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Abstract. In this paper we consider the following property:
(~Da) For every function f : R× R −→ R there are functions g0

n, g
1
n : R −→ R

(for n < ω) such that

(∀x, y ∈ R)(f(x, y) =
∑
n<ω

g0
n(x)g1

n(y)).

We show that, despite some expectation suggested by S. Shelah (1997), (~Da)
does not imply MA(σ-centered). Next, we introduce cardinal characteristics
of the continuum responsible for the failure of (~Da).

0. Introduction

In the present paper we will consider the following property:
(~Da) For every function f : R× R −→ R there are functions g0

n, g
1
n : R −→ R

(for n < ω) such that

(∀x, y ∈ R)(f(x, y) =
∑
n<ω

g0
n(x)g1

n(y)).

Davies [Da74] showed that CH implies (~Da) and Miller [Mixx, Problem 15.11],
[Mi91] and Ciesielski [Ci97, Problem 7] asked if (~Da) is equivalent to CH. It was
shown in [Sh 675, §3] that the answer is negative. Namely,

Theorem 0.1. (1) (See [Sh 675, 3.4]) MA(σ-centered) implies (~Da).
(2) (See [Sh 675, 3.6]) If P is the forcing notion for adding ℵ2 Cohen reals, then

P ¬(~Da).

The proof of [Sh 675, Conclusion 3.4]) strongly used the assumptions, causing
an impression that the property (~Da) might be equivalent to MA(σ-centered).

The first section introduces a strong variant of ccc which is useful in preserving
unbounded families. In the second section we show that (~Da) does not imply
MA(σ-centered). Finally, in the next section we show the combinatorial heart of
[Sh 675, Proposition 3.6] and we introduce cardinal characteristics of the continuum
closely related to the failure of (~Da).
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280 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Notation. Most of our notation is standard and compatible with that of classical
textbooks on Set Theory (like Bartoszyński and Judah [BaJu95]). However in
forcing we keep the convention that a stronger condition is the larger one.

Notation 0.2. (1) For two sequences η, ν we write ν C η whenever ν is a proper
initial segment of η, and ν E η when either ν C η or ν = η. The length of a
sequence η is denoted by `g(η).

(2) The set of rationals is denoted by Q and the set of reals is called R. The
cardinality of R is called c (and it is referred to as the continuum). The dominating
number (the minimal size of a dominating family in ωω in the ordering <∗ of
eventual dominance) is denoted by d and the unbounded number (the minimal size
of an unbounded family in that order) is called b.

(3) The quantifiers (∀∞n) and (∃∞n) are abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively.
(4) For a forcing notion P, ΓP stands for the canonical P-name for the generic

filter in P. With this one exception, all P-names for objects in the extension via P
will be denoted with a dot above (e.g. Ȧ, ḟ).

1. F-sweet forcing notion

Definition 1.1. An uncountable family F ⊆ ωω is spread if

(�) for each k∗, n∗ < ω and a sequence 〈fα,n : α < ω1, n < n∗〉 of pairwise
distinct elements of F there are an increasing sequence 〈αi : i < ω〉 ⊆ ω1 and
an integer k > k∗ such that

(∀i < ω)(∀n < n∗)(fαi,n(k) < fαi+1,n(k)).

Proposition 1.2. Suppose that κ is an uncountable cardinal and Cκ is the forcing
notion adding κ many Cohen reals 〈ċα : α < κ〉 ⊆ ωω. Then


Cκ “ 〈ċα : α < κ〉 is spread ”.

Proof. A condition in Cκ is a finite function p : dom(p) −→ ω such that dom(p) ⊆
κ× ω (and the order of Cκ is the inclusion).

Suppose k∗, n∗ < ω, p ∈ Cκ and β̇α,n (for α < ω1, n < n∗) are Cκ-names for
ordinals below κ such that

p 
Cκ “ 〈β̇α,n : α < ω1, n < n∗〉 are pairwise distinct ”.

For each α < ω1 pick a condition pα ≥ p and ordinals β(α, 0), . . . , β(α, n∗ − 1) < κ

such that pα 
 β̇α,n = β(α, n) (for n < n∗) and dom(pα) = uα × mα for some
mα < ω, uα ⊆ κ such that β(α, 0), . . . , β(α, n∗ − 1) ∈ uα. Take A ∈ [ω1]ℵ1 such
that 〈uα : α ∈ A〉 forms a ∆-system with heart u, mα = m (for α ∈ A) and
pα�u×m = pβ�u×m (for α, β ∈ A). Note that if α, α′ ∈ A, i, i′ < n∗ and (α, i) 6=
(α′, i′), then β(α, i) 6= β(α′, i′). Choose an increasing sequence 〈α∗i : i < ω〉 ⊆ A so
that β(α∗i , 0), . . . , β(α∗i , n

∗ − 1) /∈ u and fix k > max{k∗,m}. Next, for each i < ω,
choose a condition qi ≥ pα∗i such that dom(qi) = uα∗i × (k + 1), qi(β(α∗i , n), k) = i

(for i < ω), and qi�u× (k+1) = qj�u× (k+1) = q for i, j < ω. Let İ be a Cκ-name
for the set {i ∈ ω : qi ∈ ΓCκ}. It follows from the choice of the conditions qi that
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THE YELLOW CAKE 281

q 
 |İ| = ℵ0. Clearly

q 
 (∀n < n∗)(∀i < j)(i, j ∈ İ ⇒ ċβ̇α∗i ,n
(k) = i < j = ċβ̇α∗j ,n(k)),

finishing the proof.

