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ABSTRACT 

W e  p r o v e  t h a t  a n y  S o u s l i n  c .c .c ,  f o r c i n g  n o t i o n  w h i c h  a d d s  a n o n d o m -  

i n a t e d  r e a l  a d d s  a C o h e n  rea l .  W e  a l so  p r o v e  t h a t  a n y  S o u s l i n  c .c .c .  

f o r c i n g  a d d s  a r e a l  w h i c h  is n o t  o n  a n y  o ld  " n a r r o w "  t ree .  

The feeling that  those two forcing notions--Cohen and Random--(equivalently 

the corresponding Boolean algebras P(R)/(meagre  sets), 7)(R)/(null sets)) are 

special, was probably old and widespread. A reasonable interpretation is to show 

them unique, or "minimal" or at least characteristic in a family of "nice forcing" 

like Borel. We shall interpret "nice" as Souslin as suggested by Judah Shelah 

[JuSh 292] (discussed below). We divide the family of Souslin forcing into two, 

and expect that: among the first part, i.e. those adding some non-dominated 

real, Cohen is minimal (=is below every one), while among the rest random is 

quite characteristic even unique or at least minimal. Concerning the second class 

we have weak results, concerning the first class, our results look satisfactory. 

Related is von Neumann's problem which in our language is: 
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160 S. SHELAH Isr. J. Math. 

( . )  is there a ~w-bounding c.c.c, forcing notion adding reals which is not 

equivalent to the measure algebra (i.e. control measure problem)? 

Velickovic (and, as I have lately learnt, also Fremlin) suggests another problem 

(it says less on forcings which are ~w-bounding but it says also much on the 

others). 

(**) is there a c.c.c, forcing notion P which adds new reals and such that 

for every f �9 ~'w M V P there is h �9 V such that  (Vn)lh(n)l <_ 2 n, and 

f (n)  �9 h(n) for all n. 

The version of it for Souslin forcing was our starting point. 

We have two main results: one (1.14) says that Cohen forcing is "minimal" 

in the first class, the other (1.10) says that all c.c.c. Souslin forcings have a 

property shared by Cohen forcing and Random real forcing (this is the answer to 

(**) for Souslin forcing), so it gives a weak answer to the problem on how special 

is random forcing, but says much on all c.c.c. Souslin forcing. Earlier by Gitik 

Shelah [GiSh 412], any a-centered Souslin forcing notion add a Cohen real. 

ACKNOWLEDGEMENT: We thank Andrzej Roslanowski for proofreading the 

paper very carefully, for many corrections and pointing out a flawed proof. 

1. A Sous l in  fo rc ing  which  a d d s  an  u n b o u n d e d  real  adds  a C o h e n  rea l  

1.1 Notation: 

(0) gg(~/) is the length of ~. 

(1) T denotes subtrees of ~>w, i.e., T C_ ~'>w is non-empty, [u <~ ~/&~? E T =~ 

u E T] and [v E T ~ (3~ E T)(v  <~ ~?)]. For y E T let T In] de2 {1] fi T: u ~ ~? 

or y ~ v} and let l imT = {~/E ~w: A , ~  [ n E T}. 

(2) sp(T) = {~ e T: (3->2k)[u^(k) �9 T]}, esp(T) = {gg(u): ~ �9 sp(T)}. 

(3) [A]" = {B C_ A: [B I =/~}, [A] <" = U0<~<~,[A] ~. 

(4) We say T is u-large if: u �9 [w] ~~ and for some n* < w: if 

n* < n < m < w , n � 9 1 4 9  n g s p ( T ) r  

(5) We say T is strongly u-large if: u �9 [w] ~0, and for some n* < w, if n* < 

n < m < w, n �9 u, m �9 u then (V~/�9 T N n2)(3v)[~/~ v �9 spT& ggv < m]. 

(6) Ok is a sequence of length k of zeroes. 

(7) (V~176 means: for every large enough n < w. (3~176 means for infinitely 

many n < w. 
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(8) We say T is (u, h)-large if :  u e [w] s~ hk: w ~ w \{0 ,  1}, /~ = (hk: k < w) 

and for every k < w, T is (u, hk)-large which means: for infinitely many 

n E  u w e h a v e :  n < m E  u &  l u A m " . n  I < hk(n) ~ Min(gsp(T) \m)  < 

Min(u \ ( m  + 1)). 

Note 

(*) if h,~ = n for every n < w this is equivalent to: for every k < w, for some 

consequtive members io < il < ".. < ik of u, for every g < k we have 

[Q, i t+l)N ~sp(T) is not empty. 

(9) We say (Tt: ~ < n) is (u, h)-large if: u e [w] ~~ = (hk: k < w), hk: w ---* 

w \{0 ,  1} and for every k < w for infinitely many n E u we have n _< m C 

u& [u N m \ n[ < hk(n) ~ At Min(espTt \ m) < Min(u \ ( n  + 1)). 

(10) If hk = h for k < w we write h instead of/t. 

(11) We use forcing notions with the convention that larger means with more 

information. 

