
Theoretical Computer Science 230 (2000) 117–129
www.elsevier.com/locate/tcs

On the classi�ability of cellular automata

John T. Baldwina ;∗;1, Saharon Shelahb;c ;2

aDepartment of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
M/C 249, Chicago, IL 60680-4348, USA

bDepartment of Mathematics, Hebrew University of Jerusalem, 91904, Israel
cUniversity of Wisconsin, Madison, USA

Received November 1996; revised January 1998
Communicated by K. Culik II

Abstract

Based on computer simulations Wolfram presented in several papers conjectured classi�cations
of cellular automata into four types. We show a natural formalization of his rate of growth
suggestion does not provide a classi�cation (even probabilistically) of all cellular automata: For
any rational p; q; 06p; q with p+ q=1, there is a cellular automata Ap;q which has probability
p of being in class 3, probability q of being in class 4. We also construct an automata which
grows monotonically at rate log t, rather than at a constant rate. c© 2000 Elsevier Science B.V.
All rights reserved.

Keywords: Classi�cation; Cellular automata; Turing machines

1. Background

Based on computer simulations Wolfram presented in several papers conjectured
classi�cations of cellular automata into four types. In [9] Wolfram distinguishes the
four classes of cellular automata by the evolution of the pattern generated by applying
a cellular automaton to a �nite input. We quote from p. 161.
1. Pattern disappears with time.
2. Pattern evolves to a �xed �nite size.
3. Pattern grows inde�nitely at a �xed rate.
4. Pattern grows and contracts with time.

∗ Corresponding author.
E-mail address: jbaldwin@los.math.uic.edu (J.T. Baldwin)
1 Partially supported by NSF grant 9308768.
2 This is paper 623 in Shelah’s bibliography. Both authors thank the Binational Science Foundation for

partial support of this research. Shelah’s work on this project began during a visit to the University of
Wisconsin partially supported by NSF # 144-EF67.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00042 -0

Sh:623

118 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

Wolfram’s qualitative classi�cation is based on the examination of a large number
of simulations. In addition to this classi�cation based on the rate of growth, he con-
jectured a similar classi�cation according to the eventual pattern. We consider here
one formalization of his rate of growth suggestion. After completing our major results
(based only on Wolfram’s work), we investigated other contributions to the area and
we report the relation of some of them to our discoveries. We thank Lyman Hurd,
Nino Boccaro, and Henryk Fuks for their suggestions in this regard.
There are really two questions. Can one classify the action of a cellular automaton

on a particular input x? Can this be extended to a classi�cation of automata in terms,
e.g., of the average behavior of the automaton on all inputs? It is straightforward
to prove such a classi�cation of pairs 〈A; x〉. That classi�cation essentially is on the
lines Wolfram suggests. (Only essentially, because class three can be more precisely
described as monotone growth. The rate of growth can vary from log t to t.) But we
show that this classi�cation of pairs (A; x) does not yield a classi�cation of automata A.
That is, for any nonnegative rationals p; q with p+ q=1, we construct an automaton
Ap;q that depending on the input is likely to be in Class 3 with probability p and in
Class 4 with probability q. In the process, we describe several patterns which seem to
be qualitatively di�erent from those reported by Wolfram; in particular, with growth
of order log t. We deal primarily with one-dimensional cellular automata since they
are adequate for the counterexamples we need. The basic ideas extend naturally to
higher-dimensional cellular automata.
There are a number of questions about the connections of these results with

Wolfram’s conjectures. First, Wolfram proposed several di�erent schemes for clas-
sifying cellular automata. Our result argues that one of these conjectured classi�ca-
tions fails. This does not, a priori, invalidate the other classi�cations. In particular,
the formalization of the classi�cation provided by Culik and Yu [4] clearly divides all
automata into four classes. Similarly, that of [2] divides all automata into three classes.
They show the question of which class a particular automata falls into is undecid-
able. Both of these formalizations classify an automaton by its ‘worst case’ or most
complicated behavior (as input varies). Such a worst-case classi�cation is completely
consistent with failure of an ‘average behavior’ classi�cation. Sutner [8] has shown the
positions of the Culik–Yu classes in the arithmetic hierarchy. Like ours, these results
deal with the action of cellular automata on �nite sequences; Ishii [7] has established
a classi�cation for the action on in�nite sequences.

