
INFINITE ABELIAN GROUPS, WHITEHEAD PROBLEM 

AND SOME CONSTRUCTIONS 

BY 

S A H A R O N  S H E L A H  

ABSTRACT 

We solve here some problems from Fuchs' book. We show that the answer to 
Whitehead's problem (for groups of power ~1) is independent from the usual 
axioms of set theory. We prove the existence of large rigid systems for groups 
of power 2, with no restriction on2. We also prove that there are many non- 
isomorphic reduced separable p-groups. 

1. Introduction 

Here a group means abelian group. 

Whitehead's problem (see, for example, [8, Prob. 79, p. 184]) is for which group 

G does Ext(G, Z) = 0 hold. In other words, if h :H  ~ G is an epimorphism with 

kernel Z (the integers) then H can be reconstructed from G in one way only: as a 

direct sum. More precisely, there is a homomorphism g : G ~ H, hg = 1~. Such 

groups are called W-groups (Whitehead groups). By Stein [22] and Rotman [19] 

(or, for example, [8, 99.1])each W-group is Nl-free and separable. In particular 

W-groups are torsion-free, and free groups are W-groups. Hence a countable 

group is a W-group iffit is free. For  an (infinite) cardinal 2 let: 

(Wa) :each W-group of power 2 is free. 

We prove in Section 3 the independence of  (W~I) from the usual axioms of set 

theory (ZFC: Zermelo-Frenkel with the axiom of choice). But we do not use the 

methods of Cohen [1] directly. Rather we rely on previous independence proofs; 

that is, various additional axioms have been shown to be consistent with ZFC 

(assuming the consistency of  ZFC). Now i fZFC + X is consistent and from it we 
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can prove a statement X', then of course X '  is also consistent with ZFC. Thus we 

prove that if V = L then (W~). (We could prove, in fact, that (Wz) with 2 < No,~ 

holds. The difficulty in ~o,, seems to me to be in L.) On the other hand, we prove 

that i fMA (Martin axiom) and 2%> Nt then (W~) fails. Thus by Gtidel [11] and 

Martin and Solovay [17], (W~) is independent of ZFC. The question on the in- 

dependence of (Ws,) from ZFC + 2 % = N~ remains open. (As V = L implies 

GCH, the consistency is clear.) If V = L, then every W-group is free. 

Fuchs [8, Prob. 52, p. 55] asked for the number of non-isomorphic separable 

p-groups of cardinality 2. The answer is that the number is 2 a. For 2 = No this is 

immediate, and for 2 > No it follows, in fact, from a result of the author on the 

number of non-isomorphic models of a non-superstable theory (part of it appears 

in [20, Sect. 3]). In Section 1 we give the proof for regular 2; as for singular 

cardinals, the proof is complicated. Note that by the construction of (1.1) we can 

show that if V = L then, by Jensen [14], for every regular non-weakly-compact 

cardinal 2, there is a separable p-group of power 2 which is not the direct sum of 

cyclic groups, but every subgroup of smaller cardinality is. (For weakly compact 

cardinals there is no such group; weakly compact cardinals are inaccessible and 

rare.) This partially answers [8, Prob. 56, p. 55,1. (Independently, Mekler [161, 

Eklof [2,1 and Gregory obtained similar results, and Eklof [3], Gregory [12,1 

obtained better results. See also Eklof [4,1 ). 

The proof indicates to me that separable p-groups cannot be characterized by 

any reasonable set of invariants. (This answers Problem 51 of Fuchs [8].) Because, 

first of all, (using (1.2) notation), in order to characterize G(B), we need B/D(o~I) 

and then if V = L, as in (3.4), we can define G'(B) in the same way, using only 

different r/6's, and obtain G'(B) ~ G(B). 

A rigid system of groups is a family with only trivial homomorphisms between 

its members (if h : G --, H then h = 0 or G = H, h(x) = rx for some rational r). 

Fuchs, with the help of Corner, proves inductively that for every 2 smaller than 

the first inaccessible cardinal, there is a rigid system of 24 torsion-free groups of 

cardinality 2. In Section 2 we remove the restriction on 2 and our proof does not 

use induction. Note that each member of a rigid system is indecomposable. This 

answers Problem 21 from [9, p. 183]. Fuchs [10,1 succeeded in replacing the first 

inaccessible cardinal by much highericardinals in an inductive proof. Fuchs kindly 

draws my attention to the fact that Th. 2.1 also solved Problem 37 in [7, p. 208,1, 

that is, there are 2 a non-isomorphic compact and connected groups ofcardinality2a; 
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with some care we can make them algebraically isomorphic. For  this use the duality 

theorem of Pontryagin, Hewitt, and Ross [13]. 