(12) In a partial order (=forcing notion), incompatible means have no common 

upper bound. 

1.2 Definition: A statement ~(x) on reals is absolute if for every model M 

extending V with the same ordinals (mainly M = V or a generic extension) and 

N, a model of ZFC- (which is a transitive set or class of M) with w M _C N and 

a e N, we have g ~ ~[a] iff M ~ ~[a]. 

1.3 Definition: (1) P is a c.c.c. Souslin forcing notion if: P = (P, <) is such 

that: 
(a) 

(b) 

(c) 

1 �9 �9 there is a ~--~4-defimtlon ~a of the set P (which is C_ R), 
1 �9 �9 there is a :~--~vdefimtlon ~b of a partial order _~ on P, 

there is a ~-~11-definition ~c of the relation "p, q incompatible in P" (see 

1.1(12)) (hence it is A~, as by the above it is E~, now use Definition 1.3(1) 

(a)+(b), it implies being compatible is ~-~ hence being incompatible is 

n11), 
(d) (P, _<) satisfies the c.c.c. 

(2) Note: we do not distinguish strictly between P and the three ~-~11-formulas 

~a, ~b, ~c respectively appearing in the definition. 

(3) P is a Souslin forcing notion if (a)+(b) holds. 

1.3A Remark: On (c.c.c.) Souslin forcing see Judah Shelah [JuSh 292] e.g. 
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1.4 CLAIM: 

(1) " ~ ,  ~b, ~c are Ell-formulas as in 1.3(1)" is absolute. 

(2) For P a c.c.c. Souslin forcing notion, "{r,~: n < co} is a maximal antichain 

of P"  is a conjunction of a Ell  and a I]11 statements. 

(3) Being a maximal antichain is absolute (even conjunction of 1-Ill and El l )  

hence so is "being a P-name of a member of~ (or ~w)". 

(4) I f  P is a c.c.c. Souslin forcing not ion,  Po �9 P and P* =dr {p �9 p: p 

Po < P} (with the inherited order) then P* is a c.c.c. Souslin forcing notion 

too .  

Proo~ E.g. 

(1) For part (d) use the completeness theorem for _L~l~(a ). 

(2) The ~-~11 part is to say "rn �9 P",  so if "x �9 P" is also 1111 then this 

statement is I-[11; the 1-Ill part is to say (Vx) [x ~ P V  Vn<~(x, rn compatible)] 

(by Definition 1.3(1)((a)+(c))); a third part is /kn<m<~ (rn,rm incompatible) 

which are 1111 and A] resp. 

(3) Follows by (2). |1.4 

1.5 LEMMA: Assume P is a c.c.c. Souslin forcing, r a P-name of a new member 

of~2. Then for some infinite u C_ w, for every p �9 P, the tree Tp[r] (see Definition 

1.6 below) is u-large (see 1.1(5)). 

1.6 Definition: Tp[r] = {~ �9 ~>2: p ~ p  "~ r r I ggrf'} (clearly it is a tree). 

Before we turn to proving Lemma 1.5, we prove: 

1.7 CLAIM: 

(1) For a given c.c.c. Souslin forcing notion P (i.e. as in Definition 1.3(1)) and 

P-name r of a member of~2, the conclusion of 1.5 is an absolute statement 

(actually 
(2) The statement on u,p (and also on r) that they is as required in 1.5, is a 

~11 statement. 
1 (3) Also '~ is a P-name of a new real" is absolute in fact a 1]l-statement. 

(4) I f  P is c.c.c. Souslin forcing notion, above every p �9 P there are two 

incompatible conditions then forcing with P add a new real. 

Proo~ (1) Let r be represented by (((p~,t~): i < co): 7/ �9 ~ where 
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{p~: i < w} C P is a maximal antichain of P, t~ a truth value and p~ I~-p "rl <a r 

iff t/n''. For 1.5, the failure of the statement can be expressed by: 
(,) (Vu)(3p)]u C w finite or p �9 P&(3~176 �9 u)(Vr/)[r/ �9 n2&r/ �9 Tp(_r) 

<1 u & ggp < Min(u \ ( n  + 1))& u-(0) �9 Tv(r ) & v^(1) �9 Tv(r)] ] . 
Now the statement "p �9 Tp(r)" is equivalent to "p ]4Zp [p /~ r]" which is 

equivalent to 

& P compatible). (**) Vi<~(t;  = truth P, Pi 
1 It is enough to show that (.) is a l-I2-statement hence it is enough to show 

that inside the large parenthesis there is a Y~.lvstatement. In (*) inside the large 

parenthesis, ignoring quantifications over w, we note that  "p �9 P" is ~11, and 

then we have to consider (**), on which it is enough to prove that it is a A~ 

statement [actually we have three instances of it - -  all negatives]. By Definition 

1.3(1)(c) it is 1-Ill and by Definition 1.3(1)(b) (and the com )atible meaning having 

a common upper bound) it is ~11. 

(2) The proof is included in the proofs of parts (1) and (3). 

