
�

�
“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2010/3/1 — 13:08 — page 627 — #1

�

�

�

�

�

�

Forum Math. 22 (2010), 627–640
DOI 10.1515/FORUM.2010.034

Forum
Mathematicum
© de Gruyter 2010

κκκ-fold transitive groups
Daniel Herden and Saharon Shelah

(Communicated by Rüdiger Göbel)

Abstract. An abelian group G of type 0 is called κ-fold transitive for some cardinal κ > 0 if for any
pair of pure elements x , y ∈ G there exist exactly κ-many ϕ ∈ Aut G such that xϕ = y. We show the
existence of large κ-fold transitive groups for every κ ≥ ℵ0 assuming V=L and ZFC respectively.
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1 Introduction

This paper deals with λ-free abelian groups (λ ≥ ℵ1 a given cardinal), i.e. any subgroup
of cardinality < λ is free. A central position here is occupied by free groups and ℵ1-free
groups, where all countable subgroups are free. All these groups share in common a very
rigid group structure alongside with a plenty of pure elements (divisible only by 1 and −1);
let pG denote the collection of pure elements of the group G. We now call G a UT-group
(UT for uniquely transitive) if for any pair of elements x , y ∈ pG there exists a unique
ϕ ∈ Aut G such that xϕ = y. After a long period of stagnation concerning the existence
of non-trivial UT-groups besides Z there has recently been a real rush of papers showing
existence under quite different set-theoretical assumptions, see [7] for an overview and
[3, 4, 5, 6, 8] for details. The methods to construct UT-groups can be summarized in the
following two competing strategies: on the one hand we can try to reach the goal by purely
group theoretic means resulting in groups with non-commutative free endomorphism rings
and non-trivial endomorphism kernels, on the other hand we can use a shortcut through
ring theory leading to a special class of principal ideal domains whose additive groups are
uniquely transitive with trivial endomorphism kernels.

In this paper we want to investigate the following canonical generalizations of UT-groups.
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628 D. Herden and S. Shelah

Definition 1.1. Let G be an ℵ1-free group (or more generally: of type 0).

(a) G is κ-fold transitive for some cardinal κ > 0 if for any pair of elements x , y ∈ pG there
exist exactly κ-many different ϕ ∈ Aut M such that xϕ = y.

(b) G is almost uniquely transitive if for any pair of elements x , y ∈ pG there exist at least
two but finitely many different ϕ ∈ Aut M such that xϕ = y.

In Corollary 2.5 we will see that almost uniquely transitive groups are a special case of
κ-fold transitive groups. Concerning the existence of κ-fold transitive groups we will prove
the following result. Recall here that cf (α) denotes the cofinality of an ordinal α and that
Sλℵ0

:= {α ∈ λ| cf (α) = ℵ0}.

Theorem 1.2. Let κ ≥ ℵ0 be a cardinal and λ > κ be a regular cardinal with ♦S for
some non-reflecting stationary S ⊆ Sλℵ0

. Then there exists a λ-free κ-fold transitive group
of cardinality λ.

As the endomorphism rings of κ-fold transitive groups have obligatory non-trivial endo-
morphism kernels for κ > 1 the group theoretic approach from [6] using iterated pushouts
will celebrate a fulminant comeback here. But in contrast to [6] this time the proof makes
use of the Diamond Principle ♦S . Remember here that assuming Gödel’s universe V=L a
non-reflecting stationary S ⊆ Sλℵ0

exists for every successor cardinal λ > ℵ0, see [9]. For
λ = χ+ = 2χ the Diamond Principle ♦S holds for any stationary S ⊆ {δ < λ| cf (δ) �=
cf (χ)}, see [10] for a proof and a history on earlier weaker results.

The Sections 2 to 4 of this paper engage in the proof of Theorem 1.2. In Section 5 then
follows a concluding discussion of the used construction with references to UT-groups and
Black Box constructions.

That we focus in this paper on the case κ ≥ ℵ0 has technical reasons: throughout our
algebraic prerequisites and construction tools we will assume that for some pure element
a∗ in our κ-fold transitive group G the group K of automorphisms ϕ ∈ Aut G leaving a∗
fixed is a non-commutative free group of cardinality κ, hence κ ≥ ℵ0. The case κ < ℵ0 will
need a much more careful and elaborate construction allowing commuting endomorphisms
and a more complex endomorphism ring structure. This will be the object of a subsequent
paper.

Our notations are standard (see [1, 2, 7, 9]) and homomorphisms are applied on the right.
For an introduction into algebraic constructions using set theoretic tools we refer to [1, 7].

2 Algebraic preparatory work

Throughout this and the following sections let ℵ0 ≤ κ < λ be cardinals with λ regular. We
will emphasize the free ♦S-construction. The correspondent definitions and results for the
ℵ1-free Black Box-construction mentioned in Section 5 are noted in brackets.