It should be clear that, if there is a spread family, then b = ℵ1 (so in particular
MAℵ1(σ-centered) fails). Also, as the referee pointed out, the converse is true as
well; see 1.3 below (so that there is a spread family of size ℵ1 if and only if b = ℵ1).
Moreover, if there is a spread family of size κ, then d ≥ κ.

Proposition 1.3 (The referee). If F = {fα : α < ω1} ⊆ ωω is an unbounded
family, α < β < ω1 ⇒ fα <

∗ fβ, then F is spread.

Proof. Fix k∗, n∗ < ω and take pairwise distinct β(α, n) < ω1 (for α < ω1, n < n∗).
Without loss of generality, we may assume that

(∀α < α′ < ω1)(∀n, n′ < n∗)(β(α, n) < β(α′, n′)).

Put hα(k) = min{fβ(α,n)(k) : n < n∗} (for α < ω1, k ∈ ω). Then hα ∈ ωω,
α < α′ ⇒ hα <

∗ hα′ and {hα : α < ω1} is an unbounded family. Consequently,
we may find k > k∗ and an increasing sequence 〈αi : i < ω〉 such that hαi(k) <
hαi+1(k) for all i < ω. Pruning the sequence of the αi, if necessary, we may get
(∀i ∈ ω)(∀n < n∗)(fβ(αi,n)(k) < fβ(αi+1,n)(k)).

Definition 1.4. Let F ⊆ ωω be a spread family. A forcing notion P is F-sweet if
the following condition is satisfied:

(�)Fsweet for each sequence 〈pα : α < ω1〉 ⊆ P there are A ∈ [ω1]ℵ1 , k∗, n∗ < ω and
a sequence 〈fα,n : n < n∗, α ∈ A〉 ⊆ F such that (α, n) 6= (α′, n′) ⇒
fα,n 6= fα′,n′ and
(⊕) if 〈αi : i < ω〉 is an increasing sequence of elements of A such that

for some k ∈ (k∗, ω)

(∀i < ω)(∀n < n∗)(fαi,n(k) < fαi+1,n(k)),

then there is p ∈ P such that p 
 (∃∞i ∈ ω)(pαi ∈ ΓP).

Proposition 1.5. Assume that F ⊆ ωω is a spread family and P is an F-sweet
forcing notion. Then


P “ F is a spread family ”.

Proof. First note that easily F -sweetness implies the ccc.
Suppose that k+, n+ < ω, 〈ḟα,n : α < ω1, n < n+〉 are P-names for elements of

F , p ∈ P and

p 
P (∀α, α′ < ω1)(∀n, n′ < n+)((α, n) 6= (α′, n′) ⇒ ḟα,n 6= ḟα′,n′).

For α < ω1 choose conditions pα ≥ p and functions fα,n ∈ F (for n < n+) such
that pα 
 (∀n < n+)(ḟα,n = fα,n). Passing to a subsequence, we may assume that

(α, n) 6= (α′, n′) ⇒ fα,n 6= fα′,n′ .

Choose k∗ > k+, a set A ∈ [ω1]ℵ1 and a sequence 〈fα,n : α ∈ A, n+ ≤ n < n∗〉
as guaranteed by (�)Fsweet of 1.4 for 〈pα : α < ω1〉 (note that here, for notational
convenience, we use the interval [n+, n∗) instead of n∗ there). Shrinking the set A
and possibly decreasing n∗ (and reenumerating the fα,n’s) we may assume that all
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282 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

functions appearing in 〈fα,n : α ∈ A, n < n∗〉 are distinct. By (�) of 1.1 we find
k > k∗ and an increasing sequence 〈αi : i < ω〉 ⊆ A such that

(∀i < ω)(∀n < n∗)(fαi,n(k) < fαi+1,n(k)).

But it follows from (⊕) of 1.4 that now we can find a condition q ∈ P such that
q 
 (∃∞i ∈ ω)(pαi ∈ ΓP). As all conditions pα are stronger than p, we may demand
that q ≥ p. Now use the choice of the pαi ’s and fαi,n (for n < n+) to finish the
proof.

Theorem 1.6. Assume F is a spread family. Let 〈Pα, Q̇α : α < γ〉 be a finite
support iteration of forcing notions such that for each α < γ we have

(1) 
Pα“ F is spread ”, and
(2) 
Pα“ Q̇α is F-sweet ”.

Then Pγ is F-sweet (and consequently, 
Pγ“ F is a spread family ”).

Proof. We show this by induction on γ.
Case 1: γ = β + 1
Let 〈pα : α < ω1〉 ⊆ Pβ+1. Take a condition p∗ ∈ Pβ such that

p∗ 
Pβ “ {α < ω1 : pα�β ∈ ΓPβ} is uncountable ”

(there is one by the ccc). Next, use the assumption that Q̇β is F -sweet and get
Pβ-names Ȧ ∈ [ω1]ℵ1 and k̇∗, ṅ∗ and 〈ḟα,n : α ∈ Ȧ, n < ṅ∗〉 ⊆ F such that the
condition p∗ forces that they are as guaranteed by (�)Fsweet of 1.4 for the sequence
〈pα(β) : α < ω1, pα�β ∈ ΓPβ 〉.

