a strongly almost free group H 

of cardinality )t ÷ such that F(H)= /~ .  

PROOF. The result is proved in [11]; the only point in (1) needing additional 

comment is the assertion about the cofinality of elements of S. We assume 

knowledge of the details of the proof in [11]; there are two cases. In the first case, 

if S*(A +) is stationary, then by 19(3) of [11] there is an E C_ S*(A +) such that 

either S ' =  E or S ' =  F ( E )  is sparse and stationary; but by 14 of [l l] ,  if 

u E S*(A +) then cf (u) _-> to~, so u E F(S*(A+)) implies cf (u) _-> to2. In the second 

case, if S*(A ÷) is not stationary, then (1) (b) follows immediately from 24 of [1 I]. 

As for (2), the proof is by induction on n using the fact that if (2) holds for all 

m < n then for every regular K < ~ ,  there is an almost free non-free group of 

cardinality K (by thin. 2.2 of [2]). In Case 1 (a) the construction is well-known (cf. 

thm. 3.3 of [2]). The idea of using the properties of S in 1 (b) to construct almost 

free groups is due to Shelah. [] 

1.6 THEOREM. Assume GCH and let K = N~,+~ for some n ~ to - {0}. Then 

there is a family {Hi I i < 2 ~ } of strongly almost free groups of cardinality K such 

that for all i~  j, F(H,) and F(/-/j) are almost disjoint and hence - -  by Lemma 0.7 

- -  Hi ~ Z  ~) and ~ O Z  ~ are almost disjoint. 

PROOF. Note first that for the S of 1.5 (1) ©*.(S) holds by Conclusion 32 of 

[11]. Hence there is a family {E, : i < Y} of 2 ~ pairwise almost disjoint subsets of 

S (cf. Lemma 0.6 (ii)). The result follows immediately from 1.5 (2). [] 

Theorems 1.4 and 1.6 immediately yield the following. 
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1.7 THEOREM. Assume GCH. Then for every regular K < N~ there is a family 

of 2 ~ pairwise almost disjoint strong almost free groups of cardinality K. [] 

REMARKS. (1) By Theorem 1.4 it is clear that for K = to . . . . .  n E to, m = 2, we 

can choose the family in 1.7 to belong to F-I(/~) for any given E C_ 

{o- El im(to  . . . .  ) :c f  (tr)_- to~,}. For K =tow,+, the situation is less clear, but it 

seems that an extension of the methods of [11] will allow one to construct a 

family as in 1.7 belonging to F -' (S) for some S C_ K. 

(2) Using a large cardinal assumption, Magidor and Shelah [10] have con- 

structed a model of ZFC + GCH in which every N~--.1-free group is ~-'+2-free. 

For any stationary subset E of A let E '  = {tr < A : E 71 o- is stationary in o-} 

Thus E is sparse iff E ' =  0. 

1.8 THEOREM. Assume V = L. Let A be a regular uncountable cardinal and E 

a stationary subset of A. Let W = { v < A "  cf (v) is weakly compact} and 

R = {v < A : v is a regular cardinal). 

(1) If A is a successor cardinal, A = K +, then F-' (/~) # Q iff E A I~ = 0 if/ 

F 1(~) contains a family of 2 ~ pairwise almost disjoint strongly almost free groups. 

(2) If  )t is an inaccessible cardinal which is not weakly compact then 

F-' (E)  ~ 0 iff E. ('1 I]¢ = 0 and 1~' 71 t~ = 0 iff F ~(E.) contains a family of 2 ~ 

pairwise almost disjoint strongly almost free groups. 

REMARK. The first equivalence in (1) and the necessity of the condition in (2) 

are proved in [9]. 

PROOF. The proof is by induction on 3,. We shall construct families {A, : i < 

2" } which are pairwise almost disjoint in the strong sense that if i / j  then for any 

free group F of cardinality A, A~ O F  and A, @ F  are almost disjoint. In the 

proof we shall always mean this strong sense when we say two groups are almost 

disjoint. (In fact, we shall see in section 2, Corollary 2.4, that this notion is not 

really stronger.) 

Theorem 1.1 gives us the initial steps of the induction. 

(1) Suppose first that A = K +. By inductive hypothesis, if K is regular and not 

weakly compact, there is a family { B ~ : o  - < K +} of pairwise almost disjoint 

strongly almost free groups of cardinality K. Thus for every regular cardinal 

p =< K which is not weakly compact there is a family {C°~:~r < K} of pairwise 

almost disjoint strongly almost free groups which are of cardinality => p and _-< K. 

(Let { C : : a  < K} be the union of the families {B~2~:~r < ~+} where p =< ~ =< K 

and/x  is regular and not weakly compact.) Now by ~ ,  E = H , < , E ,  where each 

E ,  is sparse and u E E ,  implies cf (u) = cf (y)  (cf. [9] or [3; lemma 6.9]). We may 
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suppose  E N W = ~ .  By L e m m a  0.6 (iii) we have for  each 3' a A-Kurepa  tree on 

E~, i.e. a family {fT: E~--> K ] i < A +} of pairwise a lmost  disjoint functions.  For  

each y =< K, i <  A + define by induct ion a smoo th  chain {A';~: u < K "} of free 

groups  of cardinali ty K such that  A ~/A ~ is free if u ~  E~ ; and if u E E~ and cf 

(y )  = p and o- = f:[(u), 

a ~+,/A ~ ~ C°~. 

