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We prove partition theorems on trees and generalize to a setting of trees the theorems of 
Erdiis and Rado on A-systems and the theorems of Fodor and Hajnal on free sets. Let p be an 
infinite cardinal and TP be the tree of finite sequences of ordinals <p, with the partial ordering 
of being an initial segment. a Cb denotes that a is an initial segment of fi. A subtree of TP is a 
nonempty subset of T, closed under initial segments. T =S TP means that T is a subtree of TP 
and (T, 4) = TP. The following are extracts from Section 2, 3 and 4. 

Theorem 1 (Shelah). A partition theorem. Suppose cf(n) # cf(p), F: T,+ A, and for every 
branch b of c Sup({F(a) 1 cx E b}) <A, then there is T s TP such that Sup({F(a) 1 a E T}) < A. 

Theorem 2 (Rubin). A theorem on large free subtrees. Let ilf 6 ,u, F: Tfi += P(T,), for every 
branch b of q : IU {F( a aEb})<A, andforeveryaET, and @EF(a), @-#a; then thereis ) 1 
T s TP such that for every a, p E T: $ k F(a). 

Let s(C) denote the ideal in P(C) of all subsets of C whose power is less than il. Let 
cov(p, A) mean that p is regular, 2 C p, and for every K C p there is D s PA(~) such that 
IDI < u, and D generates the ideal &(zc) of P(K). Note that if for every K < ~1 K<’ < cf(p) = CL, 
then cov(p, A) holds. Let a A fi denote the maximal common initial segment of a and 6. 

Theorem 3 (Shelah). A theorem on A-systems. Suppose Cov(u, A) holds, F: T,-,P(C) and 
for every branch b of T,: jIJ {F(a) 1 a E b} 1 <A, then there is T 6 q and a function 
K: T + P*(C) such that for every incomparable a, fi E T: F(a) f~ F(b) E K(a A fi). 

In 4.12, 4.13, we almost get that K(a) II K(b) = K(a n &). 

1. Introduction 

In [9], [lo], 1111 and [81, we came across combinatorial problems on trees, 
similar to those described in the abstract. These combinatorial facts were needed 
in proving results in set theory and model theory, While considering these 
problems we had the feeling that theorems on trees which concern with 
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44 M. Rubin, S. Shelah 

partitions, A-systems, and free subtrees might be applicable in various contexts of 
set theory and model theory in the same way that their classical counterparts have 
been. 

In addition we realized that these problems are interrelated, there is a unified 
setting in which they can be discussed, and this setting gives rise to numerous 
other combinatorial problems. Moreover, it seems that some new ideas are 
required in order to prove these new theorems-ideas that were not needed in 
proving their classical special cases. 

We start with some terminology. A set of sequences in hereditary if it is closed 
under initial segments. A tree is a nonempty hereditary set of sequences partially 
ordered by G. A tree of finite sequences is classed an o-tree, trees which are not 
w-trees are called high trees. If T is a tree and cc E T, let p: denote the number of 
successors of a in T. 

A non-empty hereditary subset of a tree T is called a subtree of T. 
A subtree T’ of a tree T is called a T-large subtree of T (T’ d T) if: (a) for 

every a E T’: ,uz ’ = ,uc; and (b) if b E T’ is a chain (i.e. for every a, fi E b either 
asborfiGa),andl_l{aIaEb}ET, thenU{aIaEb}ET’. 

Note that for o-tree (b) is not needed. Since we do not have much to say about 
high trees, by a ‘tree’, we usually mean an o-tree. 

Let A denote the empty sequence. In order to obtain classical theorems as 
special cases of the results presented here, we interpret an infinite set A be the 
tree T, fSf {A} U {(a) 1 a E A}. In this interpretation a subset B of A having the 
same cardinality as A is represented by a T,-large subtree of TA. 

Analogues of Theorems 1, 2, 3 from the abstract for high trees, seem to require 
the assumption that the ,uFLa’s should be either large cardinals or large cardinals in 
some inner model; but we do not know how to prove that this is really the case. 
Our knowledge about high trees is summarized in the discussion at the end of 
Section 2. 

In Section 2 we deal mostly with partition theorems, these theorems are later 
used in Sections 3 and 4. The partition theorems reveal why new ideas are needed 
when dealing with trees. Let us explain this by an example. Consider Theorem 
2.2, or better consider Theorem 1 in the abstract, that already presents all the 
difficulties that occur in 2.2, if we translate it to a classical problem, i.e. we apply 
it just to trees of the form TA, then we obtain the following trivial fact. Let p and 
3L be infinite cardinals such that cf(p) # cf(n), then if F : p + A, then there is 
A c_ p such that IA( = p and Sup( {F(cu) 1 a E A}) < A. 

The same phenomenon happens with the other theorems and lemmas in 
Section 2, namely, their classical special case is trivial. 

The other main results in Section 2 are Theorem 2.3 and Lemmas 2.15 and 
2.16. Theorem 2.3 concerns itself with the following question. Let M(T, il, x) 
mean that for every F : T+ PA(x) there is T’ s T and Y E A such that 
Y # U {F(a) I a E T ‘}. In Theorem 2.3 we give necessary and sufficient conditions 
on T, A, x to assure that M(T, A, x) holds. 
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Combinatorial problems on trees 45 

Definition. Let G : T+ P(x), b c x is called a G-valve if for every c E P,(x - b) 
there is T’ d T such that c fl lJ {G(a) 1 a E T’} = B. 

Lemmas 2.15 and 2.16 are elaborations of the following claim. If M(T, il, X) 
holds and G : T-+ PA(x), then there is a G-valve b c x such that lb I< x. 

Section 3 is devoted to the proof of one theorem, namely, Theorem 3.1. 
Theorem 3.1 as well as its special case, Theorem 2 in the abstract, generalize the 
well known theorem on free sets. (See [2] for previous history.) 

Theorem (Fodor [2] for p regular, and Hajnal [3] for ,u singular). Let ,u and J. be 
infinite cardinaZs and u B A’. Then if F : p -+ PA(u) is such that, for every QI E ,u, 
QC 4 F(a), then there is A c u such that IAl = u, and, for every a, /? E A, LX ef F(p). 

In Theorem 3.1 we give a condition Q1( T, il) which is necessary and sufficient 
to assume that: for every F : T ---) Pk( T) such that for every a and p s a fi 4 F(a), 
there is T’ s T which is F-free. 

Q,(t, 3t) involves only conditions on the ordering relation between the pa’s, the 
cf&)‘s and A. 

Section 3 is concerned with A-systems. The classical theorem on A-systems is 
due to ErdGs and Rado [I]. A function F : I+ P(C) is a A-system if there is a set 
K such that, for every distinct i, j E I, F(i) n F(j) = K. 

Let @(p, A) = p is regular A (Vx < p)(xCh< p). 

Theorem 1.1 (ErdBs, Rado [I]). Suppose @(u, A) holds, then if F: p--+ PA(C) 
then there is I E u such that III = u and F 1 Z is a A-system. 

Our policy is to postpone cardinal arithmetical assumptions as much as possible 
to the end of the proofs. 

With this approach in mind we break 1.1 into two subclaims 1.2 and 1.3. The 
conclusion of 1.2 assures a weak form of a A-system, but the assumption in 1.2 is 
considerably weaker than @(p, 3L), namely, we assume just cov(p, 3c). In 1.3 we 
add the assumption that 2<‘< ,u and obtain a A-system. 

Theorem 1.2. On weak A-systems. Suppose cov(u, a) holds, then if F: ,u + 

PA(C), then there is I c u and a set K E PA(C) such that I has power u and, for 
every distinct i, j E I, F(i) n F(j) c K. 

F 1 Z is called a weak A-A-system. 

Proposition 1.3. Zf C&L, a) holds and 2<’ < u, then in 1.2 one can strengthen the 
conclusion by finding a K E PA(C) such that, for every distinct i, j E I, F(i) n 
F(j) = K. 
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46 M. Rubin, S. Shelah 

Usually it happens that whenever one applies Theorem 1.1, one can use 1.2 
instead. 

Certainly @(p, A) + cov(p, d) A 2<‘< ,u, so 1.3 is stronger than 1.1. In the 
discussion at the end of Section 4 we point out cases when cov(p, h) holds; it 
follows that cov(p, a) A 2<‘< p holds in many cases in which @(p, A) does not. 

For general o-trees it is impossible to obtain a theorem like Theorem 3, see 
Example 4.1. This motivates an even weaker notion of a A-system for trees. 

Definition. Let F : T+ P(C); F is called a A-weak successor A-system (weak 
h-S-A-system), if there is G : T-, PA(C) such that, for a E T and distinct 
successors @, y of a, G@) n G(y) c G(a) and F(a) c G(a). 

Theorem 4.2 is the main theorem in Section 4. It more or less states, that if, for 
every a E T, cov(/& iz) holds, and F: T* P,(C), then there is T’ G T such that 
F r T’ is a weak M-A-system. 

Theorem 4.7 tells when it is possible to get weak il-A-systems. If T is a tree 
such that for every a E T cov(pz, 1) holds and for every a ,C fi p,‘d ,L$, then for 
every F: T+&(C) there is T’ d T and K: T’-,&(C) such that, for every 
incomparable a, fi E T’, F(a) n F(b) E K(a A @. 

We have not yet mentioned the definition of A-systems for trees; Definition 4.1 
is where this notion is defined. Theorem 4.9 states that if we add to the previous 
assumptions the condition: for every a E T, 2(‘< pz, then the existence of 
A-systems is assured. 

Next we shall describe some questions which are left open. 
(1) We have very partial knowledge on high trees. This knowledge is 

summarized in the discussion at the end of Section 2. The next main question is to 
prove that partition theorems for high trees imply the existence of large 
cardinals in some inner model. We did not investigate the existence of large free 
subtrees and the existence of A-systems for high trees. 

(2) In Section 4 we define a property denoted by cov*(p, A). cov*(p, A) is 
implied by co@, A), and in 4.4 we prove that for well-founded trees cov* is 
necessary and sufficient for the existence of weak M-A-systems (see the precise 
formulation in 4.4.) The proof of Theorem 4.2 yields in fact a somewhat stronger 
result than what is stated in 4.2. In order that for every A-bounded F : T+ PA(A) 
it will be possible to obtain a T’ s T on which F is a weak A-S-A-system it suffices 
to assume: W(T) = there is T” s T such that: (1) for every a E T”, cov*(p,, il) 
holds; (2) on every branch b of T” there is an unbounded set of a’s such that: a is 
an extreme point (i.e. for every fi 5 a, pB 2 &), and cov(pcL,, a) holds. 

There are two questions that arise: 
(1) IS it consistent that cov*@, a) does not imply cov@, a)? 
Note that in view of 4.10(e) one needs at least O# (and even inner models with 

a measurable cardinal, etc.) in order to prove this. 
(2) Is Y(T) a necessary and sufficient condition for the conclusion of 4.2? 
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Combinatorial problems on trees 47 

Note that cov*@, A) acov(p, 3L) implies (2). However, a positive answer to 
question (1) will make (2) meaningful. 

We can get close approximations K(a) fl K(p) = K(a n fl) provided 
K=d<K-- (really a weaker condition). 

Historical Remarks. Theorem 2.2 is a key theorem in this framework. It 
proved by Shelah. Partition theorems of the kind of 2.2 were first proved 

that 

was 
and 

used by Shelah in [9] and [lo]. There, a special case of 2.2 is generalized in the 
direction described at the discussion in the end of Section 2, Definitions 2.1 and 
2.2. 

Before that, Namba [7] used an argument of the same nature in order to prove 
that Namba forcing does not collapse X1. However, Namba did not isolate the 
combinatorial part from the rest of the proof. 

2.2 is however stronger than the previous results, in that the case when 
cf&) < il < pu, is new, and needs a new trick. The other reason for presenting 2.2 
was to make this work self-contained. 

Theorem 2.13 represents another direction of generalization. 
2.19(a) was proved by Shelah in [ll], it was applied there in the construction of 

many non-isomorphic models. 2.19(b) is a new theorem, and its proof will appear 
elsewhere; it is also due to Shelah. 

The other main theorem of Section 2 is Theorem 2.3. This theorem was proved 
by Rubin as a step in the proof of 3.1. 

The notion of a valve was defined by Rubin. He used it in the proof of 
Theorem 2 in the abstract. However, valves were defined by Rubin, just for two 
particular ideals P,(p) for p regular, and the ideal Ix described in the proof of 
3.4(b) when p is singular. This sufficed for Theorem 2 but not for 3.1. Shelah 
realized the need and the possibility of defining G, I-valves and proved Lemma 
2.16. 2.15 is generalization by Shelah of the formulation but not the proof of a 
lemma of Rubin. 

Lemma 2.13 is due to Rubin, 2.14 is due to Shelah. Theorem 2.17 is a trivial 
modification of the well known theorem of Levy on the Levy’s hierarchy (see e.g. 
[4]). Theorem 2.18 is due to Rubin. 

Example 2.20 is due to Shelah. The suggestion that one might get partition 
theorems for PF functions is due to Rubin. Some easy observations of such 
partition theorems for large cardinals were noted Magidor. 2.21(b), (c) are due to 
Shelah. Definition 2.3 is due to Shelah. It non-essentially generalizes a notion 
invented by Laver [S]. Theorem 2.22(b) is due to Laver [5]. Theorem 2.22(c) is 
due to Shelah. However the method of proof and the metamathematical principle 
that it is possible to derive from theorems about measurables, analogues for 
weakly compacts, in the way that it was done in 2.22(c) was known to other 
people before. 

A special case of 3.1 was proved and used by Rubin in [8]; he used it in a proof 
that certain forcing notions satisfy some strong form of the C.C.C. The proof 
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however used A-systems which cannot be used in general. He then proved 
Theorem 2. Theorem 3.1 was proved jointly by Rubin and Shelah. 

A trivial case of A-systems was proved and used by Rubin in [8]. The 
properties cov and cov* were invented by Shelah. The main theorem of Section 4 
Theorem 4.2 as well as its accompanying lemmas, was proved by Shelah. The 
easy corollaries were concluded jointly by Rubin and Shelah. The lemmas 
describing the relationship between cov and cov* were proved by Shelah, except 
of 4.10(e) which is due to Magidor. 

Also 4.12, 4.13, 4.14 are due to Shelah’. 
This research was done in winter-spring 1980 except 4.12-4.14 which were 

done in Dec. ‘81, Apr.-May ‘82. 