(3) Easy. [Why? the statement is (Vp)~ • PvV.e->2 [n^(0) �9 Tv(r)&,/^(1} 

�9 Tp(r)]]. Now inside the parentheses we have p r P which is 1-Ill and two 

1 ] instances of (**) which, as shown above, is a ~vs t a t emen t .  

(4) Easy, e.g. in V L~vy(~~176 we ask: is there p �9 P such that Gp =dr 

{q: q �9 py ,  q <_ p} is a directed subset of p y  , generic over V , i.e. not disjoint 

to any maximal antichain of pV from V? By the assumption if such p exist, 

necessarily Gp ~ V, and by the homogeneity we can find Levy-names P, G p of 

such objects so in V L~vy we can find a perfect set of such Gp's, so the p's form 

an antichain of size continuum but this is absolute. So there is no such p, letting 

{{p~,j: i < w}: j < w} list the maximal antichains of p y  from p y  (the list in 

V L~vy ), and we define a p-name _~ �9 ~%o : (in vL~Y): ~_(n) =the unique m such 

that  P~,m �9 Gp, the generic subset of P y ~ .  This is a P-name of a new real 

(all in V Levy(R~176 and by part (3) +1.4(2) its existence is absolute . 11.7 

Remark: The use of QD below can be replaced. QD is called Mathias forcing. 

See on it [Sh-b]. 

1.8 Proo[ofLemma 1.5: Assume that  the conclusion fails (for _r, a P-name of 

a new member of ~ which will be fixed until the end of the proof of Lemma 

1.5). For D a filter on w (containing the co-bounded subsets of w) let QD -~ 
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{(w, A): w C_ w finite, A E D and max(w) < MinA (when w ~ 0)} (and if w C w 

is finite A C_ w we identify (w, A) with (w, A n (maxw, w))); the order is defined 

by (wl ,A1)  <_ (w2, A2) i f fwl  C_ w2 C w lUA1 ,  A1 D A2. Let (wl, A1) <_pr 

(w2, A2) (pure extension) iff Wl = w2, A1 _D A2. Clearly QD is a partial order 

satisfying the c.c.c, and {q: qo <--pr q} is directed for each qo E QD. Let w = 

U{w: (w, A) E _G }, clearly w is a QD-name and any G C QD generic over V 
QD 

can be reconstructed from w_ [G]: G = {(v, A) E QD: v C_ _w[G] C_ vUA} .  Without 

loss of generality CH holds (by Claim 1.7(1), e.g. force with Levy(R1, 2 ~~ hence 

we can choose D as a Ramsey ultrafilter on w. So as is well known that: 

| if ~ < 2 is a QD-name and q E Q then for some q~, q <_pr q~ E QD, q~ forces 

a value to ~. 
~ 

So after forcing with QD, the conclusion of 1.5 still fails (by claim 1.7(1)). 

Hence for some q* E QD and QD-names P_, _T (remember that r remains a P- 

name) we have q* I}-QD "p E P, r of ~2, T = Tp[r_] is not w-large, such that: for 

arbitrarily large n E w, (w_-the QD-name) the interval [n, Min(w_ \ ( n  + 1))) is 

disjoint to lsp(_T) " ; also we can assume that  I~-QD "P E P, r remains a P-name 
] 

of a new member of ~2 and T = Tp[r]". For q E QD let S[q] = : {r/E ~>2 : for 

some q',q <-pr q' and q' I~-QD "y E _T"}; note that S[q] is also equal to {~? E ~>2 : 

for no q', q <p, q' E QD, q' I~-Qo "rl ~ _T"} (just apply | 

Now note 

| S[q] is a subtree (of ~>2) and if ql -<pr q2 (in QD) then S[ql] D_ S[q2] (in 

fact they are equal). 

| if q* <_ q E QD then for some ql >__ q and m we have: S[ql] has no splitting 

in any level _> m. 

Why? Let n = maxwq; so q forces that: for some m, m E w, m > n, and 

Min[(~spTp[r] \ m] > Min[w \ ( m  + 1)]. Before proving | repeatedly using | 

we can assume 

| if m E Aq, v c_ m M A q ,  ~/ E m2 then the condition (wq u v U  {m}, 

A \ ( m  + 1)) E QD forces (I}-Qo) a truth values to the following: 
�9 

(Z) (3u)[r/__. u �9 ~>2 &~gu < Min(w_ \ ( m  + 1))& u �9 sp(Tv(_r)) 1 . 

(Recall the definition of a Ramsey ultrafilter by game.) 

By the sentence before the last, for some m �9 A q and v C A q M m for every 
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~/* E m2, if we get a positive answer for (a) then we get a negative answer for 

(~3); let q' = (w ~ U v U {m}, Aq \ ( m  + 1)); so q' forces those two statements. Let 

for k E A r \ ( m  + 1), q~ = (w q U v U { m } , A  ~ \ k) (so q' <p, q~) and it forces 

(I~-QD) "every ~/ E m2 M Tp[r] has a unique extension in Tp(r) ~ ~2", as required 

in | 

The rest of the argument will be used again so just note that proving Claim 

1.9 below is enough for finishing the proof of 1.5. 