(This is possible since cf (u) = p is not weakly  compac t  and C",, is p- f ree :  cf. [9; 

t h e o r e m  2.15].) Let  A '+ = U~< ,A ' ;7  and A '  = ( ~ A  '+. Then  as in the proof  of 

1.1 we can verify that  for i~ j ,  A '  and A '  are a lmost  disjoint.  M o r e o v e r  

F(A ' )  = U..,,m,<E~ =/~ .  

(2) Suppose  now that  A is inaccessible and not weakly  compac t  a n d / ~ '  (-//~ = 

0 , / ~  N W = 0. Since the infinite cardinals fo rm a cub in A we may  assume that  

every  m e m b e r  of E is an infinite cardinal:  Consider  first the following two cases. 

Case 2a. E consists only of regular  cardinals.  Now every  singular cardinal  is 

a limit of singular ordinals  so E '  C_ R ; but then s ince /~ '  ( '//~ = 0, we h a v e / ~ '  = 0, 

i.e. E is sparse.  Let  {[, : E --* A ] i < 3, +} be a )t -Kurepa  tree as in L e m m a  0.6 (iii). 

For  each K E E  let { B ( ~ : o - <  

chain of f ree  groups  {A '.: u < A 

for  all / ~ > u ;  and if u E E  

K +} be as in (1). Def ine  by induction a smoo th  

} such that  ]A'~] = [u + ~o [; if u C  E, a ~/A'~is free 

Define  A '  -- U,<,A, '~.  Then  if i~ j ,  A '  and A '  are a lmost  disjoint.  

Case 2b. E consists only of singular cardinals.  We m a k e  use of the following 

version of [ ] ,  for a regular  cardinal  A (cf. [1]): 

(*) for  every  singular limit ordinal  a < A there  is a cub C. in a of o rder  type 

< ~ such that  wheneve r /3  is a limit point  of Ca, then /3  is a singular limit 

ordinal  and C~ = Ca A/3. 

Now for  every  y_-< A let E ,  = {a E E :  order  type of Ca = y}. Then  just as in 

l e m m a  6.9 of [3] we can p rove  that  E',C_ R, and since by h y p o t h e s i s / ~ ' O / ~  = 0 

we have /~ ' ,=  0, i.e. E ,  is sparse.  Thus  E = I I ~ < , E , .  T h e n  for  a h - K u r e p a  tree 

{f[:E,--+A : i<A*}  construct  A""  as in (1). Then  we define A '  = O , < ~ A  ''" 

f i l tered by A'~ = O { A ; ' :  u < a , y  < a}. Noticing that  a E E ,  implies ~ > y we 

can check that  F ( A ' )  = U/~, =/~.  Finally as before  we check that  if i F  j, A '  and 

A j are a lmost  disjoint.  This comple tes  Case 2b, 

If E is an arb i t ra ry  s ta t ionary  set of cardinals we can write E = E ,  IIE~ where  

E ,  = {a C E : a is regular} and Eb = {a E E : a is singular}. Tak ing  direct sums 
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of the families constructed in the above two cases for E,  and Eb respectively we 

obtain the desired family for E. 

Finally, for the converse implication, if F -~ ( /~)~ Q, t h e n / ~  M if '  = 0 by [9; 

thm. 1.13]; and/~ '  7//~ = 0 by [9; thm. 1.15]. [] 

2. Quotient-equivalent groups 

The method of constructing almost disjoint groups used in the first section is to 

construct A -- (_J~<,A~ and B -- U~<~B~ so that for "almost all" v, A~+I/A~ 

and B~.dB~ are almost disjoint. We shall see (Theorem 2.1) that this is the only 

way of constructing almost disjoint groups. In particular quotient-equivalent 

groups cannot be almost disjoint. 

If A and B are strongly almost free of cardinality K we say they are 

quotient-equivalent if they have K-filtrations A = L..J~<~A~, B = I..J~<~B~ such 

that for all v C r,  A~.~/A~ ~- B~+I/B~, or, equivalently, if for any K-filtrations 

A = L..J~<~A~, B = I.)~<~B~, there is a cub C such that for all r E  C, 

A~+I/A~ ~ F =-B~.I/B~ @ F, for some free group F of cardinality < K. The 

logical significance of quotient-equivalence is discussed in [4], and the construc- 

tion of non-isomorphic quotient-equivalent groups is discussed in [4] and [3; 

chap. 11]. 

It is clear that if A and B are quotient-equivalent then F ( A ) =  F(B). 

It may be helpful to study the proofs in this section first for the simpler case 

that A~÷t/A~ ~ Qt2~ = {m/2" @ Q : m, n ~ Z} whenever A,+~/A~ is not free. 

2.1 THEOREM. Let A and A ' be strongly K-free groups of regular uncountable 

cardinality r with K-filtrations A = (_J~<~A~, A ' =  I..J~<~A '~ such that there is a 

stationary E C_ K such that for all v ~ E, A~+~/A~ and A "+JA '~ are not almost 

disjoint. Then A and A '  are not almost disjoint. 