2. Partitions 

Let a and fi be sequences, a -Cfl means that a is an initial segment of b, a C fI 
means that a C 6 and a # f3, A denotes the empty sequence. A set of sequences is 
hereditary, if it is closed under initial segments; if C is a set of sequences then 
H(C) denotes its closure under initial segments. a A fi denotes the concatenation 
ofaand&a”B={a”~~~~B}. 

A structure ( 7’, s ) is called a tree if T is a nonempty hereditary set of finite 
sequences. A branch of T is a maximal set of pairwise comparable elements of T; 
B(T) denotes the set of branches of T. T is well founded if every branch of T is 
finite. 

If T is a tree and a E T, then sue’(a) is the set of successors of a in T, and 
p,‘= lsucT(a)l. j.4,’ is abbreviated by pFla whenever T is understood from the 
context. Whenever possible we assume without mentioning, that T is a tree of 
sequences of ordinals, and that for every a E T sucT(a) = {a A (Y) 1 Y < pa’). 

A nonempty hereditary subset of a tree is called a subtree. From now on we 
deal only with trees T such that for every a E T: pz= 0 or pz is infinite. 

A subtree T1 c T is called T-full if for every a E T,: p,'= 0, or Isucr(a) - 
suc’l(a)l < ,uz. Note that the intersection of two T-full subtrees is T-full. T1 < T 
means that T1 is a T-full subtree of T. 

A subtree T1 of T is T-large, if for every a E T,: pQ’1= 1~:. Note that if & is 
T-large and G is T-full, then G /I G is T-large. Let & d T denote that c is a 
T-large subtree of T. 

If A gg T let TEA] sf H(A) U {fi E T 1 H(g) nA # 0}, T[a] abbreviates T[{a}]. 
ii’s and x’s denote inGnite cardinals p’s denote cardinals. 
PA(C) d”=f {B c c 1 pq <A} and P(C) = Pi,-l+(C). A function F: T-,il is A- 

bounded (or in short bounded), if for every branch b of T Sup(F(B)) <il. A 
function F : T+ P*(C) is A-bounded if for every branch b of T lu F(b)1 < il. Note 
that if T is well founded, or if cf(n) > KO, then F is automatically bounded. 

1 We may use systematically tagged trees (instead of trees), i.e., pairs (T, 9), T a tree as here, 
9Ja E T) a filter on sucT (a). See after 2.18. 
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In the sequel we shall define several games; with a few exceptions, they all have 
the same form. We now describe these games. If T is a tree then B(T) possesses a 
natural topology rT, namely rT = {B(T[A]) (A E T}. Let B cB(T) be a Bore1 
set. We describe the game GT(B). A play in GT(B) is carried out as follows: let 
a,, = A; the moves of the game are n = 1, 2, 3, . . . . ; in the nth move the second 
player - the hero, has picked a, E T. Move n + 1 (n 3 0): the first player - the 
villain, picks a subset A,+I E sucT(cz,), such that IAni_1] < ~‘(a,) and the hero 
picks an+1 E suc(a,) - A,+l. The play terminates after a branch b = {a, ) n < p d 
W} has been chosen. The hero wins if b E B, and otherwise the villain wins. We 
say that the hero (or villain) wins the game if he has a winning strategy. 

Theorem 2.1. Let T be a tree and B c B(T) be a Bore1 set. Then: 
(a) GT(B) is determined. 
(b) The hero has a winning strategy iff there is & 4 T such that B( T,) g B. 
(c) The villain wins ifl there is TI s T such that B( T,) n B = 8. 

Proof. (a) is true by [6] since GT(B) is a Bore1 game. (b) and (c) are easy and 
are left to the reader. El 

Remark. We shall use GT(B) just for closed B’s so in fact the depth of [6] is not 
needed here. 

Theorem 2.2. Let T be a tree and 3L be an infinite cardinal. Let L,(T, J.) mean that 

TKa I CfhJ = WNI d oes not contain a T-full subtree. Let L2(t, 3L) mean that for 
every bounded F : T + A there is TI 9 T such that Sup(F(T,)) -C il. Then L,(T, il) is 
equivalent to L2(T, I.). 

Proof. W.1.o.g. A is regular. Suppose lL1(T, il) holds. Let F: T+il be Mined 
as follows: for every a E T such that cf(& = il and for no fi C a, cf(pe) = I., let 
{A? 1 i <A} be a partition of sue(a) such that, for every i < il, IA:1 < P,. Let fi E T 
define F(g) = i if for some a E T fi E Al?, otherwise define F(b) = 0. It is easy to 
see that F exemplifies L,(T, 0 

Suppose L,(T, a) holds. By 2.1, w.1.o.g. we can assume that, for every a E T, 
cf&) # a. Let F: T + 3L be bounded. For every Y < R let G,, be the game GT(BV) 
where B, = {b E B(T) 1 (Va E b)(F(a) < Y)}. By 2.1 it suffices to show that for 
some Y the hero has a winning strategy in G,. Suppose by contradiction, this is 
not so. So for every Y let S, be a winning strategy for the villain in G,,. For every 
infinite cardinal p such that cf(p) # A, let 
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We define by induction a subtree q of T, with the purpose that 1 c( < A, and 
for every Y < 3c. there is b E B( T,) which is the resulting branch in a play of G,, in 
which the villain plays according to S,, . Let To = {A}. Suppose the n th level T” of 
q has been defined. For every a E T” such that ,u~ # 0, let r, = {Y 1 there is a play 
in which the villain plays according to S,, in which the hero picks a}‘. There is a set 
Y+‘(a) c sue’(a) such that (T”+‘(a)1 = K&, A) and such that & = lJ (4 1 fi E 
Tn+‘(a)}. Let T”+l = U {T,+‘(a) ) a E T” and pFIoL # 0}, and let T1 = Uicw T’. 
Clearly for every Y < it there is b E B(q) such that b is a result of a play in which 
the villain plays according to S,,. Hence P(T,) is unbounded in A. This is a 
contradiction, since if A> No then 1 Tll < h and A is regular, and if A= Ko, then Tl 
is just a branch in T contradicting the fact that F is bounded. Cl 

We have to consider the following partition property: M2( T, A, x) = for every 
A-bounded F : T -+ PA(x), there is Tl s T such that U F( T,) # x. 

We shall formulate a condition M,( T, A, x), similar in nature to L,(T, A), that 
will be proved to be equivalent to M,(T, il, 2). Ml is, however, less transparent 
than L,; to clarify what Ml means we first present the restriction of it to a special 
kind of trees. 

Let p 6 o, p = {pi 1 i < p} be a sequence of infinite cardinals. The tree TV is a 
tree in which each branch has order type 1 + p, and such that if a E T and has 
length i < p then p,‘= /Ai* 

For cardinals A, x let Kb(il, x) = {K 1 A G K Qx, K is a cardinal, and if K # li 
then K is a successor}. Let Mb&, A, x) = for every II E u and K1 > - - - > K, E 

Kb(il, x) there are 0 < il < - - * < i, < p such that, for every i = 1, . . . , n, Cf(pij) = 
Cf(Ki). Let Mb*@, a, X) = (3il* d A)Mb(p, il*, X). 

Theorem. (a) If cf(A) > K. or A = No, then, for every p and x, M,(T,, A, x) ifl 

1 Mb@, 4 x), (b) For every CL, x, a &(T,, a, x) $1 Mb*(p, 4 x). 

We do not prove the above theorem since it is a special case of 2.3. 
We now turn to the general case. We define a game G(T, A, x). Let 

K(a, X) = {K 1 il s K s X and if K # a then Cf(a> > HO>- 

For a E T let T(a) = {PI a h fl E T}. The game G(T, A, x) is played as follows. 
Let %=A and x0= x+. The moves of the game are n = 1,2, 3, . . . . In the n-th 
move the hero has picked x,, E K(A, x), and the villain has picked a, E T. The 
(n + l)st move (n 2 0): (i) the hero picks xn+i E K(il, x) such that x~+~ <xn; (ii) 
the villain picks Tn+l s T(a,J; (iii) the hero chooses a branch b,+l of T,,,; (iv) 
the villain chooses fin+1 E b,+l. an+l is defined to be anhfin+-l. The play 
terminates when the hero has no xn+l to choose (n B 0). The villain wins in a 
play, if for every n 2 1 such that xn is defined, cf(p& = cf@,J; otherwise, the 
hero wins. 

Clearly G(T, A, x) is determined. Let M,(T, A, x) mean that the hero has a 
winning strategy in G( T, A, x). 

*Note that for Y E r, there is a unique initial segment of the play of G,, in which the villain plays 
according to S,,, and the hero’s last move is a. 
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Note that, for T = Z’,‘,, MQ, A, x) is equivalent to -, Ml@, il, X). 
We proceed to define the analogue of l Mb*. We now define a game 

G*( T, il, X). A play in G*( T, A, X) is played as follows: First, the hero and the 
villain carry out a play p1 of the game G (T, 3Lf, X). The result of this play is 
A=a,Sa<---Gan and X=Xo>X1>.*->Xn=il+. Now: (i) the hero picks 
T1 Q T(a,); (ii) the villain chooses ill d A and f&, E T1; (iii) a play p2 of 

G(T’(&), &> A) is now carried out. 
The villain wins in the play described above, if he wins in both p1 and p2; 

otherwise the hero wins. 
Let M,*( Z’, A, X) mean that the hero has a winning strategy in G*( T, A, X). 

Note that, for T = TP, M:(T, 3L, X) is equivalent to 1 Mb*(T, il, X). 
The theorem that we shall prove is the following. 

Theorem 2.3. (a) If A = No or cf(3L) > K0 then M,(T, A, x) is equivalent to 
M2(T, a, x). (b) M:(T, il, X) in equivalent to M2(T, a, x). 

Remarks. (a) One might ask why Ml or MT are better than M2 itself. This will be 
explained at the end of Section 2. For the time being we just mention that if 
V c W are two universes with the same cardinals and the same cofinahty function 
then it is not difficult to see that M,(T, h, x) (M:(T, A, x)) holds in V iff it holds 
in W. This means, that Ml or MT do not depend on cardinal arithmetic. 

Before proving Theorem 2.3, we need some definitions and observations. 

Definition. (a) A subset of T is called an antichain if every two elements of A are 
incomparable. 

(b) An antichain A G T is a frontier, if, for every b E B(T), A n b # 0; an 
antichain A c T is called an almost frontier, if there is Tl 6 T such that A fl Tl is a 
frontier of G. 

Observations 2.4. (a) Let A E T, then A does not contain an almost frontier ifE 
there is T1 s T such that Tl n A = 0. 

(b) M,(T, il, 3L) holds iff {a E T 1 cf(p,J = cf(h)} does not contain an almost 
frontier. 

(c) -,Mf(T, il, a) holds iff for every Tl d T there is a E Tl and 3L1 s A such that 
7Ml(Tl(a), ill, a) holds; i.e. iff for every Tl s T there is a E Tl and izl < il such 
that either cf&) = cf(a) or -,M,(T,(a), aI, a) holds. 

(d) If Tl s T, Al 3 A and x1 s x, then -&(T, a, x) + d&(T,, Al, XI), and if 
Tl s T then M,(T, A, 2) @ M,(T,, il, x). the sme holds for M,*. 

(e) If X > a and cf(~) = &, then -+&( T, a, x) e /&,--&(T, 4 x1) and 
44:(T, A, Xl e A,,&wTj k X1)- 

(f) Let A be an almost frontier of T, and for every a E A, let A, be an almost 
frontier of T(a), then U {a “A, 1 a E A} is an almost frontier of T. 

(g) 7~l(T, a, x) holds iff th ere is an almost frontier A E T such that, for every 
a E A, -,M,(T(a), A, x) holds. The same is true for M:. 
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00 If +&(T, A, x), then, for every x1 <x, I{a 1 a E WC(A) and 

Ml(T@)> 4 Xl)ZI < PA- If w4d = cf(x) > Ho or cf(x) = X,, and, for every x1 <x, 
I{a 1 a E sue(A) and &(T@), A, xl)}1 < ,uA, then --N,(K 4 x). When x > A, the 
same facts hold for M,* too. 

(i) If cf(& # cf(x) and --44&C A, x), then I{a E sue(A) 1 W(T@), A, x)1 < 
pA. The same holds for MT. 

(j) If --,M,( T, R, x) holds then there is & % T such that for every a E Tl either 
-,M,(T(a), A, x) or there is fi C a such that cf(& = cfk) and -,M,(T@), il, 2). 
The same holds for MT. 

(k) If --,M,(T, A, x) holds and for every a E T and ill < il -,M,(T(a), K, Al) 
holds, then -4& ( 7’, K, x) holds. 

(1) Let -,MF(T, h, x) hold, and cf(x) = cf(A), then for every TI d T there is 
a E T1 such that either cf(pJ = cf(x) and 7MT(T,(a), il, x) holds, or there is 
A, < A such that --,Ml(T,(a), Al, x). 

Lemma 2.5. (a) Let A = N,, or cf@) > No, then, for every T and x, M,(T, A, x) k 
equivalent to MT(T, A, x). 

(b) Suppose that in the definition of the games G and G* we replace the set 
qa, x) by the set Kb(h, x) = {K 1 a d K s x and if K # A then K is a successor). 
We denote the resulting games by Gb and Gb” respectively; then, for every T, A, 
x, G(T, A, x) is equivalent to Gb(T, A, x), and G*(T, h, x) is equivalent to 
Gb*(T, a, X). 

Proof. (a) It follows from the definitions that, for every T, A, x, MT{ T, A, x) 3 

Ml(T, A, x). 
If /1= Ho, then M,(T, A, x) 3 MT(T, A, x) because there are no infinite 

cardinals -34,. 
Suppose cf(A) > No and Ml(T, A, x) holds. Let S be a winning strategy for the 

hero in G( T, A, x). We describe a winning strategy for the hero in G*( T, A, x). 
The hero plays according to S, as long as he does not have to mention A. So the 
resulting play yields sequences x0 = x+ > x1 > - - - > x,, > il and a~ = A &a, s 
* * - SC&. If, for some i > 0, cf&) # pai, then the hero has already won in the G* 
play. Otherwise, M,(T(a,), A, d) holds, and since cf(A) > No this means that, for 
every ill < A, M,(T(a,), Al, A) holds; so the hero can take T(qJ to be the 
subtree he has to pick when playing according to G*. Thus the hero has a winning 
strategy in G*( T,, A, x). 