Let A′ be the set of all α < ω1 such that there is a condition stronger than both
p∗ and pα�β which forces that α is in Ȧ. Clearly |A′| = ℵ1. For each α ∈ A′ choose
a condition qα ∈ Pβ stronger than both p∗ and pα�β which forces that α ∈ Ȧ and
decides the values of k̇∗, ṅ∗ and 〈ḟα,n : n < ṅ∗〉. Next we may choose A′′ ∈ [A′]ℵ1 ,
k∗, n∗ and 〈fα,n : α ∈ A′′, n < n∗〉 ⊆ F such that (for each α ∈ A′′ and n < n∗)
qα 
“ k̇∗ = k∗ & ṅ∗ = n∗ & ḟα,n = fα,n ”. Moreover we may demand that the
fα,n’s are pairwise distinct (for α ∈ A′′, n < n∗).

Apply the inductive hypothesis to the sequence 〈qα : α ∈ A′′〉 (and Pβ) to get
A ∈ [A′′]ℵ1 , k+, n+ > n∗ and 〈fα,n : α ∈ A, n∗ ≤ n < n+〉. For simplicity we
may assume that there are no repetitions in the sequence 〈fα,n : α ∈ A, n < n∗〉
(we may shrink A and decrease n∗ reenumerating the fα,n’s suitably). We claim
that this sequence and max{k∗, k+} satisfy the demand in (⊕) of 1.4. So suppose
that 〈αi : i < ω〉 is an increasing sequence of elements of A such that for some
k > k∗, k+ we have

(∀i < ω)(∀n < n+)(fαi,n(k) < fαi+1,n(k)).

Clearly, by our choices, we find a condition p+ ∈ Pβ stronger than p∗ such that
p+ 
 (∃∞i ∈ ω)(qαi ∈ ΓPβ ). Next, in VPβ , we look at the sequence 〈pαi(β) : qαi ∈
ΓPβ , i < ω〉. We may find a Pβ-name p+(β) such that (p+ forces that)

p+(β) 
Q̇β (∃∞i ∈ ω)(qαi ∈ ΓPβ & pαi(β) ∈ ΓQ̇β ).

Look at the condition p+_p+(β).
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Case 2: γ is a limit ordinal.
If 〈pα : α < ω1〉 ⊆ Pγ , then, under the assumption of the current case, for some
A ∈ [ω1]ℵ1 and δ < γ, the sets {supp(pα) \ δ : α ∈ A} are pairwise disjoint. Apply
the inductive hypothesis to Pδ and the sequence 〈pα�δ : α ∈ A〉.

Conclusion 1.7. Suppose that κ > ℵ2 is a regular cardinal such that κ<κ = κ and
(∀µ < κ)(µℵ1 < κ). Assume that S ⊆ {δ < κ : cf(δ) ≥ ω2} is stationary, �S holds
true and ℵ1 ≤ λ < κ. Then there is a ccc forcing notion P of size κ such that


P “ there is a spread family F ⊆ ωω of size λ & c = κ & MA(F -sweet) ”.

Proof. Using standard bookkeeping arguments and �S, build a finite support iter-
ation 〈Pα, Q̇α : α < λ〉 such that

(1) Q0 is the forcing notion adding κ many Cohen reals F = 〈fα : α < λ〉 ⊆ ωω
(with finite conditions) [so in VQ0 , the family F is spread; see 1.2],

(2) for each α < κ, 
P1+α“ Q̇1+α is a F -sweet forcing notion of size < κ ”,
(3) if Q̇ is a Pκ-name for a F -sweet forcing notion on κ, then for stationarily

many α < κ of cofinality ≥ ω2, Q̇ ∩ α is a Pα-name and 
Pα Q̇ ∩ α = Q̇α.

It follows from 1.6 that in VPα (for 0 < α ≤ κ) the family F is spread, so there are
no problems with carrying out the construction. Easily Pκ is as required.

Remark 1.8. (1) Note the similarity of MA(F -sweet) to the methods used in [Sh:98,
§4].

(2) We do not know what are the consequences of “there is an uncountable spread
family F and MA(F -sweet)” on cardinal invariants of the continuum. Since the
Cohen forcing notion is F -sweet, we conclude that (under this assumption) the
covering number of the meager ideal is c. As we stated before, we also know that
b = ℵ1. But what about e.g. the covering number of the null ideal?

2. More on Davies’ problem

The aim of this section is to show that (~Da) does not imply MA(σ-centered).
Let 〈νn : n < ω〉 be an enumeration of ω>ω such that `g(νn) ≤ n. For distinct

ρ0, ρ1 ∈ ωω let δ(ρ0, ρ1) = 1 + max{m : νm C ρ0 & νm C ρ1}. (Note that
ρ0�δ(ρ0, ρ1) 6= ρ1�δ(ρ0, ρ1).)

Assume that there exists a spread family of size c and let F = 〈ρα : α < c〉 ⊆ ωω
be such a family (later we will choose the one coming from adding κ many Cohen
reals).