Definition 2.1.

(a) Let A (A∗) be the class of all x = (Gx, Yx, Fx, G
x
, A
x
, a∗
x ) = (G, Y, F , G, A, a∗) with:
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κ-fold transitive groups 629

(α) G �= 0 is a free (ℵ1-free) commutative group.

(β) Y is a set of non-commutative free generators with F = 〈 Y〉 and |Y| ≤ |G|.
(γ) G = 〈 Gf : f ∈ F 〉 with Gf ⊆∗ G for all f ∈ F and G/Gyε free (ℵ1-free) for all

y ∈ Y, ε ∈ {−1, 1}.
(δ) A = 〈 A f : f ∈ F 〉 with A f : Gf �→ Gf −1 a group isomorphism. We set G1 := G

and A1 := id G for 1 = 1F .

(ε) If f = yε1
1 yε2

2 . . . yεn
n (εi ∈ {−1, 1}) is the reduced representation of f ∈ F via Y

(i.e. the representation of minimal length n), then

A f = Aε1
y1

Aε2
y2

. . . Aεn
yn

.

In particular

Gf = Dom (Aε1
y1

Aε2
y2

. . . Aεn
yn

) and Gf −1 = Im (Aε1
y1

Aε2
y2

. . . Aεn
yn

) .

(ζ) a∗ ∈ pG and
∣
∣Fx(a∗, a∗)

∣
∣ = κ, where we set Fx(a, b) := {f ∈ F : aA f ∈ Zb} for

all a, b ∈ pG. Here aA f ∈ Zb includes the implications a ∈ Gf and b ∈ Gf −1 .

(η) If b ∈ pG with Fx(a∗, b) = ∅, then Fx(b, b) = {1}.
(b) For every x ∈ A (A∗) set K := Kx := Fx(a∗, a∗) ⊆ Fx as subgroup.

The maps Ay (y ∈ Y) were called “partial automorphisms” in [6] as their main purpose
is to grow up by algebraic manipulation to automorphisms of the whole group G. Recall
here that the compositionϕμ of two partial automorphismsϕ,μ was defined canonically as
having domain Dom (ϕμ) = (Dom μ∩ Imϕ)ϕ−1 and image Im (ϕμ) = (Dom μ∩ Imϕ)μ.

Corollary 2.2.
(1) If f = f1f2 . . . fn for elements f , f1, . . . , fn ∈ F , then A f ⊇ A f1A f2 . . . A fn holds.
(2) For every f ∈ F , g ∈ Gf holds g ∈ pG ⇐⇒ gA f ∈ pG.
(3) For every f ∈ F the group G/Gf is free (ℵ1-free).

Proof. Easy. Clause (3) is proven by induction on the length of the reduced representation
f = yε1

1 yε2
2 . . . yεn

n of f ∈ F . To demonstrate the keynote for Ay , Az (y, z ∈ Y) observe that

Im Ay/(Dom Az ∩ Im Ay) ∼= (Dom Az + Im Ay)/Dom Az ⊆ G/Dom Az

is free. Multiplication by A−1
y shows that

Dom Ay/(Dom Az ∩ Im Ay)A−1
y = Dom Ay/Dom (AyAz)

and G/Dom (AyAz) are free.

Thus in particular aA f ∈ Zb for a, b ∈ pG means aA f ∈ {−b, b} by Corollary 2.2(2).

Definition 2.3. Let be x ∈ A (A∗).

(a) We define the relation Ex := {(a, b)| a, b ∈ pG, ∃f ∈ F : aAf ∈ Zb}.
(b) We call x full if Gf = G for all f ∈ F .
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630 D. Herden and S. Shelah

(c) We call x very full if x is full with Ex = pG × pG.
(d) Let U ⊆ A (U∗ ⊆ A∗) be the class of all very full x.

Plain consequences of this definition include the following.

Corollary 2.4.
(1) Ex is an equivalence relation.
(2) For every (a, b) ∈ pG × pG holds (a, b) ∈ Ex ⇐⇒ Fx(a, b) �= ∅.
(3) If a, b ∈ pG with a/Ex = b/Ex = a∗/Ex, then Fx(a, b) = sKxt for suitable s, t ∈ Fx,

in particular Fx(a, a) ∼= Kx as groups. Otherwise |Fx(a, b)| ≤ 1 holds.

Proof. Easy.

From Corollary 2.4(3) the following link between κ-fold transitive, uniquely transitive and
almost uniquely transitive groups is immediate.

Corollary 2.5.
(1) A group G is uniquely transitive iff it is 1-fold transitive.
(2) A group G is almost uniquely transitive iff it is κ-fold transitive for some 1 < κ < ℵ0.