(b) will not be used in the sequel, so we omit its proof. Cl 

Lemma 2.6. If -,M,(T, A, x) holdr, then there is a k-bounded function F : T-, 
Pkk) such that, for every Tl s T, l-l F(T,) = x. 

I 

Proof. The proof is by induction on x. For x < 3L let I; : T * Pnk) be defined as 
follows: for every a E T, F(a) = x. So F is as required. 
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x = A: Let A = lJ {Vi 1 i < cf(A)}, where for every i <j < cf(A): yi < yj < A. By 
2.4(b) let A be an almost frontier of T such that, for every a EA, cf(& = d(A). 
For every a E A let {A: 1 i < cf(A)} be a partition of sue(a) to subsets of power 
less than ,uLa. Define I; as follows: F(p) = 0 if fi 4 IJ {suc(cc) ( a E A}, F(p) = vi if 
for some a E A, fi E Aa. Clearly F is as required. 

x >A and cf(x)>rC,: Let x = lJ {vi 1 i < cf(x)}, where v. = 0, for every 
i <j < cf(x), Vi < Yj <x. By the definition of G(T, A, x) and 2.4(j), there is 
an almost frontier A c T such that for every a EA: cf(p,J = cf(x), and 
-,M,(T(a), x, d). By 2.4(h), for every a E A there is a partition {A: 1 i < cf(x)} of 
sue(a) such that for every i: IAs1 < pa, and, for every fi E A:, -,M,(T(fi), 3L, 1~~1) 
holds. 

For every 6 EAT let F,: r(fi)+P’(~,) be as assumed by M,(T(fi), A, IviI) and 
the induction hypothesis. Let F: T + P,(x) be defined as follows: let y E T if for 
some fi E U {suc(cc) I a E A} and for some 6 : y = f3 h 6, then F(y) = F@); other- 
wise F(y) = 0. Clearly F is as required. 

x > A and cf(x) = cf(A) = Ho: This is proved as in the previous case, however, 
the proof that an A as above exists is somewhat different. 

x > A, cf(x) = Ko and cf(3L) > No: Let x = Ciew xi and, for every i E LL), Xi <x. By 
the induction hypothesis for every i E o there is I;J: : T+ f’k(Xi) as required. For 
every a E 7’, let F(a) = lJie@ fi(a). Since cf(A) > Ho, F is A-bounded. It is obvious 
that F is as required. 

This concludes the proof of the lemma. 0 

Lemma 2.7. If cf(A) > X0, then M,(T, il, x) implies M,(T, A, x). 

Proof. Claim 1. Let x 2 A, and cf(x) > K. or T is well founded; suppose, for 
every a E T, cf(pa # cf(x), then KU’, 4 x). 

Proof of Claim 1. Case 1: x is regular. In this case the claim follows easily 
from Theorem 2.2. For let F: T+ P*(x) for every a E T let G(a) = Sup(F(cc)), 
then G : T + x, and hence by 2.2 there is T, s T such that sup(G( T,)) < x, so 
certainly U I;( &) # x. 

Case 2: x is singular. Let F : T + P!(x). There is A, < x and T1 d T such that, 
for every a E T,, 1 F(a) I < Al. This is trivially true if J. < x, because in this case 
take T1 to be equal to T and A1 = il. If x = A, let x = Cicdoc) xi and xi <x. Let 
G : T-*cf(x) be defined as follows: G(a) = min({i ( IF(a)1 <xi}), then since 
cf(x) > Ho, or T is well founded, G is cf&)-bounded. So by Theorem 2.2 there is 
Tl d T such that Sup(G( T,)) = i < cf(x). A1 = Xi and T1 are as required. 

Let x = zi<dk) xi and, for every i, 3L1< cf(Xi) = x1 <x. Let K: 7i + d(x) be 
defined as follows: k(a) = i, iff cf(& = Xi; otherwise K(a) = 0. Since cf(x) > K. 
or T is well founded, K is bounded. So by 2.2 there is T2 s T1 such that 
Sup(K( TJ) < i < cfk). By the first case in the claim there is T3 6 T2 such that 
U F(G) $ Xi, SO =r’tGnly U F(G) #XT so T3 is as required. This concludes the 
proof of Claim 1. 
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We now turn to the proof of the lemma. Let d(A) > X,,. We prove by induction 
on x that &(T, A, x) + &(T, A, x). 

Case 1: x = il. So M,(T, A, x) implies that there is Tl G T such that, for every 
a E T,, cf&J f cf(X). It thus follows from Claim 1 that M,(T,, il, x) holds, hence 
M2(T, A, x) holds. 

Case 2: x > il and cfh) = X,-,. So M,( T, il, x) implies there is x1 < x such that 
M,(T, A, xl). By the induction hypothesis M,( T, R, xl) and hence M,(T, I., x). 

Case 3: x > L and cfk) > NO. Suppose M,(T, d, x) holds. We can assume that 
there is an almost frontier A E T such that, for every a E A, cf&) = cf(x); 
otherwise Claim 1 can be applied to some Tl s T. Replacing T by T[A] we can 
further assume that A is a frontier in T. We can also assume that for every a E A 
and @<a: cf(pa) # cf(x). Let B = {a EA ( -M,(T(a), A, x)}. By 2.4(g), 23 is not 
an almost frontier, so there is Al GA - B such that Tl d&f T[A,] f T. By 2.4(h), 
for every a E Al there is xa < x and C, E sue(a) such that }Cal= p, and for every 
y E C,: M,(T(y), 4 Xcx) holds. 

We now show that M2( T,, a, x) holds. So let F : Tl --, PA(x). For every Y < x let 
B,, c B(T,) be the set of branches b such that Y E F(b). By 2.1 it is sufficient to 
show that for some Y < x, the hero has winning strategy in the game GTl(&). 
Suppose by contradiction that for every Y < x the villain has a winning strategy S,, 
in the game Gq(&,). For every a E Tl let r, = {v 1 there is a play in which the 
villain plays according to S,, and a belongs the branch picked by the hero}. We 
claim that for some a EAT, Ir,l =x. Suppose not; let T’ = H(A,), and let 
G : T’+ P,&) be defined as follows: if a E Al, then G(a) = r,; otherwise 
G(a) = 0. Recall that, for every a EAT and fi < cc, cf(pa) # cfk), so by Claim 1, 
M2( T ‘, x, x) holds. So there is T” s T’ and Y < x such that, for every a E T” f~ 
Al, Y 6 r,. T” is well founded; it follows easily by induction on the rank of fi E T” 
that, for every g E T”, Y # Ts. Hence TJ 4 r, which contradicts our assumption that 
S,, is a winning strategy for the villain. 

So far we have proved that there is a E Al such that Ir,l =x. Let x1 = xa and 
C = C, be as defined in the beginning of the proof of Case 3. It is easy to see that 
there is y E C such that IrYl a x1. Since x1 2 il IrY - U F(H(~))I 2 ~1. But by the 
definition of C and xlMl(T,(y), h, xl), so by the induction hypothesis, there is 
Y E ru and T 6 T(y) such that Y # lJ F(H(y)) U IJ F(y h 7). This contradicts the 
definition of rY. So the lemma is proved. 0 

Lemmas 2.6 and 2.7 constitute a proof for Theorem 2.3(a). 
We now turn to prove Theorem 2.3(b). By 2.5 and 2.3(a), it remains to show 

that if A > cf(J.) = X0, then Ml( T, A, x) is equivalent to M,(T, J., x). 

Lemma 2.8. -d4f(T, & X) * -MC k X)* 

Proof. As we have already mentioned we can assume that A > cf(n) = X0. The 
lemma is proved by induction on x. We distinguish between three cases: x c A, 
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x 3 il and cf(x) = X0; and x 3 A and cf(x) > X0. The first and the third cases are 
proved exactly as the corresponding cases in Lemma 2.6. So we prove the second 
case. Let x 2 A, cf(x) = K,-, and -J@(T, A, x) holds. 

We define by induction sequence {T 1 i < io} and antichains {Aj 1 i < io} such 
that z d T and Ai c rrl_. Suppose T, Ai have been defined for every i <j. Let 
TJ=U{T’GTI T’nu,<jAi=8}. Clearly either T,‘=@ or T;<T. In the first 
case we define i. = j, and in the second we define T = T;. Suppose q has been 
defined. Let A; = {a E q 1 either cf&) = X,, and --&f:(~(~), A, x) or there is 
A1 < A such that -N1(q(a), &, x)}, and Ai = {a E Ai 1 for every f.! < a, fi 4 A;}. 
By 2.4(l), Aj # O* 

For every i < i. and a E: Ai there is a A-bounded F, : r(a)+ PA(x) such that for 
every T 6 z(a) U F,( T’) = x. To show this we distinguish between two cases. If 
there is A1 < A such that -&(~(a), Al, x), then our claim follows from Lemma 
2.6. Let +4~(~(a), il, X) and cf(& = X0. Let x = Cj<m Xi, Xj <X and ~0 = 0. By 
2.4(h) there is a partition {A? 1 j E o} of sucq (a) such that for every j E o: 
IA:1 < ~c1Q’ and, for every fi E A;, 7MT(T@), a, xi)* By the induction hypothesis 
for every j E o and fi E AT there is a A-bounded Fs: T&l)+ PAbj) such that for 
every T’ d q(b), lJI;,(T’) =Xj. Let F,: z(a)+ P,(x) be defined as follows. 
F,(A) = 0 and if y is such that for, some fi E sucq(a) and 6: ah y = fi * 6, then 
F=(y) = FB(6). F, is as required. 

Let FL be defined as follows: Dom(F@ = a A Dom(F,) and Ei(a” y) = F,(y). 
By our definitions if a1 $ a2 Dom(F&) fl Dom(F&) = 0. Let F: T -+ PA(x) be 
defined as follows; if, for some a E lJi+,Ai, fl E Dom(FL), then F(p) = F,(p), 
and otherwise F(p) = 0. 

We show that F is A-bounded, and, for every T’ d T, U F(T’) = x. Let 

b E B(T). If b fl Ui<io Ai = 0 then U F(b) = 0. Otherwise let i = min((i I Ai n 
b # O}). Let {a} = Ai fl b, then for every a’ E Ui.+, Ai - {a}, Dom(FL) fl b c 
H(a). Since FL is h-bounded 1l-j F(b)( < il. Hence F is A-bounded. 

Let T’s T. By the definition of the Ai’s, T’ fl Ui<ioAi # 0. Let i = 
min((i 1 Aj fl T’ # 0) and a E T’ n Ai. We prove that ah T’(a) c T. The proof is 
by induction on the length of fi E ah T’(a). a E z. Suppose fl E rrl, and y E 
SUC@) n a A T’(a). Suppose by contradiction y # T, then there is no T’ d T(y) 
such that y A T” n IJj<iAj = 0; since T’(y) Q T(y), y * T’(y) n IJj<iAj # 0, 
contradicting the minimality of i. So y E K. We have thus proved that a A T’(a) c 
z, hence by the definition of F, IJ F(a A T’(a)) = x. Cl 

We now turn to the other direction of 2.3(b). 

Lemma 2.9. Let A > cf(A) = &,, then M,*(T, 4 x) + M2(T, A, x). 

Proof. The proof is by induction on x. We distinguish between the following 
cases: (i) x = A; (ii) x > A and 601) = &; (iii) x > A and 601) > KO. Cases (ii) and 
(iii) are proved exactly like the corresponding cases in 2.7. 

To prove the first case it seems convenient to introduce an intermediate step. 
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Consider the following question. Let T be a tree x a function from T to cardinals, 
and we denote @a) by il,. A function F: T+ P(x) is called A-bounded if, for 
every a E T, IF(a)1 f A,. When is it true, that for every x-bounded F: T+ P(x) 
there is T1 d T such that U F( T’-) # x. 

In order to complete the proof of 2.9 we need just a special case of the above 
question. So we assume 3c > cf(n) = Ho, il = Cicw Ai where {& ) i E o} is a strictly 
increasing sequence of uncountable successor cardinals. (In fact, some of these 
assumptions might be redundant.) Let L = {& 1 i E o} and x : T-+ L. Let 
M4( T, 1, x) mean that for every X-bounded F : T -+ P(x), there is G d T such that 

UF(QfX* 
We are interested in M4( T, 1, A). Let us define the game G(T, i, A). Let 

q=Aandxo= a. The moves of the game are n = 1,2, . . . . In the nth move the 
hero has picked a cardinal xn and the villain has picked a, E T. The (n + 1)st 
move (n 2 0): (i) the hero picks xntl <xn such that xntl acf(xntl) > Ho; (ii) the 
villain picks T,,, s T(qJ; (iii) the hero chooses a branch 6,+1 of Tn+l, (iv) the 
villain chooses fin+1 E b,+1. a,,, is defined to be an A fin+1. The play terminates 
when the hero has no xn+l to choose (namely when xn = X1). Suppose that in the 
play p there were n moves and the sequences chosen were x1, . . . , xn and 
al, . . . , a,; the villain wins in p if there is 0 < k c n such that for every 0 < i < k 
cf(p,) = cf(xi) and, for some fi< ak, A, 2 Xk; otherwise the play is won by the 
hero. 

Let M,(T, 1, A) mean that the hero has a winning strategy in the game 
G(T, x, A). 

The remaining part of the proof of Lemma 2.9 is broken into the following two 
lemmas. El 

Lemma 2.10. Let 3L > cf(a) = X,; if MT(T, A, A) holds, then, for every A-bounded 
ii : T-+ L, M,(T, i, R) holds. 

Lemma 2.11. Let A. > cf@) = K. and, for every a E T, cf(pJ # NO, if 2 : T+ L 
then M,(T, i, A) 3 M,(T, i, A.). 

Proof of 2.10. Assume x : T + L is a-bounded and 7M3( T, 1, A) holds. We prove 
that +;(T, a, a) holds. 

