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We prove the consistency, relative to ZFC, of each of the following two (mutually 
contradictory) statements. (A) Every two non-principal ultrafilters on o have a common image 
via a finite-to-one function. (B) Simple &,-points and simple &+-points both exist. These 
results, proved by the second author, answer questions of the first author and P. Nyikos, who 
had obtained numerous consequences of (A) and (B), respectively. In the models we construct, 
the bounding number is K,, while the dominating number, the splitting number, and the 
cardinality of the continuum are HZ. 

1. Introduction 

The purpose of this paper is to prove the consistency, relative to ZFC, of each 
of the following two statements. 

(A) If %, and %$ are non-principal ultrajilters on o, then f (%,) = f (4Y.J for 
some finite-to-one f : 0 + 0. 

(B) There exist both a simple P,,-point and a simple P,,-point. 
For any regular uncountable K, a simple P,-point is an ultrafilter (by which we 
always mean a non-principal ultrafilter on w) generated by an almost decreasing 
(i.e. decreasing modulo finite sets) K-sequence of subsets of o. Clearly, every 
simple P,-point Q is a P-point, i.e., for any countably many sets A, E 91, there is 
a set in 41 almost included in every A,. 

It is easy to check that, if ‘4% is a simple P,-point, then so is f(%) for any 
f : co+ o. It is also easy to check that no ultrafilter can be a simple P,-point for 
two different values of K. Thus, the models for (A) and for (B) cannot be the 
same. Nevertheless, the ideas involved in the two consistency proofs are very 
similar. 

To discuss the origin of the statements (A) and (B) as well as the nature of our 
models for them, we must recall the definitions of three of the cardinal invariants 
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214 A. Blass, S. Shelah 

of the continuum discussed in [ll]: the dominating number, the bounding 
number, and the splitting number. A family 8 of functions u + o is dominating 
(resp. unbounded) if, for each g : co + w there exists an f E 8 such that 
g(n) <f(n) for all but finitely many (resp. for infinitely many) n. A family ,Y of 
subsets of o is splitting if, for each infinite A c to, there exists an S E Y’ such that 
both A f~ S and A - S are infinite. The dominating, bounding, and splitting 
numbers are the smallest cardinalities, d, b, and s, of dominating, unbounded, 
and splitting families. Both b and s are uncountable and sds2% (see [ll]), and it 
was shown in [8] that the relative order of b and s is independent of ZFC. The 
models constructed in this paper satisfy b <s and thus provide an alternate proof 
for one of the main results of [8]. Nyikos has shown that b <s is implied by (B); 
that the same inequality also holds in our model of (A) seems to be due merely to 
the similarity of the constructions of our two models. 

The statement (A), or rather its negation, arose in the work of Blass and Weiss 
[2] on decompositions of ideals of Hilbert space operators. It was shown there 
that, if one could refute (A) in ZFC, then one could also eliminate the continuum 
hypothesis from the main theorem of that paper. Interest in (A) increased when 
van Douwen [lo] pointed out that the negation of (A) was sufficient to prove, as 
Rudin [6] had done using the continuum hypothesis, that the indecomposable 
continuum /3([0, 1)) - [0, 1) h as more than one composant. Since then, Blass [l] 
has proved the converses of these results (the latter was also obtained by 
Mioduszewski [3]) and several other equivalences involving (A). One of the 
equivalent formulations of (A) is .that every non-principal ultrafilter on CL) has an 
image, via a finite-to-one function, generated by fewer than d sets. The 
consistency of u < d, where u is the minimal number of sets that can generate an 
ultrafilter, was proved, using a different model, by the second author shortly 
before finding the proof presented here. That model is, for the study of u and d, 
preferable to the present one in that it allows u and d to be prescribed cardinals. 
On the other hand, it will not do for our present purpose, as M. Canjar has 
pointed out that it does not satisfy (A). The consistency of u < d contrasts with 
Solomon’s theorem [9] that no non-principal ultrafiiter on o is generated by fewer 
than b sets. In particular, (A) implies b cd. 

