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In this article we define when a finite d:agram of a mouel is stable, we 1nvesti-
gate what 1s the form of the class of powers in which a fimite diagram 1s stable, and
we generalize some properties of totally transcendenta! theories to stable finite
diagrams. Using these results we mnvestigate several theories which have only homo-
geneous models in a ce~tain power We also mvestigate when there exist models »f
a certain diagram which are A-homogeneous and not )\+-homogeneous in variou,
powers. We also have new results about stable theornes and the existence of maxi-
mally A-saturated models of power p

§ 0. Introdu.ction

if M is a model, D(M) will be the set of complete types in the varia-
bles xg, ..., X,,..; for all n < w which are realized in M. M is a D-model if
D(M) € D and M is (D, A)-homogeneous if D(M) = D and M is A-homo-
geneous. D is A-siable if there is a (D, A*)-homogeneous model of power
> \* in whick over every set of power "< A at most A complete types are
realized. A (first-order complete) theory T is A-stable if for every IT1*-
saturated model M of T D(A1) is A-stable.

Morley [6] investigated X j-stable theories (he called them totally
transcendental theories). He proved that these theories have several
properties indicating their simplicity — in every model of a 8 4-stable
theory, over every infinite set of power less than the power of the

* | would like to thank my friend Leo Marcus for translating most of this psper and detecting
many errors.
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model, there is an indiscernible set (set of indiscernibles in Morley’s
terminology) of fairly large power. Also, over every set included in a
model of a ¥ -stable theory there is a prime model. Morley also
showed that a R ;-stable theory is stable in all powers. With the help of
this last result he showed that a countabie theory which is categorica!
in a power larger than N is categorical in every non-denumerable
power.

When it was tried to generalize these results to non-coun able theo-
ries problems arose principally at two points. The first was solved
easily in the case of Morley: that is, if 7" is stable in one power then T is
stable in other powers. The second is: it turns out T is not categorical
exactly in those powers in which 7 has a non-1Tl-saturated model. Thus
Hanf numbers come into the picture here. These generalizations were
treated by Rowbottiom [11], Ressayre [10]. and the author [ 13, 17].

In this article we strengthen and generalize these results to stable
finite diagrams.

In §1 we define our notation.

In §2 we define when D is A-stable, and we define the conditions
(#A), (A=N), (B#\) such that: («A) = (4+\) = (BxA) = D isn’t stable in
any power < 2*; and if there 1s a (D, (22*)*)-homogeneous model and
D is not 22*-stable then D satisfies (xA) provided that the power of the
model is > 222,

In §3 we use the results of §2 to prove (theorem 3.1) that if D(M) is
A-stable where A < |IM}l and A is a set of elements of M of power < A,
then in M there is an indiscernible set over 4 of power > A. We also
prove (in 3.4) that if D is stable then for every cardinal u there is a
(D, uw)-homegeneous model of power 2 u.

In §4 we try to characterize the class of powers in which D is stable.
Our conclusion is (Theorem 4.4):

If D is stable then therc are cardinals A, k such that D is u-stable iff
pu> N ud = AlsoA< 3 [(2/TH* ]. (For stable theories A < 2l
k < |Ti*; so this theore:n solves the problem almost completely. For
stable diagrams it is fair to assume that it is possible to improve the

bound on A).
In §5 we define prime models over sets 11 a number of ways and
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prove several theorems about them, including their existence in certain
cases.

In §6 we prove the existence of non-homogeneous models in certain
cases For theories we can ccnclade from 6.3, 6.9 that

Theorem: If T has a model of power > MU which is \T\* -sarurated but
not Nt-saturated, then for every regular cardinal u, T has models of arbi-
trarily high power which are y-saturated but not p*-saturated.

This theorem almost completely answers problem 4A from Keisler
{3].

In €7 we solve problem D and partially solve problem C from Keisler
{2]}. The principle results are:

1} If all the mode!s of T of power \ > |T| are homogeneous then
there is po with \T1 < pg < u(T) such that all the models of T of power
2 Mg are homogereous and in every power k with \T1+ 8| < k < pq
T has a model which is not homogeneous (this is Corollary 7.6).

2) (G.C.H.) Let SP(T, P) be the ciass of cardinals \ such that every
model of T of power \ which omits all the types { p: p € P} is homo-
geneous. Then if there is k € SP(T, P) with k > T\, then there is
Ho <2 {(2‘7!)“] such that N 2 pg implies N € SP(T, P),and |\T1 < A
< py implies N & SP(T, P) excep: for perhaps one \, when X =2, ; or
A =2, and py = X" (8 a limit ordinal). (This is Corollary 7.8.)

3) If T is a countable theor> all of whose models of power % | are
homogeneous, then T is R | -categorical. (This is Theorem 7 9.)

Abstracts on theorems of this paper were published in the Notices of
the A.M.S. [12, 14, 15]. Keisler published an abstract [4] dealing with
a theorem similar to result 2). (His hypothesis and result are stronger.)

Let D(T) be D(M) for any \T\*-saturated model M for T. Many of the
results about D(T), are true for every D for which there exists a non-
principal ultrafilter E on w such that D(M) € D= DM« [E)C D.

Added n proof, 20 August 1970

By Shel. {18} n 1) above, o < (2E T‘)+, and by an add theorem (7 10) (see p. 117)
2) can be improved
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8§ 1. Preliminaries

An ordinal is defined as the set of all smaller ordinals and a cardinal,
or power, is defined as the first ordinal of its power. We shall use «, §. 7.
i,], k,1for ordinals, k, X, x, 1 for infinite cardinals, m, n for natural num-
bers, and & will denote a limit ordinal. If 4 is a set its power will be de-
noted by |41. We define by induction (A, 0)=N, I\, 8)= U 2, ),

1 <8
AQ,i+1)=2301 3, =2(a) = AR, @). «- B will denote the product
of the ordinals a, 8. « divides v if there is a 8 such that a - § = . Define
p®) =Z { ux : k < \}. The empty set will be denoted by 0 or {}.
A—-B={a:a€ A,a¢ B}. The domain of a function f will be denoted
Dom f and its range Rang f. If f, g are functions then f extends, or 1s a
continuation of, g if Dom f2 Dom g and for alla € Dom g. f(a) = g(a).
If f is one-to-one then f—1 will denote the inverse function. fg will be
the composition of the two functions. g = fl4 if Domg=4 N Dom f
and fextendsg. If £ =Dom fN Domgand fl4d =gl4 thenfu gisa
function which extends f and whose domain is Dom fU Dom g. A se-
quence t is a function whose domain is an ordrnal which will be called
its length and will be denoted I(;‘_). If A is aset, 1, will be the function
whose domain is 4 and I; (@) = a for all 2 € A. If ¢ is a sequence, thea
t, = t(i) (= the value of the function at /) The sequence ¢ will be denoted
and defined sometimes to be (f; : i < I(f);. We frequently don’t distin-
guish between ¢, and (¢, : i < 1). The sequence {(g; * i < a) is increasing
with respect to the order < if i <j implies a, < a,. If the ordex; rglati011
is not specified, we assume that it is the inclusion relation. If 7, s are
sequences, ther u = ¥ is defined to be the sequence such that /() =
I(F) + I(5), for i < I(£}, u, = 1,, and for I(t) < i < I(w), u, = s(i — U(1)).

(4)* will designate the set of all functions from #n into 4. n, 7 will
designate sequences of ordinals, and if not specified otherwise, we shall
assume that they are sequences of zeroes and ones.

T will be a first-order theory in the language L = L(7) with equulity
sign. We always assume ILI, IT12> Ny, We usually assume that T is a
fixed complete theory with which we are dealing and, for simplicity,
that there are no function symbols in L(T) (actually this entails no loss
of generality). x, ¥, z will designate variables, x, y, z finite sequences of
variables, @, Y formulas of the language L; we write ¢(xg, ..., x,_) for
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w if all the free variables appearing in ¢ are among {xg, ..., x,_; }. M, N
will designate models of T or of other theories, if so specified. If M is a
model, IM! will be the set of its riembers. Thus || M[| will be its power.
M- olagy, ...,a,_1ifay,...,a, | € IMland play, ..., a,_, ] is satisfied
in M. If Nisa model of 7, L(T) 2 L then the reduct of N to L is the
model M such that IM|= IN!|and for every predicate Rin L, R¥ =
{(GO, e @y 1) ME R[007 S/ | i } =RV = {‘aO-' ey ly 1)

NE Rlag, ...,a,_11}.

The model M is A-saturated if for every sequence (p,(x, y) : i < iy <\
of formulas 2nd sequence (b, : i < iy < \) of sequences of elements of M
which satisfy: for every finite subset 7 € i there 1sa c such thatie [
implies M = ¢,[c, b,]: there is a ¢ such that for all 1 < iy, M = ¢,lc, b;].

We assume that M is a k saturated model of T of power K where K is
an inaccessible caruinal. (A proof of the existence of such a model and
a generai discussion of saturated models can be found in Morley and
Vaught [9], where the def nition is slightly different.)

M is an elementary submodel of M, if IM; < IM,|and for every
formula p(x) and sequence b of elements of M;, M, plb] iff
M, = ¢lb]. We assume that all the models of T which we define are
elementary sub-models of M of power < k. (In set theory R(a+1) is
defined by induction to be the set of all sets included in R(a), R(§) =
ﬁl<16 R(B). It is known that if k is an inaccessible cardinal, then R(k)
is a model of set theory. Thus we can also assume that all the elemen-
tary submodels of M of power < k are in R(k) where k = | M|| — and it
is clear that every model of T of power < K is isomorphic to such a
model. These stipulations are just for convenience and it is easy to se¢
that by a change in notation we could get by without them, with no
loss of generality.) Thus it turns cut that a model 1s d2termined by its
set of elements, and so we sometimes don’t differentiate be -ween M
and 1M\, It is easy to see that M, is an elementary submodel of M, iff
IM1C IM, 1 If M,, i < iy 1s an increasing sequence of models then there
isa model M with IMi= U IM;! which we sometimes denote by

1 < i

U M,. A, B, C will denote sets included in IM! of power < k,a, b, ¢

1 <1g

finite sequences of elements of 1M1, a is called a sequence from A4 (of 4}
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if all the elements of the sequence belong to A. Instead of M = {b] we
can write = ¢[b] since the particular modrl M makes no difference. If
A is a set there is a model M with IM|= A iff for every sequence b from
A and formula p(x, y), if (3x)¢(x, b) then there isa & 4 such that

= pla, b] (this is the Tarski-Vaught test).

The function F is a mapping if Rang F, Dom F € IM!, IDom FI< ||IM})
and for every formula ¢ and sequence (ay, ...,a,_p), E vlag, ..., a, _; ]
iff = ¢lF(ay), ..., Fla,_)]. (Clearly, a mapping must be one-one.) F, G
will denote mappings, F(4) = {F(a) :a€ A}, F(a) = (F(a,) : i < l(a)).
From properties of saturated mocels it is clear that if F is a mapping
and A a set, then there is an extension G of F w:ith domain 4 U Dom F.

p is an n-type over A if p is a set of formulas of the form o(xy, ...,
Xp_1» b) where b is a sequence from A. p, q, r will denote types over a
set A. p extends or continues g if ¢ € p. ¢ realizes p ir for every
p(x,P)EDP (X =(xg, ..., X,_1)), E vlc, bl. For our purposes “type”
will always mean a noun-contradictory type, i.e. for every finite subset g
of the type, there is a sequence realizing ¢. (From the definition of M it
follows that if p is a type, there is a sequence ¢ realizing p.) p is a com-
plete n-type over A if for every sequence a from A and formula ¢,
P(Xg,s ces Xp_1, @ E P Or TP(Xg, ooy Xpp_p s a) € p. If not specified other-
wise, every type is a 1-type over the empty set. S”(A4) will denote the
set of complete n-types over 4, S(4) = S1(A4). Every sequence (ag, ...,
a,_,) realizes a complete n-type over B which will be called “‘the type

which <ay, ..., a,_y) realizes over B”’; clearly, this type belongs to S?(B).
Define pIA {\1/ yEPD, {gb} is a type over 4 Y FE(p) = {¥(xg, ..
Xn_1> F@)): Y(xg, en Xp_1> a) € p, ais a sequence from Dom F}.

Sometimes instead of saymg that p is an n-tvpe for some n < w we say
that p is a finite type.

If A 1s a set, D(A) is defined to be the set of finite types over O which
are realized by finite sequences from 4; D(M) = D(IMD. M is a D-model
(A is a D-set) if DM) € D (D(A) € D). D will always denote sets of the
form D(M), and will be calied the finite diagram (of M). A type
p € S"(4) will be called a D-n-type if for all g, ..., a,,_ > which realize
p, AU {ay, ...,a,_, } is a D-set. S}, (4) will denote the set of complete
D-n-types over A Sp(4)= S;) (A). We usually assume that D is fixed,
every set is a D-set, and every model is a D-model. In particular if we
write Sp (4) it is assumea that A is a D-set (if A is not a D-set, Sj(4) is
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clearly empty). D(T) will denote D(M) where M is any |71 -saturated
model of T. M is a (D, A\)-homogeneous model if for every 4 € IM|
with 141 < A, and p € S (A), p isrealized in M and DIM)=D. M is
A-hcmogeneous if it is (D(M), A)-homogeneous. M is homogeneous if it
1s | M}l-homogeneous. It is not difficult to show that if M is (D, A)-
homogeneous, B C 4, A a D-set, IBI< X, IAI< A, F a maoping from B
into M, then there is an extension G of F which 1s a mapping of A4 into
M. M s D-homogenous 1if it is (D, | Mll)-homogeneous. It i; easy to see
that if |71 < X, M is (D(T). N)-homogeneous iff M is A-saturated. Occa-
sionally we shall use variables other than x, ..., x,_; in types, and then
we shall write p = p(yg, .... V,_1 ), for example, if the variables ave

Yo - V1 - I this case we also write p < 8 (4) when the intention is
clear.