If x : T + L and a E T, let xa : T(a) + L be defined as follows: la(B) = i(a h 6). 
As in 2.4(j) there is Tl s T such that (*): for every a E T,: either 

lM3(T(a), i”, A) holds, or there is fi< a such that cf(pe) = X0 and 
%&(T(f5), x6, A) holds. Note that the analogue of 2.4(d) also holds, namely, if 
Tl d T, then 7M,(T, A, A) rJ 7M3( T,, ii, A). By the analogue of the second part 
of 2.4(d) and by 2.4(d) itself we can w.1.o.g. assume that T satisfies (*). Let 
& < T, then, since x is a-bounded, there is a E & such that Sup({& 1 y 2 a}) < A. 
If there is fi < a such that cf(& = Ho, then -,MI(q@), A, A), and we finish; 
otherwise, by (*), we can assume that -,M,(T,(a), il”, A) holds. Let ill = 
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Sup({ 1 y 2 a}). It is clear from the definition of the games that 
%‘M1(T1(a), 3L1, A) holds. In both cases we found y E T1 and a’ d 3L such that 
j&(&(y), 3L’, a) holds, by 2.4(c) +U:(7’, d, d) holds. 0 

Proof of Lemma 2.ll. Suppose M,(T, ;I, 3L) holds, and for every a E T 
cf(pa) # &,. Let S be a winning strategy for the hero in the game G(T, 1, a). Let 
p be a play in which the hero plays according to S, and let x1, . . . , xn, 
al, . . . , a, be the sequences picked in this play; p is called a good play, if there is 
O~k<n such that, for every lsisk, cf(y,) = Cf(xi), and there is no 
T’ < T(a,) such that for every 6 E B(T’) there is fi E b such that cf(p,As) = 
cf(xk+l) or c {a, ) y d <x,/B} a~~+~. We denote ak by aP and xk+l by xP. Let A 
be the set of a’s such that, for some good p, a = ap and, for no good 4, a, < a. 
For every a E A let x= = xP for some p such that a = aP. So by our definition for 
every a E A there is T” 6 T(a) such that for every p E T”: cf(pr) # cf(xa), and 
aaA, < Xa- 

If T1 6 T then T1 n A f 0, since the villain can play in such a way that the 
resulting play p is good, and all the (xi’s chosen in this play belong to T1. Hence 
a+$, soB#H(a,)nA~T,nA. 

It thus follows that there is Al GA such that T[A,] s T. Let T’ = U {H(a) U 
ah T” 1 a e A,}, clearly T’ d T. By Claim 1 in Lemma 2.7 M2(H(A1), 3L, a) holds. 

We prove now that M4(T’, x 1 T’, h) holds. Let F: T’+P(il) be i 1 T’- 
bounded and suppose by contradiction, for every T” < T’, IJ F( T”) = il. Define 
B,, S,, and G as in 2.7, Case 3. As in 2.7, Case 3 there is a cA1 such that IGl= il. 
So Ir(a) - tJ F(H(a))I = a > xa. But Ml(T’(a), x0, xa) holds and since cf(xa) > 
No, Lemma 2.7 can be applied here. So there is ?‘G T’(a) and Y E r(a) - 
U F(H(a)) such that Y # lJ F(a A F). This is impossible. We have thus proved 
Lemma 2.11. 0 

Completion of the proof of 2.9. Let a > cf(n) = No and suppose M:(T, a, ;1) 
holds. We show that there is T 1 Q T such that M,(T,, il, a) holds. By 2.4(c) there 
is Tl d T such that, for every a E Tl and ill < il, Ml(T,(a), 3L1, a) holds, in 
particular, for every (Y E T,, cf(pa) # X0, and trivially, by 2.4(c), MT&, ;1, a) 
holds. Hence, by 2.10, for every A-bounded i : T,+ L, M,(T, il, A) holds. Let 
F: G+ &(I,) be k-bounded, hence the function x(a) ‘!Sf min({& 1 /F(a)1 d &}) is 
&bounded and F is X-bounded. So, by 2.11, there is T2 s Tl such that 

. U F( TJ # A. Hence M2(Tl, il, A) holds therefore M,(T, il, a) holds. 
This concludes the proof of Theorem 2.3(b). Cl 

Remark. We have defined M,(T, 1, x) and M,(T, 1, x). We know how to prove 
that -,M,(T, i, X) implies -,M.,(T, A, x). We believe but we do not know how to 
prove the converse. 

We shall use some easy equivalences of M,(T, a, x). 
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Definition. A c T is T-small, if it does not contain a T-large subtree of T. 

Lemma 2.n. The following are equivalent. 

(a) MT, A, x). 
(b) If (Ai 1 i < x} is a family of T 

that I{i 1 b &Ai}l aa. 
-small subsets of T then there is b E B(T) such 

(c) If F : T-, P,(A) is k-bounded and (Ai 1 i < x> is a partition of A then there 
isi<xand TlsTsuchthatUF(Tl)nAi=fl. 

Proof. Left to the reader. III 

As it was already seen, Theorem 2.2 is basic to all other results in this paper. 
Theorem 2.3 is needed in the formulation and proof of the generalization of the 
theorem of Fodor and Hajnal on large free subsets. 

We turn now to two partition results needed in the proof of the theorem on 
A-systems in Section 4. 

Deli&ion. a is an extreme point of T if, for every /!I 2 a, pg 2 pz. We denote the 
set of extreme points of T by Ext(T). 

Clearly every tree has a dense set of extreme points. We need the following. 

Lemma 2.I.X For every T there is c d T such that, for every b E B(T,), 
Ext(T,) n b is unbounded in b. 

Proof. Let a E T; a is an almost extreme point if for some T1 < T(a), A is an 
extreme point of T1. Let B E B(T) be the set of branches which contain an almost 
extreme point. Suppose the villain has a winning strategy in G’(B), then there is 
T1 6 T which does not contain any almost extreme point of T. But this is 
impossible since an extreme point of T1 in an almost extreme point of T. So the 
hero has a winning strategy in G*(B), and hence there is T1 < T such that every 
b E B( T1) contain an almost extreme point of T. For every almost extreme point 
of T, a E T1 let T” 6 T(a) be such that A E Ext(T”), and let S” = a h (T(a) - T”), 
let T2=q-u{SaI a is an almost extreme point of T that belongs to Tl}. Clearly 
& d & and hence T2 d T and, for every b E B(T,), b Cl Ext( TJ # 0. 

We denote T2 = T(l) and define by induction T@ and Ai, i E o such that, for 
every i <j, Ai is a frontier in T’“, Ai c ExtTto), Ai c To, To < T@. Suppose 
T@, Ai have been defined. Let Si = U {sucnO(a) 1 a E Ai}. For every a E Sip let 
T” d T(‘)(a) be such that every branch of T” contains an extreme point. Let 
T(‘+l) = H(Ai) U U {ah T” 1 a E Si}. For every a E Si let A” be a frontier of 
extreme points in T”, and let Ai+l = {a E Ai 1 pa = 0} U IJ {a *A” / a E Si}- T(‘+l), 
Ai+1 are as required. Let T’ = nie, TcJ3, then T’ is as required. II 
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The following lemma resembles in contents and proof to Theorem 2.2. We 
leave its proof to the reader. 

Lemma 2.14. The following conditions are equiualent. 
(1) Let {Bi 1 i < A} b e a set of Bore1 subsets of B(T) such that ui<l Bi = B(T), 

then there is i -C a and T’ Q T such that B(T’) E Bi. 
(2) There is T’ d T such that, for every a E T’, cf(p,-J > 3L. 

The last two lemmas in this section deal with another notion that to us seems 
basic in this framework. 

Definition. Let G : T --) P(A) and let I be an ideal on A; B E A is a G, I-valve if, 
for every C E P(A - B) (7 I, there is T’ 6 T such that C fl U G(T’) = 0. 

The following lemma will be used in Section 3. 

Lemma 2.l.S. Suppose M:(T, A, x) holds, G : T+ P,(A) is h-bounded, and I is a 
x-complete ideal on A; then there is B E I such that B is a G, I-valve. 

Proof. Suppose by contradiction there is no B as required. We define, by 
induction on i < x, Bi E I. Let i -C x, and suppose Bj has been defined for every 
i < i. Uj<i Bj E I, SO there is Bi E P(A - UjCi Bj) n I such that, for every T’ s T, 
Bi nU G(T’) f0. Let Di c T be defined as follows: Di= {a 1 G(a) fl Bi=0} 
hence Di is T-small. By 2.3 and 2.12 there is b E B(T) such that [{i 1 Bin 
UG(b)#O}&. S’ mce the Bi’S are pairwise disjoint, this means that 
lu G(b)1 > A, i.e. G is not A-bounded. A contradiction, and the lemma is 
proved. Cl 

The following lemma refers to the notion cov(p, a) which was defined in the 
abstract. 

Lemma 2.16. Suppose COV(X, A) holds and let I = P,(A); let T be a tree such that, 
for every a E T, Cf(ya) 2 x; let G. : T + P,(A) be A-bounded then there is a 
G, I-valve B such that 1 BI < 3L. 

Proof. Suppose G, T, A, x, A contradict the claim of the lemma. 
Since I is x-complete and M:( T, il, x) holds, by 2.15, there is a G, I-valve BO 

such that lBOl <x. Let D c Pk(BO) generate Pn(BO) and IDI <x. So by our 
assumption, for every d E D, d is not a G, I-valve, hence there is ad E P,(A - d) 
such that, for every T’ ST, adnUG(T’)#0. Since x is regular and lDl<x, 
lu {ad 1 d E D } I < x. By the choice of B,, there is T’ < T such that (U {ad 1 d E 
D}-B,,)nUG(T’)=O. F or every d E D let Bd 5 B( T’) be defined as follows: 
Bd={bEB(T’)I&nUG(b)cd}, B d is closed. Since G is A-bounded and D 
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generates PA(&) U {& 1 d E D} = B(T’). H ence by Lemma 2.14 there is do E D 
and T” =S 7” such that B( T”) s Bd0, hence ad,, fl /J G( Y’) = 0, a contradiction. q 

Discussion 

We have already mentioned that A41 and MT are properties that do not depend 
on cardinal arithmetic. We shall now make this assertion more precise. It turns 
out that in a sense to be defined j&(7’, il, x) and MT( Z’, il, x) are A,-properties of 
T. 

Consider the language in which the primitive predicate symbols are = and E, 
and in which the primitive function symbols are cf and 1-1 (= the cardinality 
function.) The terms and formulas that allow in this language are defined 
inductively as in first order logic, with the addition of the following formation 
rules: if q(x) is a formula and v is a variable then (3x E v)q(x), (Vx E v) q(x) are 
formulas, and {x E v 1 tp(x)} is a term. 

We define inductively the A,-formulas and terms. A variable is a do-term; if t is 
a A,-term then cf(t), ]fl are do-terms; if q. is a do-formula and v is a variable, 
then {x E v 1 QJ&$ is a do-term. If tl, t2 are do-terms, then t1 = t2, t, E t2 are 
do-formulas; if qo(x) is a do-formula, then (3x E v)qo(x), (V.x E v)cpo(x) are 
do-formulas. The rest of the hierarchy is defined in the usual way. 

The following theorem is trivial. 

Theorem 2.17. Let V c W be universes of ZFC with the same cardinals and the 
same cofinality function. Let Q30(x1 - - - x,) be a A,-formula then for every 
al, . . - , a, E V: V k qo[al, . . . , a,] i@ W I= qo[a,, . . . , a,]. 

It is not difficult to prove the following theorem (details are left to the reader). 

Theorem 2.18. There are A,-formulas q(T, A, x), and q*(T, A, X) which are 
equivalent to M,(T, il, x), M:( T, A, x) respecikly. 

In [lo] the partition theorems were general&ed in two directions. Let T be a 
tree and-I* be a function whose domain is T such that for every a E T: if p, # 0, 
then I*(a) is an ideal on sue’(a), and otherwise I’(a) = 0. We denote I’(a) by 
I:. The pair (T, I’) is called an I-tree. (T, I’) is denoted by F, (T,, I’l) is 
denoted by ?” etc. 

Definition 2.1. F1 6 ?’ if T1 is a subtree of T, for every a E T,: 

sucTl(a) 4 Ii and I: = {a n sucTl(a) 1 a E I:}. 

Definition 2.2. Let fl, F be I-trees and K be a cardinal, T1 S” T if p1 s 7 and for 
every a E T,: if pi< K, then sue’(a) = suc’l(a). 
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Our original definition of & d & is of course a special case of the above more 
general definition, for if I’(a) is defined to be P,,(suc’~(cr)), then T, G z iff 
Tl d F2 iff T; so Fz. 

Theorems 2.2, 2.3 can be reformulated to apply and to be proved in the case of 
I-trees. The proofs however do not change. There are obvious provable 
generalizations of the partition theorems for the notion of s”. 

The next question that we want to consider is what can be said in the following 
situation. Let G : T --) A, and we do not assume anymore that, for every a E 7’, 
cf&) # cf(n). It turns out, that it is still possible to get a partition theorem. Such 
a partition theorem was used in [ll]. For every 3L, let T* = ( ,‘A, s) . 

Theorem 2.19. (a) Let a > cf(k) > X0, (;li ( i <cf(a)} be a continuous strictly 
increasing sequence converging to il, and for every i < cf(k) such that cf(i) = K. let 
(Ain 1 n E o> be a strictly increasing sequence of successor cardinals converging to 
3Li. Let F: q+ cf(a). Then there is a club C c cf(3L) such that for every i E C there 
is T d (II,,, Ain, G) such that, for every a E T, F(a) < i. 

(b) Let A>2 @‘? > cf(n) > Ho, and let F : Tn-+ h, then there is T d Tk and a club 
C E il such that, for every i E C, i is a cardinal, and, for every i E C, T 1 i 6 T 
and, for every a E T 1 i, F(a) < i. 

An interesting direction of investigation is to seek for partition theorems for 
trees of height >o. Our knowledge here is sporadic and can be regarded just a 
beginning. So we see no point in considering at this stage the most general trees. 

Let TP,Ly = ( (y>p, < ), where “‘A is the set of sequences of length <a, with 
elements in A. Let T be a tree and TI a subtree of T; TI s T is, for every a E T,, 
p:i= ,u,’ and for every chain {ai 1 i < S} E TI, if lJieb ai E T, then Uic6 ai E TI. 

The first fact we point out is that the straightforward generalization of Theorem 
2.2 is never true. 

Example 2.20. Let p be regular and il < p, then there is F: T,,,,, 3 3, such that 
for every T G T,,,,,,F(T) = I.. 

Proof. Let {Si 1 i < a} be a partition of {a: < p ( cf(a) = w} into A stationary 
subsets. ]?efine F as follows: If a 4 “p or if cf(u,,, a(n)) # o then F(a) = 0; if 
U nEo a(n) E Si;then F(a) = i. Let T s Tp,o+l, then there is. a club C in y such that 
for every a E C such that cf(a) = o, there is a E T f~ “p such that UnEw,a(n) = Q. 
(To define C let M = (~1 U T, S, <, Con) where Con(a, a) = ah (a), and C be 
the set of limit’ points of ((Y 1 M r < M}.). 