PROOF. We may assume that for all u < r,  A~+2/A~+~ and A'..+2/A'~+~ are free 

of rank = [A'~+, [ = [A.+~[. For each u E E choose a non-free group B. which is 

embeddable in both A~+I/A~ and A'.+,/A'~. Without loss of generality we may 

regard B~ as a subgroup of both A.+I/A~ and A'.+~/A'~. 

We shall define by induction on u < K subgroups H.  _C A .  H'~ C A '~ and maps 

f~ : H~ ~ H'~ satisfying for all v 

(1) f~ is an isomorphism and for all /z < u, H ,  C H~ and f~ ] H ,  = f ,  ; 

(2) if v E E the natural map 0. : H~+~/H. ~ A.÷~/A. maps H~+~/H. onto B~ 

with kernel a torsion subgroup of H~+~/H~ ; and similarly for 0' : H~+~/H',---* B; C 

A'~+JA '~; 
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(3) if v Elim(K),  for all x E A . ,  x ' ~ A ' . ,  d E Z ,  there exist h ~H~, h ' E H ' .  

such that f . ( h )  = h' and d [(x - h) in A.  and d [ ( x ' -  h') in A '., (where d [y in G 

means 3g E G s.t. dg = y). 
Suppose that in fact we can carry out this construction for all u < K. Then let 

H = U . < . H . ,  H ' =  U . < . H ' .  and f = U ~<.f~. Clearly (by (1)) H (resp H')  is a 

subgroup of A (resp. A ' )  and f:H---> H'  is an isomorphism. Moreover H is not 

free since for v E E, H,,+JH. is not free (by (2)). (In fact note that there is a cub 

CC_K such that for v@C,  H f q A ~ = H ~  and H ' f 3 A ' ~ - - H ' 4  for v E E f q C ,  

H~+I/H~ = B~ and H[+dH', = B~.) 

Therefore it remains to describe the construction of H,, H', and f,, which will 

be done by induction, starting with H0 = 0, H~ = 0, f0-= 0. Suppose that the 

construction has been carried out for all v < ~r; we consider four cases. 

Case i" o- is a limit of limit ordinals. 

Let H~ = U ~<~H~, H "  = U .<~H'~, f~ = U .<~f.. then clearly (1)-(3) hold. (In 
particular (3) holds because for every x E A~, x ' E  A "  there exists v E lim(K), 

v < ~r such that x E A~, x '  E A ,',.) 

Case 2: o - = v + l ,  v E E .  

By hypothesis there is a sequence 9 = (Y~)~<. (resp. Y' = (Y;),<.) of elements of 

A.+~ (resp. A~'+~) independent over A~ (resp. A J), a cardinal h < K and for each 

IX < h a term t. (5), a non-zero integer d.  and elements x. E A.  (resp. x" E A '.) 

such that B. " B~+~/A~ (resp. --" :B'~+~/A') where 

/~.+1 ( A . U {  t~'(y)- })(resp. - '  ( { }) ) .  = B , .+ ,=  A ' . U  t . ( ; ' ) - x '  d.  x~:IX@A de ~ : t z E A  

(A term t(5) is an expression E~<~ n~v~, where 5 = (v~)~<~ is a sequence of variable 
symbols and n~ E Z and n, = 0 for almost all i.) 

By (3) for each tx E h there exists h. @ H~. h ' .E  H'~ such that f~(h~)= h'~, 

d e [(x. - h e) in A.  and d e [ ( x ' . - h  '~)in A '~. Now define 

and 

( { ,  }) H~'+, = H.  O "(Y ) -h~ ' "  de ./z E h C_ A.+I. 

It follows from the independence of the 9 and Y' over A.  and A'. respectively 

and the fact that f . ( he )=h '~  that there is a well-defined isomorphism 
f.+I:H~+I--~H'~+I extending f. and satisfying 

{ t ,(y)- h A = te (F) -  h; 
\ d,. } de 
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It is easy to see that (1)-(3) hold. 

Case 3: c r = v + m + l ,  v@lim(K),  where m > 0 i f  v E E .  

Let p = I A.+~ I = [ A~'+, I. Then A . . . .  ~/A,+m and A'~+,,+I/A'~+,, are free of rank 

p. Choose sets {b/: i < p} {b', : i < p}) of elements of A . . . .  1 (resp. A . . . .  1) whose 

cosets mod A,+,, (resp. A',+,,) form a basis of A . . . .  ~/A~+,, (A',+,,+~/A',+,,). 

Choose a one-to-one correspondence qb,, :p--->A~+,, × A'~+~ × (Z-{0}).  For 

each i < p, if ¢P(i) -- (x,, x', d/), let h / =  d/b~ + x, and h' /= d/b'/ + x', Then the h/ 

(resp. h'~) form a linearly independent set over H,+,, (resp. H~'+,, ) and we define 

/4, . . . .  I=(H~+,, t0{h, : i < p } ) ,  H'+m÷~=(H'÷,, U { h ' / : i < p } )  

and extend f~+m to f~+,,+~ by sending h/ to h'/. 

Case 4: ~ r = v + t o ,  v C L i m ( K ) .  

