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POSITIONAL STRATEGIES IN LONG
EHRENFEUCHT–FRAÏSSÉ GAMES

S. SHELAH, J. VÄÄNÄNEN, AND B. VELIČKOVIĆ

Abstract. We prove that it is relatively consistent with ZF + CH that there exist two models of cardi-
nality ℵ2 such that the second player has a winning strategy in the Ehrenfeucht–Fraı̈ssé-game of length �1
but there is no �-closed back-and-forth set for the two models. If CH fails, no such pairs of models exist.

§1. Introduction. Suppose A = (A, . . .) and B = (B, . . .) are structures for the
same vocabulary L of cardinality < κ. We say that a set I of partial isomorphisms
between A and B has the κ-back-and-forth property if for every p ∈ I, and every
A0 ⊆ A and B0 ⊆ B of size < κ there is q ∈ I extending p such that A0 ⊆
dom(q) and B0 ⊆ ran(q). We say that A and B κ-partially isomorphic and write
A �pκ B if there is a κ-back-and-forth set for A and B. The relation A �pκ B
has a metamathematical interpretation. Namely, for regular κ it coincides with
elementary equivalence relative to the infinitary language L∞κ. In particular, �pκ is
an equivalence relation on the class of allL-structures. If κ is uncountable then even
formodels of cardinality κ the relation�pκ is strictly weaker than isomorphism. This
was first proved by Morley (1968, unpublished, see [7]). For instance, for κ = ℵ1,
one can take a pair of ℵ1-like dense linear orders one of which contains a closed
copy of �1 while the other doesn’t.
In this paper, we investigate a strengthening of the relation �pκ. Namely, given

two cardinals κ and � and two structures A and B in a vocabulary of size < κ,
we say that A and B are (κ, �)-partially isomorphic and write A �pκ,� B if there
is a κ-back-and-forth set I between A and B such that any increasing chain of
length < � in I has an upper bound in I. The point is that the relation �pκ,κ, unlike
the weaker version �pκ , implies isomorphism in the case that the models are of
cardinality at most κ, and many classical isomorphism-proofs can be interpreted as
results about the relation �pκ,�. Indeed, suppose κ is regular. Then any two �κ-sets
are in the relation �pκ,κ. If they are of cardinality κ, they are isomorphic. Also, it is
well known that any two real closed fields whose underlying orders are of type ��1
and are of cardinality �1 are isomorphic, see [3]. In fact, if κ is regular then any
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two real closed fields whose underlying orders are of type �κ are in the relation
�pκ,κ, see [2]. Another example concerns saturated models. Any two κ-saturated
elementary equivalent structures of cardinality κ are isomorphic, and the proof
shows that any two κ-saturated elementary equivalent structures are in the relation
�pκ,κ. Finally, consider two κ-homogeneous structures A and B such that A �pκ B.
If they happen to be of cardinality κ they are isomorphic and the proof goes by
showing thatA �pκ,κ B.
Thus, the relation �pκ,κ seems like an attractive weaker version of isomorphism.
However, there are some simple questions concerning it that are still open. Themost
important one was raised by Dickmann [1] and Kueker [6], and asks if �pκ,κ is
equivalent to elementary equivalence in some logic. In fact, it is not clear if �pκ,κ is
even transitive. This was a serious obstacle to generalizing first order logic. In order
to overcome this Karttunen [5] defined tree-like partial isomorphisms. This leads
to a transitive relation which coincides with elementary equivalence in a certain
logic called N∞κ and implies isomorphism for models of size κ. One can translate
Karttunen’s concept in terms of the existence of a winning strategy in a certain
Ehrenfeucht–Fraı̈ssé game which we now describe. To begin, we fix two regular
cardinals κ and � and two structuresA and B in the same vocabulary L of size< κ.
Definition 1.1 (EF�κ(A,B)). There are two players ∀ and ∃. The game runs in �
rounds and proceeds as follows.

∀ A0, B0 . . .Aα, Bα . . .
∃ p0. . . pα. . .

(α < �)

At stage α < �, player ∀ picks Aα ⊆ A and Bα ⊆ B, both of size < κ. Player ∃
responds by a partial isomorphism pα between a substructure of A of size < κ
containing Aα and a substructure of B containing Bα . We require that pα extends
the p� , for � < α. Player ∃ wins the game if she plays � rounds while obeying the
rules. Otherwise player ∀ wins.
We write A ≡κ,� B if ∃ has a winning strategy in EF�κ(A,B). This is clearly
transitive. This concept has allowed the study of infinitary languages to take off
and has been very fruitful (see e.g. [9]). One of the first new results was obtained
by Hyttinen [4] who proved the Craig Interpolation Theorem and other classical
results for this new logic. Still the following question remains.

Question 1.2. What is the relation between �pκ,� and ≡κ,�?
Clearly, if A �pκ,� B then A ≡κ,� B. Indeed, if A �pκ,� B then there is a positional
winning strategy for ∃ in EF�κ(A,B), in the sense that ∃ only needs to know
the current position in order to know how to play and win. Thus, Question 1.2
simply asks if the converse is true. Note that the positive answer implies that�pκ,� is
transitive. We concentrate on the first nontrivial case, namely the relation between
�pℵ1,ℵ1 and ≡ℵ1,ℵ1 . Let us first note the well-known fact that A ≡ℵ1,ℵ1 B can be
expressed as the existence of potential isomorphism1 an isomorphism in a forcing
extension obtained by �-closed forcing.

1Recall that for purely relational structuresA ≡�,� B is equivalent to the existence of an isomorphism
ofA and B in some forcing extension.
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Proposition 1.3. SupposeA and B are structures in the same vocabulary L. Then
A ≡ℵ1,ℵ1 B if and only if there is a �-closed forcing notion P such that �P A ∼= B.
We recall the following results from [8] where the equivalence of�pℵ1,ℵ1 and≡ℵ1,ℵ1

has been established in some special cases.