So, for every i E il, Si f~ C # 0, and hence F(T) 3 i. q 

The above example means that in order to obtain a partition theorem we have 
to make stronger assumptions on the functions F : T --) 3L. 
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Definition. (a) Let f: &,& +A, we say that f has a finite character (f is FC), if 
for every 8 E Tp+ there is a finite set CT c a such that for every y E Tp,U: if 

Y ! 0 = B 10, then f W = f (IV 
(b) Let F : Tp+ + A; F is pseudo finitary (PF), if there is a family u 1 i < 1 al} of 

FC functions from Tp,& to il such that, for every fi E T,,,, F(b) = U -@(fi) 1 i < 

I I) a . 

Let P@, a, A) mean that for every PF function F: TM,,-+ 3L there is T < Tp+ 
such that U F(T) < h. 

Note that P(p, w, A) is dealt with in Theorem 2.2. 
We know of cases when a > o + 1 and P(u, a, h) holds. In all of these cases ,u 

is a large cardinal or ~1 is a large cardinal in some inner model. 

Definition 2.3. (a) Let p, A, x be cardinals and LY be an ordinal; let % be a set of 
functions from p to A. We define a game G gf G9,=,,. The game G has ctr moves. 
In the vth move the villain picks a function fv in 9, and the hero picks a set 
a,, c p such that Ify (a,)1 < x. The hero wins if In y((y a,, I = p, otherwise the villain 
wins. 

(b) Let p, A, x, K be cardinals and a be an ordinal. ,u is (A, x, K, a)-Galvin, if 
for every set 9 of functions from ,u to h such that l%l= K, the hero has a winning 
strategy in the game GS,,,x. 

p is a A-Galvin, if it is (A, A, 2’, o)-Galvin, ~1 is weakly A-Galvin if it is 
(A, il, A, w)-Galvin. 

The fact, that we know are summarized in the following theorems. 

Theorem 2.21. (a) If p is a Ramsey cardinal il is regular and CY < a < p, then 
P(u, lx, a) holds. 

(b) If ,u is il-Galuin and cf(A) > X0, then for every LY < K1 P(p, CY, 3L) holds. 
(c) If p is weakly i2-Galvin and cf(A) > X0, then P(u, w + 2, A) holds. 

Theorem 2.22. (a) If p is measurable then p is (a, 1, 2p, cu)-Galuin for every 
o, a-+ 

(b) If W is the universe of a Levy collapse of a measurable p to K2, then in W, 
K2 is ( K1, 1, 2K2, ar)-Galvin for every countable CY. (See [5] and [12].) 

(c) If p is weakly compact then u is (a, 2, p, a)-Galvin for every il, a < ,u. 
(d) If W is a universe of a Levy collapse of a weakly compact u to rC2, then in 

W, Kz is (X1, 2; Hz, a!)-Galvin for every countable a. 

The above theorems raise the following question, 

Question. (a) Does P(p, o + 2, N,) imply that p is large in L? Does it imply that 
~1 is weakly compact in L? 

(b) Does pa, ~~q.i)(~r<~f(a) =aq.i * P(u, CX, a)) imply that ,u is a large 
cardinal? 
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Proof of Theorem 2.21. The proof of (a) is trivial. 
We start with the proof of (c) which is easy. Let F: TM,,+z-+ h be PF. W.1.o.g. 

there are functions fn, n E o, such that: Dom(f,) = {g 1 g : n U {co} -+ p} and, for 
every a E Tcl,w+2, F(a) = U &(a 1 (n U {CL)})) 1 Dam(a) 2 n U {w}}. For every 
~1 E o and aEn'p let fa:p -+ A be defined as follows: fa(p) =f,(a u {(CO, /I?)}), 
and let 9 = -& ) a E “‘p}. So the hero has a winning strategy S in the game 
G 9,0,1* 

We show that there is a family {s(a) 1 a E “p} such that, for every a E “‘p, 
s(a) c sue(a), Is(a)1 = p and, f or every a, fi E “p, a’ E s(a), fl’ E s(p) and n E CO: if 

a r n = B 1 n then fib 1 (n U {w)>) =fn(B 1 (n U -$)))- 

For every a E op we define a play & in the game G9,w,h, such that if 
a 1 n = fl 1 n then the first n moves of B, are the same as the first n moves of Be, 
In the nth move the villain picks the function fa r n and the hero answers by a 
choice of a ar,n g p according to his winning strategy S. Let s(a) = (a A (/I) I/3 E 

n tlE6.J aa,n}. It is easy to see that s(a) is as required. 
Now we define G : O> p+A. Let aCp; let f3>a and fi~@p and let YES@); 

define G(a) = fn(y), clearly the definition does not depend on the choice of fi and 

Y- 
By Theorem 2.2 there is T d (“‘p, s) such that lJ G(T) < A. Let Tl = 

{H@(a)) I a E “p and, for every n E w, a 1 n E T}, hence IJ F(T,) < A. 0 

Proof of (b). Let p be A-Galvin, cf(il) > I$,, and Q! be a countable ordinal. 
W.1.o.g. R is regular. Let F: Tp,m +A be a PF function. W.1.o.g. there is a 

sequence { ( on, fn > I II E o} such that, for every n E CL), CJ~E~+~, LJnEO a, = o, for 
every n E 0, Dom&) = {g I g : an+ p}, and, for every a E T,,,, F(a) = 
U -$(a 14 I 0, c Dam(a)>. 

Let 9 be the set of all functions from p to A, and S be a winning strategy for 
the hero in the game G9,0,A. 

For every a E T,,,, we define a play B, in the game Gsc,w,A in which the hero 
plays according to S, and a sequence {IJ~ 1 n E w} of ordinals <il. 

We define the plays by induction on n E w simultaneously for all a E Tp,(y. Our 
indiction hypothesis is that if a and fi have the same length and a f a, = fl 1 a,, 

then after the nth step of the induction the same number of moves were defined 
in both B, and Ba and these moves are the same in both plays. 

Step n : In this step we define an additional move in the play & for every a 
such that Dam(a) E a,. 

Let a, = {Cxo, . . . , cvk} and a,,<~,<~~ - < LQ. By a downward induction on 
i d k, we define for every fi such that Dam@) = CY~: an additional move in the 
play Ba, and an ordinal ~a -=c A. 

i = k: Let Dam(B) = CQ; let gs: p + A be defined as follows: ga(v) = fn(p 1 a, U 
{ ( CQ, Y)}). The additional move in Be is the following: the villain picks gs, and 
the hero answers according to his winning strategy S. Let Y: = lJ g&a@,,), where 
aS,n is the set picked to by the hero at the last move. 
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i = j - 1: Suppose that Y, has been defined for every y such that Dom(y) = aj, 
and we assume by induction that if y 1 a, = 1 a, then YC = Y$ Let Dom(fi) = 
aj-l. Let ga:p --+ A be defined as follows: gP (5) = Y is for some y 2 p A (E) such 
that Dam(y) = aj, Y! = Y. The definition of g&E) does not depend on the choice 
of y. The additional move in BP is the following: the villain picks gs and the hero 
answers according to S. Let Y; = U g&a&, where atrn is the set picked by the 
hero in the last move. This completes the definition of the &‘s. 

Let a@ c_ ,U be the intersection of the sets picked by the hero in BP, hence 
1~~1 = p. Let T be th e subtree of TPm that has the following properties: T is closed 
under limits of chains, and if a E 7’, then sue’(a) = {a A (Y} 1 Y E a,}. It is easy to 
see that T d TPQ,. 

For every rz, let fi be such that Dam(b) = min(a,). It is easy to see that 
U dfn(a 1 an) 1 a E T and a, c Dam(a)} < YE. So since cf(h) > Ho, U F(T) < 
a. cl 

3. Large free subtrees 

Let F be a function whose range is a set of sets; A c Dam(F) is called F-free if, 
for every a, b EA, a 4 F(b). 

Let Q2( T, d) denote the following property; for every A-bounded F : T + P,(T) 

such that, for every a E T, H(a) f~ F(a) = 8, there is T1 d T such that 7J1 is F-free. 
Let Q,(T, A) mean that there is T1 < T such that for every a E T1 either pa = 0 

or iWT(T,(a), A, pa) holds. 
The aim of this section is to prove the following equivalence. 

Theorem 3.1. Q2(T, a) is equivalent to Q,(T, a). 

Proof. We first prove that Q,(T, a) implies Q,(T, a). We start with an easy case. 

Lemma 3.2. Let 7M:(T, h, pi) hold, then there is F : T-+ P*(T) such that F is 
h-bounded, and for no G d Q, c is F-free. 

Proof. By 2.8, there is a A-bounded F’: T+ P,(px) such that, for every Tl d T, 
U F’(q) = ,ui. Let F: T-, Pk(sucT(A)) be defined as follows: F(a) = {(Y) 1 Y E 

F’(a) and (v) + a}. (Recall that we assume that, for every a E T, sue’(a) = 

(a”(4 IYEP2.) 
We show that F is as required. Suppose by contradiction Tl s T is F-free. Let 

(Y) E sucq(A), and let & = Tl - (Y) A T,(( Y)). Clearly T2 G T, but U F’(T,) $ Y. 
This is in contradiction to the choice of F’. 

This concludes the proof of the lemma. 0 

We now turn to the general case. Suppose --,Ql(T, a) holds. We have to 

Sh:117



Combinatorial problems on trees 6.5 

construct F : T+ Pf( T) that will show that Q2( T, A) does not hold. This is done in 
a way similar to the construction in 2.8. We define by induction sequences 
{ 17: ( i < iO} and {Aj 1 i < iO} such that: z G T, Ai c T and Aj is an antichain in z. 
Suppose ?;, Aj have been defined for every j < i. Let Ti = lJ {T’ s T 1 T’ fl 

lJjci Aj = O}. Clearly either Tf = 0 or Ti -. ’ -C T. In the first case we define i0 = i, and 
in the second case we define z = Ti. Let Ai = {a E T I+W~(~(a), a, pa)}, and 
Ai = {a E Ai 1 for every p < a fi 4 AI}. Since TQ,(T, h) holds Ai # 0. 

By 3.2 for every i < i0 and a E Ai there is a k-bounded function F,: T(a)+ 
&(21:(a)) such that there is no T’ < K(a) which is &-free. 

We can now define F : T + P,(T) which refutes Q,(T, A). Let p E T, if for some 
cc E Uicio Ai and some yp = a A y then F(p) = a * F,(y); otherwise F(p) = 0. 

The arguments that F is A.-bounded, and that no 6 d T is F-free, are the same 
as the corresponding arguments in 2.8. 
Q,(T, h) 3 Q,(T, 3L): We divide the proof into several subclaims. 

Lemma 3.3. (a) Suppose T is a tree and for every a E T either ,ua = 0 or pz> A; 
let F : T-+ PACT), then there is & s T such that if a, $ E Tl and a s fi then fi 4 F(a). 
(b) Let F: T + P*(T) be L-bounded for every a, fi E T if a s fi, then a +! F(p) 

and fi tj F(a); then there is A-bounded F’ : T + P*(T) such that for every a E T and 
g E F’(a) there is Y and y C a such that fi = y A (Y), and for every subtree T’ of T 
if T' is F’-free, then T’ is F-free. 

For the following definition recall the convention that, for every a E T, 
sucr(a)={aA(v) 1 vEp,T}. 

Definition. Let G : T+ P(px) and let A E T, then: (a) A is G-free if, for every 
a&A--{A}, a(O)$G(B). (b)A. d IS ownwards G-free if, for every a, b E A - 
{A}, if a(0) > b(O) then a(0) # G(p). A is upwards G-free if, for every 
a,flE A - {A}, if a(O)> p(O) then a(0) 4 G(b). 

Lemma 3.4 (Main Lemma). (a) Suppose MT( T, 3L, px) holds and G : T --, PA@:) 

is h-bounded, then there is Tl < T such that Tl is downwards G-free. 
(b) Let T, k and G be as in (a), then there ti q Q T such that Tl is upwards 

G-free. 

Both parts of Lemma 3.3 are trivial so they are left to the reader. Lemma 3.4 is 
where the main point of the proof lies. We postpone the proof of 3.4 for a while, 
and we first prove that Q,(T, a) implies Q2(T, a), assuming 3.3 and 3.4. 

So suppose Q1( T, A) holds and let F : T + P*(T) be a A-bounded function such 
that, for every a E T, F(a) f~ H(a) = 0. Hence there is Tl G T such that for every 
a E Tl wither juQ = 0 or Mf(Tl(a), il, pa) holds; and therefore, for every a E Tl 
either pclQ =0 or puQ>a. Let G s Tl be as assured by 3.3(a). Thus for every 
a, @ E T2 if as fl then a # F(p) and fi # F(a). Let F' be as assured by 3.3(b). For 
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every a E G let Fh: T,(a) + pa be defined as follows: FL(y) = {Y 1 aA (v) E 
F’(a” y)}. Clearly, for every a E T2, FL is k-bounded. 

We now define by induction on n E o sets A, G T2 and for every a E A, we 
define some T a Q T,(a). A, will be a subset of the nth level of T2, and T, will be 
FL-free. Our purpose is that UnEO A, will be an F-free &-large subtree of &. 

Let A,={A} and let Tn d T2 be FL-free. Such Tn exists by Lemma 3.4. 
Suppose A, has been defined, and for every a EA,, T, has been defined. Let 
A n+l=U{aAsuc~(A)la~A,}, for every fi~A,+~ let T~=(LJ{~"T,~~E 
An})@). Clearly Tb < T,(p). By Lemma 3.4 there is T, G Tb which is Fb-free, this 
concludes the definition of the An's and the T,'s. 

It is easy to see that UnEO A, d T2 and is F-free. 
We can now turn to the proof of 3.4. 

Proof of (3.4(a). Case 1: pA is regular. Let MT(T, il, pA) hold and G:T+ 
Pn(pA) be A-bounded. So pA > 3L. By the second part of 2.4(h), we can assume 
that there is x < pA such that, for every a E sue?(A), MT(T(a), il, x) holds. 