2. Classi�cation of automaton-input pairs

2.1. Notation. Our �nite alphabets, usually denoted �, will always contain the symbols
0; 1; S; F; ∗; B. B will represent blank. A �nite input on a two-way in�nite tape will
always be an initial string of B’s, followed by a �nite word in � (can include B’s)
and then an in�nite string of B’s. We assume that at least one cell in an input string
is not B.

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 119

2.2. De�nition. The size of a one-dimensional cellular automaton A (or Turing ma-
chine) acting on input x is the function, SA; x(t) which assigns to each time t the size
of the con�guration on the tape after t steps of the computation with input x, that is
the distance between left most and right most non-B cells at time t.
The following division into four cases is almost immediate from the de�nitions.

2.3. Lemma. For every cellular automaton A and �nite input x; exactly one of the
following holds.
1. limt→∞ SA; x(t)= 0.
2. For some constant c; 0¡ lim supt→∞ SA; x(t)¡c.
3. limt→∞ SA; x(t)=∞ and SA; x(t) is eventually monotone.
4. limt→∞ SA; x(t)=∞ and SA; x(t) is not eventually monotone.

Proof. The key point is to note that if lim inf t→∞ SA; x(t) is bounded then a con�gura-
tion is repeated and the action of A on x falls into the �rst or second
class.

We can re�ne this observation.

2.4. Lemma. Let p= |�| + 1. In either case 3 or 4 for a one-dimensional cellular
automaton of radius r we have

lnp t6 SA; x(t)¡|x|+ rt:

Proof. The upper bound is immediate. For, the lower bound note that if SA; x(t)¡lnpt;
two con�gurations must be repeated. But then the cellular automaton will cycle and
we are in case 2.

Note that the second class-pattern evolves to a �xed �nite size – encompasses both
periodic and glider con�gurations. In a glider, the pattern repeats cyclically but moves
across the domain.

3. Simulation of Turing machines by cellular automata

We develop in this section a means �rst to simulate an arbitrary Turing machine
on standard input by a cellular automata and then to simulate Turing machines, which
compute total recursive functions, on arbitrary �nite input. This gives rise to a con-
venient class of automata which we call dominating automata. Most discussions of
recursive functions are interested only in the computation of the value of a function and
input to the Turing machine is restricted to a standard form. However, Shepherdson [6]
dealt with arbitrary inputs and proved, for example, that for every r.e. degree � there

Sh:623

120 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

is a Turing machine M such that the collection of pairs of con�gurations 〈C1; C2〉 such
that C2 appears if M starts on C1 has degree �.

3.1. De�nition. (1) A standard �-con�guration for a two-way tape contains a unique
S and F and all non-B cells are between them.
(2) A �-i=o (input=output) con�guration for a two-way tape is a �nite string sur-

rounded by B′s and beginning with the symbol S followed by a string of 0’s and 1’s
(binary representation of a number m) followed by a∗, followed by another string of
0’s and 1’s (binary representation of a number n) followed by an F. The strings may
be empty. We write such a con�guration as Sm ∗ nF .
(3) We say a Turing machine is on a standard con�guration if the head is reading

a cell between the S and F .

A Turing machine is speci�ed by an alphabet �, a set Q of internal states, and a
transition rule. The transition rule maps the current state and the symbol currently read
to a new state, prints a symbol from � and moves the head left or right. It is easy
to code the internal states by expanding the alphabet; Turing machines thus become
formally more similar to cellular automata. This coding is carried out more precisely
below.

3.2. Operating conventions. We restrict to Turing machines with alphabet � which
obey the following.
1. When reading S, the head can move left only if the S is replaced by a 0 or 1 (and
S is printed on the cell to the left in the next step).