In a forthcoming paper we shall prove that there are essentially indecomposable 

p-groups of arbitrarily large cardinalities (answering positively a question of Pierce 

[18] repeated in [8, Prob. 55, p. 55]). We shall also prove that for arbitrarily large 

cardinality 2 there is a system of 24 p-groups such that the homomorphisms bet- 

ween different members are small (for definition see [7, (46,3), p. 195]). (This 

answers positively Problem 53 of [8, p. 55].) Another construction gives for 

/t = 2 "~ = 2 ~ > 2 "~ a family of 2" separable p-groups of power /~, so that any 

homomorphism between different members has range of  cardinality < 2. 

We assume knowledge in naive set theory, and in separable p-groups as in 

[7, VII ;[8, XI]. 

NOTATION. Let 2 ,~ ,x  denote infinite cardinals, 0t, fl,?,5, i,j ordinals, 6 a 

limit ordinal, k, l, m, n, M, N natural numbers or integers, to the first infinite 

ordinal. We let r/, z, v be sequences of ordinals. Let l(r/) be the length of r/, r/(i) its 

ith element. Let cf[~] be the cofinality of ~. 

G,H, and sometimes K, I, R are groups, h, g are homomorphisms, p, q are prime 

natural numbers, r a rational or sometimes a p-adic integer. 

When notation becomes complex, ai(j) is written as a[j, i], al as a[i]. 

1. There are many separable p-groulrs 

Here a group means a reduced separable p-group, that is, a group G such that for 

every a 6 G (a :/: 0) for some n, p"a = 0, and for some n no b E G satisfies a = p"b. 

DEFINITION 1.1. For every limit ordinal g of cofinality bigger than to, 

(a) let D(g) be the filter of subsets of c( = {fl :fl < c(} generated by the closed 

unbounded subsets of c(; 

(b) we write A c_ B [mod D(~t)] if a -- [A - B] E D(ct), similarly for A = B, 

A :~ B[mod D(a)]; 

(c) A _ a is called a stationary (subset of  a) if A ~- 0 [mod D(ct)]. 

THEOREM 1.1 (See Solovay [2l]). I f2  is a regular cardinal bigger than No, A, a 

stationary subset of 2, then A can be partitioned into 2 pairwise disjoint station- 

ary subsets of 2. 

REMARK. The particular cases we need can be proven more easily. 

THEOREM 1.2. I f  2 > N O is a regular cardinal, then there is a family of 2 x 
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non-isomorphic (reduced) separable p-groups, each of cardinality 2. Moreover 

no one of them is isomorphic to a subgroup of the other. 

PROOF. It is well known that A = {~ :0t < 2, ~ has cofinality No} is a stationary 

subset of  2. By (1.1) we can have A = U ~<~Ai, As stationary and pairwise disjoint. 

We can find a family {Jp : fl < 2 ~} of subsets of 2, such that no one is a subset of  

ithe other. Let, for fl < 2 ~, B~ = [_J ~jp A i. Then B~ is a set of  ordinals less than 

2 of  cofinality No and, for fl # ~, Bp ~ B~. [rood D(2)] .Choose for each t~ e A an 

increasing sequence ~/ = ~/~ of length co whose limit is 6. 

Let G~ be the torsion completion of @ l<~,,<~,(xT), where x~' has order pn+l 

(and (x~') is generated by x~'). (See 1-8, p. 14].) 

For each B _= A we now define a subgroup G(B) of G[: it is generated by x7 for 

i < 2, 0 _~ n < co, and by y~' = E ~=,n P"-mx~(~ for each m < co, ~/= t/~, 6 ~ B. 

Clearly each G(B) is a reduced separable p-group. 

So it suffices to prove that for fl # ~, G(Bp) is not isomorphic to any subgroup 

of  G(B~). For this is sufficient to show: 

(*) If  there is an embedding F of G(B 1) into G(B 2) then B l _~ B2['mod D(2)] 

(where B 1, B 2 are subsets of  A). 

PROOF Or (*). For each or, fl let G~(B) be the subgroup of G(B) generated by x~, y~' 

for fl,8 < or. For each i < 2 le tf( i )  be the first limit ordinal y such that 

(1) i f j  < i then F(x~) E G~(B2); 
(2) i f~  < i then F(y~G~(B2) ;  

(3) i f j  < i and, for some a ~ G(B1), F(a) ~ Gj(B ~) then a ~ G~(BI). 

Clearly f( i )< 2, and i <  j implies f(i)~_ f(j), and for a limit ordinal 6, 

f(6) = U t<ff(i). Hence 

C = {6:6 < 2, 6 a limit ordinal, f (6)  = 6} 

is a closed unbounded subset of  2, that is, C e D(2), so it suffices to prove B 1 r3 C 

_= B 2 c~ C. Let 6 s B ~ n C. so y 0 e G(B~), and let b = F(y 0). For every m, 
2 

yO_ p~y,~ belongs to G~(B ~) hence b - pmF(y~) belongs to G~(B ). So b belongs 

to the closure of G~(B 2) in G(B 2) (in the p-adic topology), and by (3), b ~ G~(B2). 