Proof. Easy.

We should emphasize that the class A (A∗) is non-trivial. For the more complicated class
U (U∗) this will follow from Theorem 3.5.

Lemma 2.6. A �= ∅ (A∗ �= ∅).

Proof. Let G be a free group of cardinality κ ≤ |G| < λ. (We need a bounded cardinality to
have an appropriate starting point for the recursive construction later on.) For some a∗ ∈ pG
we then define Y := 〈 yα : α < κ 〉 and let G and A be induced by

Gyα := Gy−1
α

:= Za∗, Ayα := id Za∗ .

Now check the definitions.

Definition 2.7.
(a) We define a relation ⊆A on A (⊆A∗ on A∗) where x ⊆A y (x ⊆A∗ y) means that:

(α) Gx ⊆ Gy, Yx ⊆ Yy and Fx ⊆ Fy.

(β) Gxf ⊆ Gyf and Axf ⊆ Ayf for all f ∈ Fx.

(γ) If y ∈ Yx and Gxy �= Gyy , then Gx ⊆ Gyy , Gy
y−1 .

(δ) a∗
x = a∗

y and Kx = Ky.

(b) We define a relation ≤A on A (≤A∗ on A∗) where x ≤A y (x ≤A∗ y) means that in
addition to (a), (α) − (δ) also

(ε) Gy/Gx is free (ℵ1-free).
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κ-fold transitive groups 631

Corollary 2.8. The relations ⊆A and ≤A (⊆A∗ and ≤A∗) are partial orders on A (A∗).

Proof. Easy.

For our recursive construction the notion of limits in A is of central importance.

Definition 2.9.
(a) For elements x, xα (α < δ) in A (A∗) we define x =

⋃{xα : α < δ} to mean that:

(α) 〈 xα : α < δ 〉 is a ≤A-increasing (≤A∗-increasing) sequence with δ a limit ordinal.

(β) Gxδ =
⋃

α<δ Gxα , Yxδ =
⋃

α<δ Yxα and Fxδ =
⋃

α<δ Fxα .

(γ) G
xδ
f =

⋃

α<δ G
xα
f and A

xδ
f =

⋃

α<δ A
xα
f for all f ∈ Fxδ .

(b) 〈 xα : α < α∗ 〉 is continuously ≤A-increasing (≤A∗-increasing), if:

(α) xα ≤A xβ (xα ≤A∗ xβ ) for all α ≤ β < δ.

(β) xδ =
⋃{xα : α < δ} for every limit ordinal δ < α∗.

Corollary 2.10. Let 〈 xα : α < δ 〉 be continuously ≤A-increasing (≤A∗-increasing). Then
for a unique xδ ∈ A (A∗) holds

xδ =
⋃ {xα : α < δ} .

Proof. Easy. Observe that all properties are of finite character. In the ℵ1-free case make use
of Pontryagins Theorem.

3 Construction tools

Next we describe the construction tools for reaching our main goal. We start with a lemma
that will be useful in growing up partial automorphisms Af to full automorphisms.

Lemma 3.1. Let be x ∈ A (A∗) and y∗ ∈ Yx. Then there exists some x �= y ∈ A (A∗) with:

(i) x ≤A y (x ≤A∗ y) and
∣
∣Gy

∣
∣ =

∣
∣ Gy \ Gx

∣
∣ =

∣
∣ Gx

∣
∣ .

(ii) Yy = Yx and Gyy = Gxy (y∗ �= y ∈ Yx).

(iii) Gx ⊆ Gyy∗ , Gy
y−1∗

.

Proof. We follow a two-step construction.

Step 1 (free case): According to Definition 2.1(a)(γ) holds Gxy∗ � Gx, thus Gx = Gxy∗ ⊕ C
for a suitable free summand C. Thus setting

G′
x := Gx ⊕ C′

with C′ ∼= C we can continue Axy∗ to a partial automorphism A ′
y∗ : G′

y∗ → G′
y−1∗

of

G′
x by setting G′

y∗ := Gx, G′
y−1∗

:= Gx
y−1∗

⊕ C′ and A ′
y∗ � C = ϕ for an arbitrarily chosen

isomorphism ϕ : C → C′.
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632 D. Herden and S. Shelah

Step 1 (ℵ1-case): In this case we proceed by using a pushout construction similar to [6].
Set G′

x := Gx × Gx/H with H := {(gAxy∗ , −g) : g ∈ Gxy∗}. Furthermore let for U ⊆ Gx be
U0 := (U × 0 + H )/H , U1 := (0 × U + H )/H . Identify Gx with (Gx)0 ⊆ G′

x and continue
Axy∗ to a partial automorphism A ′

y∗ : G′
y∗ → G′

y−1∗
of G′

x via G′
y∗ := (Gx)0, G′

y−1∗
:= (Gx)1

and ((g, 0) + H )A ′
y∗ = (0, g) + H .