Suppose by contradiction no T-large subtree of T is downwards G-free. We 
define, by induction on i < x, Ai c pA, Suppose, for every i < i, Aj has been 
defined. Let Ai = pA be the maximal set with the following property: for every 
a E Ai, LX is the minimal ordinal in the set { 6’ 1 CY’ E pA - Uj<i Aj - Ai II CY' and 
there is T'S T((a')) such that U G(( a) A T') tl Ai n a’ = 0). For every D E Ai 

let T',sT((cx)) b e such that U G( ( CY) A T',) f~ Ai n a = 0. Clearly, for every 
i<x, Ti‘@fkJ{(~)AT~I a! E Ai} is downward G-free. So by our assumption T' 
is not T-large and hence IAil < pA. 

Since pA is regular and x < pA, IJi<x Ai # pA. Let LY E pA - Ui<XAi, so by the 
definition of the Ai'S, for every i <x, the set {fi E T( (a)) I G( (a~) A fi) n Ai = 0} 

is T( (a))-small. So, by 2.12 and 2.3(b), there is b E B(T(( cu))) such that 
I-@1 (~B~b)(G(cy)“B)nAi#O}l~~; since the Ai'S are pairwise disjoint, this 
means that IlJ G(b)1 3 A., i.e. G is not il-bounded. A contradiction. 

Case 2: pA is singular. Let MT(T, il, pA) hold and suppose by contradiction 
G : T + Pn(pA) is a counter-example to the claim of the lemma. By M:( T, il, pJ, 
pA > A. By the second part of 2.4(h), we can assume that there is x <Pi such 
that, for every a E sucT(A), MT(T(a), A, x) holds. If we enlarge x, M,* still holds, 
so we can further assume that x > A + cf(pJ and is regular. Let K = cf(pA), and 
{pi I i < K} be a strictly increasing sequence of successor cardinals converging to 
PA, and X+ < ~0. for every i < K let Ei = {Q! I lJj<i pj G CY < pi}, hence lEil = pi. 
For every i < K let {Ei,y I Y < x’} be a partition of Ei to sets of cardinality pi. For 
asetofordinalsA, letA={ 1 C.Y EA}. By (2.4(h), Mf(T[&], il, pi) holds for 
every i and V. Since each /Li is regular we can apply the previous case, and can 
thus can assume that each T(&] is downwards G-free. 

If A c ,uA, let 
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We regard K x x+ as being ordered lexicographically, i.e. (i, Y) < (i’, Y’) iff 
i<i’ or i= i’ and Y < v’. 

We now define by induction on q < x sets A, c ,uA. Each A, will be defined as 
follows: we define a sequence of sets {A,, 1 8 < 0,) and A, will be defined to be 
U {Avo ) 8 < 0, }. Suppose A, I has been defined for every q ’ < q, and A,el has 
been defined for every 8 < 8. Let P(i, Y) denote the following property: 

U A,ornEi=@ and 
8’<8 

If, for no (i, Y), P(i, Y) holds, then we define 8, = 8 and A,, = UelieAqet; and 
thus we move to define A,+l,o. Otherwise let ( io, vo) be the first element in 
K x X+ t0 SatiSfy P. Let 

This concludes the definition of the A,‘s. First, note that every A, is 
downwards G-free; second, JA, I= C {pi ( 3V(Eiy n A, # O)}, but since by what 
we assumed on G, IA, I< pA, it must happen that for every q < x there is 
i(q) < K such that A n Ui(q)Gi Ei = 0. It follows, that, for some i. < K, 1 {q ( i(q) = 

iO}l =x. Let J = {q ( i(q) = io}. 

By our definitions for every i and r] there~is at most one Y such that Eiv n A # 0; 
and since there are xf Y’S and just x q’s, for every i <K, 1Ei - U,,,A,., I= pi. Let 
E = Ei, - Uq<x A,. Clearly if q E J then IR(A,) n El <pi,,. Since IEl = pi,>x = 
IJI, and pi0 is regular, there is a! E E - LJ {R(A,) 1 q E J}. So, for every q E J the 
set 

Dq gf {BE T((a)) 1 G((+‘fi)nA, =0} 

is T(( ar))-small. Recall that M:(T(( (u)), A, x) holds, hence by 2.12 and 2.3(b), 
there is b EB(T(((u))) such that 1 {v 1 b & O,}l> A. The A’s are pairwise 
disjoint, hence IlJ G(b)( 2 il, i.e. G is not k-bounded. A contradiction so 3.4(a) 
is proved. Cl 

Proof of 3.4(b). We first note that the following claim is true. 
(*) For every x < pA there is a x-complete normal ideal I’ on p,,, such that for 

every A c_ pA such that IAl = ,uA, there is B c A such that l~l= pin and B E I. 
(*) certainly holds when & is regular, for Ix can always be taken to be the ideal 

of nonstationary subsets of PA. 
If PA is Singular let {pi I i < cf(&} be strictly increasing sequence of regular 

cardinals converging to PA such that poax. Let 

Ix = {B E PA 1 for every i < d(p& B n /Ai is nonstatbnary h /Ai}. 

It is easy to see that I, is as required. 
Suppose that M:(T, A, pin) holds, and let G : T+ &(pA) be A-bounded. By 
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2.4(h), we can w.1.o.g. assume that there is x < ,un such that, for every 
a E sue=(A), M;(T(a), il, x) holds. 

So, by 2.15, for every a E p A there is B, E I such that for every E E I n 
P(p* - B,) there is T’ s T( (a)) such that EnUG((cu)*T’)=@. Let C= 
A (Y-+A (PA - B,) be the diagonal intersection of the pA - &‘s. Let E E P(C) n I 
and lE( = pA. Hence for every ar E ,u,, , and in particular, for every a E E there is 
T,<T((a))’ such that EnuG((a)“T,)~a+l. Hence T’ gf 

U((~YT,I~EE) d 7’, and is upwards G-free. 
This concludes the proof of 3.4(b), so Theorem 3.2 is proved. Cl 

Remark. Note that we did not really need the normality of 1. Instead we could 
have required that I is x-complete, and that the following holds: if {pa 1 a! < 
p*} c I, then there is B E I such that: (1) IB 1 = pA; (2) if B E B, then B fl B, E 
a+ 1. 

Question. Generalize 3.2 to high trees. 

4. A-systems 

Let fi A y denote the maximal common initial segment of 6 and y. 
We first define the straight-forward generalization of the classical notion of a 

A-system. 

Definition 4.1. G : T-, P(A); G is a A-system if there is K: T x co x o -+ P(A) 
such that, for all incomparable a, p E T, G(a) n G(g) = K(a A fl, length(a), 
length( fl)) . K is called the kernel of G. 

The classical theorem of Erdijs and Rado on A-systems states, that if p is 
regular and, for every K < p, IC <A < p, then for every A and G : p + P,(A) there is 
M E p, [MI= p such that G 1 M is a A-system, i.e. there is K E PA(A) such that, 
for all distinct a, /3 E M, G(a) n G(B) = K. 

The above theorem can be divided into two subclaims, the first of which 
requires weaker assumptions; moreover, in most applications the first subclaim 
can replace the theorem on A-systems. Let us describe it. 

Deiiuition. cov*(p, A) means that p is regular, p > il, and if {ai 1 i < p} g P,(A) 
and llJi<, ail < p, then there is M c p, IMI = p such that IlJi,, ail < 3L. 

The subclaim that we mentioned is the following. Suppose cov*(p, A) holds and 
G : p -+ P,(A), then there is K E P*(A) and M c p, I MI = y such that, for all 
distinct a, j3 E M, G(a) n G(p) E K. 
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This gives rise to a weaker notion of a A-system. 

Definition. Let G : T-+ P,(A); G is a weak il-A-system if there is K: T+ PA(A) 
such that, for all incomparable a, fi E T, G(a) n G(g) E K(a A fl). K is called a 
weak A-kernel of G. 

An equivalent definition of a weak A-A-system is given in the following 
proposition. 

Proposition 4.1. Let G : T + P,(A). Then G is a weak A-A-system iff there is G’ 
such that (1) G’ : T + PA(A); (2) f or every a E T, G(a) c G’(a); and (3) for every 
oc, fi E T, G’(a) n G’(g) c G’(a A fi). (3) can also be replaced by: for every 
a, fi E T, G’(a) r\ G’(p) = G’(a A fl). 

The generalizations that we are seeking can be summarized in the following 
questions. Under what conditions on T and A is it true that for every &bounded 
G: T+P,(A) there is T’ f T such that G 1 T’ is a A-system or a weak 
h-A-system? 

It turns out, as will be shown by the following example, that when dealing with 
trees there is another weakening of the notion of a A-system that should be 
considered. 

Example 4.1. pl > p2 and let T be a tree such that pz = pl, for every QI E ,uI, 
~7~) = p2, and for every a E ,ul x ,u2, p,T= 0. Let G : T * P2(p2) be such that, for 
every LY E pl, G r suc*(( a)) is a l-l function into P2(p2). Clearly, if il< p2 then 
for no T’ d T, G 1 T’ is a weak &A-system. 

So, we have two options either to discard with all trees T for which Ext(T) # T, 
or else to weaken our requirement in the definition of a A-system. The second 
option is of course stronger since we get another intermediate subclaim. 

Definition. Let G : T+ P(A). (a) G is called a successor A-system (S-A-system), 
if there is K : T + P(A) such that, for every a E T and distinct p, y E suc’(cc), 
G(B) n G(Y) = K(a). 

(b) G is called a weak A-S-A-system if there is G’ : T+ P,(A) such that: for 
every a E T, G(a) E G’(a), and for every a E T and distinct B, y E sue’(a), 
G’(B) n G’(y) c G’(a). 

Note that in the definition of a weak 3L-S-A-system we had two options, 
according to the two equivalent conditions in Proposition 4.1. For successor 
A-systems these two conditions are no longer equivalent, and we chose as a 
definition the stronger between the two options. 

Note that an S-A-system may fail to be a weak S-A-system (even for trees of 
height 3). 
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Recall that cov(p, 3t) means that ~1 is regular p > il and for every K < p there is 
D c PA(~) such that IDI < p and for every a E &(K) there is d E D such that a s d. 

We are now in a position to state the main theorem of this section. 

Theorem 4.2. Let T be a tree such that for every a E T either ,ua = 0 or cov(u,, A) 
holds. Then for every A and k-bounded G : T + P,(A) there is T’ G T such that 
G f T’ is a weak &S-A-system. 

As easy corollaries of 4.2 we shall get conditions on T and il which respectively 
assure that for every A-bounded G : T + P,(A) there is T’ < T on which G is an 
S-A-system, or a weak A-A-system or a A-system. 

Theorem 4.2 has two shortcomings. The first one is that we assume cov(pcL,, 3L) 
which might be somewhat too strong, hence we cannot get a necessary and 
sufficient condition on T and 3L. 

In the classical case cov*@, h) is a necessary and sufficient condition, but we 
shall discuss this in more detail later. 

Note that though we have to assume in our proof that G is A-bounded we do 
not assure that the G’ which exemplifies that G 1 T’ is a weak A-S-A-system is 
also a-bounded. Now if il > KO we can use 2.2 on IG(s)l to replace T by TI < T s.t. 
SUP,,~ p(s>l <a. ho, for a = X0 we can insure the conclusion. 

In our formulation we deal only with regular ,u,‘s. The reason for this is, that 
we do not know any information on the singular case, except that which follows 
quite trivially from what we prove for regular pcL,‘s. This is true even when dealing 
just with the classical case. 

Definition. Let G : T+ PA(A), T’ a subtree of T, G’ : T’+ PA(A), for every 
a E T’, G(a) c G’(a), and for every a E T’ and distinct fi, y E sucT(a), G’(b) II 
G’(a) c G’(a); then G’ is called a A-approximation of G on T’. 

Lemma 4.3. cov(p, a) implies cov*(u, a). 

The proof is trivial. 

Theorem 4.4. Let T be well founded and, for every a E T, pa = 0 or uu, is regular, 
then the following conditions are equivalent. 

(1) For every A and G : T-, P,(A) there is T’ < T such that G 1 T’ is a weak 
&S-A-system. 

(2) There is T’ s T such that, for every a E T’, uU = 0 or cov*(uFla, a) holds. 

Proof. It is trivial to show that ~(2) + 1(1). In order to prove that (2) 3 (l), 
we first prove the following special case. 

Lemma 4.5. Suppose co?@, a) holds and G : ,u-, P*(A), then there is M c u, 
IMI = u and K E PA(A) such that, for every distinct 1y, /3 E M, G(a) n G(p) c K. 
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Proof. For some 8 <A, S = (i < p: lG(i>l d 8} has power 1-1 (as p is regular >A). 
W.1.o.g. S = ~1. By Fodor’s theorem on regressive functions there is y E p and 
M’ c ,u, IM’I = p such that, for every cy E M’, G(a) fl CY E y. Hence ]UaeMT a! n 
G(a)1 < p, and by cov*@, A), there is M” c M’, IM”I = ,u, such that IUacM” a n 
G(cy)( < I.. Let K = UcueM” a n G( cu). Let C be a club such that, for every /3 E C 
and a</% G(a)c_B, and let M c M” be such that for every (Y, /3 E M, a! < /3 
there is c E C such that a! < c < /3, and IMI = p. Then M, K are as required. 

We now return to the proof of (2) 3 (1) in 4.4. Let T be a well founded tree 
such that T and A satisfy (2). W.1.o.g. for every a E T, pa = 0 or cov*&,, A). Let 
r(a) denote the rank of a in T, and 

EV Ef {a E T ( r(a) s Y and if a E sue@) then r(p) > Y}. 

Clearly, for every ordinal Y, & is a frontier in T. 
Let G : T +- &(A). We define by induction on Y d r(A) a set B, and a function 

G,, : B,, + &(A) such that: 
(1) E, E B, z {B I (3a E KJ(P a)>; 
(2) if Y < 5 < r(A), then BE 2 {fi I fi E B,, and (3a E BE n E,,)(fia a)}; 
(3) foreveryaEB,, {ylaAydv}~T(a); 

(4) for every a E B,, G(a) c_ G,(a); 

(5) for every a E B,, and distinct fi, y E sue’(a) fl B,, G,(p) n G,,(y) c G,(a); 
and 

(6) if a E B, n BE then G,,(a) = GE(a). 
Clearly, Brtn) d T and G,,, is a A-approximation of G on B,(+ so Btin,, G(*J 

fulfill what the theorem requires. 
Let B,,=E,and G,= G 1 I&. Suppose B,,, G, have been defined. 
Let a E &+l - E,, then sue(a) GE,,; hence by 4.5, there is M,~suc(a) and 

K, E P*(A) such that lMal = p,, and, for every distinct b, y E Ma, G,,(p) n 
G,(y) s K,. Let 

and let G,+&) = G,(a) if a E B,+, n B,,, and G,+,(a) = K, U G(cc) if a E I$+, - 
- 

Suppose S is a limit ordinal and, for every Y < S, B,,, G, have been defined. 
Let B;i = lJic6 (nit,,ta B,) and GL = (UycB Gy) 1 B;i. Define Bs and Gci from BL 
and Gt is the same way that B, +1, G,, +1, were defined from B,, and G,, in the 
previous case. q 

Let us add a parameter in the definition of a valve. Let T be a tree, 
G: T-P(A), I an ideal on A, and T’ < T; then b E P(A) is a G, I, T’-valve, if 
for every c E I n P(A - b), there is T” < T’ such that c n U G( T”) = 0. 
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If G : T+ A and cc E T, let G, : T(a) denote the following function: G,(p) = 

G(a*B). 