But if 8 ~ B ~, then G~(B2) is closed in G(B 2) as G(B 2) = G~(B 2) @ H~(B 2) where 

H~(B 2) is generated by x~, ~ i < 2; y m, 6 <  0~ < 2, ~/~(m) -> 6; ~ B  2. Hence 

B ~ ~ C _q B ~ t3 C, so (*) holds, completing the proof. 

2. Rigid systems 

TrlEOgEM 2.1. For any 2 there is a family {Gl :i < 2 x} of torsion-free groups 
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each of  power 2, which is a rigid system, that is, i f  h : G, --* G3 is a non-zero 

homomorphism, then i = j and h(x) = nx for  some integer n. 

PROOF. We restrict ourselves to 2 >No  regular�9 Let all the primes mentioned 

below be distinct. Let  ai ~, c~ < co + co, i < 2 be free generators of  a group G. Let  

A be a subset of  2. We now define some equivalence relations over subsets o f  

{a~ : c~ < co + co, i < 2} (we define them by a generating set of  pairs): 

(1) E ~ = {(ai~ : i <  ).} for c~ < co + co. Notice each equivalence class has at 

most  two elements. 

(2) E~ : (0  < n < co) rename {a~' : i < 9.} as {b~', 1 : i , j  < 2}, and let E~ be 

generated by {(a  ~ bi*j):i  < ,;., j < 2} 

(3) E 2 : (0 < n < co) is generated by {(a  ~ b~.,i) : i , j  < 2} 

(4) E~ a : (0 < n < co) for  each t5 < ;t of  cofinality N O choose an increasing 

sequence r/~ of  ordinals of  length co whose limit is 6. Let Enabe generated by 

{(a ~ b~cn),~ ) : di < 2, cf6 = co}. Notice that  every equivalence class has at most  

two elements. 

(5) E4: By Theorem 1.1 we can find ). disjoint stationary subsets Ji, i < 2 of  

{~ < ).: cfc5 = 09}. Let Eo* be generated by { (a~  : j~d ,} .  

(6) E~ : 0 < n < o~ rename {a~ '+n : i < 2} as {b, : z a decreasing sequence of  

ordinals less than 2 of  length n} identifying ai ~'+ rand b~i~. EnSis generated by 

{(b, ,b ,^a~)  : l(z) = n, i < 2, "r^(i) is decreasing} 

(7) E~o : is generated by {(a~,~ alo) : i , j  e A} (remember A was an arbitrary sub- 

set o f  2}. 

Let J~' = {c5 < 2 : cf6 = co, for some i < 2, aJ t = bj ,} .  We can assume J~ n J~ 

is stat ionary for any i,j. 

Now we can define a group G(A) containing G, which is contained in the divisible 

hull o f  G. G(A) is generated by 

(a) 6; 
(b) (p,,)-la~ (for any 0 < l < o9, ~ < co + o9, i < 2); and 

(c) (p~)-'(a~ - a ] ) ( f o r  any 0 < l < 09, when a~E~a~) (of  course p~,p~ are dis- 

tinct primes). 

We say x e G(A) is divisible by p ~if  for  any l < co for some y ~ G(A), p~y = x. 

N o w  notice that :  

(*) i f  x = ~,r~ a~ e G(A) (clearly only finitely many r7 are :# 0) then 

(1) x is divisible by (p~) oo iff fl # ct ~ r/a = 0, 

(2) x is divisible by (p~0  iff for each a]  E(rT" ~ " p �9 al E~aj} is zero. 
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Except for  p = po 6, the divisibility by p ~ in G(A), G(B) does not  depend on the 

choice o f  A, so we don ' t  ment ion it. 

It suffices to prove that {G(A,): i  < 24} is the required family, where {Ai : i < 2 ~} 

is a family of  subsets of  2, no one contained in the other. So it suffices to prove the 

following. 

Suppose h : G ( A )  -~ G(B) is a non-zero homomorphism;  then A ___ B, and for  

some integer n, h(x) = nx for  every x ~ G(A). 

OBSERVATION I. h(a~) is a linear combinat ion of  {aT:j < 2} with rat ional  

coefficients. This is because a~, hence h(a~) is divisible by p~, and by (* 1). 

OBSERVATION II. j o  = {3 < 2 : c f 3  = co, h(a ~  v~ 0} is stationary and includes 

J~' for  some j.  