2. When reading F , the head can move right only if the F is replaced by a 0 or 1
(and F is printed on the cell to the right in the next step).

3. S or F is printed only in one of these two ways.
4. A ∗ is printed only if on the immediately preceding step a ∗ has been overprinted
with a 0 or 1.
With these conventions it is easy to check the following lemma.

3.3. Lemma. If a Turing machine begins on a standard �-con�guration then every
successive con�guration is a standard �-con�guration.

3.4. De�nition. A one-dimensional cellular automaton acts on a 2-way in�nite tape.
Each cell contains a symbol from a �nite alphabet � (possibly B). The automaton has
radius r if the value of a cell at time t + 1 depends on the value at time t of the cell
and its r predecessors and r successors.
We deal primarily with radius 1 rules which determine the next value of a cell

depending only on the current value of the cell and its left and right neighbors. We
require that state B is quiescent, any cellular automaton takes an input which is all B
to B. Thus, beginning on �nite input our tape will always contain only a �nite number
of non-B cells.

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 121

3.5. The simulation language. Let the Turing machine T have the alphabet �= {S; F; 0;
∗; 1; B; }, operations O= {L; R} and states Q= {q0; : : : ; qk}. Thus T is given by a func-
tion T : Q×� 7→ �×O×Q. We will contruct a one-dimensional cellular automaton
with radius 1 that simulates T . Let Q1 =Q ∪ {B}. Let �1 =�×Q1×{L; R; H; B}.
Thus each member of �1 codes a symbol of the original language, a state of the

original machine and the head position of the Turing machine. (In e�ect, this creates a
3 track tape.) When confusion is unlikely to ensue, we will describe only the projection
of the tape onto one coordinate. Thus we may say the tape reads Sm ∗ nF to mean the
sequence of non-B �rst coordinates. The cell is active if the head position (third coor-
dinate) is H . We clarify this description with the following de�nition. Note that while
� and �-i=o con�gurations involved only the symbols from �, in �1-con�gurations we
also code the head position and state (of the simulated Turing machine).

3.6. De�nition. (1) A standard �1-con�guration of a two-way in�nite tape satis�es
the following:
(a) All but �nitely many cells contain B′= 〈B; B; B〉.
(b) The �rst coordinates of the non-B′ cells form a standard �-con�guration.
(c) There is a unique cell whose third coordinate is H ; all non-B′ cells to the left of

it have R as third coordinate; all non-B′ cells to the right of it have L as third
coordinate.
(2) A standard �1-con�guration is a standard �1-i=o con�guration if in addition:

(a) The �rst coordinates form a standard �-i=o con�guration.
(b) One cell contains the entry 〈S; qo; H 〉. The head position is L for all other non-B′

cells.
Now we show that there is a simple computation of each partial recursive function

by a cellular automaton. This is, of course, well known. For example, the basic idea
of the simulation here occurs in [3; 6:3]. The argument we give here clari�es and
motivates our later constructions. We see now how our simulation works on standard
input. Later, we introduce further complications to deal with nonstandard input.
The following argument is similar to the simulation described independently but

earlier in [4]. The novelty of the simulation in this paper appears in the treatment of
nonstandard con�gurations. The important role of initial conditions and the possibility
of heads was pointed out independently but earlier in [1]; our analysis of this situation
is new.

3.7. Lemma. For every Turing machine M; there is a cellular automaton AM such
that the action of M; beginning in state q0 at the symbol S; on a standard �-i=o
con�guration is exactly the action of AM on the �rst coordinates of the associated
standard �1-i=o con�guration. Moreover; if the operation of AM begins on any stan-
dard �1-con�guration; all later con�gurations are also standard �1-con�gurations.