1.9 CLAIM: Assume P is a c.c.c. Souslin forcing, r a P-name of a new real, QD, 

S[q] ([or q E QD) chosen as above. Then | above is impossible. 

Proof: So assume @3 holds and we shall get, eventually, a contradiction. 

For this end we define a forcing notion Q* = Q~9, Q~9 = {(#z, ~): for some 

n = n(q) = n(rh, ~) we have q = (qv: 7/E n2), q* < an E QD, for each ~/E n2 the 

sequence ([S[qn] M k21: k < w) is bounded, rh = (my: v E n>2), m~ < w and if 

v^(~) _<3 7/e E n2 for ~ = 0, 1 and k < w then IS[q~o] M S[q,I ] M k21 _< my}. 

The order is defined by (rhl,~ 1) _< (rh2,~ 2) i ffn(~ 1) _< n(~2), rh 1 = rh 2 r 

n(~1)>2 and for ~ E n(r we have qnFn(4l)l _< qn'2 

Clearly Qb satisfies the c.c.c, as for any (rh*, @*) the set {(rh, q) E Q}): rh 

= r~*, wq, = w~ for every ~ E "(~)2} is directed (in QD)" 

Also, 

| for every n, {(rh, q) E Q•: n(~) _> n} is a dense (and open) subset of Q~. 

Why? It is to that for given (rh~ ~ E with enough prove any Qb 

n(0) dej n(00), there is (rhl,~ 1) such that (rh~ ~ < (~hl,~ 1) E Q~ with 

1 o and 1 is: o if v E ~(~ , and n(q 1) = n(0) + 1; let q~ = qnI~(o), m .  m~ 

max{iS[q ~ A k21: k < w} if v E n(0)2. Check.] 

For G* C_ Q~ generic over V, let for T/E "~>2, _whiG* ] be U{w ~ : there is 

(fit, q) E G*, r = qvIn and n = n(4) _< *g(~)}; it is well defined. I f~  E (~2) y[a*] 

let w,[G*] be Uk<~ wnlk[G*]. 

Also Q~ adds a perfect set of generics for QD, moreover: in V[G*] for 

every ~ E (~2) V[G*], wn[G* ] defined above is generic for QD over V, which means 

Gn de~ {(v, A): v C_ wn[G* ] C_ v U A} is a generic subset of QD over V; this holds 

by | | below. 

| i[ (Th, (t) E Q*D and T is a QD-name of an ordinal then we can find ~1 such 

that (rh, ~) < (rh, 41), n(~ 1) = n(~) and for every r/E "(ql)2, the condition 
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ql forces a value to T. 

Why? Let (7/k: k 2 n(q)) list n(q)2. We define by induction < n o w  o n  

k < 2 n(q), a sequence ~k = (r~: 7/C n(q)2) such that: 

(a) (rh, ~k) �9 Q~, 

- -k+l ,, k < _k+l,, for 7/ �9 n(q)2), (b) ( r h , ~ k ) < ( m , r  )(i .e.  Q D ~  r , _ %  

(c)  = q, 

(d) _~r k+l forces a value to r_ (for the forcing notion Qo) .  

If we succeed then ql ~ f  ~(2 ~(r is as required; as ~0 is as required the 

only problem is to find ~k+l being given ~k. First we can find mk < w, such 

that  no S[r~] (for ~j �9 n(q)2) has a splitting node of level > ink, and mk > n(q). 

t - " r  k <pr r k .... and k,, forces a Second we find r k,* �9 QD such that: QD , ~ ~k r,k r/k 

t ruth value to each statement of the form "t/ �9 Tp[r]" for tJ �9 mk->2. By the 

r k 1,~ k,. IFQD,,Tp[r] n mk-> 2 C Slrwj  . Thirdly choose definition of S[r~] necessarily r~k 

,, k,. < rk+l,, and r k+l forces a value to T (possible r~k+l �9 QD, such that QD ~ rnk - ,lk w - 

by density) and S[r~ +~] has no splitting above some level (use | Fourth, let 

rk+i k for y �9 n(q)2 \{r/k}; we still have to check IS[r~+I]AS[r~+I]Am21 < m~ r/ ~ rT/ 

when t~(~) ~ ue �9 ~(0)2; by the induction hypothesis without loss of generality 

T]k �9 {VO, Vl} , SO let r/k = t/e(.). If m _< mk then Srrk+11 N L  ~t(.)~ m2 C S[r~t(.)] 

and we are done by the induction hypothesis. If m > rnk, by the choice of mk,  
k + l  S[r~_,(.)] has no splitting nodes of level _> mk hence IS[r~ +I(.)]AS[r~+I~_ (.)lore21 _< 

Sir  ~+~ l ~ Sir  ~+~ l ~ (m~)21, and use the previous sentence. So we can carry the L l / l ( . ) J  L L/ I_ I ( . ) J  

induction and ~(2~(~)) is as required in | 

| I f  (rh,~) �9 Q~ and k < w then we can find ~l such that (fft,~) _< (rh,~;), 

n(~ 1) = n(~) and for every y �9 "(q;)2, the condition ql forces some m r to 

be in w v \ k. 