Statement (B), or rather the statement that simple P,-points exist for two 
distinct cardinals K, is the strongest of several statements whose consistency was 
asked about by Nyikos [4]. The question arises naturally from his theorem that, if 
a simple &-point exists, then K = b or K = d. Nyikos [S] has deduced from (B) or 
from weaker statements numerous consequences concerning the eventual- 
domination ordering on the set of functions o -+ o. 

The plan of this paper is as follows. In Section 2, we introduce a notion of 
forcing Q and establish some of its combinatorial properties, including properness 
and a partition theorem. In Section 3, we study the generic extension produced 
by forcing with Q. In particular, we show that, if there is a P-point in the ground 
model, then it generates a P-point in the extension and every two ultrafilters in 
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the ground model have a common image via a finite-to-one function in the 
extension. In Section 4, we establish that countable-support interation of proper 
forcing preserves the property, “P-points in the ground model generate P-points 
in the extension”, that was previously established for Q. Using this, we show in 
Section 5 that an K,-length countable-support iteration of Q forcing, over a 
ground model satisfying CH, yields a model of (A). Finally, in Section 6, we show 
how to modify the construction so as to produce a model of (B) instead. 

Our notation is standard, except for the following points. Names in forcing 
languages are often denoted by boldface symbols, like x. The corresponding 
lightface symbol then denotes the value of this name with respect to some generic 
subset of the forcing notion. When necessary, we shall be more explicit, writing 
X(~) for the value of x with respect to the generic set G. This notation will also be 
used for partial evaluation of names in the context of iterated forcing. Thus, if x is 
a P * Q-name and G is a V-generic subset of P, then xtG) is the Q-name such 
that, for all V[G]-generic H E Q, X(~)(~ = dGSH). 

We often let x be an unspecified regular cardinal so large that H(X), the 
collection of sets of hereditary cardinality <x, contains all sets of interest to us. 
In this situation, we often consider (countable) elementary submodels N of H(X), 

by which we mean that (N, E) is an elementary submodel of (HOC), E). For all 
practical purposes, one can think ,of H(X) as being the whole universe V ; the 
reason for introducing H(X) is that the concept of elementary submodel of V 

cannot be formalized in the usual language of set theory. 
The theorems proved in this paper are due to the second author. The first 

author’s contribution was to fill in some details, to ask the second author to fill in 
other details, and to write the paper. 

2. The basic forcing 

We shall construct a model for (A) by iterating, K2 times, with countable 
support, a certain forcing Q, which we introduce in this section. The essential 
properties of Q are (a) that it is proper, (b) that P-points in the ground model 
generate P-points in the generic extension, and (c) that it adjoins a finite-to-one 
f : o + w such that ail ultrafilters in the ground model have the same f-image, 
provided a P-point exists in the ground model. In addition, Q has the property, 
inessential for (A) but essential for (B), (d) that it adjoins an infinite subset W of 
w that is not split into two infinite pieces by any set in the ground model; this 
property will ensure that s = K2 in the iterated forcing model. The sets on which 
the function f of (c) is constant will be the intervals determined by successive 
elements of the set W of (d), so we think of forcing with Q as simply adjoining W. 

In this section, we define Q, verify (a), and establish a combinatorial lemma 
about Q. The proofs of (b), (c), and (d) will occupy Section 3. 

For natural numbers n <m, let K,,, be the set of ail binary relations 
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t c P(n) x P(m) such that, for each a c n, 

(a, a) E t, and if (a, b) E t, then b n n = a. 

We think of each t E K,,, as specifying, for each a c n, some permisible 
extensions of a to subsets of m, each extension being obtained by adjoining to a 
some members of [n, m); the first requirement on t above says that adjoining 
nothing is always permissible. If t E Kn,m and s E K,,,I, then we write ts for the 
ordinary composition of these binary relations, so ts E K,,,. 

For t E K,,, and Y E [n, m), we define ty E K,,, by 

ty = ((a, b) E t ( b - a E Y>. 

We define the depth Dp(t) of each t E K,,, by the following induction 

Dp(t) 3 0 always. 