Now in both cases it can be verified that:

• Gx ⊆ G′
x and G′

x/Gx are free (ℵ1-free).
• Axy∗ ⊆ A ′

y∗ with G′
y∗ = Gx, and G′

x/G′
y∗, G′

x/G′
y−1∗

are free (ℵ1-free).

Step 2: Repeat Step 1 with y−1∗ instead of y∗ to result in Gy and Ayy∗ for the desired x ≤A y.
To verify Definitions 2.1(a) and 2.7 now is a merely straightforward calculation (see also
Corollary 3.2). Concerning clause (i) observe that in case of A ′

y∗ being a full automorphism
Gy �= Gx can always be achieved replacing Gy by Gy ⊕ Z.

We emphasize some special features of the proof separately for later use.

Corollary 3.2. With x′ = (G′
x, Yx, Fx, G

′ x
, A

′ x
) defined as in Step 1 of the last lemma holds:

(1) x′ ∈ A (A∗).
(2) Im A ′

y∗ ∩ Gx = Im Axy∗ .
(3) Fx′ (g, g) = Fx(g, g) and Fx′ (gA ′

y∗ , gA ′
y∗) = A ′−1

y∗ Fx(g, g)A ′
y∗ for all g ∈ Gx.

(4) a∗/Ex′ = a∗/Ex ∪ A ′
y∗(a∗/Ex) and Fx′ (g, g) = {1} for all g ∈ G′

x \ (Gx ∪ Im A ′
y∗).

Proof. Easy. Concerning clause (3) let be g ∈ Gx and f = yε1
1 yε2

2 . . . yεn
n ∈ Fx′ = Fx with

gAx
′

f = g(Ax
′

y1
)ε1 (Ax

′
y2

)ε2 . . . (Ax
′

yn
)εn = g. For yi �= y∗ we can replace in the last equation x′

directly by x, while for yi = y∗ by clause (2) either x′ can be replaced by x or otherwise y∗
in f is directly followed by (y∗)−1 and therefore can be reduced.

Next we actually demonstrate how recursive application of Lemma 3.1 grows partial auto-
morphisms to full automorphisms.

Lemma 3.3. Let be x ∈ A (A∗). Then there exists some x �= y ∈ A (A∗) with:
(i) x ≤A y (x ≤A∗ y) and

∣
∣ Gy

∣
∣ =

∣
∣ Gy \ Gx

∣
∣ =

∣
∣ Gx

∣
∣ .

(ii) Yy = Yx and y is full.

Proof. Set μ :=
∣
∣ Yx

∣
∣ and let Yx = {yα : α < μ} be a listing of the set Yx. Then Y ′

x :=
{y ′

α : α < μω} with y ′
μn+α := yα (n ∈ ω,α ∈ μ) is a listing with ω-repetition. Define

〈 xα : α ≤ μω 〉 as continuously ≤A-increasing (≤A∗-increasing) sequence:

• x0 := x.
• xα :=

⋃{xβ : β < α} ∈ A (A∗) for limit ordinals α using Corollary 2.10.
• xα for α = β + 1 is derived from xβ using Lemma 3.1 and y∗ := y ′

α.

Setting y := xμω claims (i) and (ii) are obvious.

Next a construction tool that will be useful to achieve transitivity.
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κ-fold transitive groups 633

Lemma 3.4. Let be x ∈ A (A∗) and b∗ ∈ pGx with (a∗, b∗) /∈ Ex. Then there exists some
x �= y ∈ A (A∗) with:

(i) x ≤A y (x ≤A∗ y) and
∣
∣ Gy

∣
∣ =

∣
∣ Gy \ Gx

∣
∣ =

∣
∣ Gx

∣
∣ .

(ii) a∗Eyb∗.

Proof. Set

• Gy := Gx ⊕ Z,
• Yy := Yx ∪ {y∗} for some new free generator y∗,
• Gyy := Gxy, Ayy := Axy for y ∈ Yx,
• Gyy∗ := Za∗, Gy

y−1∗
:= Zb∗ and Ayy∗ : Za∗ → Zb∗, a∗ �→ b∗.