Definition 2.1. Let ζ < c be an ordinal and let f : ζ × ζ −→ R.

(1) A ζ-approximation is a sequence ḡ = 〈g`η : ` < 2, η ∈ ω>ω〉 such that:
(a) g`η : ζ −→ Q (for ` < 2, η ∈ ω>ω),
(b) if α < ζ, then (∀β < c)(∃∞k ∈ ω)(g`ρα�k(α) 6= 0 & νk C ρβ),
(c) if α < ζ, η ∈ ω>ω and neither η nor ν`g(η) is an initial segment of ρα,

then g0
η(α) = g1

η(α) = 0.
(2) If ζ0 < ζ1 and ḡk = 〈g`,kη : ` < 2, η ∈ ω>ω〉 (for k = 0, 1) are ζk-

approximations such that g`,0η ⊆ g`,1η (for all ` < 2 and η ∈ ω>ω), then
we say that ḡ1 extends ḡ0 (in short: ḡ0 � ḡ1).
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284 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(3) We say that a ζ-approximation ḡ agrees with the function f if

(∀α, β < ζ)
(
f(α, β) =

∑
η∈ω>ω

g0
η(α) · g1

η(β) and the series converges absolutely
)
.

Proposition 2.2. If ḡξ are ζξ-approximations (for ξ < ξ∗) such that the sequence
〈ḡξ : ξ < ξ∗〉 is �-increasing and ζξ∗ =

⋃
ξ<ξ∗

ζξ, then there is a ζξ∗ -approximation

ḡξ
∗

such that (∀ξ < ξ∗)(ḡξ � ḡξ
∗
). Moreover, if f : ζξ∗ × ζξ∗ −→ R and each ḡξ

agrees with f�(ζξ × ζξ), then ḡξ
∗

agrees with f .

Thus if we want to show that (~Da) holds, we may take a function f : c×c −→ R
(it should be clear that we may look at functions of that type only) and try to build
a �-increasing sequence 〈ḡξ : ξ < c〉 of approximations. If we make sure that ḡξ is
a ξ-approximation that agrees with f�(ξ × ξ), then the limit ḡc of ḡξ’s will give us
witnesses for f . (Note that by the absolute convergence demand in 2.1(3) we do
not have to worry about the order in the series.) At limit stages of the construction
we use 2.2, but problems may occur at some successor stage. Here we need to use
forcing.

Definition 2.3. Assume that ζ < c is an ordinal, and f : (ζ + 1)× (ζ + 1) −→ R.
Let ḡ = 〈g`η : ` < 2, η ∈ ω>ω〉 be a ζ-approximation which agrees with f�ζ × ζ.
We define a forcing notion Pḡ,ζf as follows:

a condition is a tuple p = 〈Zp, jp, 〈rp`,η : ` < 2, η ∈ j
p>ω〉〉 such that

(α) jp < ω and Zp is a finite subset of ζ, rp`,η ∈ Q (for ` < 2, η ∈ j
p>ω),

(β) the set {η ∈ jp>ω : rp0,η 6= 0 or rp1,η 6= 0} is finite, and if η ∈ jp>ω and
neither η nor ν`g(η) is an initial segment of ρζ , then rp`,η = 0,

(γ) if α ∈ Zp, then

|f(α, ζ)−
∑
{g0
η(α) · rp1,η : η ∈ j

p>ω}| < 2−j
p

,

|f(ζ, α)−
∑
{rp0,η · g1

η(α) : η ∈ j
p>ω}| < 2−j

p

, and
|f(ζ, ζ)−

∑
{rp0,η · r

p
1,η : η ∈ j

p>ω}| < 2−j
p

(note that by demand (β) all the sums above are finite),
(δ) if α, β ∈ Zp ∪ {ζ} are distinct, then δ(ρα, ρβ) < jp;

the order is defined by p ≤ q if and only if

(a) jp ≤ jq, Zp ⊆ Zq and rp`,η = rq`,η for η ∈ j
p>ω, ` < 2,

(b) if α ∈ Zp, then∑
{|rp0,η · g1

η(α)| : η ∈ j
q>ω \ j

p>ω} < 4
1− 2j

p−jq

2jp−1
,∑

{|g0
η(α) · rp1,η| : η ∈ j

q>ω \ j
p>ω} < 4

1− 2j
p−jq

2jp−1
, and∑

{|rp0,η · r
p
1,η| : η ∈ j

q>ω \ j
p>ω} < 4

1− 2j
p−jq

2jp−1
.

Remark 2.4. In 2.3, we want to force an extension ḡ∗ of ḡ to a (ζ+1)-approximation
which agrees with f . For this we have to say what are the values of g∗,0η (ζ), g∗,1η (ζ)
(for η ∈ ω>ω). A condition p ∈ Pḡ,ζf gives some information about these values:

p 
 g∗,`η (ζ) = rp`,η for ` < 2, η ∈ j
p>ω. The clause 2.3(γ) is the first step toward

guaranteeing that we will finish with an approximation that agrees with f . To make
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sure that the respective series really converge (and even converge absolutely, see
2.1(3)) we need demands like those in 2.3(b). The right-hand sides of the inequalities
in 2.3(b) have perhaps a strange form, but they make it easy to show that the
relation ≤ of Pḡ,ζf is transitive. (Note that if p ≤ q ≤ r, then 1−2j

p−jq

2jp−1 + 1−2j
q−jr

2jq−1 =
1−2j

p−jr

2jp−1 .)