As h # 0 and G(B) is torsion free, h(a~) # 0 for  some ~,j .  As ~,j ~ ~,j, 

o _ a~ hence it divides h(a ~  - h(a~), but by Observat ion I and (* 2), divides aj 

(p~)Oo does not  divide h(a~), hence h(a~)  # O. Similarly (p~)Oo divides 
O ]  

h(a~) -h(b~a)  for  any i <  2, but by Observation I and (* 2) it does not  divide h(aj 
0 ! 0 (as for ~ # ~ < ). not a~ E 1 a~ ) hence h(b~ i) :# O. As before a~ 1 . = by.i => h(al~ ) # 0 

~ .  h(a ~  r 0 hence by the definition of  Jt* we are finished. 

OnSERVATtON llI .  If /(z)  = n, leth(b,)  = r 1 b,~ + ... + rib, , (r I # O, . . - , rz=0) ,  

l(zx) . . . . .  l(z3 = n (by Observation I); then zt(n - 1), "- ,zt(n - 1) > z ( n -  1). 
(Maybe l = 0.) 

We prove this assertion by induction on z(n - 1). I f  z(n - 1) is zero, it is im- 

mediate. So suppose z(n - 1) = 7 + 1; let v = z  ^ (7) ,  h(b~) = rlb,~ + ... + rmbv~ 

(r ~ # O, l(Vk) = n + 1). Now (pS)~ divides h ( b , ) -  h(b,), so by (* 2) and the way E,  s 

was defined for every j ,  1 =< j < l, there is an i, 1 _< i _< m, such that zj is an 

initial segment o f  vi. As vi is decreasing zi(n - 1) > v,(n) > v(n) = ? (using the 

nduct ion hypothesis), hence zj(n - 1) > ], + 1 = z(n - 1). So we proved Obser- 

vation III. If  z(n - 1) is a limit ordinal,  the p roof  is similar. 

OBSERVATION 1V. There is a closed unbounded set C ~ 2 such that  if ce < fl, 
h(a ~ o = rla~(1)+ ... + r,a~,) (r i # O) then ~ < ~(i)< ,3. (Maybe n = 0) 

o ,~+1 o b(,>, and the definition o f  o As (p~176 divides a,  a ,  a~ - -  = - -  Eo+l ,  neces- 
e ~ + l  _ ~ + 1 .  sarily h(a~ +1) is r t a ~ ( l ) + . . . + r , a , ( , ) ,  hence cz < a ( l )  by the previous 

observation. Let  f i (~)  = max{~(l) + 1 : l}, f2(a) = s u p { f l ( ~  :B < ~}, as 2 is 

regular c~ < 2 :~ f2(~) < 2, and as in addit ion 2 > No, C = {~ :f2(~) = ~} is 

closed and unbounded.  
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OBSERVA'nON V. I f  6 ~ C, of 6 = co, then h(a ~  = r6a ~ for  some r 6. Suppose 

h(a o)  o o (r~ ~ 0). By Observa t ion  IV, we can assume = r I a i (x)  -at- . . .  + rnai(n) 

6 _~ i(1) = i x < ... < i(n) = i. < 2. Assume i. > 6. By the definition o f  the rh's 

we can choose m < to such that  if  cf[i l+x] = to rh,+,(m) > i~, and if il > 6 ,  

c f r q ]  = co then q , , (m) > 6. N o w  (pa)~ divides a ~ - b m ,tram,6, hence 

h(a ~  - h(b~,m~,~). By the definition of  E~, necessarily i(1), . . . ,  i(n) have cofinal- 

ity co,and 

m m m 

h(bvtm.~],~) = r x bnp.,itl)l.io) + ... + rmbvt~,i(.)],it, ). 

Also (p~)~o divides o m . a~tm,~ - b~t~m,6, hence necessarily by (* 2) and Observat ion  I 

(as the r/[m, i(/)] (1 < I < n) are distinct), h(a~,.,~]) o o = rla~[m,i( l )  ] -.J-.....j_ rnan[ra.l(n)]. 

This contradicts  Observat ion  IV. So ei ther  i. = 6 so n = 1 and then h(a ~  = rza ~ 

or n = 0 and then choose r 6 = 0. 

OaSERVATION VI. Fo r  every i, h(a ~ = rai ~ for some r. Using p0 we see that  

for 6 ~ C, cf6 = co; h(a61) = r~a~. N o w  for every i < ). ,there is a 6 ~ C c~ Jl (as Jl  

is s ta t ionary)  so cf6  = co. N o w  (p4)~ divides a ~ - a 2 ,  so it divides h(a ~ - r ,a~,  

so by Observat ion  I and the definition of  E ~  and (* 2), h(a i )  = r6ai ~ So for every 

i, h(a~ = r,a ~ 

Notice  that  6 e J~ n C implies r~ = r6, hence for  6(1), 6(2) e J~ n C, r~<x) = r6~2). 