Theorem 1.4. SupposeA and B are two structures in the same vocabularyL. Then
A �pℵ1,ℵ1 B and A ≡ℵ1,ℵ1 B are equivalent in any of the following cases:
(1) |A|, |B| ≤ 2ℵ0 .
(2) A and B have different cardinality.
(3) A and B are trees of height ℵ1.
On the basis of these results it seems interesting to investigate the case whenA and

B are of cardinality ℵ2 and CH holds. Even in this case we can have a positive result
if we look at partial isomorphisms of size ℵ1 rather than of size ℵ0. The following
result was proved in [8].

Theorem 1.5. Suppose A and B are two structures of cardinality ℵ2 in the same
vocabulary L. Then A �pℵ2,ℵ1 B if and only if A ≡ℵ2,ℵ1 B.

The main result of this paper is that the relations �pℵ1,ℵ1 and ≡ℵ1,ℵ1 may not be
equivalent for structures of size ℵ2.
Theorem 1.6. It is relatively consistent with ZFC + CH that there exist two

relational structures A and B of cardinality ℵ2 in a countable vocabulary such that
A ≡ℵ1,ℵ1 B and A ��pℵ1,ℵ1 B.
The remainder of the paper is organized as follows. In Section2 we introduce

the persistency game played on a given family of countable partial functions from
�2 to �1. Given an (�1, 1)-simplified morass M we define a family F = F(M)
which is strategically persistent. IfM is a generic morass we show that F does not
have a �-closed persistent subfamily. In Section 3 we use the family F from the
previous section to define two structures A and B such that A ≡ℵ1,ℵ1 B. If F is
derived from a generic morass we show that A ��pℵ1,ℵ1 B. Finally, in Section 4 we
state some open questions and directions for further research.

§2. Persistent families of functions. In this sectionwe change the original problem
and instead of considering the Ehrenfeucht–Fraı̈ssé game on a pair of structures,
we consider a certain game on a given family of countable partial functions from
�2 to �1.
Let Fn(�2, �1, �1) be the collection of all countable partial functions from �2

to �1. We say that a subfamily F of Fn(�2, �1, �1) is persistent if for every p ∈ F
and α < �2 there is q ∈ F extending p such thatα ∈ dom(q). We will also consider
the following persistency game on F .
Definition 2.1 (G�1 (F)). SupposeF is a subfamily of Fn(�2, �1, �1). The game

G�1 (F) is played by players ∀ and ∃ and runs as follows:
∀ α0 α1 . . .α� . . .

∃ p0 p1. . . p�. . .
(� < �1)
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At stage � player ∀ plays an ordinal α� < �2 and ∃ plays p� ∈ F extending p�, for
� < �, such that α� ∈ dom(p�). ∃ wins the game if she is able to play �1 moves.
Otherwise, ∀ wins.

We say that F is strategically persistent if ∃ has a winning strategy in G�1 (F).
One way to guarantee the existence of a winning strategy for ∃ is that there exist a
persistent subfamily D of F which is �-closed, i.e., for every sequence (pn)n which
is increasing under inclusion there is q ∈ D such that pn ⊆ q, for all n. Indeed,
given such a family D, ∃ has a trivial winning strategy in G�1 (F): at stage � she
plays any p� ∈ D which extends ⋃�<� p� and such that α� ∈ dom(p�). The main
goal of this section is to show that it is relatively consistent with ZFC that there
exist a downward closed family F which is strategically persistent but does not
have a �-closed persistent subfamily. Indeed, given a simplified (�1, 1)-morass
M we can read off a certain family F = F(M) which is strategically persistent.
IfM is obtained by the standard forcing construction we show thatF does not have
a �-closed persistent subfamily.
We start by recalling the relevant definitions from Velleman [10].

Definition 2.2 ([10]). A simplified (�1, 1)-morass is a pair

M = 〈〈	α : α ≤ �1〉, 〈Fα,
 : α < 
 ≤ �1〉〉,
where 〈	α : α ≤ �1〉 is a sequence of countable ordinals, Fα,
 is a family of order
preserving embeddings from 	α to 	
 , for α < 
 ≤ �1, and the following conditions
are satisfied (Figure 1):

(1) (Successor) For every α there are �α, �α ≤ 	α such that 	α = �α + �α,
	α+1 = 	α + �α and Fα,α+1 = {id	α , sα}, where id	α is the identity on 	α and
sα � �α = id�α and sα(�α + �) = 	α + �, for all � < �α . We call sα the shift
at α. (Figure 2).

(2) (Composition) If α < 
 < � then Fα� = {g ◦ f : f ∈ Fα
 , g ∈ F
�}.

Figure 1. A simplified morass.

Figure 2. A shift.
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Figure 3. Factoring.

(3) (Factoring) Suppose � is limit, α < � and f, g ∈ Fα� . Then there exists 

such that α < 
 < �, and f′, g ′ ∈ Fα,
 and h ∈ F
� such that f = h ◦ f′

and g = h ◦ g ′. (Figure 3).
(4) (Fullness) If α < 
 then 	
 =

⋃{f[	α] : f ∈ Fα
}. Moreover, 	�1 = �2.
We then have (see [10]) that ifα < 
 and � < 	
 , then there is a uniquepredecessor

of � on level α, i.e., there is a unique � < 	α such that f(�) = �, for some f ∈ Fα
 .
Moreover, any suchf is uniquely determined on �+1.We call � theα-th predecessor
of � and write

�
α(�) = �.

Definition 2.3. Given a simplified (�1, 1)-morassMwe define the ordering�M

on �2 as follows:

� �M � iff ��1α (�) ≤ ��1α (�), for all α < �1.
We also define the ordering �M

α by:

� �M
α � iff � �M � & ��1α (�) = �

�1
α (�).

IfM is clear from the context we write � for �M and �α for �M
α (Figure 4).

Given a simplified (�1, 1)-morass M, we define a certain subfamily F(M) of
Fn(�2, �1, �1) and show that it is strategically persistent.

Definition 2.4. SupposeM is a simplified (�1, 1)-morass. Let F(M) be the set
of all f ∈ Fn(�2, �1, �1) such that:
(1) if �, � ∈ dom(f), f(�) = α and � �α �, then f(�) = α.
(2) f−1{α} is �-bounded, for all α ∈ ran(f).
Note that the family F(M) is closed under subfunctions. IfM is clear from the

context, we will write F for F(M). We first show the following.