Proposition 2.5. Suppose that ζ < c, f : (ζ + 1) × (ζ + 1) −→ R and ḡ is a
ζ-approximation that agrees with f�ζ × ζ. Then:

(1) Pḡ,ζf is a (non-trivial) F-sweet forcing notion of size |ζ|+ ℵ0.

(2) In VPḡ,ζf , there is a (ζ + 1)-approximation ḡ∗ such that ḡ ≺ ḡ∗ and ḡ∗ agrees
with f .

Proof. (1) First note that (Pḡ,ζf ,≤) is a partial order and easily Pḡ,ζf 6= ∅ (remember
that Zp may be empty). Before we continue let us show the following claim that
will be used later too.

Claim 2.5.1. For each j < ω, ξ < ζ and ρ ∈ ωω the sets

Ij def= {p ∈ Pḡ,ζf : jp ≥ j},
Iξ def= {p ∈ Pḡ,ζf : ξ ∈ Zp}, and

Ijρ
def= {p ∈ Pḡ,ζf : j < jp & (∀` < 2)(∃k ∈ (j, jp))(rp`,ρζ�k 6= 0 & νk C ρ)}

are dense subsets of Pḡ,ζf .

Proof of the claim. Let j < ω, ξ < ζ, ρ ∈ ωω and p ∈ Pḡ,ζf .
If j ≤ jp, then p ∈ Ij , so suppose that jp < j. Let 〈ξm : m < m∗〉 enumerate Zp.

Choose pairwise distinct 〈j`,m : ` < 2,m < m∗〉 ⊆ (j, ω) such that νj`,m C ρζ and
g`ρξm�j`,m(ξm) 6= 0 (remember 2.1(1b)). Fix j∗ > j such that νj∗ is not an initial
segment of any ρξm (for m < m∗). Let jq = j + max{j`,m : ` < 2, m < m∗}+ j∗,
Zq = Zp and define rq0,η, r

q
1,η as follows.

(1) If η ∈ j
p>ω, then rq`,η = rp`,η.

(2) If η ∈ j
q>ω\(j

p>ω∪{ρξm�j`,m : m < m∗}∪{ρζ�j∗}), ` < 2, then rq1−`,η = 0.
(3) If η = ρζ�j∗, then rq0,η, r

q
1,η ∈ Q \ {0} are such that |rq0,η · r

q
1,η| < 2−j

p

and

|f(ζ, ζ) −
∑
{rp0,ν · r

p
1,ν : ν ∈ j

p>ω} − rq0,η · r
q
1,η| < 2−j

q

.

(4) If η = ρξm�j0,m, m < m∗, then rq1,η ∈ Q is such that |g0
η(ξm) ·rq1,η| < 2−j

p

and

|f(ξm, ζ)−
∑
{g0
ν(ξm) · rp1,ν : ν ∈ j

p>ω} − g0
η(ξm) · rq1,η| < 2−j

q

;

if η = ρξm�j1,m, m < m∗, then rq0,η ∈ Q is such that |rq0,η · g1
η(ξm)| < 2−j

p

and

|f(ζ, ξm)−
∑
{rp0,ν · g1

ν(ξm) : ν ∈ j
p>ω} − rq0,η · g1

η(ξm)| < 2−j
q

.

One easily checks that q = 〈Zq, jq, 〈rq`,η : ` < 2, η ∈ j
q>ω〉〉 is a condition in Pḡ,ζf

stronger than p (and q ∈ Ij).
Now suppose ξ /∈ Zp. Take j0 > jp such that (∀α ∈ Zp ∪ {ζ})(δ(ρξ, ρα) < j0).

Let 〈ξm : m < m∗〉 enumerate Zp ∪ {ξ} and let 〈j`,m : ` < 2, m < m∗〉 ⊆ (j0, ω) be
pairwise distinct and such that νj`,m C ρζ & g`ξm�j`,m(ξm) 6= 0. Let j∗ > jp be such
that νj∗ is not an initial segment of any ρξm . Put Zq = Zp∪{ξ}, jq = jp+max{j`,m :
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` < 2, m < m∗} + j∗, and define rq`,η as before, with one modification. If ξm = ξ

and η = ρξ�j0,m, then rq1,η ∈ Q is such that

|f(ξ, ζ) −
∑
{g0
ν(ξ) · rp1,ν : ν ∈ j

p>ω} − g0
η(ξ) · rq1,η| < 2−j

q

;

if ξm = ξ and η = ρξ�j1,m, then rq0,η ∈ Q is such that

|f(ζ, ξ) −
∑
{rp0,ν · g1

ν(ξ) : ν ∈ j
p>ω} − rq0,η · g1

η(ξ)| < 2−j
q

.

Similarly one builds a condition q ∈ Ijρ stronger than p (if ρ /∈ {ρξ : ξ ∈ Zp},
then just choose j∗ suitably; otherwise pick j′1 > j′0 > jp and for η = ρζ�j′` define
rq`,η in an obvious way).