[Why? Proof  similar to that of | really a case of it.] 

Now for every ~ �9 (~2) VIa•] we know that V[Gv] ~ "P[Gv] �9 P, r is still 

a P-name of a member of (2~)v[a'][q- ] and Tp[a,][r] is not w[Gn]-large"; by 1.7 

this holds in V[G*] too. A closer look shows that for ~/ # u (from ("~2) VIa*l) 

the tree Tp[G,] [r] n Tp[a~] [r] has finitely many splittings. So the conditions P_[Gv], 

P_[G~] are incompatible in pV[a'].  Contradiction to "P  is c.c.c. Souslin and this 

is absolute (1.4(1))". II1. 9 
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I1.5 

Now we can answer Velickovic's question for Souslin forcings. 

1.10 Conclusion: Let P be a c.c.c. Souslin forcing, adding a new real. 

(1) The  following is impossible: for every P - n a m e  of a new r E ~w for some tree 

T C_ ~>w, T E V a n d p  E P we have p [~-p " r  E l i m T " ,  and An<~ [TMnwl <- 

2~; we can replace: "for every n" by "for infinitely m a n y  n".  

(2) The  following is impossible: for some P - n a m e  of a new r E ~w for every 

strict ly increasing {ni: i < w} c_ w from V for some tree T C_ ~>w, T E V 

and p E P we have p [[-p "r E l i m T "  and A~<~ IT N '~'w[ _< 2 i, we can 

replace: "for every i" by "for infinitely m a n y  i". 

(3) The  following is impossible: for some P - n a m e  r of a new member  of ~2 for 

every str ict ly increasing {n~: i < w} C_ w from V for some tree T C ~>2 

and q we have q E P and q [[-p "r E l i m T "  and (3~176 <_ 2 ~. 

(4) The  following is impossible: for some r E (~2) vP "-~2 for every str ict ly 

increasing sequence (ni: i < w) E V of na tura l  numbers ,  for some tree 

T C_ ~>2 from V we have: r E l i m T ,  and (3~176 M n'2[ <_ ~2 or at  least 

(3~ M (n'+1)21 <_ 2 ~'.  

Proo~ (1), (2) We shall show tha t  they follow by pa r t  (3). Suppose tha t  r is 

a P - n a m e  of a new member  of ~w. Let ~n be (the P - n a m e  ) 0~(~)+IA(1) and 

let r* be the following P -name :  the concatenat ion of ~_ ,~ ,~ , . . . .  F rom r* 
0 1 2 

we can construct  r so r* is new too. By par t  (3) there is a str ict ly increasing 

sequence (hi: i < w) of na tura l  numbers  such tha t  for no q E P and T does 

q IF "r E L im(T)"  and for infinitely many  i < w we have IT A n'2[ < 2 i. Let  the 

tree T t be such tha t  s E l im(T ' )  iff the concatenat ion of O](o)+1(1),  1 Os(1)(1),  

. . .  is in l im(T) .  Clearly IT I M '~2] >_ IT M ~2[, so we have proved clause (2) for 

(n~: i  < w) =: ( n i 2 n ' : i  < w/. Replacing r* by (h*(r* In(~!)!):i < w/, h* is a 

one-to-one function f rom ~>w into w, will give (1) too. 

(3) Follows f rom par t  (4). 

(4) Let  r be a P - n a m e  of a new real. 

By  L e m m a  1.5 for some infinite u C_ w we have 

( . )  for every p E P, Tp[r] is u-large (see 1.1(4)). 

We now choose by induction on i, ni < w, such tha t  ni > sup{nj :  j < i} and 

[(ni, n~+l)M u I > 2 ~' + 2. If  (4) fails for r we apply  the s t a t ement  to the sequence 
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(ni: i < w), so for some p E P and subtree T of ~ from V, we have: 

(a) p IF-p"r C l imT" ,  

(b) for infinitely many i < w, we have [TM ('~I+1) 2[ < 2 '~'. 

By the choice of u, for some j* < w, we know tha t  Tp[r] has a splitt ing of level 

E [Jo, jz)  for each Jo, Jl E u, j* < Jo < j l .  

So if i > j*,  then [Tp[_r] M ('~'+1)2[ is at least the number  of levels < n~+z of 

split t ing nodes of Tv[r_] which is > [(n~, n~+l) N u[ which is > 2 ~'. But  p IF"r E 

l imT"  implies Tp[r] C_ T so [T M (m+~)2[ is > 2 n~ (for every i < w such tha t  

i > j*) ,  this contradicts the choice of T hence we finish. 11.1o 

1.11 Remark:  This means tha t  any c.c.c. Souslin forcing which is o,w-bounding 

is quite similar to the Random real forcing in some sense. More exact ly  every 

c.c.c. Souslin forcing has a proper ty  shared by the Random real forcing and the 

Cohen forcing. 