Figure 4. The ordering �.
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Lemma 2.5. SupposeM is a simplified (�1, 1)-morass. Then F(M) is strategically
persistent.

Proof. Given �, � < �2, by (4) and (3) of Definition 2.2 there exists α < �1
and f ∈ Fα,�1 such that �, � ∈ ran(f). Let 
(�, �) be the least such α. If � < �
it follows that ��1
 (�) < �

�1

 (�), for every 
 such that 
(�, �) ≤ 
 < �1. We now

describe a strategy for ∃ in the persistency game on F(M). At every stage j if
player ∀ plays some �j < �2 then player ∃ picks an ordinal αj < �1 and plays
pj = {〈�i , αi〉 : i ≤ j}. Thus, we only need to describe how to choose the ordinals
αj and check that the corresponding function pj belongs to F(M). Suppose we
are at stage j and player ∀ plays �j . Player ∃ first asks if there is an ordinal i < j
such that �j �αi �i . If so, then ∃ picks the least such i and sets αj = αi . Otherwise,
∃ picks any ordinal αj strictly bigger than the αi , for i < j, and 
(αi , αj), for i < j.
In order to check that the corresponding functions pj are in F(M) we need the
following.

Claim. At every stage j there is at most one α for which there is i < j such that
�j �α �i and αi = α.
Proof. Suppose there were two distinct such ordinals, say α and 
 . Let k be the
least such that αk = α and �j �α �k and, similarly, let l be the least such that
αl = 
 and �j �
 �l . Suppose that k < l . Notice that, by the minimality of l , there
is no i < l such that αi = 
 and �l �
 �i . Therefore, by the definition of αl , it
follows that 
 is bigger than α and 
(�k, �l ). We consider two cases.

Case 1. �k < �l . Since 
 > 
(�k, �l ) we have that �
�1

 (�k) < �

�1

 (�l ). Since �j �α �k

and α < 
 we have that ��1
 (�j) ≤ ��1
 (�k). Therefore, we have that ��1
 (�j) <
��1
 (�l ). On the other hand, we have that �j �
 �l , which means that, in particular,
��1
 (�j) = �

�1

 (�l ), a contradiction.

Case 2. �l < �k . Since 
 > 
(�k, �l ) we have that ��1� (�l ) < �
�1
� (�k), for all � ≥ 
 .

We also have that ��1
 (�j) = �
�1

 (�l ). Since �j �α �k and α < 
 it follows that

�l �α �k . Therefore, at stage l we should have let αl = α, a contradiction. �

Now, we check that the functions pj belong to F(M), for all j. Condition (1) of
Definition 2.4 is satisfied by the construction. To verify (2), suppose α ∈ ran(pj)
and notice that if i is the least such that αi = α then �i is the �α-largest ele-
ment of p−1j {α}. Therefore, p−1j {α} is �-bounded. This completes the proof of
Lemma 2.5. �
In order to show that F(M) does not have a �-closed persistent family we will
need to assume certain properties ofM.

Definition 2.6. LetM be a simplified (�1, 1)-morass.

(1) We say thatM is stationary if S(M) = {f[	α] : α < �1 and f ∈ Fα,�1} is a
stationary subset of [�2]� .

(2) We say thatM satisfies the ℵ2-antichain condition if for every X ⊆ (�2)� of
size �2 there are distinct s, t ∈ X such that s(n) � t(n), for all n, i.e., there is
no antichain of size ℵ2 in (�2,�)� under the product ordering.
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We first show that if M has the above properties then F(M) does not have a
�-closed persistency subfamily. Then we show that ifM is obtained by the standard
forcing for adding a simplified (�1, 1)-morass thenM has the above properties.

Lemma 2.7. SupposeCH holds andM is a simplified (�1, 1)-morass which satisfies
the ℵ2-antichain condition. Let A be a subset of F(M)� of size ℵ2. Then there is
�g ∈ A and B ⊆ A of size ℵ2 such that for every �h ∈ B, every n, and every f ∈ F(M),
if f extends hn and dom(gn) ⊆ dom(f) then f extends gn.
Proof. First, observe that if X is a subset of (�2)� of size ℵ2 then there is s ∈ X

and Y ⊆ X of size ℵ2 such that s(n) � t(n), for all t ∈ Y and all n. To see this,
let Z be a maximal antichain in X . Then every element of X is comparable with
an element of Z. Since � refines the usual ordering on �2, by CH, for every s ∈ Z
the set of t ∈ X such that t(n) � s(n), for all n, has size at most ℵ1. Therefore, there
is s ∈ Z such that the set

Y = {t ∈ X : s(n) � t(n), for all n}
is of size ℵ2. Then s and Y are as required.
We now turn to the proof of the lemma. First of all, we may assume that there is a

fixed ordinal α < �1 such that α = sup(
⋃
n ran(gn)), for all �g ∈ A. By CH, we may

assume that there is a fixed ordinal
 > α and, for each n a subsetEn of 	
 such that,
for every �g ∈ A, there is f�g ∈ F
,�1 such that f�g [En] = dom(gn). Consider now
the functions en,�g = gn ◦ f�g , for �g ∈ A and n < �. By CH again, we may assume
that there are fixed functions en , such that en,�g = en , for all �g ∈ A and n. By the
first paragraph of this proof, there is �g ∈ A and a subset B ofA of size ℵ2 such that
f�g(�) � f�h(�), for all �h ∈ B and � < 	
. We claim that �g and B are as required.
To see this, consider some �h ∈ B and some integer n. Let u be any extension of hn
which belongs to F(M) and is defined on dom(gn). We check that u extends gn.
Let � ∈ dom(gn). Then there is � ∈ En such that f�g(�) = �. Let �′ = f�h(�).
Then � �
 �′. Since u extends hn and hn(�′) ≤ 
, by (1) of Definition 2.4 it
follows that u(�) = hn(�′). On the other hand, gn(�) = hn(�′) = en(�). Therefore,
u(�) = gn(�). Since � was arbitrary it follows that u extends gn. �
Lemma 2.8. Assume CH and let M be a simplified (�1, 1)-morass which is sta-

tionary and satisfies the ℵ2-antichain condition. Then there is no �-closed persistent
subfamily of F(M).
Proof. Fix a persistent subfamily G of F(M). We need to show that G is not