Let  H~ = [..J,,~H~+,,, H ' =  I,.J,,E~H'+,,, f~ = I..J.,E~f.+,,. Then clearly (1) and 

(2) hold and the construction in Case 3 insures that (3) holds as well. [] 

As an immediate consequence of the proof we obtain 

2.2 THEOREM. Suppose A and A ' are strongly almost free groups of cardinality 

K which are non-free and quotient-equivalent. Then there is a strongly almost free 

group H of cardinality K which is embeddable in both A and A '  and quotient- 

equivalent to both of them (and hence not free ). [] 

We also obtain the following corollary: 

2.3 COROLLARY. I f  A is strongly K-free of cardinality K and E C_ F(A),  then 

there is a subgroup B of A with F(B)  =/~. [ ]  

This should be compared with lemma 1.3 of [8] which, for A and E as above, 

constructs an epimorphism C--->A with F (C)= / ~ .  

2.4 COROLLARY. I f  A and B are strongly almost free of cardinality K and 

almost disjoint, then they are almost disjoint in the strong sense (see proof of 

Theorem 1.8) that if F is the free group of rank r, then A O F  and B O F  are 

almost disjoint. 

PROOF. Suppose that A and B are strongly K-free of cardinality r and 

almost disjoint. Choose K-filtrations A = 1.3 ~<,A~ and B = I..J,<,B~ so that for 

all v < K, I A,+~I=IB,+~[ and if F '  is the free group of rank ]A,+ll then 

A~+~/A~ @F'  ~ A~+~/A~ and B~+~/B~ @F'  ~- B~+~/B~. 

Now to obtain a contradiction, assume that, if F is the free group of rank K, 

A @ F  and B @ F  are not almost disjoint. Let F = [.J~<~F. be a K-filtration 

such that for all v, F. is a direct summand of F and I F.+~I = ]A.+~ I. Then 
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A ~]~F= U .... A .  O F .  and B ~ F =  U~<~B~OF~ are z-filtrations, so by as- 

sumption there is a stationary set E of v such that A.+~/A,,(~]~F.+I/F. and 

B~+~/B~ OF~+~/F~, are not almost disjoint (cf. proof of 0.7). But then since 

A.+dA~ O F.+~/F. = A.+~/A~ and B~,÷~/B. O F~+~/F~ ~ B,,+I/B~,, Theorem 2.1 im- 

plies that A and B are not almost disjoint, a contradiction. [] 

REMARK. In fact, A ~ ) F  and B 0 F are almost disjoint for any free group F, 

since if A O F  and B O F  are not almost disjoint we can find a subgroup F~ of F 

of rank K such that A O F~ and B O F~ are not almost disjoint. 

3. Almost disjointness for pure subgroups 

If A and A '  are strongly K-free groups of cardinality •, call them almost 

disjoint for pure subgroups if whenever there are pure embeddings O : H--* A,  

O':H---~A' [so O(H) (resp. O'(H)) is a pure subgroup of A (resp. A')] then H is 

free. 

Although quotient-equivalent groups cannot be almost disjoint, they can be 

almost disjoint for pure subgroups. In fact, we shall construct large families of 

quotient-equivalent groups of cardinality ~1 which are pairwise almost disjoint 

for pure subgroups and also mutually non-embeddable.  

For simplicity we begin with the following special case. We consider strongly 

to~-free groups A with an wl-filtration A = U . . . .  A~ such that for some fixed 

stationary E Clim(w~), we have for all ~, < co~: 

(*) if u~- E, A / A ,  is to,-free, and if u ~ E, A~.+~/A~ ~ O ~2~ 

where Q¢2~= Z[½] = {m/2" E 0 :m,n  E Z}. 

DEFINITIONS. If 4' and q, are functions: to ---> to write 4' ~ 4' if Vr _-> 0 3Nr ~ 0 

Vn >=Nr 4'(n + r)Mtk(n) .  

We let < denote the lexocographical ordering on elements of ~2, i.e. if r/, 

~ E ~ 2 ,  ~ < ~  i f f 3 n  such that ~ q t n = ~ l n  and ~ / (n )=0 ,  ~ ( n ) =  1. 

Let ~o denote the element of ~2 given by ~o(0) = 1, ~o(n)=0  for all n >0 .  

Notice that if r / E ~ 2  such that r / (0)= 1, then ~o= < rl. 

3.1 LEMMA. For each ~ E ~ 2  we can define a non-decreasing unbounded 

function 4'~ : to ~ w such that for all rl, ~ C ~ 2, if r I < ~ then 4'~ ~ 4'~. Moreover 

given any non-decreasing unbounded function 0 : w ~ to we can choose the family 

so that 4'~, = O. 