Fo r  any i, consider the h o m o m o r p h i s m  hi ,  hx(x)  = h(x)  - rix. I f  ha = 0 we finish, 

otherwise all our  observat ions can apply  to it. As J *  r~ J~ is s ta t ionary for  any i,j, 

we obtain  a contradict ion to Observa t ion  II.  So r i = r. By E~ we see that  

h(a~) = ra 7. 

So now we can finish the proof .  Clear ly h(x)  = rx  for  every x e G(A).  The 

ra t ional  r should be an integer, as for  every p there is an x e G(A)  such that  

x /p  q~ G(A).  Using Eo 6 clearly A _ B. 

Qtmsa-ioN. Is there a class o f  torsion-free groups,  having 2 a members  in each 

cardinal  2 which is a rigid system? 

REMARK 2.1. The complet ion for singular cardinals and N o is easy. I f  2 is sin- 

gular,  ~. = ]~ ~<~t~2~, 21 < 2, we can combine  the construct ions for cf2,  2 +. 

REMARK 2.2. I t  seems that  we can make  the system homogeneous ,  for  example,  

o f  type (0, 0 , . . - )  as Corner  does to Fuchs '  proof.  
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3. Whitehead problem 

Recall that a group G is called a W-group (Whitehead group) if for every 

homomorphism h :H --, G onto G with kernel Z (the integers), there is a homomor- 

phism 9 : G -* H, such that hg = 1 a (so H is a direct sum of Z and a copy of G). 

We deal with a torsion-free group G of cardinality Nt, so without loss of generality 

its universe is NI = wt = {~ :~ < cat}, and G 6 = {~ : ~ < 6} is a pure subgroup 

of G. It is known that if G is a W-group, it is separable torsion free and N1-free 

(that is, every countable subgroup is free). We classify the possible G to three pos- 

sibilities, but first we need a definition. 

DE ,  NInON 3.1. (1) If  L ~ G, PC(L, G) is the smallest pure subgroup of G 

which contains L. Note that if  H is a pure subgroup of G, L __. H then PC(L, G) 

= PC(L, H). We omit G if it is clear. 

(2) I f H  is a subgroup of G, L a finite subset of G, a ~ G, we say that ~(a, L, H, G) 

if P C ( H u L ) = P C ( H ) ~ P C ( L )  but for no b ~ P C ( H u L u  {a}) is 

PC(H U L U {a}) = PC(H) ~ PC(L U (b}). 

I ' ni}, i < such POSSIBILITY I. For some 6 < ca1 there are a.[i~L ~ = {a~ : I < cat, 

that: 

(A) {a[ + G6 : i < cat, l _~ nt} is an independent family in G/G6, 

(B) ' ~(a.u], Li, G6, G) holds for any i. 

REMARK. We can replace G0 by any countable subgroup of G, and w.l.o.g. 

6 ~ ]4/. 

POSSmILITY II. Not I, but there are a stationary set A _ cat and for any 

3 ~ A, L0 {a] : I < na}, n = an(o) such that: 

(A) {a] + G0 : l _~ n0} is an independent family in G/G,, 
(B) 0 zffa,(0), L0, Go, G) holds. 

POSSmlHTY III. Neither I nor II. 

REMARK. The classification to the three possibilities depend on G only up to 

isomorphism. Because if h : G t ~ G 2 is an isomorphism, C = {6 : h is an 

isomorphism from G~ onto G if} is closed and unbounded subset of cal. Clearly C 

is closed, and if ~o < ca, define by  induction ~, < ca1, ~,+t = sup{h(/): i < ~,} 

u {j : h(j) < a.}]. Then ~,+ t < cat as cfcat > No, and similarly a* = U c~, < oJt, 

~* e c ,  so C is unbounded. 

Lemma 3.1. (1) Each possibility is satisfied by some Nl-free group (that is, 

every countable subgroup is free). Of course, the possibilities form a partition. 
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(2) I f  Possibility I fails, then by renaming the elements of G we can assume: 

(*) I f  t~ < cot, {c h + Gl:l ~_ n} is independent, and It(an, L, Gp, G ) holds where 

L =  {al:l < n}, then (a t + Gd+w:l ~ n} is not independent. 

PROOF. (1) For  Possibility I, let G be generated by xn, n < co, and 
m oo x~ = ~, ~=m(n!/m!)x~(n) for each m < co, t /e  C, where C is a set of N 1 increasing 

sequences of natural numbers of length co, such that ~ /#  z ~ C implies the ranges 

of r/, ~ have finite intersection. (Take G~ the subgroup generated by the xn's, n~ = 0  

~' C = { ~ h : i  < co l } . )  and ao = x~,, 

For  Possibility II, choose for each limit 6 < cot an increasing sequence r/a of 

ordinals of length co, whose limit is 6. Let G be generated by x~, ~t < cot, and 

x"~ = Y~ ~=,,(n!/m!)x~t~,al (m < t~, 6 < col, 6 a limit ordinal). (See [8, (75.1)].) 