�-closed. Let � be a sufficiently large regular cardinal. Since S(M) is stationary
in [�2]� , we can find a countable elementary submodel M of H� containing all
the relevant objects such thatM ∩ �2 ∈ S(M). Let � = sup(M ∩ �2) and fix an
increasing sequence {�n}n of ordinals inM which is cofinal in �.
We now work inM . For each � < �2 fix g0� ∈ G such that � ∈ dom(g0� ). We can

find α < �1 and X0 ⊆ �2 \ �0 of size ℵ2 such that g0� (�) = α, for all � ∈ X0.
SinceM satisfies the ℵ2-antichain condition, by Lemma 2.7 we can fix �0 ∈ X0 and
X1 ⊆ X0 \ �1 of size ℵ2 such that, for all � ∈ X1, any extension of g0� to a function
in F(M) which is defined on dom(g0�0 ) must extend g0�0 . For each � ∈ X1 fix some
g1� ∈ G which extends g0� and is defined on dom(g0�0 ). It follows that g0�0 ∪ g0� ⊆ g1� .
By Lemma 2.7 again, we can fix �1 ∈ X1 and X2 ⊆ X1 \ �2 of size ℵ2 such that,
for all � ∈ X2 and all h ∈ F(M), if h extends g1� and is defined on dom(g1�1 ) then
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h extends g1�1 . We continue like this and get an increasing sequence (�n)n of ordinals
fromM , a decreasing sequence (Xn)n of subsets of�2 of size ℵ2, and, for each n and
� ∈ Xn, a function gn� ∈ G such that:
(1) �n ≥ �n , for all n,
(2) gn�n ∪ gn� ⊆ gn+1� , for all � ∈ Xn+1.
While the sequence (�n)n does not belong toM , at each stage we need to know
only finitely many of the �n . Therefore, we can perform each step of the construction
insideM . It follows that (gn�n )n is an increasing sequence of functions from G and
gn�n (�n) = α, for all n. The sequence (�n)n is cofinal in � and, sinceM ∩�2 ∈ S(M),
it follows that it is unbounded in the sense of �. Therefore, any functions which
extends

⋃
n g
n
�n
violates (2) of Definition 2.4 and cannot be in F(M). It follows that

G is not �-closed. �
We now consider the standard forcing notion for adding a simplified (�1, 1)-
morass and show that the generic morass is stationary and satisfies the ℵ2-antichain
condition. Before we start, it will be convenient to make the following definition.

Definition 2.9. For 
 < �2 let I
 be the interval [�1 · 
,�1 · (
 + 1)). We say
that a subset A of �2 is �1-full if A ∩ I
 is an initial segment of I
 , for all 
 < �2.
We now state a slight variation of the standard forcing for adding a simplified
(�1, 1)-morass from [10].

Definition 2.10 ([10]). The forcing notion P consists of tuples
p = 〈〈	pα : α ≤ �p〉, 〈Fpα,
 : α < 
 ≤ �p〉, Ap, ip〉,

where �p < �1, 〈	pα : α ≤ �p〉 is a sequence of limit ordinals < �1, Fpα,
 is a
collection of order-preserving mappings from 	pα to 	

p

 , Ap is an �1-full subset

of �2, ip is an order preserving bijection between 	
p
�p
and Ap, and the following

conditions hold:

(1) Fpα,α+1 = {id	α , sα}, where sα is a shift as in Definition 2.2 (1).
(2) If α < 
 < � ≤ �p then Fpα,� = {g ◦ f : f ∈ Fpα,
 , g ∈ Fp
,�}.
(3) Suppose α < � ≤ �p, � limit and f, g ∈ Fpα,� . Then there is 
 such that
α < 
 < � and there are f′, g ′ ∈ Fpα,
 and h ∈ Fp
,� such that f = h ◦f′ and
g = h ◦ g ′.

(4) If α < 
 ≤ �p then 	p
 =
⋃{f[	pα ] : f ∈ Fpα
}.

The ordering of P is defined as follows. We say that q ≤ p if �p ≤ �q , 	pα = 	qα for
α ≤ �p, Fpα,
 = Fqα,
 if α < 
 ≤ �p, and ip = iq ◦ h, for some h ∈ Fq�p,�q . Note that,
in particular, this means that Ap ⊆ Aq .
Lemma 2.11. Let (pn)n be a decreasing sequence of conditions in P . Then there is
q ∈ P such that Aq =

⋃
n Apn and q ≤ pn, for all n. In particular, P is �-closed.

Proof. Suppose (pn)n is a decreasing sequence of conditions in P . We define
the required condition q. We let Aq =

⋃
n Apn and �q = supn �pn . Note that, since

the sequence of the Apn is increasing and each of them is �1-full, then so is Aq .
Let 	q�q be the order type of Aq and iq the order preserving bijection between 	

q
�q

and Aq . For α < �q we let 	
q
α be equal to 	

pn
α , for any sufficiently large n. Also, for
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α < 
 < �q we let Fqα,
 be equal to Fpnα,
 , for any sufficiently large n. It remains to
define the collections Fqα,�q , for α < �q . Fix some α < �q and let n be sufficiently
large such that α < �pn . We let

Fqα,�q = {i−1q ◦ ipn ◦ f : f ∈ Fpnα,�pn }.
It is straightforward to check that q = 〈〈	qα : α ≤ �q〉, 〈Fqα,
 : α < 
 ≤ �q〉, Aq , iq〉
is a condition and q ≤ pn, for all n. �
It follows that P preserves �1. We now need a lemma on the compatibility

of conditions in P . First, let us say that two condtions p and q are isomorphic
if �p = �q , 	

p
α = 	

q
α , for all α ≤ �p, and Fpα,
 = Fqα,
 , for all α < 
 ≤ 	p�p .