PROOF. Choose a family of non-decreasing unbounded functions g~ :to ~ t o  

(T/E°'2) with the property that if rt < ff then 3 N  such that for all n-> N, 
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g,  (2n)_-< g~(n); and, moreover ,  such that  g~o(n) = n for  all n. (If the existence of 

such a family is not  clear to the reader,  see L e m m a  3.4 where  we describe the 

construct ion in a more  general  setting.) Then  define ~b~ by: ~b, (n)  = 0 (g, (n)) for  

all n. Given  r I < ~ and given r _->0, choose  N _ -  > r so that  g , ( 2 n ) _ -  < g¢(n) for all 

n _--> N. Then  for n --- N, ~b,(n + r) ~ qb,(2n) = O(g,(2n)) <- O(g~(n)) = eke(n). [] 

3.2 LEMMA. Suppose that A = U ~<~ A.,  and A ' =  U . . . .  A '. are strongly 

tol-free groups with filtrations satisfying (*). Suppose that for every 8 @ E there 

is a strictly increasing sequence { p ( n ) : n  Eta} approaching 3, elements y8 E 

A~+~-A~, y'~E A~+~-A'8 and functions qb8 :ta--->ta, qb'~:ta---~ta such that: ch~ 

qb '8 or qb '~ ~ qbs ; and for all u < 3, 

( t)  for all n E to, 2 "+~ divides y~ (resp. y~) modulo A .  (resp. A '.) 

iff u > p(6~(n )) (resp. u > p(6'~(n ))). 

Then A and A '  are almost disjoint for pure subgroups. 

PROOF. Suppose  O:H---~A and O':H---~A' are pure embeddings.  Note  that 

H is strongly to~-free; let H = U . . . .  H .  be an tal-filtration of H s.t. for  all u, 

H/H.+~ is to~-free. There  is a cub C C to~ such that  for all u E C, O(H) ['1A. = 

O(H.), O ' (H)N A '.= O'(H~), and A .  + O(H) (resp. A '~+ O'(H)) is a pure sub- 

g roup  of A (resp. A ' ) .  

It suffices to prove that  for  all 3 ~ C* (the set of limit points of C), Hs+1/H8 is 

free. So assume, to obtain  a contradict ion,  that  for some 3 + C* ['1 E, Hs+~/H~ is 

not  free. Wi thout  loss of generali ty,  tk~ ~ ~b ~. 

Let  G = O'-I(A'~+O. Since A'/A'~+~ is r - f ree ,  Hs+~/(H~+~(3 G)  is free, so 

(H8+~1"1 G)/Hs"--(O'(H~+~)fqA'~+I)/A'~ must  be non-free.  Hence  there  exists 

z EHn+I such that O'(z)+A'~=y'~+A'~.  Then  there is a t ~ Z  such that 

0 (z)  + A~ = m 2' y, + As for  some m relatively pr ime to 2. Let  r = max{ - t,O}, 

and let N be such that  n _-> N implies qb~(n + r + 1) -< ~b~(n). There  are arbitrarily 

large u such that  u U C tq 3 and there is an n _--- N such that p(qb~(n + r ) ) <  u _-< 

p(ff~(n + r + 1)) and hence  u <= p(qb'~(n))). For  such an n, u, we have by (~) that  

(i) 2 . . . .  ~ divides y~ modulo  A . :  but  (ii) 2 "+~ does not  divide y~ modulo  A'.. We 

shall obta in  a contradic t ion by showing that  for  arbitrarily large ~, ~ C [-1 8, (i) 

implies that  2 "+1 divides z m od  H~ and (ii) implies 2 "+t does not divide z mod  H,. 

Part  (ii) is clear since u ~ C implies O'(H.) C_ A,. As for  (i), say O(z) = m2'y~ + u 

where  u E As, and choose  u large enough  so that  u E A..  By hypothesis  and 

since r _-> - t, 2 "÷1 divides 2'y~ m od  A~ so there exists w ~ A~+~, x ~ A~ such that  

2"+1w = m2'y~ + x. But  for  some ff E H~+I and h ~ Ha, 2"+~ff = z + h. Thus  2 "+~ 

divides x - u - O(h) in A.  Since A .  + O(H) is a pure subgroup of A,  there  exists 
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/ ~ E H ~  and v E A ~  such that  2 n + l v = x - u - O ( f O .  Thus  2 " + 1 ( w - v )  = 

m2'y~ + u + O(f~ ) = O(z + h) so by the pur i ty  of O(H) in A, w - v E O(H). Thus  

2 "+1 divides z in H~+~ modulo  H~. [ ]  

3.3 THEOREM. For every 0 ~ E. E D(tol)  there is a family of 2 ~' w,-separable 

oa,-free groups {A, :i < 2  ~'} in F l(/~) such that if i /  L A~ and A, satisfy (*) 

(hence are quotient-equivalent), A, is not embeddable in A,, and A~ and Aj are 

almost disjoint for pure subgroups. Moreover given any group A in F -l (/~) 

satisfying (*) we can choose the family so that A,, = A. 

PROOF. Let  {~b, : r / E  ~ 2} be the family of funct ions cons t ruc ted  in L e m m a  3.1 

with 0 = the identity. Let  {1~ : to~---~ Y l i  < 2'°,} be a family of pairwise a lmost  

disjoint functions with codoma in  Y = the set of all r / ~  ~2 such that  r / ( 0 )=  1; 

clearly I YI = 2"0 so the family exists by L e m m a  1.3, and,  moreove r ,  we may  

assume that  fo is the constant  funct ion ¢o. Write  E as a disjoint  union of 

s ta t ionary  sets: E = LI ,<~,E~ (cf. 0.6(i)). Let  {S, :i  < 2 ~'} be a family of subsets 

of w~ such that  for  all i ~  j, S~ is not conta ined  in Sj. Def ine  ~o = ~0, and if 

~ / ~ Y - { ~ , , } ,  let ~ be the e l emen t  of ' ° 2 - Y  such that  ~ ( 0 ) = 0  and 

[to - {0} = ~/[o~ - {0}. Not ice  that  if ~ E Y - {~0}, then ~ < ~o < ~/. 