Proof. The automaton AM has dimension and radius 1. We describe the action of AM
on a cell i based on cells i − 1; i; i + 1 (the site at i) with contents (for j=i −

Sh:623

122 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

1; i; i+1): 〈symbol; state; head position〉= 〈sj; qj; pj〉. The description here is for cells
which appear in a standard �1-con�guration. The de�nition is extended to nonstandard
con�gurations below.
1. The �rst coordinate (i.e. the symbol) at the next stage is determined entirely by
cell i.
(a) If pi 6= H , the �rst coordinate remains the same.
(b) If pi=H , the �rst coordinate becomes the symbol printed by M in state qi

reading si.
2. If pi is H , the new state and head position of cell i is determined by cell i. The
state remains the same; the head position is L or R depending on whether M moves
left or right when reading si in state qi.

3. If pi+1 is H , the new state and head position of cell i is determined by cell i + 1.
(a) If in state qi+1 reading si+1, M moves left and goes into state q′, the new

position of cell i is H and the new state is q′. (The new position of cell i+1
is L.)

(b) If in state qi+1 reading si+1, M moves right, the position of cell i remains R
and the state remains the same. (The new position of cell i + 1 is R.)

4. If pi+1 is R, then the new head position is again R and the state and symbol are
also unchanged.

5. If neither cell i, nor i+1 has head position H or R, the new state and head position
of cell i depend on cell i − 1.
(a) If pi−1 is L, then the new head position is L and the state and symbol are

unchanged.
(b) If pi−1 =H , the new state and head position of cell i is determined by cell

i − 1.
(i) If in state qi−1 reading si−1, M moves right and goes into state q′, the

new position of cell i is H and the new state is q′. (The new position of
i − 1 is R.)

(ii) If in state qi−1 reading si−1, M moves left, the new position of cell i is L
and the state remains the same. (The new position of i − 1 is L.)

Just checking, one sees that on a standard �1 i=o con�guration, the simulation works
as desired.

We want to deal with arbitrary inputs. We will arrange that on a �nite input, the
rightmost active cell will eventually dominate the computation. In order to do this we
have to restrict to certain kinds of computations of total recursive functions.

3.8. Normal input–output conventions. The Turing machine M normally computes the
function f, if for each m, on input SmF , beginning on S in initial state q0, it computes
Sf(m)F and halts.
We want to consider a nonstandard input–output convention.

3.9. De�nition. (1) The Turing machine M is said to copy=compute f if beginning at
S on a tape with standard con�guration Sm∗F , it computes Sm ∗ f(m)F and halts.

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 123

(2) The Turing machine T is said to fully compute the function f on empty input if
the machine successively computes the sequences Sn∗f(n)F for each natural number n.
Obviously, every total recursive f can be copy=computed by a Turing machine Tf.

The next remark is equally obvious; we spell it out because we make use of the details
in our simulation.

3.10. Lemma. For any total recursive function f; there is a Turing machine Tf which
fully computes f on empty input.

Proof. Fix a Turing machine M which normally computes f. Now we describe the
operation of the new machine Tf which fully computes f on empty input. We assume
the initial state is qo. Using special states it writes S0 ∗ F . Now we begin the main
loop. It moves left erasing as it goes until it reaches ∗. It then moves left adding 1 to
the number on the left of ∗ and moving the S one cell to the left if necessary. The
con�guration now begins Sm + 1∗. Then head moves right and copies m + 1 after ∗.
Now it behaves on the sequence ∗m+1 as M behaves on Sm+1 to compute f(m+1).
When it reaches the halting state of M , this �nishes one iteration of the loop.

Note that since in incrementing m, S is pushed to left (every 2n steps) and m is
copied to the right pushing F to the right (unless the computation is already longer
than log m), any �nite interval containing the initial con�guration will eventually lie
between S and F .
We need one more re�nement on our Turing computations; its use in this context

was suggested to us by Gyorgy Turan. By an initial position of a Turing machine, we
mean an input string, a position of the head on the tape, and an initial state.

3.11. Lemma. For any Turing machine T; there is a Turing machine T ′ in a language
�′; which on standard input simulates T; but does not cycle on any initial position.
Moreover; on any �′-input x; ST ′ ; x(t)= max(ST ′ ; x|�(t); t). Moreover for t bigger than
the length of the input; ST ′ ; x(t) is a strictly increasing function.