1.12 CLAIM: 

(1) Assume  

(a) P is a forcing notion, 

(b) r is a P -name  of  a member  of  o,2, 

(c) h = (hn: n < w) ,hn  = n (i.e. h,~(i) = n for every i < w) and u C_ w 

is infinite, 

(d) for every p E P,  for someT1 E Tp[r_] the set {k: ~?^Ok_~g,^(l/ E Tp[r]} 

is (u, h)-large (see (*) of  1.1(8)). 

Then forcing with P adds a Cohen r e a l  

(2) We can weaken (d) to 

( d ) -  for every p E P for some n < w, and q o , . . . ,  qn-a E Tp[r_] the set {k: for 

some g < n, rle^Ok_tgm ^(1) E Tv[_r]} is (u, h)-large. 

Proob (1), (2) Let  u \ { 0 }  = {n/: 1 < i < w}, no de j0  < nl  < n2 < .- . ,  let 

(k( i ,Q:  ~ < w) be such that  i = ~ e k ( i , g ) 2  ~, k(i ,g)  E {0,1}, so k ( i ,Q  = 0 when 

2 ~ > i. Let  p *  = (k(i,g): g_< [ l o g 2 ( i + l ) ] )  where i = i~(m) is the unique i 

such tha t  n~ _< m < ni+l .  We define a P -name  s (of a member  of (o,2)Ye): let 

{ki: i < w} list in increasing order {k < w: r (k)  = 1} and _s be Pko* ̂Pkl* ̂ Pk2* ̂  . . . .  

Clearly by condit ion (d ) - ,  for every p E P and n < w we have p �9 "r(k) = 0 

for every k > n" .  Hence I[-p "{k < 0): r ( k )  ~- 1} is infinite, hence [[-p "8 e o,2". 
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It  is enough to prove tha t  I[-p"S is a Cohen real over V ' .  So let T E V be a given 

subtree  of ~>2 which is nowhere dense, i.e. (V~ E T)(3v)[~/<~ v E ~>2 \ T], and 

we should prove Ibp"S ~ l i m T " .  So assume p E P ,  p [~-p "8 E l i m T "  and we 

shall get a contradict ion.  Having our p E P we can apply  ( d ) -  (or (d), which 

is stronger) ,  so we can find n < w and ~ 0 , . . . ,  ~n-1 E Tp[r] as there such tha t  

A = {k < w: for some ~ < n, tie^Ok_igor^(1) E Tp[r_]} is (u, h)-large. 

Let  for each g < n, {k~: j < jr}  list in increasing order {k < tg(ne): me(k) = 

1 } a n d l e t p e = p k g  Pkf ""Pk~ . Now we can choose by induction o n e < n ,  

a sequence ue E ~>2 such that :  Uo = 0 ,  ue ~ Ue+l and pt^t.,e+l ~ T (each t ime  

use "T is nowhere dense").  

Next  we choose m ( . )  E A such tha t  v,~ _<~ Pro(.),* �9 possible as A is (n, f~)- 

large (check Definition 1.1(8): the set {i~(m): m E A} contains an interval of 

length > 2 eg("~), so by the definition of p,~, some m(*)  in this interval is as 

required).  Now we can find Pl E P such tha t  p < Pl and Pl I~-p "for some g < n, 

rle^Om(.)_egn,~(1) ~ r" hence Pl Ibp "for some g < n, pe^p~( . )  <~ s",  so by the 

choice of ue+x, and as ue+l ~_ u,~ ~_ p~(.)  we get Pl I~-p "_s ~ l i m T "  hence we 

get contradict ion to: p H-p"S E l i m T " ,  hence we finish proving I~-p "s is a Cohen 

real over V." 11,12 

1.13 CLAIM: Let  P be a c.c.c. Souslin forcing 

(1) " P  adds a Cohen real" is absolute (as well as "x is a P -name  of  a Cohen 

real"). 

(2) "x is a P -name  of  a dominat ing real" is absolute. 

(3) " P  add a non dominated real" is absolute (as well as "x is a P -name  of  a 

non dominated real"). 

(4) For a given h, "there is u E [w] ~~ such that  (d) of  Claim 1.12(1) holds" is 

absolute; similarly (d ) -  of  1.12(2). 

(5) "x is a P -name  of  a member  of~w, dominat ing ~l E ~w and not  dominat ing 

r is absolute (in fact, a conjunction of fix1 and E ]  statements). 

Proof'. (1) Let ~(x)  say: 

(a) x = ((p~,t~: i < w): ~ E ~>w), p~ E P ,  t~ a t ru th  value, (p~: i < w) a 

max ima l  ant ichain (for each ~? E ~>w), 

(b) if~/, v E ~>w and ~ ~ p~ ,p j  are compat ib le  then: [~/<~ vAt~  t ru th  ~ t~= t ru th ]  

and [~?, v are <~-incomparable A &t~ =t ru th=~ t~'=false], 
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(c) for every p E P for some 7/ E ~>w for every v, ~/ <3 v E ~>w, we have 

Vi<~(P,P~' compatible A t~'=truth). 