Now verify the definitions. We want to give details on Definition 2.1(a)(ζ),(η) and Defini-
tion 2.7(δ) where the most interesting arguments take place:

Let be a, b ∈ pGy and f = yε1
1 yε2

2 . . . yεn
n ∈ Fy(a, b) reduced, thus aAyf = b. We define

c0 := a, ci := a(Ayy1
)ε1(Ayy2

)ε2 . . . (Ayyi
)εi for 1 ≤ i ≤ n, u := {1 ≤ i ≤ n| yi = y∗} and

the partition u := u+ ∪ u−, where u+ := {i ∈ u| εi = 1}, u− := {i ∈ u| εi = −1}. So
(ci−1, ci) ∈ {(a∗, b∗), (−a∗ , −b∗)} for i ∈ u+ and (ci−1, ci) ∈ {(b∗, a∗), (−b∗, −a∗)} for
i ∈ u−. This gives cause to the following observations:

1.) For a /∈ (a∗/Ex) ∪ (b∗/Ex) holds either Fy(a, b) = Fx(a, b) or Fy(a, b) ⊆ {1}.
For f �= 1 we can prove by induction i /∈ u and ci /∈ (a∗/Ex) ∪ (b∗/Ex), thus f ∈ Fx.

2.) Ky = Kx.
Assume that f ∈ Ky\Kx, thus u �= ∅. For i0 := min u holds ci0−1 ∈ a∗/Ex∩{± a∗, ± b∗} =
{a∗, −a∗}, in particular i0 ∈ u+ and ci0 ∈ {b∗, −b∗}. Similarly holds ik ∈ u− for ik :=
max u, thus |u| > 1. We denote by i0 < i1 the second member of u and conclude again
ci1−1 ∈ {± a∗, ± b∗}. Take a look at

f ′ := y
εi0+1

i0+1 y
εi0+2

i0+2 . . . y
εi1−1

i1−1 ∈ Fx.

Thus ci1−1 = ci0A
x
f ′ . For ci1−1 ∈ {a∗, −a∗} follows (f ′)−1 ∈ Fx(a∗, b∗) contradicting

(a∗, b∗) /∈ Ex. Thus ci1−1 ∈ {b∗, −b∗}, f ′ ∈ Fx(b∗, b∗) = {1} (see Definition 2.1(a)(η)),

f ′ = 1 and i1 = i0 + 1 as f is reduced. But now y
εi0
i0

= y∗, y
εi0+1

i0+1 = y−1∗ finally contradicts
f reduced and our assumption Ky �= Kx.

Very similar to 2.) is the proof of
3.) a∗/Ey = (a∗/Ex) ∪ (b∗/Ex).

We summarize our efforts to

Theorem 3.5.
(1) For every x ∈ A (A∗) exists a x �= y ∈ A (A∗) with:

(i) x ≤A y (x ≤A∗ y) and |Gy| = |Gy \ Gx| = |Gx|.
(ii) y is full with pGx × pGx ⊆ Ey.

(2) In (1) we can tighten x �= y ∈ A (A∗) to x �= y ∈ U (U∗).
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Proof.
Clause (1): Let 〈bε| ε < μ〉 be a list of pGx. Define 〈xε|ε < 2μ〉 as continuously ≤A-
increasing (≤A∗-increasing) sequence:

• x0 := x.
• xε :=

⋃{xα : α < ε} ∈ A (A∗) for limit ordinals ε using Corollary 2.10.
• xε for odd ε = α+ 1 is derived from xα using Lemma 3.3.
• xε for even ε = 2(α+ 1) is derived from x2α+1 using Lemma 3.4 and b∗ := bα.

Now check!

For clause (2) repeat the construction in (1).

Thus we are able to upgrade every element of A (A∗) to an element of U (U∗) and therefore
to work in the highly appreciated class U (U∗) entirely.

In the main construction we will make use of the following possibility to code F (and
therefore in the end the desired automorphism group itself) into our groups G.

Lemma 3.6. Let x ∈ A (A∗) be full. Then some full x ≤A y ∈ A (x ≤A∗ y ∈ A∗) with
∣
∣ Gy

∣
∣ =

∣
∣ Gy \ Gx

∣
∣ =

∣
∣ Gx

∣
∣ is defined by setting:

(i) Gy := Gx ⊕f ∈Fx Zef .
(ii) Yy := Yx and Fy := Fx.
(iii) Ayy � Gx = Axy and ef Ayy = ef y (y ∈ Yx, f ∈ Fx).

Proof. Easy.

Our list of useful construction tools is completed by a standardized method for killing
undesired endomorphisms. This comes in two parts: we start with killing totally savage
candidates.

Step Lemma 3.7. Let 〈xn| n ≤ ω〉,ϕ, 〈en | n < ω〉 and a prime element p be given such that:
(a) xn ∈ A (A∗) full for all n ≤ ω.
(b) 〈xn| n ≤ ω〉 is continuously ≤A-increasing (≤A∗ -increasing).
(c) ϕ ∈ Aut Gxω and ϕ � Gxn ∈ Aut Gxn for all n < ω.
(d) Gxn ⊕

⊕

f ∈Fxn
Zenf ⊆∗ Gxn+1 as p -pure subgroup with en1 := en and enf A

xn+1
y = enf y

for all n < ω, y ∈ Yxn , f ∈ Fxn .
(e) enϕ /∈ Gxn ⊕ ⊕

f ∈Fxn
Zenf for all n < ω.