A sequence (g, : « < iy} is indiscernible over 4 if every function F is a
mapping if it satisfies the following conditions: Dom F € 4 U {Ranga; :
i<}, Fla=1,,Fa@)efa :j<ip} fori<iy,and if F(a,) =1,y and
F@,)=a,,thenj<i iff j; <i; (In this and the following defin:tion
we assume that i # j implies q, +» 4,.)

{a, : i < iy} 1s an indiscernible set over A4 if every function F is a
mapring if it satisfies the following conditions: Dom F & 4 U {Ranga, .
i<i},FlA=1,, F@)e{a, .)<ip} fori<iy,anda; # a implies
F@a)+ F(&,). it is easy to see taat (g, : i < i) is an indiscernible se-
quence over A if for all ju < ... <j,_; <ig, ko < ... <k, 1 <1y,

(@)g+ -+ 4,1 and (kg - Ak, Tealize the same type over A. A simi-
lar condition exists for indiscermible sets. It is easy to see that if

(@, : i < iy) is an indiscernible sequence over A, w < iy < jo, then itis
possible to define a, for 1y < i < j such that<a; : i <j,) will be an in-
ciscarnible sequence over A. Naturally, D(4 U {Rangaq, : i<ig})=
D(4 U { Rang E,- i< jgp}) The respective claims are true for indis-
cernible sets. Of course, if @, = (b,) we write b, instead of a,.
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§ 2. On stability of finite diagrams

In this section we define A-stability for D and several properties ((x)),
(A7), (Bx\)) which imply the instability of D in suitable powers and
which are implied by the instability of D in other powers if in addition
there exist certain homogeneous D-models. These conditions will serve
us later when we want to prove some theorems on stable theories.

Definition 2.1. 1) D wili be called A-good if there is a (D, A\)-homoge-
neous model of power 2> A. D is good if it is A-good for ali A.

2) D is A-stable if D is A*-good and for every D-set 4 such that
lAT< A, 1Sp (A) < A, D is stable if it is A\-stable for some A.

Note that 1) we say “for all X" and in 2) ““for some A\™.

Claim 2.1. If D is A*-good, then D is \-stable iff for all n < w and for
all A with 1A1< A, ISH (A< A

Proof: Immediate. (Note that if 4 is not a D-set, then Sf (4) = 0.)

Definition 2.2. A type p € S"{A4) sglits over B € A if there is a formula
Y(x, ¥) and there are two sequences a, b from A which realize the same
type over B such that Yy(x, a), 71 y(x, }) € p.

Claim 2.2. 1) If p € S"\A) splits over B C A, then there is a mapping F,
B < Dom FC A, FIB =1y such that p, F(p) are contradictory types.

2) IfCS BC A, p< S"(A), p does not split cver C, and every finite
type over C which is realized in A is realized in B, then p|B has a unique
continuation in S"(A) which doesn’t split over C. If p|B € S’l’) (B) then
p € Sj(4).

Proof: 1) Define F such that FIB =Ig, F(a) = b, and Dom F =
B U Ranga (in the notation of Definition 2.2). It is sasy to see that F
saissfies the conditions.

2) Immediate.

Theorem 2.3. 1) If B € A then the number of types in Sp (A) which do

not split over B is < 21D11B1,
2) If D is |Bl-stabie, the number is < \Bl.
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Proof: 1) It is easy to see that for all » the number of n-types over B
which are realized in 4 is < IDI8! . Thus there isaset B;,BC B, € 4,
1B, 1< IDIB! such that every a-type whicl, is realized in A is realized in
B, . By Claim 2.2 (2) we get

{p:pe Sy(A), pdoesn’t splitover B}I=
= I{plB, : p € Sy (4), p doesn’t sphit over B} 1<
< 1S, (B))I< iDIBLI< 2ipIIBl

and this proves 2.3. In addition it is clear that if |71< |BI, then
2ID}IBl = 22 1Bl

2) The proof is id:ntical to the proof of (1) except that here by sta-
bility we gst a B; with 1B, 1= 1Bl and ISp (B;)| = |BI (here we used
Claim 2.1).

Definition 2.3. 1) D satisfies (+\) if D is A* -good, there is an increasing
sequence 4,, and a type p € Sp (4,) such that for every i <A pld,
splits over 4,.

2) D satisfies (B+)\) if D is A-good, there is a type p,, € Sy (4,) for ali
I(n) < A such that n = 7li 1 aplies p, € p,, and for every n there is a for-
mula ¢ such that Y € p~gy 7 ¥ € Ppiry {and thus they are contra-
dictory types), and A, .y U A, -(yyisa D-set for every 7.

3) D satisfies (A#)\) if D 1s A* -good and satisfies (BxX).

Remark: When it is clear what the diagram D is, we shall say that one of
the above conditions “holds”, instead of saying that D satisfies it.

Claim 2.4. In Definition 2.3 we can assume without .0ss of generality
that: A, € \MI, A, € IMLIA <l + 80, 14,1 < IH(o)I" + Ry, where
M is any (D, N)-hoinogeneous model.

Proof: assume that A4, is an increasing sequence, p € Sp (4,), and for

alli < A, plA 4, splits over 4,; i.e., there are two sequences a;, b, in
A;4, which realize the sam2 type over 4;, and there is a formula Y such

that Yux, a,), 11 ¥ix, b,) € p. Fori < X define 3;=( U Ranga)V
I<i
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U ( 2 Rang b ). It is easy to see that B, is an increasing sequence,
] i
=plB, € Sp(B,), and for all i < \, p\| B, splits over B,. 1B 1<
< lil* + 84, and in a similar fashion, A< HEI* + Ry

Since 14,1< Xand M is (D, W)- homogeneous there is a mapping
from 4, into IM|. Thus without loss of generality A, C IMI.

It remains to prove that without loss of generality A, S IMI For
every 7, I(n) < A we define a mapping £, from A, into M such that if
n = 7li then F,CF,, (e . F, = F_IDom F ) and for every 7, F, a~(0) Y
O QN ~qyisa mappmg The deflmtlon is by induction on I(n); if l(n) =
let F() be any mapping from A() intoM. If i(n) =i, since lA f< A,
I‘fln"(O) U An"ﬂ)' < A, there is an extension F72 of F nli Wthh is a map-
ping from A n~(0) U A (1) into M. Define F ~0) F’A"?A(O)’ F ,.(1)
FIAnh(l) If I{n) = 6 define F, = 26 Fo, Defme B, =F, (4,),

4, = F,(p,). 1t is easy to see that the q,’s satisfy the conditions that we
wanted for the p,’s, and so we may take 4, € M.

Theorem 2.5. If there is an A such that 1Sp (A)1> pg = 1413 +
+ 2 2% then there is an increasing sequence A p ESN,
<A
such that forall i < X\ plA,,, splits over A,. It follows that if there is
such an A and D is \*-good then D satisfies (x\).

Proof: First, we show that it 1s sufficient to prove the existence of
q € Sp (A) such that for all B € A with IBI< A, g splits over B. For all
i <\ we definc 4, by induction such that 4,S A4, 14,1 <lil" +8: A, will be

the empty set. For a limit ordinal 6, A; = U A;. By the hypothess, g
1< 8

splits over A, since 14,1 < A, and thus there is an extension 4,,, of 4,,

formed by adding a finite number of elements, such that qlA4,,, splits

over A,, and hence |4, < li{"+ R,. Define 4, = g}\A,, p=qlA,, and it
1

is easy to see that the conclusion of the theorem is satistied.

Now assume that for every type p € Sp (A) there is a set 8,& A,
|B,, 1 <X, such that p does not split over B),. Since ISy, (4)! > 1A
there isa set B such that I{ p : B, = B} |> Ko. Now by Theorem 2.3
the number of types in Sp (4) Wthh do not split over B is
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< L < pg (since 1BI< N) in contradiction to what we have just
shown. Thus there 1s a type g as above and the theorem is proved.

Theorem 2.6. If D satisfies (x\) then D sa.isfies (Ax)\).

Proof: Let M be a (D, A* )-homogeneous model, 4 , (i < \) ar increasing
sequence, A, & IMl, p € Sp(4,), I4,1<\, plA,,, splits over A,. By
Claim 2.2 there are mappings F, such that 4, € Dom F,C A,,, and
plA,.y and F,(plA, ) are contradictory types. We want to define types
p, which will satisfy the conditions of the definition. To this end we
define p,, A, . G, , F, such that:

1) p, € SD(An), zi,“ CM,andifnp=rli thenpn Cp,, An CA,;

2) for every n there is a formula ¥, such that Y, € D n~(0y>
R ‘bn € Po~(1y>

3) G, is a mappug, Dom G, = Ay, Rang G,=A,,andifn=7li
thenG, C G, P, = Gn(pIAI(m);

4) F, is a mapping, Dom F,= An,\<0>, Rang F, = Ap~(1y»
Fr pam@) =Parqys Fy Ay =14, and F, 2 Gy Fieny  Gogoy.

It is easy to see that if we succeed in this definition, then we have
proved the theorem. For simplicity let 4,=0.

We define p,.A,, G,,and F by induction on & for all 7, n with
Im < k, Ir)+ 1< k. For k=0, Ay will be the empty set, p(y = plAy,
and Gy will be the empty mapping. For k = §, a limit ordinal,
P =125 B, A4, =zga A, G, =1256 The remaining case is
k=1+ 1. Assumec I(n) = i; we will define A..p,, G, and Fn for
7=770), n~D). Since G,, is defined with domain A4;, 14,1, 14,1 < A,
G, has an extension Gn,\((» which is a mapping from 4, into M. Define
Prr0) = Oarioy(P1AY ), Aoy = Rang Gorgy. Gy FilGry is 2
mapping with domain € An"(O) which is the identity on A, . Thus we
can extend the above mapping to a mapping frcm Ap~oy iInto M. F,
will be this extension. Define 4 a~1y = Rang F, , Po~1y = Fn(pn,,«,) ),

nli

Garnity = Fi Gorioy- L
All the parts of the definition follow immediately, and thus, by what
was said at the beginning of the proof, we are through.

Theorem 2.7. If D satisfies (Ax\) and 2* > u ther D is not u-stable.
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(By the previous theorem it is clearly enough to assume that D s.iisfies
(%\) and also (B#\).)

Proof: Letk=1inf {k: 2¢ > u}. Since A > k and (4 *\) holds, (4 k)
also holds; i.e., there is a (D, k* )-homogenous model M, and there are
types p,, € Sp(A4,) for l(n) < k such thac A, € M and for every 7,
Pn~0y and p,.;y are contradictory types; 14,1 < (" + Ry Define
A= I(ﬂ:J<KAn, and forl(n) =« define 4., 4, = :ng"“’ Py =igkpnh-.
Clearly, p,, € Sp(4,) and since 14, | < k there is an element a, € M
which realizes p, . Let g, be the type which a,, realizes over 4. If n # 7,
& = I(n) = I(t) and i is the first ordinal for which 7, # 7; (without loss of
generality we can assume 7, = I, 7; = 0), then p(piin1) & Py & 4, and
Pain~0y & Pr € 4,. Thusq, and g, are contradictory and hence not
equal. From this follows ISp(A)1 2 I{q, : im)=«} 1= 2%> p; 141=
{4, I <ANI<Z{4, 1 Im<k}<Z{k:lm)<k}=
#-20< u. Therefore D is not p-stable.

We could now draw some conclusions about the class of powers in
which a diagram is stable, but we postpone this until §4 where it shall
be done in a more complete fashion.

(orollary 2.8. If D is p-stable where u < 2 then there is no in-reasing
sequence A,. i < \, with a complete D-n-type p over A, such that
plA, ., splits over A; for all i < \.

Proof: Asin the proofs « £ 2.6 and 2.7 we show that if there is such a
type, then there is an 4, 141~ X, with IS} (4)I> A, in contradiction to
Claim 2.1.

Theorem 2.9. If for every A< 3 [(21T1y*] D is not A-stable, then D is
not stable.

Remark: If D= D(T), then it is enough to assume (B*!T1*) in order to
get the same conclusion. If IT1 = 8y or =2 where ¢fd = ¥, we can
take 2171} instead of A[(2!T1)*].

Proof: If there is A < 2[(2!Th)*] such that D is not A-good then D is
not A, -good for any A; 2 X and thus D is not stable in any power. It is
not hard to see by 2.5 that (#\) holds for all A <2 [(2IT1)*]. Thus we
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shall assume that for every A < 3[(2!THh* ] there is an increasing se-
quence 4, , and there is a type p, € Sp(4, ,) such that for all i < A,
ps 1A, ;+1 splits over A A,r- Leta, be an element realizing p, . Clearly
A U {a,}isaD set. By the definition of splitting, for every i < A
th.ere are sequences a,\ 2 b}‘ ; In A, ., which realize the same type over
A, ;> and there is a formula ¥, , such that ¥, ,(x, &, ),
Yy, ,(x b}\ ) € p, . Definec, , a,\ ; b}\ ;- Then the sequence
«ay)~¢, , 1 i < N is defined for all A < {2!ITH* ] and s length A. As
in the proof in Morley [6] by using the Erdos-Rado theorem [1] we
can find an indiscernible sequence «(@~a,”b; : i < w) such that

(*) for every n < w there are X and iy <1, < ... < i, such that
~U™e, i< n) and ~{({a, )¢y, Y 1 J < n) realize the same type
(c,=aq, "b for all1). So forall» a,, b, realize the same type over

U Rang ¢,, and the type that a realizes over U Rang c splits over
1<<n zSn

U Rangc,.
<n

Assume u > ¥ o, for all w < i < u define a,, &, such that (a)- c;
i < u> will be an indiscernible sequence. Clearly the type which a realizes
over U Rangc, is a D-type and splits over U Rang ¢, Thus esther
1< 1<y
(xu) holds or D is not u*-good. In either case D is not u-stable.
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§ 3. On stable diagrams

In this section we prove two theorems on stable diagrams. One says
that every stable diagram is good, and the other that if A € IMI,
A1 < | Mil, then M contains indiscernible sets over 4 of power > A1 if
M is stable in 14 1. This theorem is a generalization of a theorem in
Morley [6] on totally transcendental theories and of a theorem in [ 17].
We make use principally of Corollary 2.8.