If p and q are isomorphic, we say that they are directly compatible if there is r ≤ p, q
such that �r = �p + 1. We call such r the amalgamation of p and q.
Lemma 2.12. Supposep and q are two isomorphic conditions inP such thatAp∩Aq

is an initial segment of both Ap and Aq , and sup(Ap \ Aq) < inf(Aq \ Ap). Then p
and q are directly compatible.
Proof. We define a condition r which is the amalgamation of p and q. For

simplicity, set � = �p = �p and 	α = 	
p
α = 	

q
α, for all α ≤ �. Let �r = � + 1 and

Ar = Ap ∪ Aq . Note that, since Ap and Aq are �1-full, then so is Ar . Let 	r�r be
the order type of Ar and ir the order preserving bijection between 	r�r and Ar . For
α < 
 ≤ � let F rα,
 = Fpα,
 . Let R = Ap ∩Aq , let � be the order type of R and � the
order type of Ap \ Aq and Aq \ Ap. Since sup(Ap \ Aq) < inf(Aq \ Ap) it follows
that 	r�r = 	� + �. Let s : 	� → 	r�r be the shift of 	� at �, i.e., it is the identity on �
and s(� + �) = 	� + �, for all � < �. We let F r�,�r = {id	� , s}. Finally, for α < � let

F rα,�r = {g ◦ f : f ∈ Fpα,� , g ∈ F r�,�r}.
Then r is as required. �
Remark Let p and q be as in Lemma 2.12 and let r be the amalgamation of

p and q. Let i be the order preserving bijection between Ap and Aq . What is
important for our purposes is that r forces that � ��p i(�), for all � ∈ Ap.
Lemma 2.13. Let α < �2. Then, for every p ∈ P there is r ≤ p such that α ∈ Ar .
Proof. Let 
 be such that α ∈ I
 . We show that every condition p has an

extension r such that Ar ∩ I
 is a proper extension of Ap ∩ I
 . Since Ar ∩ I
 is an
initial segment of I
 , for every r, the order type of I
 is �1 and P is �-closed, by
iterating this operation countably many times we can find a condition s ≤ p such
that α ∈ As . So, fix some p ∈ P . Assume first that Ap \ �1 · (
 + 1) is nonempty
and let � be its order type. Note that � is a countable ordinal. Let 
 = min(I
 \Ap).
Since Ap is �1-full we have that Ap ∩ [
,�1 · (
 + 1)) = ∅. Let � = 
 + � and let
Aq = (Ap ∩�1 · 
)∪ [�1 · 
, �). Then Ap andAq have the same order type, Ap ∩Aq
is an initial segment of both of them, and sup(Aq \ Ap) < inf(Ap \ Aq). Also note
thatAp ∪Aq is �1-full. Let iq be the isomorphism between 	p�p andAq . Let �p = �q ,
	pα = 	

q
α , for all α ≤ �p, Fpα,
 = Fqα,
 , for all α < 
 ≤ 	p�p . Then p and q satisfy the

assumptions of Lemma 2.12. Let r be their amalgamation. Then r ≤ p and Ar ∩ I

is a proper extension of Ap ∩ I
 , as required.
Assume now that Ap ⊆ �1 · (
 + 1). For simplicity, let � = �p and 	α = 	pα , for

α ≤ �. Recall that this implies that 	� is the order type of Ap. Let 
 = min(I
 \Ap).
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We are going to define the condition r directly. We let Ar = Ap ∪ [
,
+ 	�). We let
�r = � + 1. We let 	rα = 	α, for all α ≤ � and 	r�+1 = 	� · 2. We let F rα,
 = Fpα,
 , for
all α < 
 ≤ �. We let F r�,�+1 = {id	� , s}, where id	� is the identity on 	� and s is the
shift of 	� at 0, i.e., s(�) = 	� + �, for all � < 	� . For α < � we let F rα,�+1 consist of
all functions of the form g ◦f, where f ∈ Fpα,� and g ∈ F r�,�+1. Finally, let ir be the
order preserving bijection between 	� · 2 and Ar . Then r is an extension of p and
Ar ∩ I
 is a proper extension of Ap ∩ I
 . �
Lemma 2.14. Assume CH. Then P satisfies the ℵ2-chain condition.
Proof. Let A be a subset of P of size ℵ2. By CH we may assume that all the
conditions in A are compatible. Therefore, we can fix an ordinal �, a sequence
〈	α : α ≤ �〉 and a sequence 〈Fα,
 : α < 
 ≤ � such that every condition p in
A is of the form p = 〈〈	α : α ≤ �〉, 〈Fα,
 : α ≤ 
 ≤ �〉, Ap, ip〉, for some Ap of
order type 	�, where ip is the order preserving bijection between 	� and Ap. By CH
again and the Δ-system lemma, we may find distinct p, q ∈ A such that Ap ∩ Aq is
an initial segment of both Ap and Aq and such that sup(Ap \ Aq) < inf(Aq \ Ap).
By Lemma 2.12 p and q are compatible, as required. �
Assume CH. By Lemmas 2.11 and 2.14 P preserves cardinals. Let G be a

P-generic filter over V . For α < �1, we let 	Gα be equal to 	pα , for any p ∈ G
such that α ≤ �p. We also let 	G�1 = �2. For α < 
 < �1 we let FGα,
 be equal to
F pα,
 , for any p ∈ G such that 
 ≤ �p. For α < �1 we define:

FGα,�1 = {ip ◦ f : f ∈ Fpα,�p , p ∈ G and α ≤ �p}.
It follows that

MG = 〈〈	Gα : α ≤ �1〉, 〈FGα,
 : α < 
 ≤ �1〉〉
is a simplified (�1, 1)-morass. Let Ṁ be the canonical P-name forMG .

Lemma 2.15. �P Ṁ is stationary.