Then there exists some full y ∈ A (A∗) such that:

(i) xω ⊆A y (xω ⊆A∗ y) and xn ≤A y (xn ≤A∗ y) for all n < ω.
(ii) Gy/Gxω is p -divisible.
(iii) Yy := Yxω and Fy := Fxω .
(iv) ϕ does not extend to an endomorphism of Gy.
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Proof. As usual we work in the p -adic closure Ĝxω of Gxω . More precisely:

Let ̂A
xω
f be the continuous extension of A

xω
f to Ĝxω and set

Gy := 〈Gxω , ŷA
xω
f | f ∈ Fxω 〉∗ ⊆∗ Ĝxω

as p -purification with y :=
∑

n<ω pnen and Ayf := ̂A
xω
f � Gy. Observe that

yAyf =
(

∑

n<k
pnen

)

A
xk
f +

∑

k≤n<ω
pnenf

for f ∈ Fxk and yϕ /∈ Gy. Now check!

We then kill those half-way tame candidates that survived the first trial.

Step Lemma 3.8. Let 〈xn| n ≤ ω〉, ϕ, 〈en| n < ω〉 and a prime element p be given such that:

(a) xn ∈ A (A∗) full for all n ≤ ω.
(b) 〈xn| n ≤ ω〉 is continuously ≤A-increasing (≤A∗-increasing).
(c) ϕ ∈ Aut Gxω and ϕ � Gxn ∈ Aut Gxn for all n < ω.
(d) Gxn ⊕⊕

f ∈Fxn
Zenf ⊆∗ Gxn+1 as p -pure subgroup with en1 := en and enf A

xn+1
y = enf y

for all n < ω, y ∈ Yxn , f ∈ Fxn .
(e) enϕ ∈ Gxn ⊕ ⊕

f ∈Fxn
Zenf for all n < ω.

(f) ϕ /∈ ZA
xω , where ZA

xω is the group ring induced by A
xω .

Then there exists some full y ∈ A (A∗) such that:

(i) xω ⊆A y (xω ⊆A∗ y) and xn ≤A y (xn ≤A∗ y) for all n < ω.
(ii) Gy/Gxω is p -divisible.
(iii) Yy := Yxω and Fy := Fxω .
(iv) ϕ does not extend to an endomorphism of Gy.

Proof. Let ̂A
xω
f again be the continuous extension of A

xω
f to Ĝxω and set

Gyi := 〈Gxω , yi ̂A
xω
f | f ∈ Fxω 〉∗ ⊆∗ Ĝxω

and Ay
i

f := ̂A
xω
f � Gyi for suitable elements yi ∈ Ĝxω . This leads to full elements y1, y2 ∈ A

(A∗), but the correct choice of y1, y2 demands skill.

We start with the guess y1 :=
∑

n<ω pnen . For y1ϕ /∈ Gy1 the proof is finished.Thus assume
y1ϕ ∈ Gy1 . Therefore

(1) pky1ϕ = g + y1ψ
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636 D. Herden and S. Shelah

holds for some k ∈ ω and g ∈ Gxk ,ψ ∈ Z〈Axωf | f ∈ Fxk 〉. For pkϕ = ψ evaluation at

ek leads to ϕ ∈ Z〈Axωf | f ∈ Fxk 〉, contradiction! Thus pkϕ − ψ �= 0 and there exist some

a ∈ Gxω and a suitable p -adic number π ∈ Ẑp with

(2) πa(pkϕ− ψ) /∈ Gxω .

Without loss of generality let be a ∈ Gxk and πa(pkϕ − ψ) ∈ Ĝxk \ Gxk . We now set
y2 := πa +

∑

n<ω pnen = πa + y1 as our second guess. For y2ϕ /∈ Gy2 the proof is
finished. Thus assume y2ϕ ∈ Gy2 and without loss of generality

(3) pky2ϕ = g′ + y2ψ′

holds for suitable g′ ∈ Gxk ,ψ′ ∈ Z〈Axωf | f ∈ Fxk 〉. Subtracting (1) from (3) gives

(4) πa(pkϕ− ψ′) = (g′ − g) + y1(ψ′ − ψ) .

From a support argument follows ψ′ = ψ and thus πa(pkϕ − ψ) = g′ − g ∈ Gxk , a final
contradiction to (2).