Theorem 3.1. Assume that D is A-stable and 1A1 < X\ < ||M]].

1) If DIM)C D, A C IMi,then M contains an indiscernible set over .1
of power > | A|

2) If E is a set of finite sequences, |\E1> N\, and U {Ranga : a € E}
U A is a D-set, then there isan E' C E of power > N which is an indis-
cernible sei over A.

Proof: 1t is clearly sufficient to prove 2).

Since every sequence in E is of finite length, there 1s an n such that
the power of £, ={a : a€ E, l(a) = n} 1s greater than \; without loss
of generality |1E;! = \*. Since D is A* -good, we can assume that £ isa
set of sequences from M, where M is « D-model and .1 € M.

Lemma 3.2. If D is \-stable, DIM) S D, A C IMI 14AI1< X, |E{> A,
E, C IMI" then thereare B, CwithAC BC C< IMI, IBI, ICI< X
such that: every finite type over B which is realized in \M| is realized in
C, and there is a type p € S{,(C) such that forall C;, C< C; € 1M1,
IC{I < A, p has arcontinuation in S’]S(Cl) which is realized in Ey — (C, y?
and doesn’t spli, over B

Proof: Assume :hat there are no B, Csatisfying the conditions of the
lemma. We shall define an increasing sequence A, by induction fori < A
such that 14,1 < ‘A, A, € IMI, and every type in S;(4,, ), for which
there is a sequence in £, — (A4,, )" realizing it, splits over A,. After we
define this sequ.nce, since |E;1> N, 14,1 < A, it will follow that there
exists a type p ef S’[’) 4,) which is realized in E, — (4,)"*, and thus for
alli, plA,,, is1yalized in E} — (4,,,)"; hence pl4,,, splits over 4,.
But according t« Corollary 2 8, this contradicts the assumption that D

ES
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is A-stable. Thus we have shown that for the proof of the lemma it is
sufficient to define the sequence A4,.

Define Ay =0, Ag; = U A, for 6 a imit ordinal. Assume that 4; is
1<8

defined and let 4 C M| be an extension of A, such that every finite
type cver 4, which 1s realized 1n M 1s realized in A*. By claim 2.1 we
may assume 141 < . By assumption 4,, A’, pforallpe S’f)é\A‘) do
not satisfy the conditions of the lemma with 4, =B, A'=C, p =p;so
there is a set Cp , ICPIS A, AL C Cp C 1M1, such that every extension
of p in S;’)(Cp) either splits over A4, or is not realized in £y — (C,)*.
Define 4,,, = U { C,:p€ S{ (A1)} . By the A-stability of D and Claim
2.1 it follows that IS;’)(A’)l < Aand thus I4,,,;I<AXN=A. Also, ii

P € S{(4,,,) isrealized in £} — (4,,,)" then p splits over A4,. It is easy
to see that all the conditions of the definition are satisfied and thus
Lemma 3.2 s proved.

Let us return to the proof of the theorem. Let B, C. and p € S{(C)
satisfy the conditions of the lemma. By induction on: < \* we define
a sequence ¥, if y, is defined for all i <j, let C, = C U (U {Rang y,:
i<j})letp, €S) (Cj) be an extension of p xzhich is realized 1n
E; — (C))" and does not split over B, and let y, be a sequence in
E, —(C)" which realizes p,- We shall show that (¥, : i < A"} is an indis-
cernible sequence over B By the construction it 1s clear that no two
;z’s in the above scquence are equal, and thus its power is > A. Since
every finite type over B which is realized in IM| is realized in C, p has a
umque continuation in S’I’)(C]) which doesn’t split over B (by Claim
2.2.2). It follows from this that if ; < j, then p, IC, is a continuation of
p in S{(C,) which doesn’t split over B, and thus p,IC; = p,. In order to
prove that (y, : i < \")1s ar indiscernible sequence over B 1t is sufficient
to prove for all iy < ... <, that the sequences y3~..70,, , V,;>..7V,,,
realize the same type over 3. For m = 0 we have already proved this.
Assume 1t for i and we shall pruve the result for m + 1. Denote 30 =
Vo~ Ve VY =R 70y, - We must show that 303, , ;) and
J71"*<j7,m+1> realize the sare type over B. Since m+ 1 < i, ,, we have
Pip 41 'Cm+1 = Pm+1 and thus 30~(p, 1) and y0~(y; ) realize the
san:e type over B. It follows that if the inductive claim for m + 1 is not
correct, there 1s a formula ¥ and sequence b frcm B such that

B Y70 0) F G, ¥, B);s hence 4(x, 30, b),
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1 Y(x, ¥, B) € ps,, , ;- Since it is assumed that 30, 31 realize the same
type over B, p,,, ,, splits over B, contradiction. Thus y0~(p,, ,,) and
yl"<55,m +1) realize the same type over B, and thus we have proved that
(y; : i < X*) is an indiscernible sequence over B, and hence over 4.

It remains to show that this is an indiscernible set. Assume that this
is not the case. Let J be an ordered set of power > A with a dense sub-
set | of power < A (for example if p =inf {u : 2# > A} take J to be the
set of sequences of length u of zeroes and ones ordered by the lexico-
graphic order and / will be the set of sequences of J which are zero from
a certain point on). By the compactness theorem we can find a set Bl =
U{Rangy, :u€.l} U A, where l(y,)=n for all u, such that if
U <..<u, €Jtheny,~.7y,, satisfies the same type over 4 as
Yo Vi It is easy (o see that B1 is a D-set and that if uy # u; then
Yu, and 3, realize different D-types over B2=Au{Rangy, :ucl}.
Thus IS}, (Bz)l > 1J1> A and 1B21= 141 +n. 111 < X\ in contradiction to
Claim 2.1. (A more detailed discussion of a similar theorem is found in
Morley [6]).

Theorem 3.3. If D is stable, B< A, p € S,,(B), then p has an extension
in Sp(A), when A is a D-set

Proof: (We thank Mr. Victor Harnik for suggesting a simplification in
the proof.)

Assume D is A-stable, and thus thei= is a (D, A™)-homogeneous model
M. If 141 < A there is a mapping FF from A4 into M, and since F(p) €
Sp(F(B)), IBI< 141< MY, it is clear that F(p) is realized by an element
a of M. arealizes a certain type over F(4), p, € Sp(F(4)), and clearly
F-1(p,) 1s the requirsd extension o« p.

Now assume that A = B U {a} where a realizes a type g € Sp(B). It 1s
easy to see that there is Ay € B, |4yl < A such tirat p doesn’t split over
Ag (otherwise (xA) holds in contradiction to the A-stability of D). There
salsoan4,,A49 € A; € B, |4 <A, such that neither p nor g splits
over A . Define an increasing sequence B; for i < X such that
A, € B, < B, IB,I< A and every finite type over B; which is realized in
B is realiced in B, . (It is easy to define such a sequence since D is
A-stable.) By the first paragraph of the proof, since IB,| < A, plB, has
an extension to a type p; € Sp(B, Y {a}). Let ¢ be an element which
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realizes p, , thus B, U {c.a} is a D-set. Let r be the type which {c, @)
realizes over B, . r € Slz)(B}\). By Corollary 2.8, since D is stable, there
is i < A such that riB;, does not split over B,. We definc p! =
{¥(xy.a,a): aasequence from B, there is a sequence b in B,,, which
realizes the same type as a over B,,and Y(x4y,xy, bhye r}.lIsiseasy to
see that p! = Sp(B L {a}).

~wow we prove the theorem {for the general case. Order the elements
of A={a;: i< 14.} and define A’ =B U {a, :j< i} foralli < I4l. By
induction we define an increasing sequence of types pf such that p9 =p
and p' € Sp(A"): for i = § a limit ordinal, take p*= U p/,and if p is

1<

defined we let p'*! be an extension of p? in Sy(AU {q,} )= Sp(4!*])
(as guaranteed by the previous paragraph). p!4!is the required type.

Theorem 3.4. If D is stable then D is good. More explicitly: for every

power p and D-set A there is an increasing sequence of ordinals

{i} :J < '} and a sequence of elements a, for i < i%= U i, such

1<ut

that every complete L-type over a subset of A;= A U{a, k< ii} of

power < uis realized in A j+1s and U A ,isa (D, u)-homogeneous
i<ut

model. Also every (D, u)-homce 22neous model is of power > u,

Remark: This partially sclves a problem from Keisler and Morley [5].

Proof: We firui prove that every (D, u)-homogensous model M is of
power 2> u. Since every D-set ¢ " power < u can be embedded in M, it is
sufficient to prove that there is a D-set of power u. Since D is stable,
there is a A for which D is A-stable, and thus there is a (D, A*)-homoge-
neous model of power > A*. Hence by Theorem 3.1 there is a D-set
A ={y, 1< w} which is an indiscernible ser. By the compactness
theorem there is an indiscernible set {y,: i< p} 2 {y,:i< w} and
this set is already a D-set of power wu.

Now we shall define , forj < p* and g, for i < i, by induction onj.

Define iy =0and i, = U i, forj a limit ordinal when ¢, is already de-
k<j

fined foralli< i,. Assume that the definition is completed for j and we
proceed to deflu.. forj+ 1. Let {p, ; : i; < k <i;,;} be the set of com-
plete D-types over subsets of 4 i We define 4, by induction on i,
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{; < i<isy.If a; is defined for all i < k. a; will be an element realizing

a type in Sy(4 U {q;: i < k}) which extends p; x (such a type exists by

Theorem 3.3). It is easy to see that this definition satisfies all the re-

quirements except perhaps for the (D, A\)-homogeneity of the model M

with IMI=A4 U {q;:i< g +i;}. Letp € Sp(B), BC M|, IBI< .
i<u

Then thereis o j < u* such that BC A4 j» and thus there is an element in

Ajyy S IMiwhich realizes p. It remains to prove that M is a model of 7.
By the Tarski-Vaught test it is sufficient to show that if g is a sequence

from IMland {: (3x) Y (x, @) then therc isa b € IM|such that

E Y[b,a]. By the above, it is sufficient to ~how the existence of a type
p with Y(x, a) = p € Sp(Ranga), but this fo lows from the existence of
a (D, A)-homogeneous model.
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§ 4. On the class of powers in which D is stable

In this section we attempt to find the classof powers in which a
finite diagram is stable. Our conclusion is that for every stable D *here
arc cardinals A, k such that D is g-stable iff £ > X and u(®) = pu.

Definition 4.1. If p € S"(4), BC A C C, then p splits strongly over B
in Cif there is a seqaence (5, i < w) of sequences in C which is an in-
“iscernible sequeitr: over B and there 1s a formula (x, y) such that
Y(X,ay), 1 Y(x.a,) € p. It is clear that p splits over B.

Remark: From the proof of Theorem 3.1 it 1s clear that {g,: i < w} is
an indiscernible set, in the case that D is stable and C is a D-set.

Definition 4.2. D satifies (C+\) if D is A* -good, there is an increasing
sequence A ,i < A, and a type p € Sp(4,) such that foralli <A
plA,,, splits strongly over 4, in 4, .

Remark: It is clear that (C+X) implies (x)), and that we can assume
without loss of generality that 14,1 < LT + ®,.

From the addition to 2.9 it is easy to conc'lude that if D satisfies (x))
for all A < 3 [(2iT1)* ], then D satisfies (Cx\) for ali A such that D is
A*-good.

Theorem 4.1. I D is N-stuble and there is an A such that 1Sp ()| >
IAI) + X, then D satisfies (Cxk).

Proof: Similarly to the proof of 2.5 it is sufficient to prove that there
isa type p € Sp{4) such that forall BC A4, IBI< k; = min (A, k),

p splits strongly over B in A. If k < A it is clear that D satisfies (Cxx);
if A < k (Cx\) holds, contradiction by 2.7

This being the case, assume that for every type p € Sp(4) there is a
setB,C A, |B,1 <k such that p does not split strongly over B,. Since
ISp(A)I> 1416 + X\ there is a set B C A4 suca that ISI> 14100 + X
where S ={p € Sp(4): B, =B}.

We will show that there is a sequence { Y,(x(,a,) : i <\ } and that
there are types p, for i < X* such that p, € Sand {Y,(xq, ¢;) : i < i} v
{ 1y, (xq.a,} € p,. Since ISy (A)1> 1A+ N it is clear that 141> X and
thus 1S1> A\*. We shall define S, and an increasing sequence of 4, € A4
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for i <A\* such that 14,I< \. Take Ay =0and 4, = U A4,ifdisa
1<8

limit ordinal. If 4; is defined, S; will be the set of types p € S such that

p is the unique extension of pl4;in S; 4,,, willbeaset 4,C 4,,, S 4

such that every type in S (A4,) which has more than one extension in S

has at least two extensions in Sy (4;, ) which have continuations in S.

Since {4;1< A, I3p(A4;)1 < A, and thus we can choose 4, such that

'Ai+1| S A.
Now! U SI< 27 ISpA)I=X" A=X* and ISI> \*; thus
i<at <At :
thereisatypep €S, p& U S,. It follows that for ail i < A" there is

<t

atypep' € Sp(4,41), P'lA, =pl4,, p' # plA;,,,and p' has an exten-
sion p, in S. Thus there is a formula y,(x,. q,), where g, is a sequence
from A, ,such that 71 {,(xg,a,) € p,, ¥,(xq,a;) € p 1t is easy to see
that this sequence of ,’s satisfies the necessary conditions.

