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ON A CONJECTURE OF TARSKI ON PRODUCTS OF CARDINALS
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(Communicated by Andreas R. Blass)

Abstract. We look at an old conjecture of A. Tarski on cardinal arithmetic and

show that if a counterexample exists, then there exists one of length ai, + co .

In the early days of set theory, Hausdorff and Tarski established basic rules

for exponentiation of cardinal numbers. In [T] Tarski showed that for every

limit ordinal ß , n¿<« ^ = N J   > an(^ conjectured that

(1) IK-*J"
(<ß

holds for every ordinal ß and every increasing sequence {c¿}i<a  such that

limi<„ a* = a . He remarked that (1) holds for every countable ordinal ß .

Remarks. 1.  The left-hand side of (1) is less than or equal to the right-hand

side.

2. If ß has \ß\ disjoint cofinal subsets then the equality (1) holds. Thus the

first limit ordinal that can be the length of a counterexample to (1) is cox + co.

Proof. Let {Ai : i < \ß\} he disjoint cofinal subsets of ß. Then Y\t<a NCT  >

iW^A-n^i*«"*«1'1,
It is not difficult to see that if one assumes the singular cardinals hypothesis

then ( 1 ) holds. With the hindsight given by results obtained in the last twenty

years, it is also not difficult to find a counterexample to Tarski's conjecture. For

instance, using the model described in [M], one can have an increasing sequence

of cardinals of length ß = cox + co whose product does not satisfy (1). The

purpose of this note is to show that if Tarski's conjecture fails then it fails in
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1118 THOMAS JECri AND SAHARON SHELAH

this specific way.  Namely, if there is a counterexample then there is one of

length cox + co.

The main result of this paper is the following:

Theorem. A necessary and sufficient condition for Tarski's conjecture to fail is

the existence of a singular cardinal N   ofcofinality K, such that K   > Kw N|

andK«l>Ky+0)*°.

If N   is a cardinal that satisfies the condition then the sequence {^í}í<u) U

{tty+n}n<w is a counterexample to (1):

|a>,-H»|
'y+co

{«a. n<(D

Such a cardinal exists in one of Magidor's models, e.g. when N„ = N,„ , „.   is a

strong limit, N    .,,   ' = N    ,„, ,,_- and K,, ,,, ,„, ° = N    .,, .„,,, .

Also, if X > N     is a strong limit singular cardinal of cofinality N, such thatji

X*' > X+{2 °)+ then we have a counterexample as (X+Wf° < X+{2 °)+ (by [ShA2,

Chapter XIII, 5.1]).

The rest of this paper is devoted to the proof that the condition is necessary.

Assume that Tarski's conjecture fails, and let ß be a limit ordinal for which

there exists a sequence {o?}*^ that gives a counterexample:

(2) IK<C>

where

k = \ß\   and   a = lima,.

Lemma 1. If (2) holds then cf/7 < k < ß, and there exists an ordinal y < a

such that N * > *L.

Proof. If (2) holds then ß does not have \ß\ disjoint cofinal subsets, and it

follows that ß is not a cardinal, and that cf/7 <\ß\.

Assuming that N * < NQ holds for all y < a, we pick a cofinal sequence

{a/}/<cf« w*tn hinù a > anc* then

«/-Íe0 * n »w* n».-«„■*- nmiiv
\i<cf^    y      í<cf/j i<cv /<cf>s       {<^

contrary to (2).    D

Now consider the shortest counterexample to Tarski's conjecture.

Lemma 2. If ß is the least ordinal for which (2) holds then ß = k + co where

k is an uncountable cardinal.

Proof. Without loss of generality, the sequence a is continuous. (We can re-

place each a, by the limit of the sequence at £, for each limit ordinal Ç. )
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ON A CONJECTURE OF TARSKI ON PRODUCTS OF CARDINALS 1119

Let k = \ß\. We claim that for every limit ordinal n < ß, N K < N . If

this were not true then, because ß > k , there would be a limit ordinal n such

that k < n < ß and that NCT l<7"1 > NQK > Y^    Ka , which would make the

sequence {cí}í<„ a counterexample to Tarski's conjecture as well, contrary to

the minimality of ß .