Lemma 4.6. Let T be a tree, and for every a E T either pclQ = 0 or cov&, il) holds. 
Let E cExt(T) - {A} b e a frontier in T, G : T+ P*(A) be A-bounded and 
a0 E P,(A) be a G, P,,(A), T-valve. Then there are a subtree T’ of T and a 
A-approximation G’ of G on H(E n T’) that satisfy the following conditions: (1) 
T’ s T; (2) G’(A) =aO; and (3) for every a E E 17 T’ either ,u,‘= 0 or G’(a) is a 
G,, P,,(A), T’(a)-valve. 

Proof. We define by induction on Y < pA: a,, E sue(A), a subtree TV of T and a 
A-approximation G’ of G on TV such that: (i) T,, G” satisfy conditions (2) and (3) 
in the conclusion of the lemma; (ii) T, n sue(A) = {CQ. 1 g < Y}; and (iii) if 
E < c < Y, then TC(ccS) = Tv(aE) d T(cQ). 

To = {A} and Go(A) = ao. If 6 is a limit, and TV, G v have been defined for 
every Y < 6 let T6 = I._& TV and G’ = kJvts G”. 

Suppose TV, G v and { aE 1 c < Y} have been defined, we define a,, TV +1 and 
G v+l. Let c = Ug,kv G’(u~). Since a0 is a G, P,,(A), T-valve and ICI < pA, there 
is T’ s T such that c n lJ G(T’) E ao. Let a,, E T’ fl (sue(A) - {as ( g < Y}). By 
Lemma 2.16, for every Q E T’[ LY,] n E there is a, E P,(A) such that a, is a 
G,, P,.(A), T’(a)-valve; and since c fl U G(T’) s a0 we can further assume that 
for each a,: a, n c c ao. Let G’: H( T’ n E)(q)-+ Pi(A) be defined as follows: if 
a,,” fi E E then G”@) = a,^$, and otherwise G”(g) = G(ay h @). By Theorem 4.4 
there is TV< - H( T’ fl E)(a,,) and G” such that G’ is a A-approximation of G v on 
TV. Since c fl u c(H(T’ n E)(u,,)) c a, we can further assume that for every 
BE TV, c fl G’(@) Eao. 

Let T,+l = TV U T’[u,, * ?“I, and let G”+’ be defined as follows: if a E Dom(G “) 
then GV+‘(a) = G’(U), and if a E a,,” p then G”+‘(a) = G”(b) where a = 
q+lAp. It is easy to see that Tv+lGv’l satisfies the desired requirements. 

It is easy to see that T, dZf lJvipn TV and GP~ !Zf lJvcPA G’ satisfy the 
conditions required in the lemma. 0 

Proof of Theorem 4.2. Let T be a tree such that for every cc E T either pa. = 0 or 
cov&, A) holds. By Lemma 2.13 w.l.o.g., for every b E B(T), Ext(T) t? b is 
unbounded in b. We do not lose generality if we assume that every branch of T is 
infinite, so, to simplify the notation we assume it. Let E, = Ext( T) n {B E 
T / IExt(T) (7 H(p)1 = n + 1. Clearly each E, is a frontier in T. 

Let G : T -+ P,(A) be A-bounded. By applying Lemma 4.6 it is easy to define, 
by induction on n E o, T, G T, T” sH(E,) and G” such that: G” is a 
A-approximation of G on T”, T” = H(E, n T,), T” c Tn+‘, T, 2 T,+l, G” c 
G n+1, and, for every a E T” n E,, G”(a) is a G”,, P,=(A), T,(a)-valve. 

Let T’ = lJnEm T” and G’ =Uneo G”, then clearly, T’S T and G’ is a 
h-approximation of G on T' . This proves the theorem. Cl 
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Now we strengthen the requirements on T in order to assure the existence of 
weak &A-systems. 

Theorem 4.7. Let T be a tree such that for every u E T, ,uol = 0 or cov(p,, 3L) 
holds. Then the following conditions are equivalent. 

(a) For every A and k-bounded G : T -+ P,(A) there is T’ 6 T such that G f T’ 
is a weak il-A-system. 

(b) There is T’ STsuch thatforeveryaET’ andp<uW, 

Proof. l(b) 3 l(a). Suppose T satisfies l(b). It is easy to see that there is 
T’ s T, a frontier E of T’, and, for every a E E, 0 < K, < ,ua such that, for every 
p E SUCT(CC), 0 < &j d K,. For every a E E and fi E sucT’(u), let G, be a l-l 
function from suer@) to P2(~,). Let G : T+ P2(UaEE K,-J be defined as follows: 
let y E T; if for some a E E and B E SUCK: y E su?(@), then G(y) = G@(y); and 
if such a and fl do not exist then G(y) = 0. 

It is easy to see that G is as required. 
We shall now make some preparations in order to prove that (b) 3 (a). T is 

called a regular tree if, for every a E T, ,ua = 0 or ,u~ is regular. T is called a 
monotonic tree if, for every a E T and ,u < pCla, I{fi E suc(cc) ) 0 < ,us < ,u}I < pa. 
Let T be a tree and T’ be a subtree of T; T’ is T-balanced if, for every p > 0, 
I{fi E T’ 1 pi= p}I G p. T is balanced if it is T-balanced. Note that, for T’ 6 T, T’ 
is balanced iff it is T-balanced. 

a E T is a reflection point of T, if ,u~ is a regular limit cardinal, p, = 
LJ {pB I p E sue(a)}, and, for distinct fl, y E suc(cc), pcls # ,uY < pa. Let 

R( T, 3L) gf {cc E T 1 pa = A and a is a reflection point of T}, 

and L?(T) = U {R(T, A) ) 3L is a cardinal}. T is called a nice tree, if it is regular, 
and for every a E T: either a is a reflection point of T or 

(W E SUC(~Ml(O < Pfi < Pa>). 

Lemma 4.8. If T is a regular monotonic tree then there is T’ < T such that T’ is 
balanced. 

Proof. Clearly, every regular monotonic tree T contains a nice T’ G T. So, it 
suffices to prove that every nice T contains a balanced T’ d T. If T is a nice tree 
and T’, T” are subtrees of T let T’ S: T” mean that T’ G T”, for every 
a E T’ - R(T), sue’(a) = sucT”(a), and, for every a E T’ f~ R(T), IsuS’(~)l= 
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~suc*“(u)~. Obviously T’ $ T implies T’ d T. In fact we shall prove that if T is 
nice, then there is a balanced T’ sg T. 

Let T be nice; for every cardinal A, let 

Th={a~TI(k 2 WP Q)(B 4 R(T, K))). 

Let Pr(R) be the following claim: for every nice T, for every K < A, and for every 
T-balanced T’ S: T”, there is T-balanced T” G: T* such that T’ E T”, and, for 
every a E T” -T’and BET', --,(O<&=~:<K). 

We prove Pr(A) by induction on A. For il = X0 there is nothing to prove, since, 
for every K < h, T” = T’. 

Let 3, be a limit cardinal and suppose for every A’ < A, Pr(A’) holds. Let K < A, 
T be a nice tree, and T’ <i T” be T-balanced. Let {Ai 1 i < cf(A)} be a strictly 
increasing continuous sequence such that A0 = K and xiCCfCnj ili = A. We define by 
induction on i 9 cf(A) subtrees T of T. Our induction hypothesis are: (1) 
T 6: T$; (2) T is T-balanced; (3) if i <j, then T E I;; and (4) if i <j, a E I; - T 
and fi E T, then -,(O < pi= p,‘< Ai). Let To = T’, use the induction hypothesis 
Pr(3Li+l) to obtain T+l from T, and if i is a limit ordinal let T = UiCi q. It is 
trivial to see that Tdcn) is as required. 

Let A = p+ and suppose Pr(p) holds. If p is not a regular limit cardinal, then 
there is nothing to prove since always, T’= T p. So, suppose p is a regular limit 
cardinal, and let T be nice. By Pr(p), it suffices to show that if T’ <i Tp, is 
T-balanced then there is a T-balanced T” such that T’ c T” <g T*, and, for every 
a~ T”- T’ and BET’, -,(O<&=p~<p). 

Let T’ sg Tp be T-balanced. By niceness we see that IR(T, p) fl T*I < p. If 
R(T, p) fl T*= 0, then T’= TIL and we can define T” = T’. Otherwise, let 
{ ai 1 i < p} be an enumeration R (T, p) f~ T * such that, for every a E I?( T, p) n 
T’, I{i 1 ai = a}1 = p. 

We now define by induction on i d p subtrees T of T’ and cardinals /Xi such 
that (1) for every i < p: z is T-balanced, pi < p and for every a E T either ,u:< pi 
or p 6 pi; and (2) if i<j<p, aE q and p,T<pi, then aez. 

Let G = T’ and ,uo= Sup({,~zI a E T’ and pz< ,u}). It is easy to see that 

PO<+ 

If 6 is a limit ordinal and T, /Li have been defined for every i < 6, let 
G = Ui<a K ad P = Ui<& pi* 

Suppose T, /Ai have been defined and we wish to define T+l, P~+~. If ai # T let 
T-kl= Tlr, Pi+l= Pi* Suppose ai E 2r]:. Let p E SuCT(CCi) be such that ,$> pi. 
Obviously, T(p) is nice. It is easy to see that there is T ~$(a) T(p) such that, for 
every y E T, pT@)(y) > pia I!“0 is certainly T-balanced, so by Pr(p) there is 
T-balanced TG,’ Tp which contains T’o. Let T+, = T U fiA lf’, and yi+l= 
Sup({pi I a E II:+1 and p,‘< ,u}). It is easy to see that T+l, pi+1 are as required. 

It is easy to see that Tp ai T’ and by the induction hypotheses that we carried 
T’ g q, I& is balanced and for every a E q - T’, fl E T’: 1(0 < pz= ,uF< y). 

We have thus proved that Pr(A) holds for every A. Let T be nice, hence, for 
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some il, T = T*. TN0 is balanced and TX0 si T’o; by Pr(J.) there is a balanced 
T’ <z T* = T containing T% This proves Lemma 4.8. Cl 

Continuation of the proof of 4.7. b + a. Let T be a monotonic tree such that, 
for every a E T, cov(~~, 3L) holds. Let G : T-+ P,(A) be A-bounded. By 4.2 and 
4.8, w.1.o.g. T is balanced and G is a weak M-d-system. Let G’ be a 
&approximation of G on T. We shall show that there is T’ d T such that, for 
every a, fi E T’, G’(cx) n G’(B) E G’(a A fi). 

Since T is balanced there is an enumeration {ai / i < 1 T I} such that: (1) for 
every a E T, ) {i 1 ai = a}1 = pa; (2) if fi < ai then, for some j < i, aj = @; and (3) 

(vi < 1 TIN < PFlai)’ 
We define by induction on i d ITI a subtree z of T. The induction hypotheses 

are 11;:I d Ii1 + 1, andificjthen z;:q. 
To To = {A}. If 6 is a limit ordinal. then T6 = lJiC6 6. Suppose ;rl- has been 

defined. If ai # ?;: let T+l = K. Suppose (xi E K:; let C= U G’(T). 3L<pai and 
17;:1 6 lil + I < pL4, hence Ic( < pai. Since G’ is a h-approximation, there is 
p E sucT(uJ - z such that G’(p) n C G G’(a,). Let z+, = z U {p}. It is easy to 
see that TITl 6 T, and, for every a, fi E Tp-1, G’(a) n G’(b) g G’(a A f5). So 
G 1 T iTi is a weak a-d-system. Cl 

Finally we examine when it is possible to obtain S-A-systems and A-systems. 

Theorem 4.9. (a) Let T be a tree such that, for every a E T, cov(p,, ;1) and 
2(’ < pFla; then for every A and G : T + P,(A) there is T’ s T such that G 1 T is an 
S-A-system. 

(b) Let T be a monotonic tree, for every a E T, cov&, A) and 2<‘< ,ua; then 
for every A and A-bounded G : T + P,(A) there is T’ s T such that G r T’ is a 
A-system. 

Proof. (a) is trivial. We prove (b). Let T, iI, G be as in (b). By 4.7, w.1.o.g. G is 
a weak &A-system. Let K: T + PA(A) be a weak &kernel for G, i.e. for every 
incomparable a, fi E T, G(a) n G(b) E K(a A @). We define, by induction on 
n E cr), T, < T. Let To = T. Suppose T, has been defined. For every a E T, such 
that length (cc) = n, let F, : T,(a) * P(K(a)) be defined as follows: F=(p) = 
G(a h p) n K(a). By a variant of 2.2 which is proved in [9] there is T,Q T,(a) and 
K, : cr) + P(K(a)) such that, for every p E T,, Far@) = K,(length(p)). Let T,,, = 
H(lJ {a” T, 1 UE T, and length(a) = n}). Let T’ = nnEo T,. If a E T’ let 
K’(a, n, m) = K,(n) n K,(m). It is’easy to see that T’s T, G 1 T’ is a A-system 
and K’ is its kernel. El 

Discussion. We shall now investigate the question under what conditions do 
COV(/J, h) and cov*(p, h) hold. 
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Lemma 4.10. Let p (-I be the largest limit cardinal which is less than or equal to u, 
Let il C j.4 = cf(p). 

(a) If u(-) Q A and T(A = u(-) # cf p(-)), or if for every K < p: K<~< cf(p) = ,u, 
then cov(u, A) holds. 