For every i < A" let b; be an element realizing p;. Since D is A-stable.
IBI< ky <A, 1{<bpa, : i< A"} 1> A By Theorem 3.1.2
{(bp~a,: i< X"} has a subset of power \* which is indiscernibie over
B. Without loss of generality we may take this subset to be
{<bpa,: i< X"} itself. Since | U Ranga; ! <\ we have

k<A
ISD( U Rangﬁk) | < A and thus there are i,/ such that A<j<i<A*
k<A
and p;i{ U Rang&k)=pil( U Ranga;). Also \//j(xo,"d,)e v,
k< k<A

7] w](xo, 2,']) (S pl. If lpj(xO, 60) = p, then {50 . Zl,. E‘H,l s e a]+n , ...} is an
indiscernible set over B of sequences from 4; ¥,(xq, () € p, by the
choice of i, 7, 71y, (xg, E]) €p,. Thus p, spilts strongly over B :n contra-
diction to the assumption that p; € S. If 71 ¥;(x¢, 9p) € p; theu
{4;,ay,a,, ...,a,, ...} is an indiscernible set over B of sequences from
A and Y;(xg,a) € p,, 1 Y,(xq, ay) € p;. And p; splits strongly over B
in contradiction to the assumption that p, € S. Thus there is a

p € Sp(4) such that for every B € A, IBI< Ky, p splits strongly over B.
By what was said at the start of the proof, (Cxk) holds.

Claim 4.2. If D is N\-stable, u < N< N*, E is an indiscernihle set of
sequences, A=U {Rangy : Y€ E }, p € Sp(A), then it is not the case
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that {y € E:y(x, M Ep}Zpuand I{y € E 1 yYx,y)ep}i>y
Jorany {.

Proof: Assume that E contradicts the claim. Since D is good (by 3.4)
vie can assume without loss of generality that 4 € M where M s a

(D, A" + XY )-homogeneous model; and a € IM!realizes p. E hasa
subset E; ={y, : i < u} with the same properties, and in M we can
find an E, = {y, : i <A} 2 E,; which is an indiscernible set. Since
Hi<X:Eg yla,y 1} 12u H{i<X:E ¢le,y,]1}12> pn, we can as-
sume without loss of generality that {i< X : E Y(a,y,1} 1 =A. Thus
we can find E; € E,, 1E51 =\ (of course, E5 is still indiscernibie),

Ey ={y":i<u+A} suchthat | yla, y'] iff i < p. Let g be the type
that a realizes over A; =U { Rang y* : i <pu + A}, and let I be a subsef
of u + \ of power u whose complement is of power A. Since E5 is an
indiscernible set, there is a mapping F; from 43 to A5 such that
Fi(y'ye {yk : ke I} iff i < p. It is 2asily seen that / # J implies

F;(q) # F;(q), and hence 1Sy (A3)1 > 1 {F;(q) : I asabove} 1> A¥ > A,
But |41 < \in contradiction to the A-stability of D. Thus the claim is
verified.

Theorem 4.3. If D is N-stable, k > \, k*' > k, and D satisfies (Cxx1),
then D is not k-stable.

Proof: Lety =inf{x:kX>«k}, w=inf{u: X > A}.Clearly k! > x
and thus D satisfies (Cxx). Also x < k; this is because D satisfies (Cxx)
and hence also (xx) and thus is not (2.7) stable in any power < 2X;
thus, k > N 2> 2%, Assume that A, (i < x) is an increasing sequence of
sets, 14,1 < lil* + 8y, p € Sp(4, ), such that foralli < x pl4,,; splits
strongly over 4, in 4,, {q,, 1j< w} is an indisczrnible set over 4, of
sequences from 4, ,and ¥,(x, 4, o), 1 ¥,(a, 1} € pl4;4; - By Theorem
3.4 D is good and thus there is a (D, k¥ )-homogeneous m>del M.

In this proof nn and 7 will denote sequences of ordinals < k. For
M < x wedefinep,, A, ,and G, by induction, such that:

1) p,€Sp(4,)andn =7liimphesp, S p,, A, € A4,, 14,1<x.

2) G,, is a mapping from 4;.,, onto 4, C |M].

3) There is no element in M which realizes > u of the types

{pnf-\(l>2].< K} .
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If i(n) = 0, G(y will be a mapping from 4, into M, Ay = Rang G,
and pgy = G(pldg).
Ifl)=6, G, = U Gy, A4,= U A ;. 0y = U pyye-
1< 8 i<é

i<s

Him)=k, G,, A,,and p,, are already defined, we proceed to ue-
fine them for n~(j) for all j < k. Since 14,1< X, G, has an extension
G which is a mapping from A into M.

Letb, ;= G(a; ;) for alii < w. Clearly {b, ,: i< w} isan indis-
cermble set over A, and we can extend it to an indiscernible set
{En i<k} For all r = n~(j) where j < k we define the mapping
H, :DomH, =A; v Ranga ; U Ranga, y, H 14, =G, ,and
H (a ;)= b,7 j+1» =0, 1. G, will be a mapping from 4, ,, into M
which extends H_, A4, Rang G,, p,=G.(pArs1)-

Conditions ) and 2) clearly hold. We now show 3). Since
Vi &, En.,), T Yim s En,,ﬂ ) € Py~yyy» the condition follows from
Claim 4.2.

LetA=U{A4, 1 l(n)<x}.Clarly l4AI<Z {14,1: 1)< x} < k.
k0 =i (k) =k by the definition of x). For i(n)=Xletp, = U p,,,

1<<x

let ¢, be an element of M which realizes p, , and let g, be the type
whlch a, realizes over 4. From Condition 3) it is easily seen that for all
a, H{n: a,=a} | < pX. If xX > pX it is easy to see that IS (4)1 2>

I{a, I(n) x} 1> k. Assume now kX < pX. A* > X and thus by
defmmon 1< N Hence, A < k < kX < X < AX and p < x by the defi
nition of u. Thus, A < kX < pX < 2%, But D satisfies (Cxx) and thus also
(xx). It follows that D is not A-stable since A < 2% (by Theorem 2.7);
contradiction. The theorem is proved.

Theorem 4.4. Every D satisfies exac:ly one of the following:

1) D s not stable;

2) there are powers kK, N, A<2 [(21TH* Y, such that D is p-stable iff
> Nand u) = p,

Proof: If D is not stable, the conclusion of the theorem clearly is true.
Assume then that D is stable and let A be the first power such that D is
A-stable. By Theorem 2.9 A< 3[(2!7H" ]. Define k = inf {k : forall 4,
1Sp(4)1 < 141%) + A} . We shall show that A and « satisfy 2).
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If u < X then by the definition of A, D is not u-stable. Assume now
that u > A and u®) = u. Since D is stable, it is good, and thus u* -good.
Also. by the definition of «, if 141 < u, then IS;(A)I < 1410 + A =y,
and ihus D is p-stable.

The last thing to show is that if u > X and u(¥) > u, then D is not
p-stabte. Let x =inf { x: uX > u}. Since u®) > u, clearly x < k. Thus by
the definition of k, there is an 4 such that IS (4)!> 14100 + X, It fol-
lows from Theorem 4.1 that D satisfies (CxX). By Theorem 4.3 D is not
u-stable, and the theorem is proved.

Remark: A theory T can be found such that the values of A and k in
4.4 for D(T) are A = 2!7land « is any power < ITI*.
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§ 5. On prinie models

In this section we prove the existence of prime models over D-sets,
for several definitions of primeness (especially for stable D), and several
of their properties.

Definition 5.1. 1) p € S{}(4) is (D, 1)-isolated, or simply (1)-isolated,
over BC Aifforalld;,BC A; € 4, plA, is the unique extension of
plB in Sp(4,). (Formally, we do have to mention tt.e D, but it will
usually be clear what D is. The same holds for the fcllowing definitions.)

2) pe Sg (A)is (2)-isolated over BC A if forallA;, BC A, C A4,
pI|B has no extension in Sy, (4 ) which splits over B.

3) p€ Sf(A)is (3)-isolated over BC A if forall4,. BC 4, C 4,
p1B has no extension in Sp (4 ) which splits strongly over B in any
D-set A4,.

4) pe Sg’ (A)is (4)-isolated over BC A ifforalld,, BC 4, € 4,
p|B has no extension in Sp(A4,) which splits strongly over Bin A4, .

5) pis (A, n)-isolated (or (D, \, n)-isolated) if thereisa B C A4,

IBI < X, such that p is (n)-isolated over B (n = 1, 2, 3, 4). (Where n is
mentioned in the statement of a theorem in this section it will be as-
sumed thatn=1, 2, 3, 4).

Claim 5.1. 1) Ifpis (\, n|)-isolated, ny < ny, then p1s (A, ny)-
isolated.

2) If p € S (A) is (n)-isola:ed over BC By C Ay C A, then plA, is
(n)-isolated over B . If |BI< \, then plA, is also (X, n)-isolated.

Proof: Immediate.

Definition 5.2. A D-model M is (D, \, n)-homogeneous if for all
p € Sp(d), AC M, p (A, n)-isolated, we have p is realized in M.

Definition 5.3. 1) The D-set A 2 B is (D, A, n)-prime over B if
A=BuU{aq, :i<iy} where, foralli<iy, a;realizesa (D, \, n)-
isolated type over BU {q, : j<i}.

2) If IMI2 Bthen M isa (D, A, n)-prime mcdel over B if IMlisa
(D, A\, n)-prime set over B and M is (D, A)-homogeneous (sic).
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Claim §.2. 1) If A isa (D. X\, n)-prime set over B,M is a (D. \, n)-
homogeneous model, and B € iMI, then there is a mapping F from A
onto M such that FIB =1Ig.

2) If M is (D, X, n)-homogeneous, ny < n, then M is (D, \,n;)-
homoge.ieous.

3) If A is (D, A, n)-prime over B, ny 2 n, then A is (D, \, n, )-prime
over B.

4) If M, M, are (D. \, 1)-prime models over A, then there is a map-
ping F from M into My such that F1A =1, .

5} Ifpe Sp(l), B C A,and there isa (D \, n)-homogeneous model
M 2 A - hich omits p, then every (D, X, n)-prime set over A omits p.
For n =1, either all or none of the (D, A\, 1)-prime models over A omit
p.

Proof: Immecdiate.

Definition 5.4. D satisfies (P, \,n) if forallp € S5(B), iBI<X, 4 2 B,
A a D-set, we have that p has an exiension g € Sp(A4) which is (A, n)-
isolated.

Remark: It apparently would seem more logical to define a (D, A, n)-
prime model by Claim 5.2.1 and say that D »atisfies (P, A, n) if for all
BC A, pe Sp(B), p (A, n)isolated, p has an extension g € Sp(A4)
which is (X, n)-isolated (instead of definitiors 5.3.2 and 5.4). But prob-
lems would arise in Theorem 5.3 and in the 1heorem proving the exist-
ence of (P, \, n) at the end of the secticn.

Theorem 5.3. 1) If D satisfies (P, A\, n), then over every D-set A there
is a (D, A\, n)-prime mod:l If A € IN\where N is (D, N\)-homogeneous,
then there is a (D, \, n)-7rime model M € N over A.

2) Moreover, if B 2 A where B is a D-set, then there is a (D, \, n)-
prime model M over A such that B U IM\ is y rime over B,

Proof: 1) Asin the proof of Theorem 3.4 it can be shown that there is
amodel M, IMID A, IMI=A U {a;:i<iy} such that foralli< iy, g
realizes a (A, n)-isolated type over 4 U {a} :j<i}and forall BC IMI,
IBI< N\, p € Sp(B), pisrealized in M. It is clear that M is a (D, A, n)-
prime model over 4.
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2) The only additional thing to be proved here is: if for all j < i, a;
is defined and p € Sp(4,) where 4} C AU {g;:j<i}, 14;I<], then
therzisaq, pS g€ Sp(BU {a; :j<i}),suchthat g and gl(A U
{a,:j<<i})are (A, n)-isolated. Since D satisfies (P, \, n) there isa g, ,
PS¢ €Sp(AU{g:y<i})andthereisan4, S AV {qg;:j<i},
IA4,1< A, such that g, is (n)-isolated over 4,. Again by (P, \,n) q;'4,
has a continuation in Sp(B U {q, : j <i}) which is (A, n)-isolated. This
continuation is the required q.

Claim 5.4. Let /4 be (D, \, n)-prime over A. If CSC IMI, ICI<A,

N\ regular, then there isa B < ‘M|, B 2 C, |BI< A, such that fo> all
A, €A4. BU A, is (D, \, n)-prime over (A N B)U A, .In fact,
B=BnNnA)u{ b, :i<iy<A } and the typ> which b; realizes over
Au{b;:j<i}is(D,n)-isolated over (BN A)U {b; i<},

Proof: Assume IM|l=A4 U {a} 1j<iy}, a; realizes the type p, cver
Av{a :j<i},AfCAU{q :j<i}, lA]I< X, and p, is (D, n)-
isolated over 4. Define B; for k< wby By =C, B4 =B, VU
U {A:‘ :a;,€B,},andB=8B = 2 B,, . By the regularity of X it is
m w
easy to see that 1B, | < A and thus IBI < A. We now show by induction
onithat BN A)UA; U BN {g:j<i})is(D, ]\, n)-prime over
(BN A)U A, . This will finish the proof. If i = 0, i is a limit ordinal, or
a; ¢ B, the claim is immediate. If i is not a limit ordinal and g; € B,
from Claim 5.1.2 it follows that g, realizes a (D, \, n)-isolated type over
(BN A)U A; U (BN {a;:j<i}). This completes the induction. For
the last statement in the claim, we may take b; as the ith element of
{a, :j<iy} which belongs to B.

Theorem 5.5. A4ssume D satisfies (P, N\, ), p€ Sp(B), B& A4, Aisa
D-set, N is regular, and for all By © A wit |B{| <\, there isa (D, \,n)-
homogeneous model M such that B U By € |M|and p is not realized in
M. Then every (D, \, n)-prime model over A omits p.