Now we are going to show that Pḡ,ζf is F -sweet. So suppose that 〈pα : α < ω1〉 ⊆
Pḡ,ζf . Choose A ∈ [ω1]ℵ1 such that

• 〈Zpα : α ∈ A〉 forms a ∆-system with kernel Z,
• for each α, β ∈ A, |Zpα | = |Zpβ |, jpα = jpβ and

〈rpα`,η : ` < 2, η ∈ j
pα>ω〉 = 〈rpβ`,η : ` < 2, η ∈ j

pβ>ω〉

(remember 2.3(β)),
• if α, β ∈ A and π : Zpα −→ Zpβ is the order preserving bijection, then π�Z is

the identity on Z and (∀ξ ∈ Zpα)(ρξ�jpα = ρπ(ξ)�jpβ ).

Let k∗ = jpα , n∗ = |Zpα \ Z| for some (equivalently: all) α ∈ A. For α ∈ A let
〈fα,n : n < n∗〉 enumerate {ρξ : ξ ∈ Zpα \ Z} so that if α, β ∈ A, ξ ∈ Zpα \ Z,
π : Zpα −→ Zpβ is the order preserving bijection and ρξ = fα,n, then ρπ(ξ) = fβ,n.
Clearly there are no repetitions in 〈fα,n : n < n∗, α ∈ A〉. We claim that this
sequence is as required in (⊕) of 1.4. So suppose that 〈αi : i < ω〉 ⊆ A is an
increasing sequence such that for some k > k∗ we have

(∀i < ω)(∀n < n∗)(fαi,n(k) < fαi+1,n(k)).

Passing to a subsequence we may additionally demand that for eachm < k, for every
n < n∗, the sequence 〈fαi,n(m) : i < ω〉 is either constant or strictly increasing.
For n < n∗ let kn ≥ k∗ be such that the sequence 〈fαi,n�kn : i < ω〉 is constant
but the sequence 〈fαi,n(kn) : i < ω〉 is strictly increasing. Take j > k such that
if νm E fαi,n�kn, n < n∗, then m < j. Fix an enumeration 〈ξm : m < m∗〉 of
Zpα0 (so m∗ = |Z|+ n∗) and choose j∗, j`,m > j + 2 with the properties as in the
first part of the proof of 2.5.1 (with pα0 in the place of p there). Put Zq = Zpα0

and define jq, rq`,η exactly as there (so, in particular, for each η ∈ j≥ω \ jpα0
>
ω

we have rq`,η = 0). We claim that q 
 (∃∞i ∈ ω)(pαi ∈ ΓPḡ,ζf ). So suppose
that q′ ≥ q, i0 < ω. Choose i > i0 such that for each n < n∗ and k′ > kn, if
νm = fαi,n�k′, then m > jq

′
. Moreover, we demand that if kn < k′ < jq

′
, n < n∗,

then rq
′

0,fαi,n�k′ = rq
′

1,fαi,n�k′ = 0 (remember 2.3(β)). Then we have the effect that

(∀η ∈ j
q′>ω \ j

pαi>
ω)(∀ξ ∈ Zpαi \ Z)(rq

′

0,η · g1
η(ξ) = g0

η(ξ) · rq
′

1,η = 0).

So we may proceed as in the proof of 2.5.1 and build a condition q+ stronger than
both q′ and pαi .
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(2) Let G ⊆ Pḡ,ζf be generic over V. For η ∈ ω>ω define

g`,∗η (ζ) = rp`,η where p ∈ G ∩ I`g(η)+1,

g`,∗η (ξ) = g`η(ξ) for ξ < ζ.

It follows immediately from 2.5.1 (and the definition of the order on Pḡ,ζf ) that the
above conditions define a (ζ+1)-approximation ḡ∗ = 〈g`,∗η : ` < 2, η ∈ ω>ω〉 which
agrees with f and extends ḡ.

Theorem 2.6. Assume that κ is an uncountable cardinal such that κ<κ = κ. Then
there is a ccc forcing notion P of size λ such that


P “ (~Da) + c = κ + there is a spread family of size c ”.

Proof. Using standard a bookkeeping argument build inductively a finite support
iteration 〈Pα, Q̇α : α < κ〉 and sequences 〈ζα : α < κ〉, 〈 ˙̄gα : α < κ〉 and 〈ḟα : α < κ〉
such that:

(1) Q0 is the forcing notion adding κ many Cohen reals 〈ρξ : ξ < κ〉 ⊆ ω>ω (by
finite approximations; so, in VQ0 , c = κ and the family F = {ρξ : ξ < κ} is
spread; we use it in the clauses below),

(2) ζα < κ, ḟα is a Pα-name for a function from (ζα + 1)× (ζα + 1) to R, ˙̄gα is a
Pα-name for a ζα-approximation (for the family F added by Q0) which agrees
with ḟα�(ζα × ζα),

(3) 
P1+α Q̇1+α = P ˙̄gα,ζα

ḟα
(for F),

(4) if ḟ is a Pκ-name for a function from (ζ + 1) × (ζ + 1) to R, ζ < κ and ˙̄g is
a Pκ-name for a ζ-approximation which agrees with ḟ�(ζ × ζ), then for some
α < κ, α > ω we have: ḟ , ˙̄g are Pα-names and


Pα “ ˙̄g = ˙̄gα & ḟ = ḟα & ζ = ζα ”.