4 Constructing κ-fold transitive groups

In this section we provide the construction and the proof needed for Theorem 1.2. For this let
λ be a regular cardinal with ♦S for some non-reflecting stationary S ⊆ Sλℵ0

. Choose a set G
of cardinality |G| = λ. Also choose a λ-filtration G =

⋃

α<λ Gα with |G0| = |G1 \G0| = κ
and |Gα| = |Gα+1 \ Gα| = κ · |α| for all 0 < α < λ . Let {Φα : Gα → Gα| α ∈ S} be a
system of predicting Jensen-functions for the λ-filtration G =

⋃

α<λ Gα.

We want to assign inductively a group structure to the sets Gα defining a ⊆A-ascending and
sufficiently continuously ≤A-ascending chain 〈xα|α < λ〉 in U with xα = (Gα, Yα, Fα,
G

α
, A

α
, a∗

α). For the canonical union

x :=
⋃

α<λ
xα := (

⋃

α<λ
Gα,

⋃

α<λ
Yα,

⋃

α<λ
Fα,

⋃

α<κ
G

α
,

⋃

α<κ
A

α
, a∗

α)

of this chain the group G =
⋃

α<λ Gα will be κ-fold transitive satisfying Theorem 1.2.
We will carry out the following steps inductively.

Choose x0 ∈ U with Lemma 2.6 and Theorem 3.5. Suppose that xβ (β < α) is already
defined.

Case A: α = β + 1, β /∈ S.
Construct xα using Lemma 3.6 first (giving eβ ) and then Theorem 3.5.

Case B: α = β + 1, β ∈ S.
To construct xα work your way through the following graded flowchart. Have a look at the
Jensen-function Φβ : Gβ → Gβ and then decide.
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κ-fold transitive groups 637

B1: If Φβ satisfies the conditions of Step Lemma 3.7 for some suitable subchain
〈x′n| n ≤ ω〉 ⊆ 〈xγ | γ < α〉 with x′ω := xβ kill it and proceed to B5. Otherwise
proceed to B2.

B2: If Φ−1
β satisfies the conditions of Step Lemma 3.7 for some suitable subchain

〈x′n| n ≤ ω〉 ⊆ 〈xγ | γ < α〉 with x′ω := xβ kill it and proceed to B5. Otherwise
proceed to B3.

B3: If Φβ satisfies the conditions of Step Lemma 3.8 for some suitable subchain 〈x′n| n ≤
ω〉 ⊆ 〈xγ | γ < α〉 with x′ω := xβ kill it and proceed to B5. Otherwise proceed to B4.

B4: If Φ−1
β satisfies the conditions of Step Lemma 3.8 for some suitable subchain 〈x′n| n ≤

ω〉 ⊆ 〈xγ | γ < α〉 with x′ω := xβ kill it and proceed to B5. Otherwise proceed to B5
directly.

B5: Construct xα using Lemma 3.6 first (giving eβ ) and then Theorem 3.5.

Case C: α is a limit ordinal.
Set xα :=

⋃

γ<μ x
′
γ for some unbounded continuously ≤A-ascending subchain 〈x′γ | γ <

μ〉 ⊆ 〈xβ| β < α〉. Here we use that S is non-reflecting.

We list some easy facts about the constructed chain 〈xα|α < λ〉.

Lemma 4.1.

(1) 〈xα|α < λ〉 is a well-defined ⊆A-ascending chain in U.
(2) If α ≤ β < λ with α /∈ S, then xα ≤A xβ .

(3) Gα is a p -pure subgroup of its p -adic completion Ĝα for all α ∈ λ.

Proof. Easy.

Now Theorem 1.2 is part of the following list of properties of x =
⋃

α∈λ xα.

Theorem 4.2.

(1) x ∈ U.
(2) G is a λ-free group of cardinality λ.
(3) Aut G = ±A

x ∼= ±Fx.
(4) G is a κ-fold transitive group.

Proof. Clauses (1) and (2) are immediate consequences of Lemma 4.1 while clause (4)
follows easily from clause (3). Clause (3) now is where the interesting combinatorics takes
place: to start with choose an arbitrary ϕ ∈ Aut G and let S′ ⊆ S ⊆ Sλℵ0

be the stationary
set where ϕ � Gα = Φα (α ∈ S′) is predicted by ♦S . We first want to prove

eαϕ ∈ Gxα ⊕ ⊕

f ∈Fxδ

Z(eαA
xα+1
f ) = Gxα ⊕ eα

(

Z〈A xα+1
f | f ∈ Fxδ 〉

)

(1)

for all δ < α < λ,

where δ is some fixed ordinal.
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Assume that (1) is wrong. Then