Proof: From Theorem 5.3.1 and Claim 5.4 it follows that for every
(D, \, n)-prime model M over /! and for all C C IMI, ICI< A, there isa
BC IM| CC Bsuchthat for 1A, €4, BUA, is(D, \, n)-prime
over A, U (BN A4).
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Assume a € IM|realizes p. Let C = {a} . By the above, there is
By, C IM1, 1B, I< A, witha € B, such that B; U B is prime over
(By N A)u B. Since IBy N AI< IBI< A, thers is a model M,
(By "4)u BC IM;I, M; (D, X\, n)-homogeneous, and M, omits p.
Thus by 5.2.5 the set 3; U B also omits p, in contradiction to the defi-
nition of B, . Thus M omits p and the theorem is proved.

Claim 5.6. Assume p, € Sp(B,), A,2B,, A;aD-set (i=1,2), Fisa
mapping from A, on A,, F(By)=B,, F(p,)=p,. Then p, is realized
in a (D, X, n)-prime model over A, iff p, is realized in a (D, \, n)-prime
model over A, ; provided that F(4,)=A4,.

Proof: Immediate.

Corollary 5.7. Assume D satisfies (P, \,n), \regular,p € Sp(4),
{y; 1 i<k} (k> R)an indiscernible sequence over A and A4, =
AU (U{Rangy; : i< k})isaD-set. If, forall u < X, there is a
(D, X, n)-Pomogeneous model M 2 A U { V; i< u} which omits rz,
then every (D, X, n)-prime model over A, omits p.

Proof: Immediate.

Theorem 5.8. If D satisfies (P, X, n), A regulur, {y; : i < k} an indis-
cernible set over A, A, =AU {y, : i<k} aD-set, and \< k, then in
every (D, A, n)-prime moedel over Ay, { y, i<« } is maximal among
the indiscernible sets over A;i c., it cannot be e::tended.

Remark: A parallel theorem, with a somewhat lifferent proof appear
in [16], p. 81, theorem 6.2.

Proof: We can assume that y, and A, are defined for all ordinals /;

Iy <limplies 4, C A;. Let g, be the type ihat ), realizes over 4, Let
M be a (D, A, n)-homogeneous model, 4 ¢ & M. In M we can find a
sequence { y; : i < k; } which extends {y; : i < «£} and is a maxima!
sequence among the indiscerrible sets over A, . Without loss of gener-
ality we let y, =y, for alli < &, . Thus we have a (D, A, n)-homogeneous
model M, Ag, € IMI, which cmits qk, and hence every (D, \, n)-prime
model over Ay, omits gz, . (" he use of the existence of M can be easily
eliminated.)
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Let N be a (D, A, 12)-prime model over 4. Since 4 & 1Ml and M is
(D, A, n)-homogenecus, we can assume, by 5.3.1, INIC IM|. Assume
that g € N realizes g; and we shall arrive at a contradiction.

By Claim 5.4 thereis B= (BN Ay ) v {b; : 1<y}, IBI<A, bi, =a,
such that b, realizes a2 type p, over {b] :j<i} U A, whichis (D, n)-
isolated over (BN A, ) U {b;:j<i}.Since {y;:y;€ B}I<\and
{y, : i< k} is an indiscernible set over 4, we can assume without loss
of generality that AU (BN A ) =AU {y; 1 i<ij(<N)}.Let
AV =AU BNA)and A'=A40 U {b, : i< 1}. We prove by induc-
tion on/ that {y, : iy <i< k} is an indiscernible set over 4/. For/=0
this is immediate and for / = § a limit ordinal it is clear. Assume it is
true for / and we shall prove it for [/ + 1.

By way of contradiction, assume that the claim for / + 1 is not true.
Then there are two sequences y,, y, of ditferent elements of
{y; iy i<k}, aformula §, and a sequence a of elements of A! such
that = Y[b,a, ] and E 1 Y[b;.a,y?]; thus Y(xg, a,y1).

1 ¥ixq,a,¥2) € p,. It follows tha: p, splits strongly over A. (It can be
assumed that Rang ¥! and Rang y? are disjoint, otherwise we take a
third secuence, with range disjoint from both of these, in place cf y! or
32, and then we (an find a sequence y” for n < w such that Rang y”
are disjoint in pairs and contained in { y, : i; < i< k}. This shows the
strong splitting.) By Claim 5.1 we get a contradiction to the def.nition
of B in all cases of (D, A, n). Thus the induction works for / + 1. It fol-
lows that {y, : iy <i< k} is an indiscernible set over A%*1 (=4 U B).
Now we show by induction on/ that A; U { b,:i<l}isa(D, A\, n)-
prime set over A;, and that {y, : iy <i<k;} isan indiscernible set
overAU{y, 1i<iyu{b i<l}.

For ! = 0 or a limit ordinal, immediate. Assume it for /. To show it
for I + 1 it is sufficient to prove that b, realizes over Ay U {b, : i <1}
2 (D, \, n)-isolated type p. (The indiscernibility of {y, : i}, <i<k; }
follows as in the previous paragranh). Further we shall show that the
type p' is (D, n)-isolated over (B N A, )V { b, : i -1}, First, it is clear
that this type 1s a D-type since B U Az, € M. We take the case n = 1
since the others have a similar proof. If p! is not (D, n)-isolated over
(BN AU {b, i<} thenp'(Z > A, )V {b, :i<!}] hastwo dis-
tinct continuations in Sp(Ag, Y { b, . i <1}), say ql, q?. 1t is clear that
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gl Ay U {b, :i<I})y=¢qg21(A. U{b,: i<1}) Thus there is a sequence
¢ from A’ and a sequence ¥ from y ,, : i; < i< k; } and a formula @
such that Y(x,y,¢) € g1, T ¥(x,y, ¢)€ q2. 3y induction hypothesis
there iz a mapping F from Ay, U { b, : i <1} onto itself such that
FlA! =1, and F(y) is a sequence from {y, . iy <i< k }.Itis easy to
show that F(g)l(4, v {y, 1 i; <i<k})and F(g2)l(4,u
U{y iy <i<k})belongtoSy(4; Uy, iy <i<k})andextend
PUIB N Ay U { b, 1 i< 1} ],in contradiction to the assumption that
b, realizesover 4, U {y, : i} <i< k} a(D,n)solated type over
BNnAH Vb i<]].

It follows that B U A, € M isindeed a (D, A, n)-prime set over Ay, .
It was proved that { v, : i; <i< &} is an indiscernible set over
Au{y, <ituf{b i<ig}and thusover4d v {y, . i<ij}u{a}.
It is known that {y, : . < k } U {a} is en indiscermble set over 4 Since
i <A<k, wegetthat{y, :i<k,} U {a} isanindiscernible set over
A. ThusinM, {y, : i < k, } is not a maximal indiscernible set over 4:
contradiction. This proves the theorem.

Now we shall check when the conditions (P, \, n) are satisfied.

Theorem 5.9. If D is A-good and (Bx\) is not satisfied, then D has
@, N\ 1).

Proof: Assume p & Sp(B), IBI<K X, BC A, A aD-set.Since D is
A-good, it is easy to see that every g € Sp(B) has an extension in
Sp(B,) where By C B, € 4 and 1B, < . Also, if g € Sy(B)), IB1I<A,
and for all B, € 4, IB,1< R,, g has a unique extension in Sy, (8, U B;),
then g has a unique extension in S (C) for all C € A4, and it is clear that
the extension of g in Sp(A) isa (A, 1)-solated type.

We must show that p has an extension p; € Sp(4) which is (A, 1)-
isolated. Assume there is none, and we shall proauce a contradiction.
Since there is no such extension, forallB;, BC B; € 4, IB;I< Aand
for allg € Sp(B;). q 2 p, there is a finite set C, < A such that g has at
least two extensions in Sp (8, U Cq ). We want to define by induction
onl(m)<\ p, and 4, such thatp € Sp(4,). n=r7liimpliesp, € p,,
po=pr, 4, 4, lAnl <Ry + H(m)!*, and there is a2 formula @n such
that ¢, € po~0ys 18, € Pp~1)- From the completea mnduction will
follow the existence of (B#)), in contradiction to the hypothesis of the
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theorem. For I(n) = 0 define A¢y = B, py =p. Ifl(n) = 6 let
A = U A 1, p,.= Up 1514 1< 2 14 ;1< T Ry +HiD=

" g nlr Fy i< nli> g iZs nli i<5( 0 )
161 Rg + ll(n)\* . Now assume I(n) = k and A,, p,,are defined. Since
BCA,, p<Sp,, A, <A, there is a finite set CPn C A such that p, has
two extensions pn,,(o)‘, pn,?(l) in Spd, v Cpn)' We define Apnoy =
A~y =4, U . It is easily seen that this definition satisfies the re-
quirements, and thus the theorem is proved.

Theorem 5.10. If D is good and does not satisfy (+\), then (P, \, 2
holds. If D is good and does not satisfy (C+\) then (P, \, 3)and (P, \, 4)
hold.

Proof: Immediate.

Theorem 5.1%. 1) If D is N-stable, 2* > A, then D satisfies (P, u, 1),
P,u,2), (P,u,3), (P,u, 4).1f Dis A-stable, \x > A, then D satisfies
(P,k,3), (P,k,4).

2) If Dis N-stable, u > A, then p is (D, u, n)-isolated iff p is (D, u, m)-
isolated, forall 1 <m, n< 4.

Proof: 1) If D1s A-stable, 2% > A, then by 2.7, 2.6, 4.3, D doesn™
satisfy (4 #)\), (#¥\), or (C#)), and thus the theorem follows from 5.10,
5.9. (If D is stable, there is no difference between (A #\), (Bx)).)

If D is A-stable, A* > A, then by 4.3 D doesn’t satisfy (Cx\) Thus the
theorem follows from 5.10.

2) The proof is similar to the proof of Theorem 4.‘1 .
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§ 6. On the existence of maximally (D, \)-homogeneous mcdels

Definition 6.1. A model is maximally (D, \)-homogeneous (\-homo.) if
it is (D, A)-homogeneous (resp. A-homo.) but not (D, \* )-homogeneous
(resp. A*-homo.).

Theorem 6.1. If IDIS A (ITISN), M%) =X, ka regular cardinal and

D satisfies (B*(22)*), then there is a maximally (D, k)-homogeneous
(resp. k-homo.) D-model My, of power \. Furthermore, if N is a D-model
of power < A we can choose My so that INIC IMy\. Instead of demand-
ing that D satisjy (B+(22)*) we can take D to be good and satisfying
(CxK).

Proof: We just prove the case where (B+(2*)*) holds. By Claim 2.4 we
can assume that there is a (D, (21 )* )-homogeneous model M and there
are p, , A, foralll(n) < (2*)* such that p, € Sp(4,), 4, € IMI,
n=-liimpliesd, € A4,, p, S p,,and thereisp, € P~y »
TP, € P~y » Where o, =y, (xg, a,).

Since M is (D, (2*)* )-homogeneous we can assume without loss of
generality that IN1C 1M1,

We define N,, C,, and 7, for i < « such that:

1) INJIC IMI N = A, every complete D(V,)-type over a subset of

IV, | which is of power < k isrealized n N, : Ny = U N,, and thus N,
1< 8

is an increasing sequence. If IDI> A, Ny =N and if IDI< A, N, isan
extension in M ot N which realizes every type from D.
2) C,C INGg L G S Ay, ICIK Ry, P,y |G is not realized by
any element of N, but p,, ., i( l.<J C,) isrealized in Ny, . Also if
] >1

Inp=1, i<j,then n},ll, =7,.
(Let D, denote D(N,).)

It is easy to see that when the definition is completed, N, will be the
required model. This follows because f A € IN, |, 141 < x. p€ §p (4)
then there is an i < k such that p € Sp (4) and 4 € IN;1, and thusp is
realized in V;,, and a fortiori in N ; i.e.,, N, is (D, k)-homogeneous.
If in addition IDI < A, then D = D(M) 2 D(V,)) 2 D(Vy) = D, and thus
N, is (D, k)-homogeneous.
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On the other hand, p,, 1( U C,)is a type such that its restriction to
1<k

everv finite subsct of 2 C, is realized, but itself is not realized. Thus
1 K

N, isnot k™ -homogeneous. (Actually the proof shows that the above

type has a sub-type of power ik which is not realized.)

We now proceed to carry out the definition. Ny was already defined;
take ng = ). It is clear what are Nj , 0, for limit ordinals §. Assume that
N; and n, are defined; we define C,, N;,; and 5, as follows: Since
A(¥) =), the number of subsets of [N, of power < k is < \, and if
A<k, AC ENt[, then ISD(N,)(A)‘ < 'D(Ni)”AI < “Nl"i/ﬂ < AK) =,
Thus there isa set B 2 IN,I. IBI< X, B C IMi, in which every type
pE SD(NI)(A), forall4 € IN,I, 14l < k, is realized.

For all k < (2*)* define 7, = 1,70, where 0.. is a sequence of zeroes
of order type k. Foralla € IN,i define W, = { k : k < (2M)*,

F Y. (a,a;,)} . Since there ~re < A sets W,, and W, C (2*)", there are
ordinals/,j (j < I)such that foralla€ IN||, le W iff je W,. Let

Ni+1 = T~y and C, = Rang a; U Ranga, . Since every a € IN,| satisfies
= ¥nla,anl < ¥y la,a;,] and ¥ (x,8;) ATT gy (x, @) € Py, 1CL it
is clear that no element of N, realizes p,, . ,1C,. Now it is easy to find a
model N,y such that BU C, € IN,;;1< IMland such that p,, ., 15
realized in N, . Thus we have finished the inductive definition and
proved the theorem.

Claim 6.2. If there is a (D, A" )-homogeneous model M such that

My = 22%, Sp(IMD)I> IMIl, NS M, NI <\, ka regular cardinal,
A=A DI < A(ITIL N), then there is a D-model M; 2 N of power X
whick is maximally (D, k)-homogeneous (resp. k-homo.).