Proof. Suppose p �P Ċ is a club in [�2]� . Set p0 = p. By using Lemmma 2.13
and 2.11 repeatedly and the fact that p forces Ċ to be unbounded in [�2]� , we can
build a decreasing sequence (pn)n of conditions in P and an increasing sequence
(Bn)n of countable subsets of�2 such thatApn ⊆ Bn ⊆ Apn+1 and pn+1 �P Bn ∈ Ċ ,
for all n. Let q be the limit of the sequence (pn)n as in Lemma 2.11. Then Aq =⋃
n Apn =

⋃
n Bn. Since Ċ is forced by p to be closed and q ≤ p it follows that

q �P Aq ∈ Ċ . Since q �P Aq ∈ S(Ṁ) and Ċ was arbitrary, it follows that Ṁ is
forced to be stationary. �
Lemma 2.16. Assume CH holds in V . Then �P Ṁ satisfies the ℵ2-antichain
condition.
Proof. Suppose p ∈ P forces that Ẋ is a subset of (�2)� of size ℵ2. We can find
a subset S of (�2)� of size ℵ2 and, for each s ∈ S, a condition ps ≤ p such that
ps �P s ∈ Ẋ . By Lemma 2.13 we may assume that ran(s) ⊆ Aps , for all s . By CH
we may assume that the conditions ps , for s ∈ S, are all isomorphic. Let us fix
an ordinal �, a sequence 〈	α : α ≤ �〉 and a sequence 〈Fα,
 : α < 
 ≤ �〉 such
that every condition ps , for s ∈ S, is of the form ps = 〈〈	α : α ≤ �〉, 〈Fα,
 : α ≤

 ≤ �〉, Aps , ips 〉, for some Aps of order type 	�, where ips is the order preserving
bijection between 	� and Aps . Further, again by CH, we may assume that there are
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fixed ordinals �n < 	�, for n < �, such that s(n) = ips (�n), for all s ∈ S and all n.
By the Δ-system lemma, we may find distinct s, t ∈ S such thatAps ∩Apt is an initial
segment of bothAps andApt and such that sup(Aps \Apt ) < inf(Apt \Aps ). Let r be
the amalgamation of ps and pt . Then r �P s, t ∈ Ẋ . By the remark following
Lemma 2.12 it follows that that r �P s(n) �� t(n), for all n. Therefore, r forces
that Ẋ is not an antichain in (�2,�)� , as required. �
By putting together the results of this section we obtain the following.

Theorem 2.17. It is relatively consistent with ZFC + CH that there exist a down-
ward closed subfamily F of Fn(�2, �1, �1) which is strategically persistent but does
not have a �-closed persistent subfamily.

§3. The main theorem. The goal of this section is to prove Theorem 1.6. Before
we do thatwe show that ifA �pℵ1,ℵ1 B thenwe can find an�1-back and forth family I
of partial isomorphisms betweenA andB with additional closure properties. Recall
that we defined I to be �-closed if every increasing sequence (pn)n of members of
I has an upper bound in I. We will say that I is strongly �-closed if ⋃n pn ∈ I, for
every such sequence (pn)n. We will need the following.

Lemma 3.1. Assume CH and let A and B be two structures of size ℵ2 in the same
vocabulary such thatA �pℵ1,ℵ1 B. Then there is an�1-back and forth setJ forA andB
which is strongly �-closed.

Proof. LetI be a�-closed�1-back and forth set of partial isomorphismsbetween
A and B. We build another �1-back and forth set J which is strongly �-closed. We
may assume that the base set of both A and B is �2. Since I consists of countable
partial functions from �2 to �2, by CH it follows that it is of cardinality �2. Let us
fix an enumeration {pα : α < �2} of I. We may assume that the empty function
belongs to I and is enumerated as p0. We let q ∈ J if q is a permutation of a
countable subset Dq of �2 containing 0 and the following hold:

(1) if α ∈ Dq then dom(pα) ∪ ran(pα) ⊆ Dq ,
(2) if α ∈ Dq and pα ⊆ q then for every � ∈ Dq there is 
 ∈ Dq such that
pα ⊆ p
 ⊆ q, and � ∈ dom(p
) ∩ ran(p
).

Note that if q ∈ J then, by (2) and the fact that 0 ∈ Dq , we can find a sequence
(αn)n of elements of Dq such that pα0 ⊆ pα1 ⊆ . . . ⊆ pαn ⊆ . . ., and q =

⋃
n pαn .

Since each pαn is a countable partial isomorphism from A to B, then so is q.
Moreover, since I is �-closed there is p ∈ I such that q ⊆ p. Note also that J is
strongly �-closed. In order to show that J has the �1-back and forth property it
suffices to show the following.

Claim. For every p ∈ I there is q ∈ J such that p ⊆ q.
Proof. Fix a sufficiently large regular cardinal � and a countable elementary

submodel M of H� containing p and the enumeration of I. Fix an enumeration
{αn : n < �} of M ∩ �2. We define an increasing sequence (rn)n of elements of
I ∩M as follows. Let r0 = p. Suppose we have defined rn. By the fact that I is an
�1-back and forth set andM is elementary, we can find rn+1 ∈M ∩ I extending rn
such that:
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(a) rn+1 either extends pαn or is incompatible with it,
(b) αn ∈ dom(rn+1) ∩ ran(rn+1).
This completes the definition of the sequence (rn)n. Let q =

⋃
n rn. Clearly, q is

a permutation of M ∩ �2, i.e., Dq = M ∩ �2. We check that q ∈ J . Condition
(1) is satisfied by elementary of M . To see that condition (2) is satisfied consider
some α, � ∈ Dq such that pα ⊆ q. Let k and l be such that α = αk and � = αl .
Choose some n > k, l . Then pα ⊆ rn and � ∈ dom(rn) ∩ ran(rn). By elementary
of M there is 
 ∈ Dq such that rn = p
 . Then 
 witnesses condition (2) for
α and �. �
This completes the proof that J is a strongly �-closed �1-back and forth set of
partial isomorphisms between A and B. �
We now turn to the proof of Theorem 1.6. We work in a model of ZFC + CH
in which there is a simplified (�1, 1)-morassM which is stationary and satisfies the
ℵ2-antichain condition. Let F = F(M) be the family defined in Definition 2.4.
Our plan is to define one structure C and two distinct elements a and b of C and
let A = (C, a) and B = (C, b). C will consist of two parts, one is �2 with the usual
ordering. Its only role is to ensure certain amount of rigidity of C. The second part
of C consists of layers indexed by countable subsets of �2. Given u ∈ [�2]� let