Clearly Pκ is a ccc forcing notion (with a dense subset) of size κ. It follows from
2.5(2), 2.2 that 
Pκ (~Da) (and clearly 
Pκ c = κ). Moreover, by 2.5(1), 1.6 we
know that, in VQ0 , for each α ∈ [1, κ] the forcing notion Pα�[1, κ) is F -sweet, so


Pα “ F is a spread family of size κ ”

(by 1.5).

3. When (~Da) fails

In this section we will strengthen the result of [Sh 675, 3.6] mentioned in 0.1(2)
giving its combinatorial heart. In some cases, the combinatorics underlying the
failure (~Da) involves relatives of a negative square bracket relation; see (the proofs
of) 3.3(B,C).

Definition 3.1. (1) For a function h such that dom(h) ⊆ X ×Y and rng(h) ⊆ Z
and a positive integer n we define

κ(h, n) = min{|A0|+ |A1| : A0 ⊆ P(X ) & A1 ⊆ P(Y) &
(∀w ∈ [X ]n)(∃A ∈ A0)(w ⊆ A) &
(∀w ∈ [Y]n)(∃A ∈ A1)(w ⊆ A) &
(∀A0 ∈ A0)(∀A1 ∈ A1)(h[A0 ×A1] 6= Z)}.
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If X = Y and h is as above, and n is a positive integer, then we define

κ−(h, n) = min{|A| : A ⊆ P(X ) & (∀w ∈ [X ]n)(∃A ∈ A)(w ⊆ A) &
(∀A ∈ A)(h[A×A] 6= Z) }.

(2) For c̄ = 〈cn : n < ω〉 ∈ ωR and d̄ = 〈dn : n < ω〉 ∈ ωR let h⊕(c̄, d̄) =∑
n<ω

cn · dn (defined if the series converges).

We will deal with the following variant of the property (~Da).

Definition 3.2. For a function h : ωR× ωR −→ R let (~Da
h ) mean:

(~Da
h ) For each f : R×R −→ R there are functions g0

n, g
1
n : R −→ R (for n < ω)

such that

(∀x, y ∈ R)
(
f(x, y) = h(〈g0

n(x) : n < ω〉, 〈g1
n(y) : n < ω〉)

)
.

(So (~Da) is (~Da
h⊕), where h⊕ is as defined in 3.1(2).)

Proposition 3.3. Assume that a function h : ωR× ωR −→ R is such that one of
the following conditions holds:

(A) κ(h, 1) < 2κ(h,1) = c, or
(B) κ(h, 1) ≤ µ < c for some regular cardinal µ, or
(C) κ−(h, 2) ≤ µ < c for some regular cardinal µ.

Then (~Da
h ) fails.

Proof. First let us consider the case of the assumption (A). Let A0,A1 ⊆ P(ωR)
exemplify the minimum in the definition of κ(h, 1), A` = {A`ξ : ξ < κ(h, 1)} (we
allow repetitions). Choose a sequence 〈rξ : ξ < κ(h, 1)〉 of pairwise distinct reals
and fix enumerations 〈sε : ε < c〉 of R and 〈ϕε : ε < c〉 of κ(h, 1)κ(h, 1). Let
f : R× R −→ R be such that

(∀ε < c)(∀ξ < κ(h, 1))
(
f(sε, rξ) /∈ h[A0

ξ ×A1
ϕε(ξ)

]
)
.

We claim that the function f witnesses the failure of (~Da
h ). So suppose that

g0
n, g

1
n : R −→ R. For ξ < κ(h, 1) let b̄ξ = 〈g1

n(rξ) : n < ω〉 ∈ ωR and let
ϕ(ξ) < κ(h, 1) be such that b̄ξ ∈ A1

ϕ(ξ). Take ε < c such that ϕ = ϕε and let
āε = 〈g0

n(sε) : n < ω〉. Fix ξ∗ < κ(h, 1) such that āε ∈ A0
ξ∗ and note that

h(āε, b̄ξ∗) ∈ h[A0
ξ∗ ×A1

ϕε(ξ∗)
], so

f(sε, rξ∗) 6= h(āε, b̄ξ∗) = h(〈g0
n(sε) : n < ω〉, 〈g1

n(rξ∗) : n < ω〉).

Suppose now that we are in the situation (B). Let c0, c1 : µ+ × µ+ −→ κ(h, 1) be
such that for any sets X0, X1 ∈ [µ+]µ

+
we have

(∀ζ0, ζ1 < κ(h, 1))(∃〈ε0, ε1〉 ∈ X0 ×X1)(c0(ε0, ε1) = ζ0 & c1(ε0, ε1) = ζ1)

(see e.g. [Sh:g, Chapter III]). Let A0,A1 ⊆ P(ωR) exemplify κ(h, 1), A` = {A`ζ :
ζ < κ(h, 1)} (with possible repetitions). Choose a sequence 〈rε : ε < µ+〉 of pairwise
distinct reals and a function f : R× R −→ R such that

(∀ε0, ε1 < µ+)
(
f(rε0 , rε1 ) /∈ h[A0

c0(ε0,ε1) ×A1
c1(ε0,ε1)]