Proof: The proof is similar to 6.1. We shall prove the case IDI< . As
in the proof of 2.5, there is a p € Sy (M) which splits over every subset
of IM1 of power < \. Let us define an increasing sequence N;, i < k,
such that INy1 2 IMI; INgI € IMI; NIl = A; every D-type (over the

empty set) is realized in Ny ; for all § < k, INgI= U IN}; foralli<«k,
18

every complete D-type over a subset of IN,| of power < « is realized in
N.,,:and there is a finite set C, € IN | such that pIC; is not realized
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inN,, p! lé G, is realized in Ny, . The only problem is to define C,.
1<

Since by the definition of p, p splits over IN,|, there are sequences a,

El € IMIi which realize the same type over IN,land @(x,a) A

ATV ylx,ay) € p. Thus C; = Rang a U Rang a; is the required set.

Corollary 6.3. If D is good but not st e, and IDI< N, \&®) =\, K regu-
lar. N a D-model, NIl < \, then there is a D-model M 2 N of povser
which is maximally (D, k)-homogeneous,

Proof: Since D is not 22X-stable, there 1s a D-set 4. 141 = 22X such that
ISp (41> 1. Since D is good, there is a (D, A)-homogeneous model M,
AC ML 141 =IM|l, M 2 N. Since D is good IS, (IM1)I> I1Sp(4)I> 22*.
Thus the corcllary follows from Claim 6.2. It can also be derived from
Theorem 6.1.

Theorem 6.4. Let A =3, k =cf A< \.If D satisfies (B*\), then there
exists a D-model N, IN|| < N, such that there is no (D, k* )-homogeneous
model M 2 N with M} = A.

Remark: Asin Theorem 6.1, in place of the assumption (B\), we can
take D to be A-good and satisfying \Cxk).

Proof: Since D satisfies (B*\), by Claim 2.4 there is a model N,
NI = A, foralll(n) < X there are 4, , p, such that 4, < INI,
P, € Sp(4,), T=nliimpliesp, C p, and 4, & A4,, and there are for-
mulas Y, (x,d,) such that Y, (x,@,) € p,~(g), 1¥,(x,8,)€E D1y
Since ¢f A = k, there is an increasing sequence of cardinals A; < A such
thatA= X A
1<k
iLet M re any D-model of power A, IM12 IN|. We shall nrove that M
is not (D, k" )-homogeneous. Since ||M|| = A, there is an increasing se-
quence of sets A4,, 14,1=X\,, such that IMI= U A,. Now we shali define
1~k
an increasing sequence n; for i <« (i.e. nll(n)=n, <= i<j)anda
sequence of finite sets C, & 1M such that: I(n,) < (2M)* and p,, NG is
not realized by any element of A,. If n; are defined for ali i < then
Itn,) < (2M)* and there is an o with Iin) < (2M)* such that n; = nli(n,)
for alli < j. Take 7, = X0 : i < k). As in the proof of 6.1 we can find

'
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I < k < (2M)" such that all elements a of 4; satisfy & Y, la,8; ] <

¥, la,@;,]. Choose n; = 7, ~(1) and ; = Rang a,, U Rang dy,. It is casy

to see that ali the corditions are satisfied. If C= U C,, p= U py;
1<k 1<«

then pIC € Sp(C), ICI< k, and pIC is omitted by M. Thus M is not

(D, k¥ )-homogeneous, as was to be proved.

Claim 6.5. Let D satisfy (Bx\). 1) If M is (D, X' )-homogeneous then
My > 2.

2) There is a (D, \)-homogeneous model M of power X iff \®) =\
(D as above).

Proof: 1) Assume M is (D, A" )-homogeneous. As in Claim 2.4 we can
findA,, p,, ¥, such that 4, € IMIl, p, € Sp(4,),7 =nli implies
A, CA andp, Sp,, U, €D~y VVn € Py 14,1< HEI™ + 8y
Foralln, I(n)=Adefined, = U 4,,,. p, = U Pyl - 1t is easy to see
. <A 1<<A

that p, € Sp(4,), lA,1 <\ Thus for all g, I(n) = A there isa, € IM|
which realizes p,, . It is easy to see that if n % 7, I(n) =I(7), then
a, # a,. Thus |IM|| 2 Ha,  lm=A}1= Hn:lm)=A}1=2",

2) Follows from 6.5.1 and 6.4.

Claim 6.6. If D is stable and does not satisfy (Cx\) with \ regular, then
there is a maximally (D, \)-homogeneous medel M (of power 2 IDl,of
course).

Proof: Since D is stable, with the help of Theorem 3.1 we can find a
D-set A ={y, : i < A} which is an indiscernible set. Let M/ be a

(D, \, 4)-prime model over A. By definition M is (D, A)-homogeneous.
Since it realizes every type from D, its power is 2 IDI. On the other
hand, by Theorem 5.8 A has no extension in |M! which is also an indis-
cernible set, ard thus M is not (D, \* )-homogeneous.

Theorem 6.7. Assume D = D(M)and let \ and p be cardinals such that
A C IMI, 141 < X\ implies 1Sp(4)1 < p where ITIS A< u < |IMIl. Then
at least one of the following possibilities holds:

1) ThereisaD-set A ={y; i< w } which is an indiscernible se-

quence.
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2) There is a submodel of M of power X which is not ¥ | -homogene-
ous, and if \D| S\ its finite diagram is D.
(If ¢f ) = w, we demand only | Al < N implies | Sp (A < u.

Proof* First, assume that

(z; there is N C M, |IN|l = A, and there is a p € Sy (IN1) which is
reaiized > p times in M, such that for all Ny, INIC IN,IC IM],

IN; Il < A, and for all p; € S, (IN;1), p, 2 p. p, either is realized < p
times in M or p; does not split over IN| {or both).

From this we shall prove that 1) holds. By induction on n define N,
P, ¥, such that p, € Sp(IN, D), IN, IS IN, 1, INJI <A, IN,IC IMI,
Py € Dp+1s Dy isrealized > p timesinM, y, € IN, 4|, y, realizesp,,
p,, does not split over Ny. As in the proof of Theorem 3.1 we can prove
here that{y, : n< w} is an indiscernible sequence, and thus 1) holds.

We take Ny =N, r, =p (in (a)), and we let y be any element of M
which realizes p. Now let m >> 0 and assume N,,, p,, », are defined for
all n < m. N,, will then be an elementary submodel of M of power A,
{y,_1} VIN,_11€ IN, | (such a model exists by the Downward
Lowenheim-Skolem theorem). By induction hypothesis p,, _; is realized
> u times in M and thus there is a p,, € Sp(IN,, 1) which is realized > p
times in M, p,, 2 p,,-; (this because ISy (IN,, DI < u). By (a) p,,, does
not split over Ny. y,, will be any element of M which realizes p,,, . Thus
we have finished the inductive definition and 1) holds.

Now assume that (a) does not hold. Then we have:

(b) For every model N, INIC IMI, IN|l =X, and for every
pE S[;(INI) which is realized > u times in M, there is N, INIC IN{I1C
IM1, IIN; Il < X, and there is p, € Sp(IN]), py 2 p, which is realized
> it times in M and splits over |INI.

e shall show that M has a submodel of power A which is not & -
horiogeneous. Let Ny be any elementary submodel of M of power A,
and let py be any tyre in Sp(IN,1) which is realized > p times inM
(sir ze 1Sp (INgDI < p < IIM]]). Define increasing sequences of modeis N,
and types p,, such that IN, 1S IMI, IN, Il =X, p, € Sp(IN, D, p, is
realized in N,, and p,,,; splits over IN, |. As in th- proof of 6.2 we get
that N1 = U N, is not 8 -homogeneous and clearly I[N i=x,

n<w
N1 C M. Thus it will follow that 2) holds and the theorem will be
proved.
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The sequences are easily defined with the help of (b): If p,,, N, are
defined then by assumption there arz p, ., N, such that IN, i C

IN,+ 1€ IMI, p, € Ppsy € SpUN,. 1), IN 411l =X, D,4y is realized
> w timesin M, and p,,,, splitsover N,,.

Theorem 6.8. Assume that M is a model with D(M) =D, 1DI< k) =g,
2% < ||M)l, and D is not stable. Then there is a D-model of power x*
which is not homogeneous.

Remark: If in addition D satisfies (B k), then it is sufficient to require
ITI < k instead of IDI< k.

Proof (of the theorem): If M is not (D, k" )-homogeneous, then the
theorem is immediate. Thus assume that M is (D, x* )-homogeneous.
Since D is not k-stable there is a D-set 4 C IM! (in fact D(4) = D) such
that 14l =k, ISp(A4)!> k. Let N be a submodel of M, INI 2 A4,
IN1 = 2% (and so M # N), and N (D, k¥ )-homogeneous. We inductively
define an increasing sequence M; for i < k such that:

N IMICIMI, WMll=k, IMI2A,

M\ (IM1— INN) # O;

2) iIf Fis a mapping, 4 € Dom FC iM;l, Rang FC IM;l, FlA =1,,
IDom F—AI< k,and a € 1M, |, then there is an extension Gof F,
Dom G=Dom FU [al, Rang G € IM;,,|, and if Rang F € INI, then
G(a) € INI;

3y Mg = U M,

i<s

It is easy to see that such a sequence can be defined. It is also clear
that if we add the elements of 4 as distinguished elements to the
models M2 =M, M}, V1= IM21n INI, then M! and M, are homo-
geneous, D(M1) = D(M2). Since IM11C IM21, it is easy to see that there
is an increasing sequence of models M! for 0 < i < k¥ such that each
one car. be embedded in M2 (as in Morley, Vaught [9] Theorem 6.2).
Let M«x" be such that Ivx*1= U . IM| and let N1 be its reduct to the

i<k

language L(T). Clearly D = D(M) 2 DV!) 2 D(4) =D, or DY) =D.
Also every type in Sp(4) which is realized in N! already was realized in
M2, and since |M2|| < k, 1Sp(4)!> K, there is p € Sp(A4) which is not
realized in M2 and thus not in N!. Hence N1 is nct homogeneous.
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“heorem 6.9. If D is A, -stable and \y-stable and there is a maximally
(D, \,)-homogeneous model M of power > X3 where \; < Xy <3,
then for all regular cardinals p, there are maximally (D, p)-homogeneous
models of arbitrarily large powers.

by a slight rerfinement in the proof we can conclude:

Corollary €.10. If a theory T has a maximally A-saturatc > model of
power > \iTlwhere |T| < \, then for all regular cardinals u, T has
models of crbitrarily large power which are u-saturated but not u'-
saturated. (More exactly, maximally (D(T), u)-homo.)

Remark: Thv proof may be skipped in the first reading of the article.

Proof of 6.9: Let A, be the first cardinal for which (Cx\y) do2s not
hold. Cleariy Ay <.

Claim 6.11. Under the ronditions of 6.9 there are sets A 2 A, 2 A,,
AL S Ag, A< Ny, 1431< Ng,and a iype p € Sp(A) such that for all
B, AS BC M, IBI<X\;, p has an extension in Sp(B) which does not
split over Ay, is realized in M, and does not split strongly over A,. Also
every finite D-type over A, which is realized in M is realized in A.

Proof: Assume the contrary and we shall derive a contradiction. By in-
duction on i < A, define A’ and Ap , B, for all p € Sp(A?) such that:

1. If pe Sp(A4)thenB, C A4, CA'C M, 1B, 1< Ao, 14,1< A

2. Ifi<jthen 4! C 4/;foralli 14'1< Ay; A3 = U A"
1< 8

3. Ifpe Sp(Al), q=pl4!, i<j,thend, C A,, B, S B,;

4. p does not split over 4, and does not split strongly over B, ;

5. Every finite D-type over A! which is realized 1n M is realized in
Ai+l :

6. If p € Sp(A!) then every continuation of p in S (4%*!) which is
realized in M either splits over 4, or splits strongly over B,. If
p € q € Sp(A™*!) and g does not split strongly over B,,, then B, = B,,.

It is not difficult to see that the definition may be carried out and if
P E Sp (AM) is realized in M (and there certainly is such a p) then it {ol-
lows that either (Cx\g) or (#)) holds; contradiction.
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Claim 6.12. Under the conditions of 6.9 there are sets { y, 1 i < A, }
and{y]1 :j <23 },in M such that:
L. {y, 1 i< N, } is an indiscernible set over A, U {y} :i< 2} }:
2. {y} 1 i< X}} isan indiscernible set over A, U{y, : i<\, };
3. {y, i< N\;) is a maximal indiscernible set over A, .

Proof: AsM is maximally (D, X, )-homogeneous, it is not X -homc-
geneous. So i omits a type q, q € Sp(B), |Bl =X\,, B S M. Without
loss of generality, there exists B, € B; € B, 1B{1 <A, 1Bl <}y,
such that ¢ does not split over B, and does not split strongly over B,,
and for every C C M, IC1 <\, g has an extension ¢? in S, (B L C)
which does not split over B, and does not split strongly over B,, and
every finite type on B, which is realized in M is realized :n B. (This is
true since D satisfies neither (Cx\g) nor (+);); every continuation of g
is 2lso omitted, and so we can easily find an extension of g which satis-
fies all the above conditions).