Now define f~ : E ~ ~ 2 as follows. Fix v C E ; say v E E~ and ~ (v)  = -q. Define 

/ , (u )  = { ~ i f l ~ E S "  

if ~ S ~ .  

Clear ly for  i ~  ], fi and ]~ are a lmost  disjoint,  since/~ and )~ are a lmost  disjoint.  

M o r e o v e r  i f /z  C Sj - S~, then  4)r,~,) ~ q~t,~,) for a lmost  all u ~ E~ (i.e. for  all u E E~ 

except  those in the non-s ta t ionary  set of u such that  ~ ( u ) =  ~ ( u ) =  ~0). 

G iven  A satisfying (*) choose  for  each 6 @ E, ye E A~+~-A~  and for  all 

n E to, let p~(n) = the least /~ < 6 such that  2 "+' divides y~ modu lo  A~+~; this 

defines a non-decreas ing  sequence  whose  limit is 6. 

For  each i @ 2 ~, -{0}  we shall define A, as a cer tain subgroup  of 

8 ~ E  

where  u ranges  over  the ordinals  < to~. G iven  n ~ to, i ~ 2 ~' - {0}, and 6 ~ E, let 

x( i ,6 ,n)  be x~ w h e r e / x  = p~ (~bt,~)(n)). T h e n  for all ~- ~ to~, define A~., to be  the 

subgroup  of D genera ted  by {x, : u < ~-} tO {y~ : 6 ~ E n ~-} and 

y~ - ~ 2 ~ x ( i , & j )  
i=o 

n + l  
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for all 6 E E N - c ,  n E t o .  Let  A , = U  . . . .  A .... One may check that:  A, is 

to~-separable with F ( A ~ ) = / ~ ;  if r ~ E ,  A,,, is t o rpu re  in A, ;  and if ~SEE,  

A~.~+~/A~.~'-- QC-~ (cf. [3; p. 99] and [9; pp. 1213-1215]). 

Not ice  that  if i C 2 ~, and 6 ~ E, then for all n E to, 2 "+' divides y~ modu lo  A~,, 

in A, iff ~-> p~(cht,~)(n)). (In part icular  this holds for  i = 0 ,  with Ao = A, and 

Ao., = A ,  since for  all n, fo(6) = fro, so qSt,,~)(n ) = n.) Thus  L e m m a  3.2 implies 

that  for  all i~ .~  A, and A, are a lmost  disjoint for pure  subgroups  (since by 

const ruct ion there is a cub C such that  for  all ~ ~ E fq C, e i ther  ~b~,~) < ~bt,~ ) or  

vice versa).  

We  must  p rove  that  for  i ~ j, A~ is not e m b e d d a b l e  in A,. So suppose ,  to obta in  

a contradic t ion,  that  there  is an embedd ing  O:A~---~A,. Then  there  is a cub C 

such that  for  ~" ~ C, O(A~.~) = 0(A, )  FI A~.~. L e t / x  ~ S, - S, and let 6 ~ E~ t"l C*.  

Let  ~ / = f , ( 6 ) ,  ~ =f~(6) ;  then r / < ~ .  Now for some t>=O, O(Ty~)=2 'my~+a  

where  (2, m )  = 1 and a ~ Ai.~ for  some  o- < & Let  r = max{t  - s,0} and choose  N 

so that  n _-> N implies th~(n + r + 1) _-< the(n). Now since 6 ~ C* it is the limit of a 

strictly increasing sequence  {~-, : n ~ to} of e lements  of C. Choose  n _-> N so that  

there  is an m such that  

o ° ( 6 . ( n  + r ) ) <  r,. =<o ' (49.(n + r +  1)) 

and a E A j . , .  Then  by construct ion,  2 . . . .  ' divides y~ modu lo  A~., .  The re fo re ,  

since ~-,, E C, 2 . . . . . .  ~ divides 0 (Ty~)  modu lo  Aj,~ so 2 . . . . . .  ~ divides 2'y~ 

modu lo  Aj.,~; thus 2 "+~ divides y~ modulo  Aj.,, since r_~ t - s .  But ~-,, =< 

p~ (qS~(n + r + 1)) -<_ p~ (~b~(n)) so by construct ion 2 "+~ does not divide y8 modu lo  

Aj,~, a contradict ion.  [ ]  

Now we want  to ex tend  T h e o r e m  3.3 to arbi t rary  quot ien t -equiva lence  classes. 

We begin with a genera l iza t ion of L e m m a  3.1. 

3.4 LEMMA. Given a strictly increasing function cb: to--~ to, there exists a 

family of non-decreasing unbounded functions ~b, : to --~ to(-q E ~2) such that for 

all rt,~ E ~2, if T I < ~ then there exists N such that for all n >- N, ~ b , ( ~ ( n ) ) =  < 

~b¢ (n ). Moreover, given any non-decreasing unbounded O : to ~ to we can choose 

the family so that (b~, = O. 