Fu = {f ∈ F : dom(f) = u}.
We let Gu be [Fu]<� . Since we wish these structures to be disjoint and ∅ belongs
to all them, we will replace ∅ in Gu by another object, which we denote by ∅u,
such that the ∅u are all distinct. We still denote the modified structure by Gu .
Let G = ⋃{Gu : u ∈ [�2]�}. For a ∈ G we let u(a) be the unique u such that
a ∈ Gu . The base set of C will be

C = �2 ∪ G.
We now describe the language of C. First, we will have two binary relation sym-
bols, ≤ and E. The interpretation ≤C of ≤ will be the usual ordering on �2.
The interpretation of E is as follows:

(α, a) ∈ EC iff α < �2, a ∈ G and α ∈ u(a).
This guarantees that any isomorphism of C is the identity on �2 and maps each Gu
to itself. We now put some structure on the Gu . Note that (Gu,Δ) is a Boolean group,
where Δ denotes the symmetric difference. We will keep only the affine structure of
this group, i.e., we want the automorphisms of Gu to be precisely the shifts by some
member of Gu , i.e., maps of the form:

x �→ xΔa,
for some fixed element a of Gu . In order to achieve this, we will add countably many
binary relation symbols Rn,i , for i = 0, 1 and n < �. In each Gu we will interpret
these relation symbols as follows. First, we index the members of Fu by elements
of 2�, say Fu = {fux : x ∈ 2�}. If a, b ∈ Gu and aΔb is a singleton, say {fux}, for
each n and i , we let

RC
n,i(a, b) if and only if x(n) = i.

Otherwise, no relation between a and b holds. Also, if u �= v then no relation
RC
n,i holds between elements of Gu and Gv . We also need to connect the different
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layers of our structure. Suppose u, v ∈ [�2]� and u ⊆ v.We define a homomorphism
�u,v : Gv → Gu as follows. First, for f ∈ Fu we let �u,v({f}) = {f � u}. Then we
extend �u,v to a homomorphism of Gv to Gu . Note that, in general, �u,v(a) may be
different from {f � u : f ∈ a}, since there may be cancelation, i.e., there could
exist f,f′ ∈ a with f �= f′ but f � u = f′ � u. Now we add a binary relation
symbol S and we let:

SC(a, b) iff [a, b ∈ G, u(a) ⊆ u(b) and �u(a),u(b)(b) = a].
This guarantees the following: if � is an automorphism of our structure C then, for
each layer u, � is the shift by some au ∈ Gu and if u ⊆ v then �u,v(av) = au . This
completes the definition of the structure C.
Now, we turn to the definition of A and B. Recall that ∃ has a winning strategy,

say �, in the persistency game on F . Consider the play of length � in which, at
stage n, player ∀ plays n and player ∃ responds by following �. Let p∗ be the
resulting position after � moves and let f∗ be the corresponding function. So,
f∗ ∈ F� . Now, we introduce a new constant symbol, c. Then we let A be the
expansion of C obtained by interpreting c as ∅� and B the expansion of C in which
we interpret c as {f∗}.
Lemma 3.2. A ≡ℵ1,ℵ1 B.
Proof. We describe informally a winning strategy for player ∃ in EFℵ1ℵ1 (A,B).

Suppose player ∀ starts by playing A0 and B0, where A0 is a countable subset of
A and B0 is a countable subset of B. Since the base sets of A and B are the same,
we may assume A0 = B0. Let’s call this set C0. Let C ′

0 = C0 ∩�2 and C
′′
0 = C0 ∩ G.

Now, let U0 = {u(a) : a ∈ C ′′
0 }. Then, U0 is a countable collection of countable

subsets of�2. Let u0 =
⋃
U0. Then player ∃ simulates a play in the persistency game

on F continuing the play p∗ in which player ∀ enumerates the elements of u0 \ �
in some order after the �-th move and ∃ uses her winning strategy �. Let p0 be the
resulting position andf0 the corresponding function. Then f0 ∈ Fu0 . Let ϕ0 be the
function on C ′′

0 defined by:

ϕ0(a) = aΔ{f0 � u(a)},
and let �0 = ϕ0 ∪ idC ′

0
. Note that �0 is an involution and �0(∅�) = {f∗}, since f0

extends f∗. Thus, we can consider �0 as a partial isomorphism from A to B such
that A0 ⊆ dom(�0) and B0 ⊆ ran(�0). Player ∃ then plays �0 as her first move in
EFℵ1ℵ1 (A,B).
In general, in the �-th move of EFℵ1ℵ1 (A,B) player ∀ plays a countable subset A�

ofA and a countable subset B� of B. We may assume that A� = B� and we call this
set C� . We let C

′
� = C� ∩ �2 and C

′′
� = C� ∩ G. We let U� = {u(a) : a ∈ C ′′

� } and
u� =

⋃
{u� : � < �} ∪

⋃
U�.

Player ∃ simulates a play p� in the persistency game on F which extends the p�,
for � < �, such that after

⋃
�<� p� player ∀ continues by enumerating in some order

the elements of u� \
⋃
�<� u� and player ∃ plays by following her strategy �. Let f�

be the function corresponding to p�. Notice that f� extends f�, for � < �. Now,
let ϕ� be the function defined on C

′′
� by

ϕ�(a) = aΔ{f� � u(a)}.
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Finally, let
�� =

⋃

�<�

�� ∪ ϕ� ∪ idC ′
�
.