)
.
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Now suppose that g0
n, g

1
n : R −→ R and let ā`ε = 〈g`n(rε) : n < ω〉. Choose

X0, X1 ∈ [µ+]µ
+

and ζ0, ζ1 < κ(h, 1) such that ā`ε ∈ A`ζ` whenever ε ∈ X`. Take
ε` ∈ X` (for ` < 2) such that c0(ε0, ε1) = ζ0, c1(ε0, ε1) = ζ1. Then h(ā0

ε0 , ā
1
ε1) ∈

h[A0
c0(ε0,ε1) ×A1

c1(ε0,ε1)], so f(rε0 , rε1) 6= h(〈g0
n(rε0) : n < ω〉, 〈g1

n(rε1 ) : n < ω〉).
Now, suppose that the assumption (C) holds. Let {Aξ : ξ < κ−(h, 2)} be

a family witnessing the minimum in the definition of κ−(h, 2). Take a function
c : µ+ × µ+ −→ κ−(h, 2) such that for every X ∈ [µ+]µ

+
and ζ < κ−(h, 2) there

are ε0 < ε1, both in X , such that c(ε0, ε1) = ζ (see e.g. [Sh:g, Chapter III]). Take
a sequence 〈rε : ε < µ+〉 of distinct reals and define a function f : R× R −→ R so
that

(∀ε0, ε1 < µ+)(f(rε0 , rε1) /∈ h[Ac(ε0,ε1) ×Ac(ε0,ε1)]).

As before, suppose that g0
n, g

1
n : R −→ R and let ā`ε = 〈g`n(rε) : n < ω〉. For each

ε < µ+ there is ζε ∈ κ−(h, 2) such that ā0
ε, ā

1
ε ∈ Aζε . Take a set X ∈ [µ+]µ

+

and ζ∗ < κ−(h, 2) such that (∀ε ∈ X)(ζε = ζ∗). Then choose ε0 < ε1 both in
X so that c(ε0, ε1) = ζ∗. By our choices, ā0

ε0 , ā
1
ε1 ∈ Ac(ε0,ε1) and h(ā0

ε0 , ā
1
ε1) ∈

h[Ac(ε0,ε1) ×Ac(ε0,ε1). But this implies that

h(〈g0
n(rε0 ) : n < ω〉, 〈g1

n(rε1 ) : n < ω〉) 6= f(rε0 , rε1 ).

Now the phenomenon of [Sh 675, 3.6] is described in a combinatorial way by 3.3,
if one notices the following observation.

Proposition 3.4. Let h : ωR× ωR −→ ωR be a function with an absolute defini-
tion (with parameters from the ground model). Suppose that P = 〈Pα, Q̇α : α < ω1〉
is a finite support iteration of non-trivial forcing notions. Then for each 0 < n < ω


Pω1
κ(h, n) = κ−(h, n) = ℵ1.

Proof. Work in VPω1 . For α < ω1 let Aα = VPα ∩ ωR. Clearly ωR =
⋃

α<ω1

Aα and

for each α, β < ω1 we have h[Aα ×Aβ ] 6= ωR (remember that the function h has a
definition with parameters in the ground model; at each limit stage of the iteration
Cohen reals are added).

4. Concluding remarks

One can notice some similarities between the property (~)Da and the rectangle
problem.

Definition 4.1. (1) LetR2 be the family of all rectangles in R×R, i.e. sets of the
form A×B for some A,B ⊆ R. Let B(R2) be the σ-algebra of subsets of R×R
generated by the family R2 and let Bα(R2) be defined inductively by: B0(R2)
consists of all elements of R2 and their complements, Bα(R2) =

⋃
β<α

Bβ(R2)

for limit α, and Bα+1(R2) is the collection of all countable unions
⋃
n<ω

An

such that each An is in Bα(R2) and of the complements of such unions. (So
B(R2) = Bω1(R2).)
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(2) Let us introduce the following properties of the family of subsets of R× R:
(�Ku) P(R× R) = B(R2),
(�Ku

α ) P(R× R) = Bα(R2).

Kunen [Ku68, §12] showed the following.

Theorem 4.2. (1) (see [Ku68, Theorem 12.5]) MA(σ-centered) implies (�Ku
2 ).

(2) (see [Ku68, Theorem 12.7]) If P is the forcing notion for adding ℵ2 Cohen
reals, then 
P ¬(�Ku).

The relation between (~Da) and (�Ku) is still unclear, though the first implies
the second.

Proposition 4.3. (~Da) ⇒ (�Ku
ω ).

Proof. Suppose that A ⊆ R × R and let f : R × R −→ 2 be its characteristic
function. Let g0

n, g
1
n be given by (~Da) for the function f . For a rational number

q, n < ω and ` < 2 put

A`q,n
def= {x ∈ R : g`n(x) < q}.

It should be clear that the set A can be represented as a Boolean combination
of finite depth of rectangles A0

q,n × A1
q′,n (we do not try to safe on counting the

quantifiers).

The following questions arise naturally in this context.

Problem 4.4. (1) Does (�Ku
ω ) (or (�Ku)) imply (~Da)?

(2) Is it consistent that for some countable limit ordinal α we have (�Ku
α+1) but

(�Ku
α ) fails?
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