Proof. Let �′ add a second track to the tape. The only symbols which occur on the
second track are 0,1 and B. In accordance with the convention in Notation 2.1, this
track contains only a �nite number of 1’s and 0’s. T ′ acts as T on the �rst track. At
each step in the computation the machine prints a 0 on the 2nd track at the position
currently being read. If that cell was blank it replaces the 0 with 1 and proceeds to
the next step of the computation. Otherwise, it moves to the right until it reaches the
�rst cell not 1, prints a 1 on it, returns to the 0, changes it to 1 and proceeds to the
next step of the computation.

3.12. De�nition. The cellular automaton A is said to completely compute the total
function f, if for some m, the machine successively computes the sequences Sn ∗f(n)F
for each natural number n¿m, coordinates Sm ∗ xF , natural number n¿m.

Sh:623

124 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

The initial input may contain a correct partial computation of f(m); in this case the
machine just continues the computation.

3.13. Theorem. For any total recursive function f; there is a cellular automaton Af
which completely computes f.

Proof Outline. Fix Tf, a Turing machine, which fully computes f, and which, using
Lemma 3.11, does not cycle on any input.
We will establish two properties of the action of the simulating automaton.

1. The successor of a standard �1-con�guration C is a standard �1-con�guration C′.
Moreover, the �rst coordinates of C′ are the result of the action of Tf on the �rst
coordinates of C.

2. Any tape input with only �nitely many non-B′-cells will evolve in �nitely many
steps to a standard �1-con�guration.

Together these two facts yield the theorem.
The �rst property follows directly from Lemma 3.7. For the second, we regard

a cellular automaton with alphabet �1 as a number of heads each performing a �-
computation. We will arrange that the rightmost of these heads eventually dominates
the computation and computes f. We would like to construct an automaton that acted
independently of input and just started completely computing f. But, we have to allow
for the possibility that the initial position is in the midst of a correct computation. An
arbitrary con�guration may contain many heads; it may contain none.
Consider �rst that the initial con�guration contains only one non-blank cell which

contains 〈S; q0; H 〉. From such a site the machine proceeds to fully compute f as
in Lemma 3.10. It will print ∗ once and this ∗ will never move. We call this the
generating subroutine. We must explain what happens when there are other nonblank
cells.
We say a subsequence of a con�guration (in particular a site) is acceptable if it

occurs in a simulation (as in Lemma 3.7) of a computation beginning on the standard
�1-i/o con�guration associated with S ∗F . (If the middle cell of a site is 〈S; q0; H 〉 and
the pair of the second two cells occur in such a simulation then the site is acceptable.)
A stop cell is one of 〈S; q0; R〉 or 〈S; q0; H 〉. A site is quiet if the right most cell is a
stop cell; the center cell becomes 〈B; q; R〉 where q was the current state. Any other site
is called a generating site and the new entry of cell i is 〈S; q0; H 〉. The operation of
the machine on a cell which contains a head depends on whether the site centered on
the cell is acceptable, quiet, or generating. If it is acceptable, the simulation continues
as in Lemma 3.7; the other actions have just been described.
Now we give a global picture of the operation of the automata.

1. From any generating site the machine begins the generating subroutine. This oper-
ation has priority (writing over any other input) unless the head �nds a stop cell
to its right.

2. If a site is acceptable and contains a head, this head will either trace out a complete
computation of f or �nd a stop cell to its right.

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 125

In either case when the computation �nds a stop cell the left H becomes R and
remains quiescent until it is eventually overwritten by the head on the right. (If there
is a head on the right this will happen because the ∗ written by the right Head will
never move; eventually the rightmost Head will write over anything written by the
other Heads.)
To see that this machine computes a �nal sequence of values for f, we analyze

the initial string from the right. Either the entire con�guration is acceptable or there
is a right most generating site followed by an acceptable string. In the �rst case, the
con�guration is a standard �1-i/o con�guration and the result follows by Lemma 3.7.
In the second case a complete computation of f will propagate from the rightmost
generating site. The input to the right of this state will be used; the input to the left
is irrelevant to the eventual computation.