PROOF. We shall define a family of strictly increasing funct ions k,  :to--~to 

('q @ 0'2) such that:  

(a) if -q < ~ =IN such that  for  all n >-N, k , ( n ) > ~ ( k ¢ ( n ) ) .  Suppose  for  the 

m o m e n t  that  we can do this. Then  define g, : to --> to as follows. Let  g~o = identity.  

For  ~ ~o, for  any n E to, if k , ( m ) ~  n < k , ( m  + 1), then 
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g , ( n ) = ( k ~ , ( m + l )  if ~,,< ~, 

k~(m) if ~ < ~o. 

Then  one  may easily check,  using (a), that if ~ < ~ there  exists N such that for  

n >= N, g,(@(n))~ g~(n). Hence  if we let ~b, = Oog,, we have the desired family 

of functions. 

Thus  it remains only to construct  the functions k,. We shall define k~(m) by 

induction on m so that the following addit ional  p roper ty  is satisfied: 

(b) {~ I k , ( m ) : ~  E~2} is a finite family of functions such that for  all r/. ~, if 

~l tk , (m - 1 ) =  ~ tk , (m - 1 )  then k , (m + l )= k~(m + l). 
Define k . (0)  = 0 for all ~/. Suppose that k , ( m )  has been defined for all m and 

that ~r < " "  < ~ represent  all the e lements  of { T / I k , ( m ) : ~ / E ° ' 2 } .  Now by 

induction on j ~ r define k,, (m + 1): let k,,(m + 1) = k,,(m) + 1 ; and for j > 1 let 

k,,(m + 1) =~(k , , _ , (m  + 1)). Then  for every  ~, let k~(m + 1) = k,,(m + l)  if 

~lk~(m) = ~lJ I k,,(m) • It is then easy to check that (b) holds for  m + 1. Moreove r  

(a) holds, since if -r/< ~ and we choose N such that T/IN - 1 < ~ I N  - 1 then for 

alln>=N, n lk~(n-1 )<~Ik~(n-1 ) , sobycons t ruc t ionk~(n)>-~(k ; (n ) ) .  [] 

3.5 THEOREM. For every non-free strongly to,-free A of cardinality to~, there is 
a family {A~ : i < 2 ~'} of strongly to~-free groups ofcardinality w~ such that for all i, 
A, is quotient-equivalent to A and for all i ~ j, A, and A~ are almost disjoint for 
pure subgroups and A, cannot be embedded in A r Moreover we can choose the 
family so that Ao = A. 

PROOF. Wi thout  loss of general i ty A = U . . . .  A~ where  E ={~ Eto~:A~ is 

not  to~-pure in A}={6Eto j :A~+JA~ is not free}Clim(to~),  and for u ~ E ,  
A,+dA~ has infinite rank. For  each 6 E E, choose {Y~I i < a} _C A~+~ for some 

a = a ~ ~ to such that the y~ are independen t  mod A~ and A~+~/A~ = ({y~:i < 

a} + A~),/A~. (Call this group G~; it is a countable  non-free  tors ion-free group;  

by an abuse of  language we write y,~ for y~+ A~ ~ G~.) Now fix 6 ~ E and write 

)~ = { y ~ : i < a } .  We claim that we can choose terms t, and integers d , - > 2  

(depending on ~ but  we omit  all superscript  6 's)  such that: 

(1) G~ = (~ U {t,(~)/d. :n  ~ to}), 

(2) for  all n, t,(~)/d,~(t~(~)/d, :i  < n ) + ( ~ ) ,  

(3) if {f, :L,--~L',[r ~ to} is an enumera t ion  of all i somorphisms be tween  a 

pure  finite-rank non-free  subgroup L, of G~ and a subgroup L', of G~, then there  

is a family {D, Ir ~ to} of pairwise disjoint infinite subsets of to such that  for  all 

r ~ to, L',D_ {t,(~)/d, : n ~ D,}. 
Write  {2k : k ~ to} as a disjoint union of infinite subsets D,. We shall define t. 
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and d, by induction on n. If n = 2k + 1 we choose t,, d, so that, in the end, (1) 

will hold. Notice that G~/(~) is not f ini tely-generated so we can do this while 

satisfying (2). If n = 2 k  and n E D , ,  choose t,, d, so that t,(y)/d, EL',; we can 

do this while satisfying (2) because L', is of finite rank but  not finitely generated.  

For  each 6 E E choose a non-decreasing sequence {p~(n):  n E w} with limit & 

Cont inuing to hold 6 fixed, for  each r E6o let o',:w---~D, be a strictly 

increasing enumera t ion  of D,. For  each r E ~o let ~ , : D , ~ o  be a strictly 

increasing funct ion such that for all n E D , ,  f,'(t,(~)/d,)G(t,(~)/d,:i<-_ 
~0,(n)) + (y}. Finally, define cP: (o + oJ as follows: if n E D,, n = (r,(z), then 

• (n)  = max(~,(cr , (z  + 1)), ~ ( n  - 1)+ 1); 

if n~- UrD,, ~(n) = ~(n - 1)+ 1. 