For Possibility ]II take the free group with N~ generators. 

(2) We define by induction an increasing sequence of limit ordinals ct(i), 

ct(0) = 0, ct(6) = ~ t<a ~(i). If~(i) is defined, as Possibility I fails there is a maximal 

family aj, l ~_ n(j), j < Jo < col such that {aj+ G~(i):j,l} is independent, and 

n[(a~(j), {a[: l < n(j)}, G~(i), G]. Choose a limit ~t(i+ 1) > ~(i) so that a I ~ G~(i+l) 

Now rename {a :0t(i) =< a < 0c(i + 1)} (remember the elements of G are ordinals) 

by {fl :coi ~ fl < co(i+ 1)}. 

LEMMA 3.1(3) ForNl- , f ree  G possibility III is equivalent to G being the 

direct sum of countable groups. 

PROOF. Clearly if G = 0)~G i, G~ countable, then we can assume each a~G~ 

satisfies co~ =< a < co(i + 1), so Possibility III holds. Suppose Possibility III holds; 

then Possibility I fails, hence we can assume (*) from (2). As Possibility II fails, 

we can find a closed and unbounded set C _ {gi: 6 < cot} so that for 6 e C we 

cannot find a and finite A such that ~(a, A, Go, G) holds. By renaming we can 

assume C = (col: i < coa}. Now for each 6, we can find G; so that G~is a pure 

subgroup of G, Ga+ 1 = I..J ~G~, n G O = Ga and G a" +I/G~ has rank one. Now we can 

define by induction on n > 1, a,,~G a so that G,~= Ga+ PC(ax,'",a,,). By the 

definition of ~ this clearly can be done. Let H6 = PC(a~,a2,...), so Ga+ ~ = Ga 

H a hence G = q)aHa(t)Go,. 

D~F~N~a'~Or~ 3.2. A (G, Z)-group is a group H whose set of elements is G x Z 

= {(a, b) : a e G, b e Z}, and the mapping h : (a, b) ~ a is a homomorphism from 

H to G with kernel Z = {0} x Z; and (a, b) + (0, c) = (a, b + c). We denote the 

h corresponding to Hi by hi, and a (Gi, Z)-group by H I. 
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LE~4A 3.2. (1) Let U1 be a subgroup of G2, HI a (Gi,Z)-group; then we can 

extend H 1 to a (G2,Z)-group H2. 

(2) I f  gl :G1 ~ H1 is a homomorphism, h lg l  = lot:j and lr(a,A, Gi, G2), 

where A is finite, then we can extend H i to a (U2, Z)-group H 2 so that for  no 

homomorphism g2 "G2 -+ H2, h292 --  l~r2~, and g2 extends gl. 

PROOF. This in fact is not new. 

(1) This is immediate by 51.3(2) from [7, p. 218]. But we need (3.2) only for G 1 

a W-group, so we prove it for this case. By iterating, it suffices to prove two cases: 

(a) G2/G 1 is a free group of rank one, say generated by a o + G 1. Then every 

bl e G 2 has a unique representation as nao + c (c �9 G1, n integer). So define 

(b 1, kl) Jr- (b 2, k2) = (nl ao + Cl; kl) d- (n 2 a 0 -}- c2, k2) 
df 
---- ((n I -}- n2)a 0 + c3, k3) 

where (inH1) (c 1, kl) + (c2, k2) = (c3, k3). 

(b) G2/G ~ is a cyclic group of a prime order p, generated by ao + Gx. So define, 

gl :GI -* HI as a homomorphism, hlg I = 1~,  and gx(c) = (c, re(c)). 

(nlao + c~, ks) + (n2a 0 + c2, k2) df ((n~ + n2)a 0 + c I + c 2, k I + k 2 - m(Cx) 

- re(c2) + re(c1 + c2) + f ( n t  + n2)) 

where 0 ~_ nl, n 2 < p, andf(nx ,  n2) is 0 when n I + n 2 < p and M � 9  otherwise. 

(2) Le tA  = {a x,-..,am}, Ga =PC(G1 u A), G 5 = PC(G~ w A u {a}), and 

G4 the group generated by G3, a. Now by (1) extend H 1 to a (G 4, Z)-group H4. Now 

any homomorphism g : G4 -+ H4 extending gl, hgg = I~E#;I is determined by the 

values ofg(ai), g(a), i = 1,..., m, and as g(a i) �9 ((a i, l) : l �9 Z} there arc only count- 

ably many such g's : g~, n < co. Clearly Gs/G4 should be infinite so either 

(A) it contains an infinite direct sum of cyclic groups of prime order, or 

(B) it contains a copy of Z(p ~) for some p. 