3.14. De�nition. We call an automaton Af constructed as in the proof of Theorem 3.13,
a dominating automaton.

Note that a dominating automaton uses unbounded space on any input, so a classi�ca-
tion of automata according to the schema suggested would have to put each dominating
automaton in class 3 or 4.

4. Composition and nonclassi�ability of cellular automata

In this section we show how to compose a �nite set of dominating cellular automata
A1 : : : An into a single automaton A with a larger alphabet whose growth rates re
ects
that of each Ai. Moreover, this composition can be chosen so that the classi�cation of
the behavior of A on input x falls into speci�ed type 3 or 4 with arbitrary probability.

4.1. De�nition. Let A1; : : : ; An be cellular automata of the same dimension and radius
with alphabet �0⊆�. Let X =

⋃
i¡n Xi be an additional set of �nite symbols (where

the Xi are disjoint). Form the language �1 =� × X . De�ne the cellular automaton
A=

⊕
i Ai with the following transition rule. If the central cell has an element of Xi

as its second component use the transition rule from Ai on the �rst components. A is
called the composition of the Ai with respect to X.

We clearly have:

4.2. Lemma. If A1 and A2 are dominating automata then so is their composition (for
any X).

4.3. De�nition. For each n, let Pn be the probability measure assigning the same
probability to each element of �n (i.e. each �nite input of length n).

4.4. De�nition. Let Pn(i; A) be the probability that among all inputs x of length n, the
function SA; x is in class i (from the classi�cation in Lemma 2.3).

Sh:623

126 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

We now show that the classi�cation of Section 2 does not extend from pairs 〈A; x〉
to cellular automata A.

4.5. Lemma. Let p; q be rational numbers 06p; q61 with p + q=1. There is a
cellular automaton Ap;q such that for every n; Pn({x: 〈Ap;q; x〉 ∈Class 3})=p and
Pn({x: 〈Ap;q; x〉 ∈Class 4})= q.

Proof. Suppose there is such a classi�cation. Let A1 be in class 3 and A2 in class 4
represent two total recursive functions as in Theorem 3.13. Choose X with p symbols
for A1, q symbols for A2. Now, the required machine is the composition of the Ai with
respect to this X .

4.6. Remark. This construction refutes a rigid classi�cation of cellular automata into
four classes according to the rate of growth schema. It does not seem to refute the
separation of the bounded space from unbounded space automata. Two complications
present themselves. If the automaton which is supposed to dominate is of class 1, it
might die out before it had a chance to exert its dominance over some pretenders. This
can be remedied by inserting a “resurrection state”. More seriously, if the “dominating
automaton” were to glide to the right, it would never exert its dominance over, e.g. a
class 3 automaton to its left and we would be left with a class three pattern instead of
class 2. This tends to support the judgement of [2] who combine classes 3 and 4 in
their classi�cation.

5. Rate of growth

In this section we investigate the rate of growth of patterns generated by cellular
automata. The following examples shows that a pattern which grows monotonically in
size need not grow at a ‘�xed rate’ if that phrase is interpreted as ‘linearly in t’.

5.1. A slow growing example. Let A be the cellular automaton which is derived from
the identity function by the construction in Lemma 3.13. Then on standard input S ∗F ,
A successively writes Sm ∗ mF for any natural number m. Thus, since it takes time
log n to write n, limt→∞ SA; S∗F(t)= log t is a constant.
The di�culty of distinguishing the third and fourth classes is emphasized by another

construction.

5.2. Enforcing monotonicity. Let A be any cellular automaton of class 3 or 4. For
simplicity, suppose �= {0; 1; B; S; F} and that A is one-dimensional of radius 1. (The
S, F are inessential and included only to keep our notation consistent.) We add a
new symbol M (for marked). Let �′=� × {B;M}. Let the value of A′ on three
consecutive cells 〈xi−1; yi−1〉, 〈xi; yi〉, 〈xi+1; yi+1〉 be 〈B; B〉 if all the x’s and y’s are
blank. Otherwise the second coordinate is M and the �rst coordinate is the result of

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 127

applying A to xi−1; xi; xi+1. Then every cell that is ever marked remains marked, so A′

is class 3 even if A is class 4, but the ‘information content’ remains the same as that
for A.