Dp(t) 3 1 if, for every a c n, there is b c m such that 
(a,b)Etandb#a. 

Dp(t) 2 d + 1, for d 3 1, if, for every partition {Y, Z} of [n, m), 
at least one of Dp(ty) and Dp(tz) is sd. 

Thus, t has depth ad + 1 if and only if we have a winning strategy in the game 
played as follows. There are d moves. At each move our opponent partitions 
[n, m) into two pieces and we choose one of the pieces. After d moves, let Y be 
the intersection of all the sets we chose. We win if and only if, for every a c It, ty 
contains (a, b) for some b # a. (Note that the game would be unchanged if, from 
the second move on, our opponent partitioned the set we had just chosen rather 
than [n, m).) This game interpretation of depth makes the following lemmas 
quite easy. 

Lemma 2.1. For any t E K,,, and s E K,,,I, 

m={Dp(t), Q(s)} s Dp@) s 1+ m={Dp(t), Dp(s)}. 

hoof. For the first inequality, we adopt a strategy of playing the game for t.s by 
using our winning strategy in the game for the deeper of t and s, while ignoring 
the other ‘half of [n, I). To prove the second inequality, consider what happens if 
our opponent’s first move is to partition [n, 1) into [n, m) and [m, 1). Cl 

Lemma 2.2. Let t E K,,,, have depth >2d + I, let w c n, and let P(m) be the 
union of two pieces. Then for at least one of the pieces, say X, the relation 

t’ = ((a, b) E ,t 1 if a = wandbfa, thenbEX) 

has depth ad + 1. 

Proof. Let the two pieces be & and X1, and suppose the conclusion fails for both 
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of the corresponding relations t;l and t;. So we do not have a winning strategy in 
either of the associated d-move games described above. Since the games are 
finite, our opponent has winning strategies, say a0 and ul. Suppose our opponent 
plays the 2d-move game for t by using a0 for the first d moves and then using ol. 
for the last d moves (as if each half were a separate game). No matter how we 
respond, the intersection Y of our moves will be Y. n Y, where Yo, the 
intersection of our first d moves, is a possible outcome of the d-move game with 
our opponent using o o, and Y1, the intersection of our last d moves is a possible 
outcome of the d-move game with our opponent using crl. As a0 and o1 are 
winning strategies for our opponent, there exist sets ao, a, c n such that, for i = 0 
and 1, 

t’ contains no pair (ai, b) with b # ai and b - a E x. 

If, for at least one i, ai # w, then t contains no pair (ai, b) with b # ai and 
b - a E Y (as Y c Y and tf agrees with t on pairs whose first component is not w), 
so we have lost the play of the 2d-move game for t. If, on the other hand, ai = w 
for both values of i, then t contains no pair (w, b) with b # w and b - w E Y, for 
such a pair would be in tb or t;, according to whether b E &, or X,. So again we 
have lost the U-move game for t. This shows that our opponent’s strategy “first 
a0 then al” is a winning one for him. This contradicts the hypothesis 
Dp(t) B 2d + 1. q 

We are now ready to define the notion of forcing Q. A condition in Q is a pair 
(w, T) consisting of a finite subset w of w and a sequence T = ( tl : I E CL) ) such 
that, for some increasing function n : w + w, 

(a) w E 4% 

(b) h E JL(r),,(l+l) for each 6 ad 

(c) Dp(tJ * m as I* 00. 
(Notice that (w, T) determines the function II uniquely, since P(n(1)) is the 
domain of tp) Another such condition (w’, T’) is an extension of (w, 7’) if and 
only if there is an increasing function k: co--, o such that, writing t; for 

h(l)&(l)+1 * - * tk(l+l)--l, we have 
(a) (w, w’) E to, tl . . * tk~O~--l, by which we mean w = w’ if k(0) = 0, 

(b) t; E &k(l)),n(k(l+l)) for all l E w, and 
(c) t; c tl* for all I E w. 

Thus, any extension of (w, T) is obtained by a succession of operations of the 
following three sorts. 