Thus ß = S + co for some limit ordinal ô . It is clear that the sequence

K{:í<Korí> 3}

of length k + co is also a counterexample, and by the minimality of ß we have

ß = K + CO.     D

Now consider the least ordinal y such that N K > NQ . We shall show that

cfy = k (and so k is a regular uncountable cardinal). We also establish other

properties of Ky.

Lemma 3. If Tarski's conjecture fails, then there is a cardinal Ny of uncountable

cofinality k such that y > k , and that

(3) for every v < y,     fct/ < Xy,

(4) V > O"
Proof. Let ß = k + co be the least ordinal for which (2) holds, for some

increasing continuous sequence {o> : ¿j < /?} with limit a, and let y be the

least ordinal such that N * > v\a .

First we observe that for every v < y, N^* < N . This is because if N,/ > N

then N^* > N * > NQ , contradicting the minimality of y .

As a consequence, we have cfy < k : otherwise, we would have K K =

¿Zv<y K/ = Ky < KQ ' a contradiction. Also, if y = Hm¡^cfy y., then NyK =

(£,<cf, \)K < Ul<c{y \K < ni<cfy Xr = K* and so we have

Since N   < N*, we have N K < M K = N cf/ < K cfy, and so H cfy = K *,
ay' a     —      }> y        —      a       ' a a'

and Na y > Yl^ß ^a ■ Hence the sequence

{\ : ¿ < cfy or £ > *}

of length cfy + co is also a counterexample, and it follows that k = cfy .

For every limit n < ß we have KCT * < No,   and in particular K^ * < NQ.

Since N * > NQ, we have y > k . Finally,

<7{       11    «{     11     "K+„ <fx a a      '
í</i i<K "<cu
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1120 THOMAS JECH AND SAHARON SHELAH

and because XyK = KQK > Y[(<ß NCT , we have KyK > tt/0. Since a = lima^ >
n—KD

y + co, we have

N K > N      H°
y y+a    '

completing the proof.    D

The cardinal N obtained in Lemma 3 satisfies all the conditions stated in the

theorem except for the requirement that its cofinality be N, . Thus the following

lemma will complete the proof.

Lemma 4. Let N   be a singular cardinal of cofinality k > N, such that y > K

and that

(5) for every v < y,    ü^ < N .

Assume further that for every ô, cox < S < y, of cofinality N,,

(6) if for every v < S, n/1 < N¿ ,    then tt/' < N>+£/°.

Then k;<K/+Ja

Lemma 4 implies that the least y in Lemma 3 has cofinality N, , and the

theorem follows. The rest of the paper is devoted to the proof of Lemma 4. We

use the second author's analysis of pcf.

Definition. If A is a set of regular cardinals, let

IL4 = {/ : domf = A and fi(X) < X for all X £ A}.

If 7 is an ideal on A then H4/7 is a partially ordered set under

f<jg   iff   {X:fi(X)>g(X)}eI,

and similarly for filters on A. If D is an ultrafilter on A, then TÍA/D is a

linearly ordered set, and cf(YIA/D) denotes its cofinality. Let

pcf(v4) = {cf(TIA/D) : D an ultrafilter on A}.

It is clear that

A C pcf(A), Ax ç A2   implies pcf(Ax) C pcf(^f2),     and

pcf^i U A2) = pcf(Ax) U pcf(A2),

and it is not difficult to show (using ultrapowers of ultrapowers) that

if |pcfL4)| < min.4,    then pcf(pcf(/i)) = pcf(yl)   and

pcf(A) has a greatest element.

Theorem (Shelah [Sh345]). If 2MI < min(^) then there exists a family {Bv :

v e pcf (A)} of subsets of A such that

(1) for every ultrafilter D on A, cf(l~!A/D) = the least v such that BveD.
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ON A CONJECTURE OF TARSKI ON PRODUCTS OF CARDINALS 1121

For every X £ pcf (A) there exists a family {fa : a < X} ç IL4 such that

a < ß implies fia < f„ mod J<x, where J<x is the ideal generated
(o)

by {Bv : v < X}, and the fia 's are cofinal in YIBÀ mod J<x.   D

An immediate consequence of (7) is that |pcf(.4)1 < 2'A'. The sets 77^

( v £ pcf(A)) are called generators for A . Note that maxBv = v when v £ A,

and that n\ax(pcf(B f)) = v for all v .

We shall use some properties of generators.

Lemma 5 [Sh345]. Let Bv be generators for A. For every X -A there exists

a finite set F ç pcf(X) such that X ç \J{BV : v e F} .