Case A. Suppose generators of those groups arc a~ + G4 (n < co), of order p~. 

Let G* be generated by G4, ao ," - ,  an- I. We define by induction (G~*, Z)-groups 

* * * If  H~* is defined, we define H~*+ 1 as in (lb) using as H,, H*o = G~., H,+ t extending H~. 

constant M~, and then by (3.2 (1)) find a (Gs, Z)-group H s extending all the H~*. I f  

g :G~ -+ H5 is a homomorphism, hg = l~ts~, then for some n,g extends g~. Let 

p,a~ = b~ �9 G4, g,(b~) = (b~, k~), and g(a~) = (c~, l~), (b~, k~) = g(b~) = g(p~a~) 

= p,g(a~) = pn(a~, l~) = (b~,p~l~ + M,)  so k n = M~(mod p~). Hence, if we choose 

M~ = k~ + 1, H 5 satisfies our requirements. 
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Case B. Similar to Case A; here pan+ t - a. = b.+ t ~ G, ,  pa o = bo ~ G4 and, 

letting g(b.) = (b., In), g(a.) =(a.,k.) we obtain M o + pk  o = 1o, Mn+ 1 + pkn+l 

= k n + I.+ t. So from the M. 's  we can compute the k.'s, and for suitable Mn's this 

is impossible. 

THEOREM 3.3. Assume  CH, that is, 2 ~r176 = N 1. Then  i f  G satisfies Poss ibi l i ty  I,  

it is not a W-group.  

REMARK. This is not really needed for the independence of (Wt,,). 

PROOF. We shall construct a (G, Z)-group H. Let H~, be the direct sum of Go, 

and Z, and let {gi : i <co l}  be the list of all homomorphisms from Go, into H,o such 

that hg' = 1~ (exists by CH). Let G~ = G(ct) = PC[G~, u {a/: 1 < n(i), i < ~}], 

and we define a(G~, Z)-group H~ by induction on ct. For  ~ --- 0, ct limit there are no 

problems. If we have defined for H~, define for H~+ t so that g~ cannot be extended 

to a homomorphism g from G* = PC[Go, W {a t : l  <_6 n(ct)}] into n~, satisfying 

ha = 1G* (but h F" G~+I is still a homomorphism). This can be done by (3.2 (2)) 

with trivial changes. When H,o, is defined we extend the definition to obtain a 

(G, Z)-group. 

If there is g : G ~ H, hg = 1G, then g I" G,~ is some g~, so by g ~" G* we obtain a 

contradiction. 

REMARK. We could prove that there are many non-isomorphic such H's. 

THEOREM 3.4. Assume  V = L. I f  G satisfies Possibi l i ty  I or H then it is not a 

W-group.  

PROOF. By G6del [11], as V = L, CH holds. So by (3.3) we can deal with 

Possibility II only, (but in fact the same proof  works). We use the notation of 

Definition 3.1, and let A be a stationary set as in Possibility II. 

By Jensen [141 as V = L there are functions g~ : G~ ~ H~ = G~ x Z for every 

6 E A, such that for any function g : G --* H, {6 < o~ t : g I" G~ = g~} is stationary 

(this is called<>~,l). 

Now we define the (G~, Z)-group Ha by induction on t5 so that h ~" Ha is a homo- 

morphism. For  6 = co we define it arbitrarily, for a limit 6 (among the limit 

ordinals) there is nothing to define. Suppose we have defined Ha; then we shall 

define H6§ so that, if 6 ~ A ,  g6 cannot be extended to homomorphism 

g : G~+,~ ~ H~+,o, hg = 1~6§ ' using (3.2). By the definition of the gas, clearly H 

shows G is not a W-group. 
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THEOREM 3.5. Assume MA + 2 ~~ > N 1 (MA for Mart in  Axiom). I f G  has car- 

dinality N1, is N~-free, and does not satisfy Possibility I then it is a W-group. 

REMARK. We can extend the proof  to groups of  cardinality less than 2 No 

PROOF. If  G satisfies Possibility III, then by (3.1 (4)) it is the direct sum of  

countable groups. Each summand is free by the Nl-freeness, so G is free, hence a 

WI-group. So assume G satisfies Possibility II. So let h : H --, G be a homomorphism 

with kernel Z, the set of elements of H being G x Z, h((a, b)) = a. MA says that 

for any 2 < 2s~ 

(MA~): Suppose P is a partial order of  power =< 2, and in P there is not any 

subset of  N~ pairwise-contradictory element (a, b are contradictory if they have no 

common upper bound). Suppose {Di: i  < 2} are dense subsets of  P (that is, 

(Vi < 2)(Va e P)(3b ~ D~)[a < b]). Then there is a set G c p such that G ~ D~ 

Z for any i < 2, and any two members of G have a common upper bound in 

17 (such a 17 is called generic). 