C1 := {α < λ|ϕ � Gα satisfies the conditions of Step Lemma 3.7 for

some suitable subchain 〈x′n| n ≤ ω〉 ⊆ 〈xγ | γ < α〉}
is an ω-cub (unbounded and ω-closed) and we can choose α ∈ C1 ∩ S′ �= ∅. In particular
xα+1 is constructed from xα via Step Lemma 3.7, thus Gα+1 ⊆∗ Ĝα is constructed as
subgroup of the p -adic closure and some y ∈ Gα+1 exists with yϕ /∈ Gα+1. We now can
write any g ∈ Gα+1 as a p -adic limit of a sequence 〈gi| i ∈ ω〉 ⊆ Gα, and 〈giϕ| i ∈ ω〉 ⊆ Gα

converges to gϕ by continuity. By Lemma 4.1 G/Gα+1 is κ-free, Gα+1 is p -adically closed
in G and gϕ ∈ Gα+1. But this explicitly includes yϕ ∈ Gα+1, a contradiction to the step
lemma.

Next we sharpen (1) to

eαϕ, eαϕ
−1 ∈ Gxα ⊕ eα

(

Z〈A xα+1
f | f ∈ Fxδ 〉

)

for all δ < α < λ(2)

and some fixed ordinal δ. Otherwise make use of the then existing ω-cub

C2 := {α < λ|ϕ � Gα fails but ϕ−1 � Gα satisfies the conditions of

Step Lemma 3.7 for some suitable subchain 〈x′n| n ≤ ω〉 ⊆ 〈xγ | γ < α〉}
for a contradiction similar to above. Using (2)

C := {α < λ|ϕ � Gα and ϕ−1 � Gα fail Step Lemma 3.7 and ϕ � Gα ∈ Aut Gα}
is a cub now. With Step Lemma 3.8 we proceed to

ϕ � Gα, ϕ−1 � Gα ∈ ZA
xα for all α ∈ C ∩ S′,(3)

where C ∩ S′ ⊆ Sλℵ0
is stationary.

Assume that (3) is wrong. If ϕ � Gα /∈ ZA
xα for some α ∈ C ∩ S′ it gets killed by Step

Lemma 3.8 during procedure B3, contradiction. Thus ϕ � Gα ∈ ZA
xα is obligatory. This

again clears the way for procedure B4 and also ϕ−1 � Gα ∈ ZA
xα follows.

Next we fix some α ∈ C ∩ S′ and take a closer look at (3): as α ∈ Sλℵ0
there exists some

β < α with ϕ � Gα, ϕ−1 � Gα ∈ Z〈A xαf | f ∈ Fxβ 〉. Evaluating ϕϕ−1 = 1 at eβ we can

jump from Z〈A xαf | f ∈ Fxβ 〉 to the freely generated group ring ZFxβ resulting in

ϕ � Gα, ϕ−1 � Gα ∈ ±A
xα for all α ∈ C ∩ S′.(4)

Recalling (2) we can sharpen (4) directly to

ϕ � Gα, ϕ−1 � Gα ∈ 〈±A
xα
f | f ∈ Fxδ 〉 for all α ∈ C ∩ S′(5)

and some fixed ordinal δ. Otherwise for δ < α ∈ C ∩ S′ ⊆ Sλℵ0
we can choose δ < β < α

with ϕ � Gα,ϕ−1 � Gα ∈ 〈±A
xα
f | f ∈ Fxβ 〉. Now evaluate ϕ (respectively ϕ−1) at eβ for a

contradiction.
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For α ∈ C ∩ S′ choose fα ∈ Fxδ with ϕ � Gα ∈ {−A
xα
fα

, Axαfα
}. For δ < α1,α2 ∈ C ∩ S′

evaluation of ϕ at eδ then leads to fα1 = fα2 . Thus the sequence 〈fα|α ∈ C ∩ S′〉 becomes
constant and there exists a unique f ∈ Fxδ with either ϕ = Axf or ϕ = −Axf .

5 Further Discussion

The presented construction can be manipulated canonically to offer some further results.

To start with: from Definition 2.1 onwards we assumed that for every x ∈ A the group
Kx = |Fx(a∗, a∗)| is freely generated of cardinality κ. This is possible only for κ ≥ ℵ0 or
else κ = 1, and indeed the whole construction works fine also for 1-fold transitive groups
with trivial Kx = {1Fx}. Therefore we formulate

Corollary 5.1. Let λ be a regular cardinal with ♦S for some non-reflecting stationary
S ⊆ Sλℵ0

. Then there exists a λ-free uniquely transitive group of cardinality λ.

Furthermore it is easy to replace the Diamond argumentation by a Black Box argumentation
and we formulate as dual result to Theorem 1.2.

Theorem 5.2. Let κ ≥ ℵ0 be a cardinal and λ > κ be a regular cardinal with λℵ0 = λ.
Then there exists an ℵ1-free κ-fold transitive group of cardinality λ.

Proof. Replace A and U by A∗ and U∗ respectively. Concerning the main construction
progress similar to [6].
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