Proof. Let Y = pcfLY), and assume that the lemma fails. Then {X - Bv :

u £ Y} has the finite intersection property and so there is an ultrafilter D on

A such that X £ D and 77^ i D for all v £ Y. Let p = cfi\~IA/D). Then
p £ pcf(X) and by (7), 77^ e D. A contradiction.   D

For each X ç A , let s(X) (a support of X ) denote a finite set F ç pcf(X)

with the property that X ç (ju€F Bv .

The set pcf(A) has a set of generators that satisfy a transitivity condition:

Lemma 6 [Sh345]. Assume that 2'A' < min(^4) and let A = pcf(^4). Then

pcf(yî) = A and A has a set of generators {Bv : v £ A} that satisfy, in addition

to (1),

(9) i/{efi„ then B^çB^    D

We use the transitivity to prove the next lemma.

Lemma 7. Assume that 2 < min(/l), let A = pcf(/l), let Bv, i> £ A, be

transitive generators for A, and for each X ç A let s(X) be a support of X. If

A = U;e/ Ai, then

A = [J |pcf(77J : v £ pcf (\Js(pcf(Al))\ j .

Corollary.  max(A) = maxpcflJ-6/5(pcf(/4.)).

Proof of corollary. Let X = max(A) ; X£pcf(Bu) for some v in pcf(lj(5(^;.)).

Since max(pcf(77J) = v , we have X < v .

Proof. Let X = y}^s(pcf(AA) and F = s(X). We have

A = IK £ iJPcfK) £ ULM : É e s(pcf(Ai))}
¡el iei iei

= \J{Bi:i£X}c\jlB(:^£ \J b\ ç \J B„
I v£F        J veF
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1122 THOMAS JECH AND SAHARON SHELAH

(the last inclusion is a consequence of transitivity (9) ). Therefore

À = pcf(A) C pcf ( U b\ = (J pcf(77J ç \J{pct(Bv) : v £ pcf(X)}.   D
\u€F       J        v£F

Toward the proof of Lemma 4, let {yi : i < k} be a continuous increasing

sequence of limit ordinals of cofinality < k , such that üm. _ y¡ = y, 2K < N ,

and that for all / < a: ,

(10) for all v<yt,    KVK < Xy .

Lemma 8. There is a closed unbounded set C ç k such that for all n =

1,2,...,

(11) maxpcf({N,,.+„ : /e C}) < K^.

Proof. We show that for each n there exists a closed unbounded set Cn ç k

such that max pcf({N : i £ Cn}) < N . To prove this, let « > 1 be fixed

and let A = {N .+„ ■ i < k} . Let X be the least element of pcf(4) above v\y+n

(if there is none there is nothing to prove). Let {77^ : v £ pcf (A)} be subsets

of A that satisfy (7), and let {Sv : v £ pcf (A)} be the subsets of k such that

B.. = {N„ . : i € S\ . It suffices to prove that the set 5N U • • ■ (JSH contains

a closed unbounded set.

Thus assume that the set S = k - (SH    U • • • U 5N    ) is stationary. Let J<x
y+\ y+n

be the ideal on A generated by {77^ : v < X} . By Shelah's theorem there exists

a family {fa : a < X) in TÍA such that a < ß implies fia < fa mod J<x. Since

all the sets Bv , v < K , are bounded, we get a family {ga : a < X} of functions

on 5 such that ga(i) < #y+n for all i £ S, and such that a < ß implies that

ga(i) < Sß{i) f°r eventually all i e S. This contradicts the results in [GH]

by which, under the assumption (5), any family of almost disjoint functions in

UieS Xy,+n   haS SÍZe at m0St  *y+n -     °

Proof of Lemma 4. Let y be a singular cardinal of cofinality k > N, that

satisfies (5) and (6). Let A be a regular cardinal such that v\y < X < lsyK . We

shall prove that X < Ky+(0 °.

Let {y¡ : i < k} be an increasing continuous sequence that satisfies (10),

and let C be a closed unbounded subset of k given by Lemma 8. Let

S = {ieC:cfyi = Xl}.

As k > N2 , S is a stationary subset of k .

Lemma 9. There exist regular cardinals X¡,  i £ S, such that for each i e S,

Ny < Xt < Ky N| , and an ultrafilter D on S such that cf(Y[ieSXt/D) = X.