5.3. Eventual behavior. The crux of the argument here is that the behavior of the
function SA; x(t) depends essentially on both A and x. Paradoxically, we achieved this by
constructing automata whose eventual behavior is independent of input in the following
sense.

5.4. Lemma. If Af is a cellular automaton from Lemma 3:13 which fully computes f.
1. For any input x; lim inf t→∞ SAf; x(t)=∞.
2. For any input x; there exist constants t0 and c such that for t¿t0;

SAf; x(t)= SAf; S∗F(t − c):

Thus; the eventual behavior of SAf; x(t) on any input x is determined by the eventual
behavior of SAf; S∗F .

Proof. If x is nonstandard, after t0 steps, Af settles on the unique active cell, prints
S ∗ F , and simulates Tf on input S ∗ F . If x is standard, the computation of Af on x
begins c steps into the computation of Af on S.

5.5. Classifying minima. Class 4 automata were de�ned by the property that SA; x(t)
is not eventually monotone. There are some restrictions on this nonmonotonicity. For
example, for any one-dimensional cellular automaton, the function which enumerates
the points (ti; SA; x(ti)) which are local minima of SA; x(t) is clearly recursive. We show
that, in a certain sense, every total recursive function can be represented in this way.
Let M be an arbitrary Turing machine and AM be the cellular automata associated
with M in Lemma 3.7. Let x be the input 〈〈S; q0; H 〉; 〈S; 0; L〉〈∗; B; L〉; 〈F; B; L〉〉 with
all other cells B′. Then for all t, the contents of the tape at time t is the same whether
considering computation by M or by AM . In particular, SM; x(t)= SAM ; x(t). For any total
recursive function f, we constuct a Turing machine Mf so that the contents of the tape
at the 2ith minimum of SMf; x(t) is Si ∗ f(i). We compute a total recursive function f
by a Turing machine Mf which uses strictly increasing space on the computation of
each value (as in Lemma 3.11). Note that space (using the second track) will strictly
increase until the �-con�guration reads Sn ∗f(n). When the computation is complete,
add one more symbol to the second track. Then erase the second track until it has the
same length as the �rst. (The interpolated step guarantees there is at least one step in
this process.) Again add one element to the second track, then erase both tracks until
the contents of the �rst are Sn ∗ F . Now, increment n to n+1 and compute f(n+1);
use the second track to guarantee that the space used is increasing throughout this
stage. Thus the only space minina are at con�guratons Sn∗F and Sn∗f(n)F . We have
shown:

Sh:623

128 J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129

5.6. Theorem. For any recursive function f there is a Turing machine M which com-
putes f; and there is a cellular automata AM such that the �-con�guration of the 2ith
local minimum is Si ∗ f(i)F .

If we used 1-ary rather than binary notation we could easily decode the value of f
directly from the values of SAM ; S0∗F(t) at minima.

6. Conclusions

We brie
y compare these results with several related papers.

6.1. Universality and class. Culik and Yu [4] gave a di�erent formalization of Wol-
fram’s classi�cation. Paraphrasing slightly, they de�ne
1. A evolves to all blanks from every �nite input.
2. A has an ultimately periodic evolution on every �nite input.
3. For any two con�gurations c1 and c2, it is decidable whether c1 will evolve to c2
under A.

4. All other cellular automata.
Clause 4 guarantees that this is a (cumulative) hierarchy classifying all cellular

automata. The spirit of this classi�cation is to label each automaton with its most
complicated behavior (ranging over all inputs).
Their Theorem 10 asserts that no universal automaton can be Class 3. But our third

class is clearly a subset of theirs and we showed in Section 5.2 how to encode a
universal automaton into our third class. The seeming paradox is resolved by noting
the signi�cance of input=output coding. They report their result is obvious. Indeed, it is
given that their i=o coding is unique. That is, if (as speci�ed in [4]) there is a unique
con�guration representing each natural number, then deciding whether c1 evolves to c2
under Af is the same as deciding whether f on the input coded by c1 gives the value
coded by c2. However, in the scheme described in Section 5.2 there are in�nitely many
codes for each possible output and so the contradiction is avoided.