Let us define by induction y; fori <X,: Let B={ b, : j <\, }.Ir for
every j<i y, is defined, then, by the above, g has a continuation q,,
q; € Sp(BU A, U{y, :j<i})(A4, isdefined in Claim 6.11) such that
g; does not split over B, and does not split strongly over B,. As
1B, U { b 1j<i}UAy U{y; 11 <ijI<A,,thereisan elementy, of
M which realizes the type ¢,|(B; U {b, .i<i}UA, U {y;:j<i}).
As every finite type over B which is realized in M is realized in B,

i > j implies g, 2 g,; so, as in the proof of 3.1, {y;:i<\,}isanm-
discernible set over B; U A4,, and so also over 4,. Let {y;:i< o} be

a maximal indiscernible set (over 4, ) which extends {y, : i <}, }. We
shall show that & < \}. Suppose a > X} . As g is omitted in M, for every
»;, i< a, there is a formula Y(X,a) € p, such that = 71 Jly,, al. As

p € Sp(B),and IDI< Ay < IBl it is clear that there exists 2 formula
Y(x,a) € p such that for ] s F 7 Y[y,,al. On the other hand it is
clear that there is iy < A, such that Ranga & {h :j<iyg<A;}.So,by
the definition of the y,’s, for every i, iy < i< Xy, F Yly,,a]. 8o

H{y, :Ev¥ly,al}l 2 >N and 1{y,: E 1 ¥ly,al } =X 2 A,
but (C¥\y) does not hold, a contradiction by 4.2.

So « < A%, butas{y; : i < a} is an indiscernible set (over 4,), we
can, by changing notation, get & =X, .

Now, we shall define y} fori< )\’3'. lfy, is defined for every j < i,
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let p; be the continuation of p in Sp(4 U {y, : j <Ay} U {y’.l (j<i})
which does not split over A; (and does not spht strongly over 4,).

(A4, Ay, A, were defined in 6.11) and p, is realized in M. Let y; be an
element in M which realizes p,.

As in the proof of Theorem 3.1 it is clear that {y’l ;i< A} }isanin-
discernible set over A, U {y, : i< A }.

It is also clear that { y, : i < A, } is 2 maximal indiscernibie sct over
A,.

It remains to be proved only that { y, : i <A, } is an indiscernible set
over 4, U {yll DE<NG )

We shall prove by induction on that {y, : i <A, } is an indiscernible
set over A, U {y} :i<j}.Forj=0and; a limit ordinal it :s clear. Sup-
pose it is true for j and we shall prove forj + 1. If it is not trae forj + 1,
there exist sequences, of different elements, y1, y2 from{y; : i< N, }
and a sequence ¢ from A, U { p! : i< j} and a formula y, such that
= yl/{yi,f y., BN sl/[y ,C, V2], As we have shown 1n the proof of
Theorem 5.8, it follows that the type which y realizes over
A U {y, i<}V {y "1 <j} splits strongly over A, , in contradic-
ticn to the definition of y] This proves 6.12.

Continuation of proof of 6.9: Suppose u < h,, = A and u is regular.
In any (D, u, 4)-prime modelovar 4 U {y, 1 i< A, } U {y,1 i< )\‘5 }
{», : i <A, } 1sa maximal indis:ernible set over 4, (M is (D, A, }-homo-
geneous, A, > A, and D 1s stable in A, . So, as was remarked in 5.11.2,
Mis (D, \,, 4)-homogeneous. AsM 2 4, Uiy, 1 i<} U
U{yl:i<A3}end{y, :i<A,} 1s maximal indiscernib!: in M it fol-
lows by 5.2.5).

Let u; > X3. We define y} for N\j <7< gy suchthat {y, :i<p;}
will be an indiscernible set over 4, U { y;: i <A\, }. By Theorem 6.7 it
is clear that in any (D, u, 4)-prime model over 4, U {y, i<\, Ju
U { y} ci<py} {y,:i<A,} isa maximal indiscernible set over A,.
Since u 2 A, as in “he proof of 5.8, it follows that in any (D. A, 4)-
prime model over.:, U {y, :i<p}u{p} i<y}, {y;:i<p}isa
maximal indiscernible set over A, . So there is a maximally (D, u)-
homogeneous set of power 2 u,, (there is a (D, u, 4)-prime model since
K2 Ag, and so (Cxu) does not hold, and so by 5.10 (P, u, 4) holds).

If u <Ay, misregular then (C+u) hclds, and so by Theorem 6.1
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there exist maximally (D, u)-homogeneous models of arbitrarily large
power.

So in order to prove the theorem there remains the case u > X\,. Sup-
pose u > A, is a regular ca:dinal, and let u, > )\“ be any cardinal. We
define y; for Ay < i< pand p! for\} <i<y, such that {y;:i<u}
will be an indiscernible set over 4, U {y‘ (i< py},and {y,.l i<y}
will be an indiscernible set over 4, U {y,. i< u}.Let Nbea (D, u, 1)-
prime model over A, U {y,: i< p} U {y!:i< u;} whichis clearly a
D-set. Let p0 be the type which y, realizes over 4, U {y;: i< u}.If we
prove that p0 is omitted in N (i.e. { y,: i < p} is a maximal indiscernible
set over 4, in N) it will follow that N is not (D, 4" )-homogeneous. As it
1s clear that N is (D, u)-homogeneous, this will finish the proof.

Suppose there is an element @ € N which realizes p®. By Theorem 5.4
there is a sequence { ¢; : i < io < u} of elements of N, and a set
BCA,u{y;: l<[.l} Uiyl i<y} IBl<u,suchthata=b,o,and
forevery i<i, c, reahzesoverA2 u{y j<n}v {v j<uy
U {c, :j<i}atypeq' whichis (D, 1)-1solated over B U {c,:i< i}.
Without loss of generality let B=A4, U {y,:i<ij<p}u
U{y 1i<iy<pu}.Asin$. 81tfollowsthat{y, <i<up}isanin-
discernible setoverA2 U {c, i<ip} U{y i< Yu {y, ti<iy},
and similarly for { y ti, < i< p;}. As Dis stable in A, there exists
Bl CB,SBU {c ]< i}, \Bji< 7\1 and g, is the only extension of
q,lB mSD(A2U {y, i<u}u{yli<u }u{c:j<i})which
does not split over B,

Let us define by induction C, CAZU{y,, (i<, j<i}u
U{c, :i<ip}, IG,I SNy, Co={atud,= {a,o} U4,.

Suppose C, is defined. If ¢, € C,, let Ain, k, 11, I < A} be an increas-
ing sequence of sets included in

Ak=,42u{yl.:]‘<;1}U{y]l i<u yu{c, i<k}

such that:
1) Aln, k,0) 2C, N (A0 {y,»} 1i<ip,j<ia}u{c;:i<k});
2) Aln, k,0] 2 By
3) Bvery finite type over A[n, k. I} whi h is realized in AF is realized
inAln, k, 1+ 11;
4) 1An, k, I11< .
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We define C,,,; =C, uU{Aln .k, N1 : ¢, €C,}.
It is easily seen that I1C, 1< A;. We define C, = U C,;clearly
IC 1< A n<w
LetBl=C_ u{y, i <i<p}u{yl:i,<i<u}.

B =B' - {c :i<iy}=A,u{y, i <i<p}u
vyl <i<p o€, ~{ci<iy}).

We shall prove that Bl 1s (D, X}, 1)-prime over B0. Thus in a (D, A7, 1)-
prime model over 4, U {p, : i< A} U{p! i< A}, {p, 1 i<N,} s
not a maximally indiscernible set over 4,, a contradiction, by 5.6.

So we prove by induction or k that BOU (B! 0 {¢, " i< k})is
(D, At 1)-prime over BO. For thus it suffices to prove that if ¢, € B1,
ie.c, €C,,then ¢, realizesover BOU (BN {c, :i<k})a(D,A], 1)
isolated type r; . We prove further, that r, 1s (D, 1)-1solated over ko=
(C, —{e:iZkhuly i <i<ip+N+wtu{yl i <ig
<i,+ A +w} (as obviously IC;1 < \; <A this implies the (D. A7, 1)-
isolation of ;).

Suppose r € Sp(B" U (B! n {c, . i<k} ), riCk=r ICY, r#r;. Let
us denote

chl=(C, —{c,:i>kPHu{y i <i<ip+N} U
U{y} t i<, v}

It is clear that 7, does not split over B} C B, € C*! C C* s0,as
rICk = r IC¥, r splits over CK-1 . This says that there are sequences of
differentlelementf 1,9, (from{y, :i;+ X <i<p}) zind "17’ ,jz"i
(frora {y): i, + A < i<y} a formula ¥0, and a sequence ¢ from CkiN C
such that

Ey0le.75,7,,8),  E YO, P. 3],

where c realizes r.
Let 7= F(x, X, ,X,, %], X5) be the type which<o)~¥ ~¥,~y1~F} (of
tength m) realizes over CK.1 As (', = U C,, there exists n < w such
n<w
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that ¢, € C,, Rang ¢ € C,. From this it is clear that the sequernce
Aln, k,il, ¢ S A is defined, Aln, k,i] € C*1.So as (x\;) does not
hold, by Claim 2.8, there is < \; such that FlA[n, k, I+ 1] do:s not
split over A[n, 1, k] . By the definition of A[n, k, 1] it follows that
rlAln, k, 1+ 1] has a (unique) extension 7! in SP (4 ), which does not
split over Aln, [, k], where 4;=4, U {c; : i<k} U

U{y; i<ip+N}u{yl:i<iy+\;}.We define r2,r3 such that
r3x,,%;, %}, %)), r2(x) CF(,%,,%,,%}.%3) and 2 € Sp(45),

r3e Sg‘l(AB). Itis clear that 7214 [n, k, 1+ 1] =r lAln, k, 1+ 1] =
qplAln, k,1+ 1], r? does not split over A[n, k I} and g¥ does not split
over Bi CAln,k,0] € Aln, k,I]. As every type over A[n, k,!] which
is realized in A* is realized in A{n, k, 1+ 11,and BU [c¢; : i< k] C A
it follows that g*FI(BU {c, : i< k})=r2l(BU {c, : i< k}). Also it is
not difficult to see that we can find sequences z;, Z, (from
{yi:ip+\ <i<p})andz},z} (from{y, :iy +A<i<p })

which realizes r3. We define r#

r4={w(x’ El’ 2—2’2}3 ?29@: ‘p(xsflﬁ—%—Z’figié,E)Erl} »

It is easily seen that 7* € S} (4, L ang7, U Rangz, U Rang 7] U

) Rang?% ), and also that 4 2 r2, and r* splits over 45, and so also over
BuUfc :i<k}.AsqkiBU {c, .1<k})=r*lBU {c,:i<h})qkis
(D, 1)-isolated and so (D, 2)-isolated over BU {¢; : i< k},we geta
contradiction, and so, the theorem is proved.



§7. On SK(T, P) i
§7.0n SP(T,P)

Definition 7.1. 1) If P is a set of finite types (over the empty set) in the
language L(T)) then EC(T, P) will be the class of models of 7'; which
omit all the typesin P.

2) SP(T,, P) will be the class of powers A such that every model
M € EC(T; , P) of power X is A-homogeneous, and A 2 |T] + K.

Remark: If DIM) € D(N)and N € EC(T, P), then M € EC(T, P).

The following theorems wil! not be proved since a similar discussion
appears in Keisier [ 2], Shelah [17] and similar proofs appear in Morley
[7], Vaught [ 19] and Chang [20]. Theorem 7.1, in essence, appears in
Keisler [2].

Theorem 7.1. For every theory T and set of finite types P in L(T) there
isa theory T\ 2 T, where L(T,) contains an additional predicate Q
(IT\1=1T1), and there is a type p in L(Ty) such that:

There is a model M € EC(T. P), M| = X\, which is not «* -homogeneous
iff there is a model My € EC(Ty, PU [pl). IM;| =X, such that

QM1 < k.

Theorem 7.2. If for all § < (2ITW* there is ¢ model M € EC(T', P) of
power > 2(1QM1,8) (IQM1> 2, ) then for ol \ > T} {and p)

(IT1 € u < N) there is a model N € EC(T, P), |IN|| = A,

IQNI =171 (1QN1 = p)and forall A € INI a* most 1Al + |T| complete
types over A in L(T) are realized in N

Corollary 7.3. If for all A < 2[(2IPW* ) there is a model M, of power
2 N\, DM,) =D, then for all u 2 IDI there is a modzl N, of power u,
D(N,) = D such that for all 4 € lNul not n.ore than Al + |DI types in
S(A) are realized in N, .

Hint for the proof: Adjoin IDI| constants to each model M, such that
each type in D is realized by one of them and then use 7.1, 7.2 with
QM1 the empty set.

Corollary 7.4. If there isa X > 1T\ in SP(T, P) then"
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1) There is 8y < 2ITY such that if M € EC(T, P) is of power
2 A(u, 8y) then M is p-homogeneous. If 8¢ - w divides 6 then
3, € SP(T, P).

2) If there is an M of power > 2[(2!PH* § with DIM) =D then D is
k-stable for all k > DI+ IT1. If ITI < 27 then D does not satisfy (Bx\).
It follows that D also does not satisfy (=\), (C=\). All this assuming
M € EC(T, P).

Proof: 1) The first assertion follows from 7.1, 7.2.If § - w divides §
then u <3, implies A(u, 85) <3, . Thus every M € EC(T, P) of power
3; is u-homogeneous for all u < 3, , and hence homogeneous.

2) The first statement is proved by choosing u =2_ > k in SP(T, P)
(by 1) and using 1) and 7.3 since we then get a k* -homogeneous model
and over every set A of power < k there are k types realized.

Assume A =inf{ X : 22 > |T1} and (B*\) holds. By 74.1 M is
(D, IT1* )-homogeneous and thus we can find A, € Ml p,€Sp(4,),
a, realizingp,, n=rliimpliesp, C p,, ¢, € Pp~(0y> 19y € Py~(1)»
14,1 < Hep! + 8y < IT1 forl(n) < A.Let 4 = U{A,:Im< A} U
U {aﬂ : i) < \}.1Itiseasy to see that 141 < 2(0) < |TI. Adjoin the
elements of 4 to the model as distinguished constants. As in 7.7 we fihd
a model (of the extended language) of power u which omits every p € P
and over every set A at most 141 + 17! complete types are realized. The
reduct of this model also satisfies this property, and thus there is 7,

I(n) =Asuch thatp = 2 P,y is omitted but foralli <\, Pai is
i<A

realized. Thus p € Spay( U 4,),), | U 4,1 < IT1 and M is not
i<<A <x

homogeneous, contradiction.