Now by 1.4(1)+(2) part (a) is a conjunction of 17111 and ~-~11 statements, 

part (b) is both 1-Ill and ~11 and part (c) is I"[11 (we use: compatibility is both 

[[11 and ~11 and (Vp �9 P) [...] means (Vp)~ • P v . . . ] ) .  So ~(x) is  a conjunction 

of 1-I~ and ~11 statements. Now ~(x) says "x represents a P-name of a Cohen 

real" so (3x)~(x) which is a ~-~21 statement, express the statement "forcing with 

P adds a Cohen real." 

(2) We repeat the proof of part (1) but clause (c) is replaced by: 

(c)' for everyp �9 P and f �9 (~w) y there are q �9 P and n* such that  p < q 

and: 

(C)q,f,n. ifq, p~ are compatible, t~ truth and n* < n < tg(7/) then f(n)  < 

Now (C)q,f,n. is a 1-Ill and ~ ,  so (c)' has the form (Vp, f)~v ~ P V 

(3q, n*)[q �9 P&p < q&(C)q,f,n.] which is 1-I~ hence "x is a P-name of a dominat- 

ing real" is an absolute statement. 

(3) Use the proof of Part (1) but clause (c) is replaced by: 

(c)" for p �9 P for infinitely many n the set {7/(n): ~/�9 ~>w, igT/> n, i < w, t~ = 

truth, p~, p compatible} is infinite. 

Now (c)" is I-I~ and we can finish as there. 

(4) The statements (d) and (d)- from 1.12 for given p, r, h, u is a 1-Ill state- 
1 1 ment (as by the proof of 1.7(1) v �9 Tp[r] is a Hi-statement and a ~-~l-statement). 

(5) Easier than the proof of (3). 111.14 

1.14 Conclusion: If P is a c.c.c. Souslin forcing notion adding g E ~ not 

dominated by any f E (~w) v then forcing with P adds a Cohen real. 

Proof'. Without loss of generality, g is strictly increasing. Let r = {_g(i): i < w}; 

it is a subset of w identified with its characteristic function. We imitate the proof 

of Lemma 1.5 (using here 1.13(3) instead of 1.7 there) so as there, without loss 

of generality, there is a Ramsey ultrafilter D on w and let the forcing n6tion QD 

be as there. Let h be as in Claim 1.12 condition (c); we ask: 

@1 is there an infinite u C_ w such that condition (d)- of Claim 1.12 holds? 

If yes we are done by Claim 1.12. So from now on we asssume not. 

Let G C_ QD be generic over V, condition (d)- fails also in V[G] (using 

Sh:480



Vol. 88, 1994 COHEN AND RANDOM FORCINGS 171 

absoluteness which holds by Claim 1.13(4)), in part icular  for u =dS w[G]. For 

p E py[c] and y E ~>2 we let 

C[~,p] =dS {k: ~^0k_eg(v)^(l> �9 Tp[r]}. 

Hence for some p* �9 pV[G] ( remember  (*) of 1 .1(8)) :  

(*)1 V[G] ~ " fo r  every j < w and y~ �9 Tp. [r] for e < j for some n* lett ing C =dS 

U{C[~?~,p*]: g < j} ,  for no n* + 1 consequtive members  io < i l  < . . .  < in. 

of u do we have: for every m < n* the sets Jim, ira+l), C are not disjoint". 

Let  for n < w,  ho(n) be like n* in ($)1 for {~/~: e < j}  =dr Tp. [r] Mn>2. Let  

for n < w,  h(n) =dS ~'~i<~(ho(i ) +n). Note tha t  we have: h is str ict ly increasing. 

So for some q* �9 G (which is a subset of QD), and QD-name P* of a member  

of P,  we have: q* forces tha t  P_*, _h, _C[~,P_*] (for ~ �9 ~>2,) are as above (for our 

fixed r). 

Wlog 0 �9 wq*. 

Let w = w U {0} = {n~: i < w} be str ict ly increasing, note  w, n are 
- i  

Q D- names. 

Wlog 

(~2 for every k �9 Aq* and subset v of Aq* N k the condit ion (wq* U v U 

{k}, Aq* ".(k + 1)) forces a value to the following: 

(A) Tp.[r_] M k---2, say t, 

(B) t ru th  value to [hi, h i+l)  M C[rhP_*] = 0 for 7 / � 9  t and i _< k + 1. 

So 

| Assume ql _> q*, n < w and ql forces h_(n) = n* and Tp.[r] M n-->2 = t. If 

io < "'" < in* are the first n* + 1 members  of A ql, then  for some m < n* 

the condit ion q2 =dS (wql U {i0, ..., im-1}, A ql "" ira) forces that :  

for no 7/ �9 t and j do we have: ira-1 _< j < Min(w_" . ( im_l+  1)) and 

j �9 C[7/,P*]. 