(b) If u > 2<’ then cov(u, A) is equivalent to cov*(u, h). 
(c) cov(u, 3L) implies cov(u+, 3L). 
(d) If u = u(-)+ and 3L. > cf(p(-)) then 7cov(u, h). 
(e) (Magidor). Suppose V E W are universes of ZFC; V k GCH and V, W 

satisfy the covering theorem; i.e. for every set of ordinals a E W there is b E V such 
that ac_b and [bl”= ia 1 w + X1. Then in W the following are equivalent: (1) 

cov(u., 9; (2) cov*(u, ;1); and (3) -,(u = u(-)+ A cf(y(-1) < 1). 

We leave it to the reader to verify these claims, * 

The following questions remain open. Is it consistent with ZFC that 
cov*(p, a) =$ cov(p, 31)? In order to prove this one has, of course, to assume the 
existence of large cardinals. In particular is it consistent that ,u = cl(-)+ A 
cf@(-I) <3L and cov*(p, A) holds; e.g. is ~ov*((K,+~, K,) consistent. 

We shall now remark on the existence of A-systems when T is not necessarily 
regular. In fact, we do not know anything that does not follow easily from what 
we have proved for regular trees. The theorem that we can prove is the following. 

Theorem 4.11. Let T be a tree such that for every a E T either ua = 0; or ,uo is 
regular and cov&, I.) holds; or p, is singular, cov*(cf(pa), A) holds, and ,ua. is a 
limit of cardinals u that satisfy cov(u, 3L); then if G : T+ P,(A) iis A-bounded, then 
there is T’ 6 T such that G 1 T’ is a weak &S-A-system. 

If the requirement that cov*(cf(pFL,), a) holds is omitted then one can still 
obtain the existence of some weaker notion of a A-system. 

It is worthwhile to remark that we do not know an exact condition that answers 
the existence of A-systems when p is singular, even for the classical case of trees 
of height one. 

For simplicity we concentrate below on the tree T = O”31. 

Notation. PK(aj = {A: A E a, IAI< K}. 

9&) the filter on PK((A) generated by (<K)-closed (i.e., closed under union 
of increasing sequence of length <K) unbounded (every s E PA(a) is included in 
some member) subfamilies of PK(jz). 

Theorem 4.12. Let a > K > X,-, be regular cardinals. Then, for any (A,: a E T,), 
(Tn. = (*‘a, X)), A, 5 il, [Aal < K, and C E 9&Q) there are T * s T* , and A: for 
aE T*, such that A, E AL E C, A& I k c A;, and A; n Ai = A:,,, for a, @ E T* 
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provided that: 

(*) there is S c P,(k), S # 0mod 9<,(a) such that, for every a! < A, S r a = 

{A r7 a: A E S} has power <A, 
or at least 

(**) there are S, E P,(a) for a! <A, IS,1 < h such that for any closed un- 
bounded set C* of il there are a0 < ar, < . - . < a,, < - - - (n < o) in C*, for which 

Remark. The proof shows that we can choose the Ah in UN Sar (when (**) holds). 

Proof of Theorem 4.l.2. Assume (**). We define a game with o-steps. In the nth 
step: 

Player I chooses & E G, and & E Ui<k Si such that 60 = A, for n > 0, 

fin = L1 A (m>, A@,, E &, & n ‘yn = L1, and IL > ~yn+ 
Player II chooses a;, < d, an > ‘yn, such that B, E an. 
If player I has no legal move he loses instantly. (Player II has always a legal 

move). Player I wins the play if he never loses it instantly. 
Fact A. The game is determined. 
Proof. Well known as the game is open. 
Fact B. If player I has a winning strategy, then (AA: a E T* ) as required exists. 
Proof. Let “‘A = {&: 5 <a>, such that BE 12 E {&: 5 < E} when I < length &.. 

We define by induction on & aE < h, yE E ‘?, Ai such that: 
(1) ~$5 GA; E Ui<A 4; 
(2) if k = I(&), then l(ys) = k. If I <I(&-), 5; < & then [BE 1 I = br; @ yE 1 I = 

yl;]. If 5 > I;, then ye # yt, (This means that the mapping & --) yr; (5 < 6) is an 
isomorphism from c 1 {&: f < E}, onto q 1 {yE: 5 < E}.) 

(3) If BE A #& = BE, then A& n Ai = AL. 
(4) q is increasing, UsceA; c aE, Uses Rang yr + 1 c as. 
(9 If BG = BE 11 for l s @t), then Ai,, ysO, al, A;,, ysl, a,, . . . , Ai, 

Y&7 %+I, * * * 9 is an initial segment of a play of the game in which player I uses 
his winning strategy. 

In the definition in stage E first choose aE (see (4)) then yE, A; (see (5)). 
Clearly, if we let AC, =A&, then T* = {ye: 5 < a}, (AC: y E T*) are as 

required. 
Fact C. Player II does not have a winning strategy. 
Let F be a winning strategy of player II. Let (Mi: i < a) be an increasing 

continuous sequence of elementary submodels of (H(2”“), E), such that 

IIn/rill < 4 Mi n il = 6i, FEMo, 

(S,:~<~)EM& (A,:UE*‘k)EMo, (Mj: jsi) E Mi+l. 

So { 6i: i < a} is a closed unbounded subset of A, as is also { Si: i < A, l& = i}. 
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Hence by (**) there are iO < il < - - - < il - - - (I < w) such that K < iO, 6, = is and: 

s* = A G /J_ ai!: (Vl< m)A n 6, E jLJ Sj # 0 mod B<,(U 63. 
II 

Now 

c* = ARC/&: (A(<K and 3MxvM, [Mnil=A, andE (&:aE T), 

(Si: i < A) belongs to M, and (VZ)(M, E M, il E M, 6, E M)]} E !&, (&JJ hi,). 

So C* n S* # 0. Choose A* E C* n S*, and M* witnessing A* E C*. 
Now we simulate a play of the game in which II uses his strategy but I wins. 

and in the nth player I will choose: 

We should prove that this is a legal move. Note that bn E M* as all 6, belongs 
to M* [by the definition of C”] note also that (A,: a E “A) E M*. Now actually 
both belong ‘also to Mi,, so Afin c M* n Mi,, hence (as K d iO, IAB.I < K, APn g il) 

A, G B,. 
NOW BoEMi, as A*ES* SO Bo=A*n6ioEUj<bi~Si~Mi, (as A*ES* and as 

(Sj: j C A.) E MiO and each $ has cardinality <A hence j E Mi, 3 Si c MiJ. NOW 
where will ar, be? 

&0<6i, asFEMi,cMi,, and PO, BoEMi,. 
Similarly, for other 11’s. 0 

Theorem 43. Let k > K > HO be regular cardinals. Then for any (Aa: a E T,) 
(where & = (“>A), A, E il, ]AQ] < K), and C E %=,(a) there are T* d c, and A; 
for q E T* such that: 

A,~ALEC, ]A:]cK, and if q lk##I rk then AknAbcA&,,nAb,, (it is 
natural to look at the minimal k), provided that: 

(** *) There are SW c PcK (a) for (Y < li, [S, I< h such that for any closed 
unbounded subset C* of A there are ordinals a0 < q < - - - < a,, < an+l < - - . (n < 
o) in C* each of cofinality Z=K for which 

for every n < o, A n a!n E Sor,+l } 

Remark. The proof shows that we can choose the Ah in the UatA S,. 
By 4.14, if A = K+~, (***) holds. 

Proof. We define a game with o steps. In the nth step: 
Player I chooses fin E T,, B,, E IJi<A Si and an ordinal r6, < il such that &, = A, 

and,forn>O, Bn=(xn2(‘yn), & > %-1, Bn > ynt Bn > Sup & yn > an-,, and 
B, n q G Br for every I < n and Al<,, Bt E B,, and A, = A,. 
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Player II: Choose a;, > 3L, cu, > fin. 
If player I has no legal move he loses instantly (Player II has always a legal 

move.) Player I wins the play if he never loses it instantly. 
Fact A. The game is determined. 
Proof. As an open game, well known. 
Fact B. If player I has a winning strategy then (Ah: a E T* ) as required exists. 
Proof. We call (t, A, _a, /I) an approximation if: 
(1) t is a subset of T* closed under initial segments, 
(2) ItI <a, net, 
(3) A is a function from t into P,(L), 

(4) (Va E t)[A, E A(a)], 
(5) (Va E t)(Vk)[&a 1 k) c A(a)], 
(6) /3 is a function from t to A, @ is a function from t - {A} to 3L, 
(7) @a E t)(Vk)[Z(a) = k + l- @(a 1 k) < g(a) < /3(a)], 
(8) (va E t)(Vk < l(a))@(a) n i(a 1 (k + 1)) E p(a f k)], 

(9) the intervals [g(a), @(a)) are pairwise disjoint, 
(10) for each a E t, Z(a)= k the following is an initial segment of a play of the 

game in which player I uses his winning strategy: 
First move player I: $a IO), a 10, ~(CC IO), player II: ~(a 1 1). 
Second moue player I: A(a r l), a 1 1, /3(a 1 l), player II: _a(a 12). 

kth move player I: A(a), cc, P(a) (so player II has not yet made the kth move). 
There is a natural order on the family of approximations. The following 

subfacts are clearly enough to prove Fact B. 
Subfact a. There is an approximation (to, A’, _a’, /3”) with to = {A} (see (10)). 
Subfact b. If ri = ( ti, A’, _ar’, /_!I’) are approximations for i < 6, 6 < A, and ri < rj 

for i<j, then (Uti, UA’, LJiLyi, IJipi) is an approximation >zj for every j. 
Subfact c. If r = (t, A, _ar, p) is an approximation, and a E ti, then for 

some y there is an approximation 

r’ = (t’, A$‘, (y’, p’) > z, t’=tu-wY)L a*(Yht 

Proof. First choose an ordinal a < 3L such that it is bigger than Sup U,&o), 
and than Sup Rang a, Sup Rang /I and Sup,., [U Rang v]. Consider the initial 
segment of the play written in condition (10) for our a. Then let player II play (in 
his Z(a)th move) LX Then player I’s strategy tell him to choose (in his Z(a) + 1st 
move) B, a h ( y ), a. We let 

Fact C. Player II does not have a winning strategy. 
Let F be a winning strategy of player II. Let (Mi: i < A) be an increasing 

continuous sequence of elementary submodes of (H((22’)+), E), ]]M]] < 3L, 
(Mi: j s i) E~Mi+l, andtheGnitesetE={F, (S,:a/<A), (A,:aEm’il)} belongs 
to MO and 6i = Mi fl a (is a limit ordinal). 
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So { &: i < ;1} is a closed unbounded subset of 3L. Hence by (***) there are 
iO<il<...<i,<i,,l<... (12 < O) such that, let i(*) sf U i,, the cofinality of 6i, 
is >K, and 

S* = {A c 8i(*): f or every I < O, A f~ 6, E S,,“} 4 8 mod 9<,(6,(*,). 

Expand (H((22”)+), E) by Skolem functions getting a model ‘%!I. Now let 

C* = {A g Si(+): MA, the Skolem hull of A in ‘8 satisfies: MA n 3L =A, E E M, 

and (it, M,, 6,: 1~ O} EM}. 

Clearly c* E &(8i(*)). So C* tl S* # 0 and choose A* E C* n S”, M* = MA* 
be the Skolem hull of A* in ‘8. 

Now we simulate play of the game in which player II uses his winning strategy 
but player I wins, a contradiction. 

In fact we give directly the move of player II. In the nth move player I plays: 

fin = ( 6i,, ail9 * - * 7 ai_,> n (so go = 4, 

&=A,, ifn=O, 

B, = (A* fl hi”_,) U A,” if n > 0, 

bn = Sup A* n 6,, 

Note that for every n, the choices of player I in his first, second . . . and nth 
move belongs to Mi,,. More elaborately 

(a) /3* E Mi,, (as the cofinality of Sin is a~), 
(b) fin E Mi, (as ai,, - - - 9 Sin_, < 6, = Mi, n A), 

(C) A, E Mi, (as fin E M,,, (Act: a E T,) E &EM,,), 

(d) Sa. EMU (as (S’:i<j) EEGM~, and ai,,_,EMi,), 
(e) &:I: E Mi,, (as &. _,I < il and Sai _, E Mi,, and Min n il is an ordinal), 
(f) h&e A* n bin_, EnMi,, (as A* E i*, A* fI Sin_, E S6in_1, but Shi ” _-l E M,), 

(8) & E Mi, (by (4 and (0.) 
SO really the choice of LYE in the n th move belong to Mi,. As player II uses his 

winning strategy F, his nth move an belongs to Mi, too (remember Mi, < Mi, for 
l<?l). SO pn<(Yn<Si,* 

It is easy to check that player II plays legally, hence wins the play though 
player I has used the strategy F; a contradiction. 0 

Observations 4.14. (1) (*) 3 (**) 3 (***) (See 4.12, 4.13 for definition). (Take 
S, = S 1 a, and for every ar, < q < - - - , {A E PJJ an): (VPZ)A n a,, E Sor,+,} r, 
S 1 (U a,J which is #0mod 6B&).) 

(2) An example for (*) is: W, V are universes of set theory (with the same 
ordinals, W G V, we suppose (IV, V) satisfies the strong covering lemma for 
subsets of A of power <K (see [9, Chapter XIII]) and W k GCH, V I= “;1 E K > K. 
are regular”, then S = {A G k IAl < K, A E W} is as required provided that 
W I= “I. not successor of singular of coG.nitely <K”. 
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(3) For (***) an example is: 3L = X2, K = K1, Sar = {A,,i: i < toI}, A,,i countable 
increasing continuous, i.&ol A,,i = CL Any ao< al < - - - < a, < a,,, < 

. . . works. 
(4) We can prove by induction on n that if zc is regular >K,, il = K+~ then 

(* **) holds, hence we get the conclusion of Theorem 4.13. 
(5) If 3, =x+, (**) is equivalent to “there is S c P,(x), S # 0 mod $,(3L), 

IS] 9 x”. 
(6) If (* **) holds for A, K, it holds for A+ K [easy by (5)]. 
(7) Note that if SC_&(A), BcA, S#Bmod&,(A) then s rBf0 

mod 2&,(B). 
(8) If (A,: a E ,‘a> satisfies AaA(i) fl AnA ci) = A,, lAoLl < 3L then for some 

T* =G ‘@il for every a, @ E T*, A, nAB = A,,p. 
(9) If V k ZFC + “K is strongly inaccessible Mahlo” then, for some forcings 

notion P of power K not collapsing X1 and K, Fp“~ = K2 and (**) fail” (as in [lo]). 
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