It is easy to see that �� extends ��, for � < �. Since � is a winning strategy for
player ∃ in the persistency game on F , player ∃ can continue playing like this for�1
moves. Therefore, she has a winning strategy in EFℵ1ℵ1 (A,B), as required. �
Lemma 3.3. A ��pℵ1,ℵ1 B.
Proof. This is similar to the proof of Lemma 2.8. Suppose Ω is a �-closed
family of partial isomorphisms from A to B with the back-and-forth property. By
Lemma 3.1, we may assume that Ω is strongly �-closed. Let � be a member of Ω.
Then, the domain of � is a countable subset A� of A and the range is a countable
subset B� of B. Let A′

� = A� ∩�2 and let A
′′
� = A� ∩ G. Since Ω has the back and

forth property, it is easy to see that � has to be the identity on A
′
� and preserve the

layers of G. Let U� = {u(a) : a ∈ A′′
�}. Since Ω is also strongly �-closed, the set of

� ∈ Ω such thatU� is directed under inclusion is dense in Ω. By replacing Ω by this
set we may assume thatU� is directed, for all � ∈ Ω. Let u(�) = ⋃

U�, for � ∈ Ω.
For u ∈ U� let A�,u = A′′

� ∩ Gu . It follows that � � A�,u has to be the shift by some
element of Gu , say a�,u . Moreover, if u, v ∈ U� and u ⊆ v then �u,v(a�,v) = a�,u.
Each a�,u is finite and since U� is directed under inclusion and � can be extended
to a function � in Ω which is defined on some point of Gu(�), it follows that there
exists a� ∈ Gu(�) such that� � A�,u is the shift by �u,u(�)(a�), for every u ∈ U�. Let
n� be the cardinality of a�. Note that n� > 0, since �(∅�) = {f∗}, so � cannot
be the identity on its domain. Moreover, since Ω is �-closed and n� ≤ n�, for every
�, � ∈ Ω such that � ⊆ �, there is �0 ∈ Ω and an integer n such that n� = n, for
all � ∈ Ω such that �0 ⊆ �. We can replace Ω by {� ∈ Ω : �0 ⊆ �}, so without
loss of generality we may assume that n� = n, for all � ∈ Ω.
Now, we proceed as in the proof of Lemma 2.8. We fix a sufficiently large regular
cardinal �. Since S(M) is stationary in [�2]� , we can find a countable elementary
submodelM of H� containing all the relevant objects such thatM ∩ �2 ∈ S(M).
Let � = sup(M ∩�2) and fix an increasing sequence {�n}n of ordinals inM which is
cofinal in �. We nowwork inM . For each � < �2, fix��,0 ∈ Ω such that � ∈ u(��,0).
Let us enumerate a��,0 as, say {f0�,0, . . . fn−1�,0 }. We can find α < �1 andX0 ⊆ �2 \ �0
of size ℵ2 such that f0�,0(�) = α, for all � ∈ X0. SinceM satisfies the ℵ2-antichain
condition, by Lemma 2.7 we can fix �(0) ∈ X0 andX1 ⊆ X0 \ �1 of size ℵ2 such that,
for all � ∈ X1, and all i < n, any extension offi�,0 to a function inF which is defined
on dom(fi

�(0),0) must extend f
i
�(0),0. For each � ∈ X1 fix some ��,1 ∈ Ω which

extends ��,0 and is defined on A��(0),0 . Then ��,1 must be the identity on A
′
��(0),0

and

�u(��,0),u(��,1)(a��,1 ) = a��,0 .

Since a��,1 has the same size as a��,0 , we can enumerate it as {f0�,1, . . . fn−1�,1 } such
thatfi�,1 extends f

i
�,0, for all i < n. Moreover,f

i
�,1 is defined on dom(f

i
�(0),0) and so

it must extend fi
�(0),0. In other words, f

i
�(0),0 ∪ fi�,0 ⊆ fi�,1, for all i < n. It follows

that ��,1 extends ��(0),0, for all � ∈ X1. By Lemma 2.7 again, we can fix �(1) ∈ X1
and X2 ⊆ X1 \ �2 of size ℵ2 such that, for all � ∈ X2 and all i < n, any extension of
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fi�,1 to a function inF which is defined on dom(fi�(1),1) must extendfi�(1),1. For each
� ∈ X2 fix some ��,2 ∈ Ω which extends ��,1 and is defined on A��(1),1 . As before,
��,2 must be the identity on A

′
��,2
so it must agree with ��(1),1 on A

′
��(1),1

Also, we

can enumerate a��,2 as {f0�,2, . . . , fn−1�,2 } such that fi
�(1),1 ∪fi�,1 ⊆ fi�,2. We conclude

that ��,2 extends ��(1),1 ∪ ��,1, for all � ∈ X2. Continuing in this way we get an
increasing sequence (�(k))k of ordinals from M , a decreasing sequence (Xk)k of
subsets of �2 of size ℵ2, and, for each k and � ∈ Xk , ��,k ∈ Ω and an enumeration
{f0�,k, . . . , fn−1�,k } of a��,k such that:
(1) �(k) ≥ �k , for all k,
(2) ��(k),k ∪ ��,k ⊆ ��,k+1, for all � ∈ Xk+1,
(3) fi

�(k),k ∪ fi�,k ⊆ fi�,k+1, for all i < n and all � ∈ Xk+1.
Now, (��(k),k)k is an increasing sequence ofmembers of Ω and since Ω is �-closed

there is � ∈ Ω extending all the ��(k),k . It follows that there is an enumeration
{f0, . . . , fn−1} of a� such that fi�(k),k ⊆ fi , for each i < n and k < �. Recall that
f0�,0(�) = α, for all � ∈ X0. Moreover, fi�,0 ⊆ . . . ⊆ fi�,k , for all i < n and � ∈ Xk .
It follows thatf0(�(k)) = α, for all k. However, all the �(k) belong toM ∩�2 and
the sequence (�(k))k is cofinal in �. SinceM ∩�2 belongs S(M) it follows that this
sequence is �-unbounded. Therefore, f0 violates condition (2) of Definition 2.4
and so it cannot belong to F , a contradiction. �
This completes the proof of Theorem 1.6.

§4. Open questions. We mention a couple of questions which remain open.
Question 4.1. Is it consistent that ≡ℵ1,ℵ1 and �pℵ1,ℵ1 are equivalent for structures

of size ℵ2 in the context of CH ?
Question 4.2. Is it consistent that �pℵ1,ℵ1 is not transitive? This would show that

�pℵ1,ℵ1 is not the right concept, i.e., it does not represent equivalence in some logic.
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