Now we want to imitate  the proof  of 1.9. We define a forcing notion Q** = 

Q~* as follows: 

a member  of Q~* has the form (rh, ~) such that :  

(1) ~ = (qv: v �9 n2), q* <_ q~, �9 QD, n = n(~), 

(2) for each v �9 ~2 the number  i[q~,] =dS Max(wq~) is well defined, 

(3) q~ forces (in QD) a value t ,  to Tp. [r] N n->2 and a value h~,(j) to h( j )  for 

j _< n and a value c~(,/,P_*) to _C(,hP_*) Ni[q~,], 
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(4) q~ I~-Qo " i f o  E t~ then  for no k do we have: i[q~] < k < Min(w \ ( i [ q ~ ] + l ) )  

and k E C[y,P_*]", 

(5) r~ = (mi: i < n),  mi < w, 

(6) if v ^ ( j )  ~ vj E n2 for j = 0, 1 and ~ E t~ o O t~ 1 then  c~ 0 [~?,p*] N c~ 1 [y,p*] is 

bounded  by max{meg(o), meg(~)}. 

The  order is defined by: ( rh l ,q  1) < (rh2,q 2) i f f n (q  1) < n(q2), rh I = fit 2 r 

(n(~ 1) + 1) and for r]E n(q2)2 we have qo[n(qx)l _< %.2 

We now continue as in the proof  of 1 .9 .  

W h y  are the P*[G~] for v E ~2 pairwise incompat ib le?  If  Vl,V2 are not 

equal, and P_* [G~I ], P* [G, 2 ] are compat ib le  in P ,  let p be a c o m m o n  upper  bound.  

We know tha t  for some y E Tp[r] we have C[rhp] is infinite, as otherwise f rom 

Tp[r] we can define a function f E ~w such tha t  q [[-p "g ~ f ' ,  contradic t ing the 

assumpt ion.  I i .  14 

The  question is whether  a forcing adding half  Cohen real (see below) adds 

a Cohen real is due to Bartoszyrlski and Fremlin, appears  in [B]. 

1.15 Definition: I f  V C_ V 1, r E (~w) vl we say t ha t  r is a half  Cohen real over 

V if  for every ~ E (~w) v ,  for infinitely m a n y  n < w, r(n) = o(n). 

1.16 Conclusion: If  a c.c.c. Souslin forcing adds a half  Cohen real then  it adds 

a Cohen real. 

Proo~ If  r is a P - n a m e  a m e m b e r  of ~w which is (forced to be) half  Cohen over 

V, then  [[-p " r  E wW is not domina ted  by any "old" h E ~w (i.e. h E (~ 

t r i v i a l l y - -you  can use the definition on h + 1 to get str ict  inequality. Now use 

1.14. I1.16 

We remark  on another  claim in the same line. 

1.17 CLAIM: Assume Q is a ccc Souslin forcing and r is a Q - n a m e  of a member 

of ~w . Assume further that for some ~1 E ~ , a Cohen real over V and G , a 

subset of Q v[~ generic over V[~] we have riG] dominate ~?, i.e. for every n < 

large enough y(n) <_ r[G](n) .  Then (in V)  r is forced by some q E QV to be 

a dominating real, i.e. for every G, a subset of QV generic over V to which p 

belongs and p E (~w) v[c], for every n < w large enough p(n) <_ r[G](n) .  
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Proof." Assume tha t  not; then some p C Qy[n] force the negation, i.e. r is as 

above but  the conclusion fails. By the homogeneity of Cohen forcing there is a 

Cohen name p of such a condition. 

Also in V there is a maximal  antichain J of Q and sequence (pq: q c JI 

such tha t  for each q E J either q forces tha t  r does not dominate  pq and pq C 

(~(w \ { 0 } )  OR q forces tha t  r dominate  every p e ( ~ ) y  and pq(n) = 0 for every 

n < w (all in V). Now we can find p* E ~w dominat ing all pq for q E J .  

Also wlog p is above some q* E J so necessarily pq. (n) ~ O. 

We define a forcing notion R as follows: members  have the from ( f , g )  

where for some n = n ( f )  < w, f is a function from n>2 to w and g is a function 

from a3 to w. The order is: ( f l ,g2)  _< (f2,g2) iff n ( f l )  _(n( f2) ,  f2 extend f l ,  for 

every n < w we have gl(n) <_ g2(n) and for every k satisfying n ( f l )  _< k < n(f2) ,  

for all except at most  one u E k2 we have gl(k)  _< f2(u). 

SUBCLAIM: Let G be a subset of R generic over V. 

(1) In V[G] , for every u e (~2) v , 7/. =dS f o u = ( f (u  I s ~ < w) iS a Cohen 

real over V, so 

(2) Pn~ =dr P[?~t,] i8 a member of Qv[n], which by absoluteness is a subset of 

Qv[a] . 

Now in V[~?,] clearly Pn~ forces tha t  r dominate  ~ but  not p* . By abso- 

luteness this holds also in V[G]. Now if Ul, u2 are distinct members  of (~2) y[c] 

and Pn~l 'Pn~2 are compatible in Qv[G], let p* E Qy[c] be a common  upper  bound;  

then it forces tha t  r dominates  p*, but  it is also above a member  q* of J such 

tha t  pq. is not  a sequence of zeroes. 

By absoluteness we get a contradict ion to "Q is c.c.c. Souslin forcing". 

11.17 
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