6.2. Probabilities on in�nite strings. Ishii [7] has given a probabilistic classi�cation
of the behavior of cellular automata on in�nite strings. Informally, an automata is
in class X if for almost every initial con�guration (in a speci�ed measure on �Z)
evolves to a con�guration of type X . While this result is in a di�erent direction from
ours, the distinction demonstrates again the importance of distinguishing behavior on
�nite strings from behavior on in�nite strings. An analogous situation is the contrast
between the undecidability of the ring of integers (arbitrary �nite sequences) and the
decidability of the �eld of real numbers (arbitrary sequences).

6.3. The number of states. In our construction, we freely expanded the language �
by adding a small number of additional symbols. The necessity of such an expansion

Sh:623

J.T. Baldwin, S. Shelah / Theoretical Computer Science 230 (2000) 117–129 129

is made clear by the proof by Land and Belew [5] that for any density �, there is
no two-state automata (of any radius) which can correctly decide whether sequences
of arbitrary length have density greater than �. In particular there can be no two-state
universal cellular automata. So our use of more states was essential.

6.4. Summary. This paper highlights the importance of input and output conventions
in describing the information content as opposed to the dynamics of a computation.
If the automaton acts with the standard input=output convention (3.1), then a cellular
automaton simulating a universal Turing machine will, depending on the input, have
runs in each of the four classes. However, by modifying the output convention as in
Section 5.2, we can construct a universal cellular automaton which behaves in class 3
on every input. We have formalized Wolfram’s classi�cation scheme in terms of the
spatial rate of growth of a computation. We see that this notion is well de�ned for pairs
of an automaton acting on an input but that it cannot be extended even probabilistically
to a classi�cation of automata. Several new patterns have been discovered in the course
of this investigation. In one case the size increases monotonically but at a rate of log t
rather than linearly. Wolfram describes class four automata as having complex localized
structure which is sometimes long lasting. The examples of dominating class 4 given
in this paper are di�erent. After a �nite amount of chaotic (in a nontechnical sense)
behavior they evolve to a pattern which grows monotonically on one side and as
eratically as the time taken to compute a given recursive function on the other.

References

[1] A. Dhar, P. Lakdala, G. Mandal, S.R. Wadia, Role of initial conditions in the classi�cation of the rule
space of cellular automata dynamics, Phys. Rev. E 51 (1995) 3032–3037.

[2] Braga et al., Pattern growth in elementary ca, Theoret. Comput. Sci. 145 (1995) 1–26.
[3] L. Hurd, Formal language characterization of cellular automaton limit sets, Complex Systems 1 (1987)

69–80.
[4] K. Culik III, S. Yu, Undecidability of ca classi�cation schemes, Complex Systems 2 (1988) 177.
[5] M. Land, R.K. Belew, No perfect two-state cellular automata for density classi�cation exists, Phys. Rev.

Lett. 74 (1995) 5148–5150.
[6] J.C. Shepherdson, Machine con�guration and word problems of given degree of unsolvability, Zeitschrift

f. Math. Logik u. Grundlagen d. Mathematik 11 (1965) 149–175.
[7] S. Ishii, Measure theoretic approach to the classi�cation of cellular automata, Discrete Appl. Math.

39 (1992) 125–136.
[8] K. Sutner, A note on Culik–Yu classes, Complex Systems 3 (1989) 107.
[9] S. Wolfram, Computation theory of cellular automata, in: Cellular Automata and Complexity, Addison-

Wesley, Reading, MA, 1994, pp. 159–202. Originally published: Comm. Math. Phys. 96 (1984) 15–57.

Sh:623