Proof. Let 70 be the nonstationary ideal on S. There are X cofinal subsets

X of co   of size \X\ = k. For every such set X, let Fx £ Y\^c[vX ]~K be
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ON A CONJECTURE OF TARSKI ON PRODUCTS OF CARDINALS 1123

the function defined by F(i) = X n coy. Then when X ^ Y, Fx and FY are

eventually distinct.

For every / £ S we have N K = W    '   (by (10)), and so there exist X  70-

distinct functions in \\liS v\y N| . [ / and g are Indistinct if {i : fi(i) = g(i)} e

Consider the partial ordering f <¡ g defined by {/ : /(/') > g(i)} e 70 ;

since 7n is a -complete, <,   is well-founded. Let g be a <, -minimal function
u 'o 0

with the property that g(i) < N ' and that there are X 70-distinct functions

below g.

Let 7 be the extension of 70 generated by all the stationary subsets X of S

that have the property that g is not minimal on I0[X] (i.e. there is a function

g such that g'(i) < g(i) almost everywhere on X and below g there are X

70-distinct functions).

Claim.  7 is a normal k-complete ideal on S1.

Proof. Let X¡, i < k , be sets in 7, and let for each i < k , g¡ < g on X¡

and (hi : c¡ < X) witness that X¡ e I. Then one constructs witnesses g and

(h( : £, < X) for X = {j e k : j e \Jt<jXt} by letting g(j) = g.(j) and

hAj) = h'Aj) where i is some i < j such that j e Xi.

For example, let us show that h( and h are 70-distinct if £ ^ n. Assume

that h, = h on a stationary subset Sx of S. Then on a stationary subset S2

of Sx the i less than j e S2 chosen such that j £ Xl is the same i, and we

have h'ç = h' on S2, a contradiction.

Let {h( : £ < X} be a family of 70-distinct functions below g .

Claim. For every h <¡ g there is some Ç0 < X such that for all t\ > £Q,

h <i h(.

Proof. If there are X many £ 's such that h > h( on an 7-positive set, then

(because 2K < X) there is an 7-positive set X such that h > h* on X for X

many Ç , but this contradicts the definition of 7.

Using this claim, one can construct a ^-increasing A-sequence (a subse-

quence of {hç : Ç < X} ) of functions that is </-cofinal in Ylies S(i) ■ Let

Xi = cfg(i), for each i £ S. The product Y\ieSX¡ has a <7-cofinal <,-

increasing sequence of length X, and since 7 is a normal ideal, we have Af > K

for 7-almost all i. Now if D is any ultrafilter extending the dual of 7, D sat-

isfies cf(Y\ieSXl/D) = X.   u

Back to the proof of Lemma 4. For each i £ S we have a regular cardinal

Xi such that $y < Xl < Wy *' . By the assumption (6) we have Ny N' < Wy +ûJN°,
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1124 THOMAS JECH AND SAHARON SHELAH

and so X¡ < N +J*°. We use the following result:

Theorem (Shelah [ShA2], Chapter XIII, 5.1). Let N¿ besuch that n/° < HS+0J.

Then for every regular cardinal p such that Hs < p < Xs+(0 ° there is an

ultrafilter U on co suchthat cf(Y[n€a^s+n/U) = p.   D

We apply the theorem to each N , and obtain for each i £ S an ultrafilter

U¡ on co suchthat cf(Y[nem'Ü+n/Ui) = X¡. Combining the ultrafilters Ui with

the ultrafilter D on 5 from Lemma 9 we get an ultrafilter U on the set

A = {^+n:i£S, « = 1,2,...}

such that cf(IL4/I7) = X. Hence X e pcf (A).
We shall now complete the proof of Lemma 4 by showing that max pcf (A) <

N      V
y+co     ■

We have A = (J~, An , where

and since 2'A' = 2K < min(A), we apply the corollary of Lemma 7 and get

oo

maxpcf(^) = max pcf [J s(pcf(An)),

n=\

where for each n , s(pcf(An)) is a finite subset of pcf(pcf(4J) = pcf(An).

Let E = mi, i(pcf(^4n)). Since (by Lemma 8) maxpcf(^4n) < Ky+n for each

n , E is a countable subset of $y+a ■ Hence maxpcf(Ts) < K       °, and so

A<maxpcf(^) = maxpcf(£)<N7+£üi<0.   D
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