Theorem 7.5. If D is good or stable, and not in every power u> Tl s
there a non-homogeneous D-model, then there is a cardinal p, Dl < pg <
< 212!TH* Y such that: every D-model of power > pg is homogeneous,
for every u, ITI+8, < u< py, there is a D-model of power p which is
not homogeneous

Proof: It is easy to see that there is a P such that D(M) € D iff

M € EC(T, P). By hypothesis there isa A€ SP(T, P), A > IT|. Since
everything stable is good, D is good, and thus there is a model M of

power > 2[(2/Ph* ] with D(M) = D. Then by 7.4 D is k-stable for all
k> IDI + 171 and by 4.3 D does not satisfy (C+}N ).
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Since D is stable there isa D-set 4 = [y, : { < w] which is indiscerni-
ble. Since D is stable, and does not satisfy (CxRy) by 5.10, D satisfies
(P, 8. 3). Let M be a (D. R, 3)-prime model over 4. By 5.8 |M]| > IDI
and M is not N, -homogeneous. Thus forallu, 171+ 8, < u< IDI,
there is a D-model of power u which is not homogeneous.

Now assutne that M is a D-model of power > |D! 4+ |IT! which is not
homogeneous, If M .z not ITI-homogeneous, then for all u,

ITI < u < ||Mil, there is a D-model which is not u-homogeneous, and
hence u & SP(T, P) Assume that M is | Tl-homogeneous. Since 1 is not
homogeneous, there 1s a p € Sppry(A4), where A C IM| is of power

< ||M}}, which is omitted by M. Since by 7.4'D does not satisfy (B»!T1)
and D is x-stable where x = |DI +|T| +1 Al < |IM|l, we get by 5.7, 3.1 and
7.4 that there is a non-l4|*-homcgeneous D-model of power 2(14l, (2!T1)%)
comntradiction.

It follows that every non-homo D-ir ¢del of power > {D|+|T} is
not |T1-homogeneous. Define py =1nf {p : ITI +R; <ue SP(T,P)}.
Since there is a A € SP(T, P) of power > T, i, exists. Earlier we
proved that 171 + 8, < u < IDI implies u ¢ SP(T, P) and thus p. > IDI.
If 8, + 171 < u <y, then by definition u ¢ SP(T, P). If u > ug. then
since every D-model of power u is u1y-homogeneous, by the above it is
homogeneous.

It remains only to show that uy <2 {(2/Thy* 1. We have shown that for
all p < p, theré is a D-model of power u which is not IT I* -homogeneous.
IDI > IT1 and thus the assertion follows from 7.4.1.

Corollary 7.6. If all the models of T of power X\ > IT| are homogeneous,
then there is a cardinal pgy, \D(T) < pg < u(ITh < AT, such that
forall p> ¥, + T\, T has a non-homogeneous model of power  iff
< g

Remark: 1) Assime R < |71 &€ SP(T, 0). In the proof of 7.5 we
showed that there is a (D(T), 8, 3)-homogeneous model M of power
> ID(T)! which is not X ; -homogeneous. Thus |T1 > M|l 2 ID(T)I.
From here we see that 7 is a definitional extension of a theory of power
< ITI. Thus the restriction that A > |7 can be replaced by A 2 IT1+ 3.
See [16].

2) Added in proof: in fact u, = D(T)I*.
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3) iz =u(TV) is defined in Vaught [19].

Proof of 7.6: The only part which does not follow immediately from
7.5 is pg < u(IT1). We show this as follows: We shall find 7, 2 T,
ITy1=1T1, and a type p in L(T;) such that T has a model of power u
which is not 171" -homogeneous iff T, has a model of power u omitting
p. By the definition of u(IT1) this will suffice. The language L(T;) will
be L(T) with new constant symbols {¢;, d; 1 i<ITLj<IT 1}. Define

T, =TV {¥(ci, . &) ) <> Y(d,yy s ooy d,,) : ¥ a formula of

LTy, iy < ITI},

p={¥x,c,....c;)) = ¥vdp), d,, , --ndy,) : ¥ a formula of
L), iy s iy, < 1T

It is easy to see that T, and p satisfy cur requirements. This proves the
corollary.

Theorem 7.7. Assume \ € SP(T, P), M € EC(T, P) is a non-homoge-
neous model of power u, D(M) =D, IDI <A< |M|. Then
A. k2 ITl, N> 22% implies k & SP(T, P) and there is a D-model of
power k which is not ¥ j-homogeneous.
B. At least one of the followir.z holds:
1) u < 2 and there is no k € SP(T, P) such that 1TI1 < k <.
DA =Nand if ITI<K k<N, K€ SP(T,P), then \ =2¢, gK) =g,
(Thus there is no more than one such k). Also there is no 1)-
model which is (2M)* -homogeneous of power > (2M)*.
C. There is py < [(2ITY* ] such that p > g implies p € SP(T, P),
and T\ < u < pg implies p € SP(T, P), except for possibly two powers,

Proof: A) By Theorem 7.5 D is not stable and by 7.4.2. there is a power
such that there are no models M with D(M) = D of cardinality greater
than this power. If A > 22% then D is not 22* -stable, and thus there is a
D-set A of power 22¢ < ISp(A)!. Since there is a (D, A)-homogeneous
model, there is a D-model N of power |4 | containing A, and

INI = 141 < I1Sp(A)l < I1SH(V)I. By 6.2 it follows that there is a D-
model of power k which is not ¥ ;-liomogeneous.
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B) First assume that there is no D-set which is an indiscernible
sequence. We shall show that 1) holds.

If u> 2%, then since 141 < X implies ISp(A4)I < 2141< 22 by 6.7 we
get a contradiction. Thus u < 22 If ITI < k < A, k € SP(T, P), then
A1 < k implies 1Sp(A)I < A < u, and thus we again get a contradiction
by 6.7. Thus 1) hol1s.

Assume from now on that there isa D-set { y, - i < w} whizhisan
indiscernible sequence. It follows that there are D-sets of arbitrarily
large power. If D were to satisfy (P, k, 1) for som: k, then we would get
arbitrarily largz models M with D(M) = D, contraiy to what was said at
the start of the proof of A). In particular, since there is a (D, A)-homo-
geneous model, (B*X) holds, by 5.9. By Theorera 6.1 we are able to
conclude that if A > 2%, k 2> ITI, then there is a D-model of power k
which is not X ; -homogeneous, and thus k ¢ SP(T, P). It is also clear
that (B k) holds for all ¥ < A, and thus by Claim 6.5, if Visa (D, «*)-
homogeneous model, A > k™, then ||N|| > 2%. Therefore, if A > k >> IT1,
k € SP(T, P) then 2(¥) = k; in particular, 2V = X, If k =25, ¢f(8) <K,
AZ> k> 1Tl by 6.4 k ¢ SP(T. P). Thus k() = k; in particular, A\(A) = X,
If in addition A > k. then we have proved that 2 > Aand 2% < 2() =\,
and hence 2% = X, If M} > (M), Misa 2M)" -homogeneous model, it
follows as before that (B+(2*)*) holds, in contradiction to A € SP(T, P).

C) By 7.4.2 SP(T, P) is infinite. If u0 is the third element of SP(T', P)
which is greater than 2!71, then by the previous theorem p0 < p implies
u € SP(T, P). Let ug be the first cardinal such that uy < u implies
u € SP(T, P). By 7.4.1 it 1s not the case that for all u < 2{(2!Th* ] there
is a model in EC(T, P) of power u which is not (2!Th* -homogeneous.
Let u; be the first cardinal such that M € EC(T, P) is of power > u;
implies M is X ; -homogeneous. Clearly u; <2 [(2ITH*]. Assume
MeEC(T,P)isapu, = (22"1y* -nomogeneous, non-homogeneous model
(of power > u,). If D(M) is not u,-stable, we get, as in the proof of A),
that there is a model in EC(T, P) of power u; which is not & ; -homoge-
neous; contrzdiction. Thus, D(M) is stable. Now we get that there are
arbitrarily large models which are not homogeneous (as in the proof of
7.5); contradiction. Thus, if M € EC(T, P) is of power > u, and is not
homogeneous, then M is not p,-homogeneous. If gy > 2{(2/71)* ] then
it follows that for all u < 2[(2/THh* ] there is a model of power > n
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which is not u,-homogeneous. This is a contradiction to 7.4.1. Thus
B < 2[(2!Tly* 1. The rest follows by B).

Remark: Theorem 6.8 completes the picture.

Corollary 7.8. (G.C.H.) If there isa A € SP(T, P) with |\T| < X then
there isa py < 2 [2ITW Y such that:
M2 ug implies p € SP(T, P),
ITI < u < pg implies u ¢ SP(T, P) except for, perhaps, one u when
m=A5.y,0rwhen u=31,, pg =p*t.

Proof: 7.7 and 6.8.

Theorem 7.9. If T is a countable theory with only homogeneous
models of power R |, then T is 8 | -categorical.

Remark: This solves problem D in Keisler [2].

Proof: By 7.6 there is a cardinal ug > ID(T)! such that ITI+ 8, < u<
< pg implies u & SP(T, P). Since 8 € SP(T, P), pg < ®;.Thus
ID(MI< ®y,ie. ID(MI< B,.By 7.4.2 D(T) is By-stable and thus T is
N -stable, or in the terminology of Morley [6], T is totally transcen-
dental. Assume T is not ¥ -categorical. By Morley [8] T has a model M
of power ¥, and there is a formula Y(x, y) ard a sequence @ from M
such that I{b€ IM! : = Y[b,al} | = R®,. Define A = Ranga U

V{b:E ylb,al}, p={¥x,a)Ax#b:E Y[b,a;, be IM|}. Since
M is a D(T)-model and D(T) is ¥ 3-stable, by 3.1 there is an indiscernible
set{y, :i<R;} overd in M. Let D= D) C D(T). Clearly D is 8-
stable, and there is a (D, 88, )-homogeneous nodel (M). Thus by 5.11,

D satisfies (P, 8y, 1). Define { y, : i<3_} 2 {y, : i< w} such that it
too is an indiscernible set over A. Clearly A, = AU {y;: i<} isa
D-set. Let M, be a (D, Ry, 1)-prime model over 4,. By 5.7 M, omits p.
Thus I1{b: & Y{b,a]. be IM;1} 1= R,. It is also clear that |M,|| >

> Wy, :i<3,} =13, Let My = M{ 'E where E is any non-principal
ultrafilter over w. By known properties of ultrapowers (see ¢.g. Keisler
[2]1) M, isamodel of Tof power22,, {b:F y[b.al,beM}i=

= 280 and D(M) = D(T). Define B= Ranga U {b : = V[b, a)],
beIM,l}, ={ Y(x,a)ax #b; F Y[b,a].be IM,yl}. It is easily seen
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that B C M,l, iBl= 280, g is not realized in M,, q is a type over B.
Let ¢ € q, € Sp(r(B). By 7.6 it follows that M, 1s (D(T), 3, )-homo-
geneous, and thus g; must be realized, contradiction. Thus, the theorem
is proved.

Added in proof 20 Augzust 1970: We can improve 7.7, 7.8 to

Theorem 7.10. If |T'| < N\; € SP(T, P) then there is ug such tnat: {1)

1= pg implies u € SP(T, P, and o< A[(2ITH* 1. (2) IT1 < A € SP(1, P)
implies (2M7 2 y,. (3) If there are two N, gy > A € SP(7, P) then

o < 2T,

Proof. Let u, be the first satisfying (1) (by 7.7 it exists). Suppose (2)
fauls. Then thereare A€ SP(T, P) ITI< A, M€ EC(T, P), 2 < \M\\, M

is not homo and I = D(M). Asis 7.7, AN = X, hence A > |T| implies
A= 2171 >\D|. Define: p € S (A) suitably splits over BC A C |M| if
there are a (D, A)-homo. N, B C |N| C |M|, and sequences a, b from A,
which realize the same type over [N|, and ¢(x, a) 7 v(x, b) € p. In the
definitions of § 5 we can replace n=2 by n =3, and splitting by suitably
splitting. Now if there are 4, C IM|,A,C A, ,;,and p € Sp (ngwAn)

where plA, ,; suitably splits over 4,,, then there is a D-model N, IN|| = A,
which is not ¥ -homogeneous. (Note that w.l.o.g. [4,| £ ¥;). A contra-
diction, so (P, ¥, 5) holds. Asby 7.7, A=AM, and [T < A< py <
a[2iTHT), implies A is not strongly inaccessible, and as in 7.7 A 33 not
3, clearly A=x" = 2X_ As D is not x-stabie there 1s A C (M|, 14| =¥,

ISp (A4)1 =x*. Now 1n the proof of 6.7, (a) should hold, and we use its
notation. W.l.o.g. AC Ny, and clearly N,,, U N,, are D-homo. Now, using

a property slightly stronger than (P, 8, 5) which clearly hold we can
find NO, INO, =4 U{y;: i< w}U{b,: i< A\}CUN, (which should be D-homo)
and for i <« there is a “inite B'C {y,: i< w}U {bj: j<i}= B, such that
the type b, realize over A U B; is (D, 5)-isolated over 4 U B, If Y i< w)
1s a maximal indis. seq. over A, we get contradiction, and prove (2). Sup-
pose (y;: i< w+ I} is indis.seq. over A, y , € NO. By changing notations
Ve+1 = by, Let n be such that by, ..., b, €N,, BY, . . BnC{y i<n}u
{b,: i < m}. By the proof of 6.7,{y,: n S i< w}is indis. seq. over |N,,|.
We can prove by induction on A < m+ 1 that{y,: n < i< w+ 1} is indis.
seq. over AU{y;: i <r}U {b;: i < m}. As y,, satisfies x = b,,, it follows
Yn =byy = Yy415 @ contradiction. So we prove (2),(3) can be proved easily.
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