Now let {~h, 17 E ~2} be the family of functions given by 3.4 for this • and for 

0 = identity. (In fact we have such a family for each 6 ; if necessary for clarity, we 

write ~h~ instead of ~b,, ~ instead of ~ ,  etc.). Le t / ,  :E - -*~2  (i E 2 ~,) be as in the 

proof  of 3.3. 

Then  for every  i < 2 ~, we can construct  a group A, quot ient -equivalent  to A 

such that for all 6 E E there are e lements  f = { y ~ [ l <  aa}CA,.a+~ such that 

G~m(~+A,,,),/Ai,~ =A~,~+JAi.~, and for all n, d, divides t , (~)  mod A,., iff 

~" > p~(4~(~)(n)). (See L e m m a  3.6 following.) 

We claim that for  i / j ,  A, and Aj are almost disjoint for  pure subgroups.  To  

obtain a contradict ion,  suppose that 0~ (resp. 0~) embeds  a non-free H as a pure 

subgroup of A~ (resp. Aj). Let  C be as in the proof  of 3.2 and let 

6 E C * A  E such that H~+I/H~ is not free. let 4~ = 4~t,~,~ ~ - ' -  4~r,t~)~ . By 

construct ion and without loss of general i ty we may assume that there  exists N 

such that for all n _-> N, 4~(cI)(n))_-< 4~;(n). By means of the identification of G~ 

with (~ + A,,a),/A~,~ and with (Y + A~,~)./A~,~, 0, and 01 induce an isomorphism 

~, :L,---~L', be tween  non-free  finite rank pure subgroups of G~. We can pick 

arbi t rary  large v E C* ~ 3 and z E D, such that if n = cr,(z), we have n ==- N 

and 
p~ (~b~ (~0, (or, (z)))) < ~' ==- p~ (4~ (~0, (~, (z + 1)))). 

By construct ion and the definit ion of ~b,, d, divides f7 ~ ( t . (~))  in A,,~+, rood A .... 

But ,  since u ~ p~ ( ~  (~0, (or, (z + 1)))) =< p~ ( ~  (~(n) ) )  =< p~ (4~ (n)),  d, does not 

divide t, (~) in A~,~+~ rood A~.~. By choosing a sufficiently large u we obtain a 

contradict ion from this as in the proof  of 3.2. 

The  proof  that A~ does not embed  in A~ is similar. 

Note  that  we can, in fact, construct  the family {A, : i < 2 ~'} so that  Ao = A. To  

do this, we impose an addit ional  condit ion on the t, and d,, viz. 
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def 

(4) p ~ ( n ) =  least /x such that d~.l t.(~ ~) mod A,+~ defines a non-decreasing 
function of n. 

Then we use this function p ~ in the above construction of the A,. [] 

All that remains is to sketch the proof of the following lemma which justifies 

the construction in the proof of 3.5. 

3.6 LEMMA. Given A~ = U.<sA. ,  Gs, t .(~) and d. as in (1) and (2) of 3.5, 

and given a non-decreasing function 4t:w ~ 6 with range cofinal in 3, such that for 

all n, A~.~+~/A,~.~ is free, then there is a countable free group As , ,  D_ As containing 

elements ~ = {y~ I l < a} independent over As such that As+l is the pure closure of 

(~) + As and: 
(i) G~ = A,+,/A~ ; 

(ii) for all u < 3, A'~+t/A.+~ is free; and 

(iii) for all n E o~ and all r < & d. divides t . (y)  mod A.  iff r > 4,(n). 

SKETCH OF PROOF. We shall define Ae+z as a subgroup of D = 

As O @ t < ~ Q y z  by defining by induction elements a. @A,c.~+~-A,t.) and 
setting 

We must choose the a. so that the rule 

t . ( ~ ) ~  t . ( ~ ) - a . +  As; Y, ~ YJ + A~ 
(*) d. d. 

defines an isomorphism 0 of Gs onto As+~/As. Suppose a, chosen for i < n. 
Choose x. ~A,(.)+~ such that x. +A,(.~ generates a direct summand of 

A,c.~+~/A,(.) independent rood A,t.~ from (a. : i < n). Let k / 0  be minimal such 
that 

d, \ d, . i < n  +(y) (C_Gs) .  

By hypothesis (2) of the proof of 3.5, k > 1 and by minimality k divides d,. 
If 

kt.(y)_= ~ c ~ ( m o d ( ; ) ) ,  
d t t  i < n " 

then, by induction, (d./k)E~<.c~add~ is a well-defined element of A+~.), so we can 

let 

a. = ~ (~<~ CiVil + X.) . 
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T h e n  it is easy  to c h e c k  tha t  

k ( t " (Y )dSa" )=_  ~ c  ( t i ( y ) - a O  ,<. d, ( m o d ( ~ )  + A,~.+I)) 

so 0 is w e l l - d e f i n e d  by  (*). A l s o ,  s ince  k > 1 t he  c h o i c e  of  x.  insures  tha t  d .  d o e s  

n o t  d i v i d e  t. 0 7) m o d  A,¢ , ) .  [ ]  
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