Let P be the set of homomorphisms # from finitely generated pure subgroups I 

of  G into H, such that h# = 11. So P has power N~. The partial order is "extend- 

ing", that is, gl < g2 iffg2 extends gl. Let for i < toa, D l = { g e P  :i is in the 

domain of  g}. If  there is a generic 17 ~ P define g*(x) = y if  for some g E 17 

g(x) = y. As G n D l ~ ~ ,  g*(i) is defined at least once, for each i < co~. As any 

two members of  G have a common upper bound, g* is uniquely defined, and is a 

homomorphism; also hg* = 1G, so we are finished. Thus, it suffices to prove: 

(1) Each D t is dense. This is because I is pure and freely generated by some 

a 1, -.., a~ e G; so there is an a~.~ such that a~, ..., a~+~ freely generate K for any 

subgroup K of  G of rank n + 1 which contains I, for example, PC(a1, ". ,  a,, b). 

(2) Suppose {g~ : i <to1} __q P; the g~'s are pairwise contradictory and we shall 

obtain a contradiction. 

i "", a~. As we can replace {gi : i < to1) by Let Domgi  be freely generated by a 1, 

any subfamily of  the same cardinality thus we can assure n = ni. Let {al, "", am} 

be a maximal set of elements of  G, which generates freely a pure subgroup and 

{a~, ..., ar,} -~ Domgl for Rl i's. So without loss of  generality al, ..., a,, ~ Doing 
t for every i, hence without loss of generality a~ = al,  " ' ,  am = am. As the number 

of  gt's with some fixed domain is at most countable, we can assume Dom g~ 

Dom gj for i ~ j ;  hence m < n, and also {a l , ' " ,  am} u (al: m < l <n ,  i < o~1} 

is independent. Now we define a strictly increasing sequence of  ordinals ct(/), i < ah, 
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such that PC[(Dom g=(~)+ G~,] is finitely generated (this is possible as 
i Possibility I fails). Hence for every i there are c~,-.., ck(o~ G~= such that 

I i PC[(Domg=(O) + Gt~,] is generated by Gt,~ U {bl, "",bko)}, where {b~,...,} 

~- VC(a~,. . . ,  ~ ~ ! an, cl, ..., ck(i)). 

Notice that c~ < iog. As the set of  i < o91 such that io9 = i is closed and un- 

bounded we can define a decreasing sequence of  stationary sets Jo --- J~ ~ "'" ~- jm 

such that for i~Jo ,  k(i) = m and for all i~J: ,  cz = cllfor some cz (by [6]). Now 

for each i ~ J,, we can extend g=(~), so that its domain " ~ i will be PC(a1, . . . ,  a,, cD. . . ,  c,,) 

ahd call the new homomorphism f .  By changing notation we can assume Dora g~ 

l " ' ,  a,~and {al, ..',am}t3 {ai:m< l < n, is again freely generated by al , . . - ,  am, am+ 1, 

i e Jm} is independent. By replacing Jm by a subset of the same cardinality J* we 

�9 . . , a ~ e  Gj. can assume f ( a l )  (l = 1,. . . ,  m) are fixed. Choose i < j ~ J* so that am+ 1, 

By construction, Dom # 1+ Gj,o is a pure subgroup of  G, so Dora g J+ Dom #t is a 

pure subgroup of  G, and its domain is freely generated by {a~, ..-, am, 

I a~+l, a~}. As #](at) g~(al) a common extension (which belongs am+l, ..., an, ..., = 
to P) exists. Contradiction. 

CONCLUSION 3.6. The statement "Every W-group of  cardinality N t is free" is 

independent of and consistent with ZFC (Zermelo-Frenkel with the axiom of 

choice, the usual set of  axioms of set theory). (We assume of course the consistency 

of ZFC.) 

PROOF. By Stein [22] and Rotman [19] any W-group is Nl-free and separable. 

By G6del [11], ZFC + V = L is consistent. By (3.4), if V = L any W-group 

satisfies Possibility III, so by (3.1 (3)), G = ~ Gl, G~ countable. As G is Nl-free, 

G~ is free so G is free. Thus ZFC + V = L implies our statement, hence it is con- 
sistent. 

By Martin and Solovay [17], ZFC + MA + 2 t% > N 1 is consistent. By (3.5) and 

(3.1 (1)), ZFC + MA + 2 t% > Nt implies the existence of non-free W-groups of 
cardinality N~. 

OPEN QUESTION. Is it consistent that 

(1) every Nt-free group of  cardinality N1 is a W-group? 

(2) there are such groups, satisfying the same possibility, one a W-group, the 
other not? 
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