Compose relations. Partition the sequence T into finite blocks of consecutive 
ti’S, and compose the ti’S within each block. Leave w unchanged. (In the 
description of extensions above, this is the special case where k(0) = 0 and 
t; = t:.) 

Shrink relations. Replace each tl by a subset t; in K,,(rj,,Cl+lj, and leave w 
unchanged. Of course the t; must be big enough so that their depths tend to 00 
with 1. (This is the special case where k(Z) = I for all 2.) 
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I;ix values. Replace w with some w ’ such that (w, w ‘) E to . + . t,,,-1 for some m, 
and delete the initial segment to, . . . , &,,_I from T, so t; = tk+*. (This is the special 
case where k(Z) = m + I and t; = $ ; it could be replaced by the even more special 
case where m = 1.) 

By Lemma 2.1, the relations t7 obtained by composing have depth at least 
equal to the maximum depth of the relations fkclj, . . . , tk~l+l~_-l being composed. 
Because of this and the fact that Dp(tJ --)m in any condition, we can always 
compose relations so as to make Dp(t;“) grow as rapidly as we want. Thus, for 
example, if f : cr) - co, then the conditions with Dp(tr) >f(Z) for all 2 are dense in 
Q; so are the conditions with Dp(t[+,) af(Dp(tJ) for all 1. Furthermore, the 
extensions witnessing this density can all be taken to be of the ‘compose relations’ 
type. 

We think of a condition (w, T) as providing the following information about 
the generic W c o being produced. 

w n n(o) = W. 

For each I, (W n n(Z), W n n(Z + 1) E tl. 

(The first of these explains the terminology ‘fixing values’.) Clearly, extensions in 
Q give more information about W. We call a natural number x possible for (w, T) 
if there exist Z E o and v c w such that x E v and (w, v) E to - - - tr. Thus, x is 
possible for (w, T) if and only if the information that (w, T) gives about W does 
not preclude the possibility that x E W. An equivalent formulation is that (w, T) 
has an extension (w’, T’) (which can be taken to be a ‘fixing values’ extension) 
with x E w’. We write ps(w, $T) for {x E w ) x is possible for (w, T)}. 

It will be helpful to view a condition (w, T) as a labeled tree in which the root 
(at level 0) is labeled w and, if a node at level Z is labeled with a set a c n(Z), then 
its immediate successors are labeled with the sets b E n(Z + 1) such that (a, b) E t,. 
Thus, the set of labels at level m is 

We omit the subscript when (w, T) is clear from the context. Note that a set that 
labels a node at some level also labels successor nodes at all higher levels. (This is 
why we say that sets label nodes, not that sets are nodes.) We write Lev;,,,,(m) 
for the set Lev+,&m) - Lev (,,,&rn - 1) of new labels at level m. We also write 
Tree(w, T) for the set Urn Lev(m) of all the labels occurring in the tree. The 
information in (w, T) about W is that {W n n(Z) 1 Z E w} is the set of labels of a 
path through this tree. Although (w, T) contains information not captured in the 
tree, e.g., whether (a, b) E tr when a $ Lev(Z), this additional information will be 
irrelevant for us, so it would do no harm to identify conditions with trees. 

Our next goal is to show that fusion arguments can be carried out in Q, from 
which it will follow that Q is proper. 

By an m-extension of a condition (w, Tj we mean an extension (w ‘, T’) such 
that w’ =w and t; = tr for all Z Cm. (So the trees agree up to level m.) In 
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particular, a O-extension is an extension with the same first component. Call a 
subset D of Q m-dense if every condition in Q has an m-extension in D. 

Proposition 2.3. For each m E o, let D,,, be m-dense and closed under m- 
extensions. Then nmcw D,,, is dense (in fact O-dense). 

Proof. Let any condition (w, To) be given. We inductively define extensions 
(w, T”) such that, for each m, 

(i) (w, T”‘+l) E D,, 
(ii) (w, Tm+‘) is an m-extension of (w, T”), and 

(iii) Dp(cfl) 2 m. 
The induction is quite easy. Given (w, T”), we use the m-density of D, to get an 
m-extension (w, T’) E 0,. Then we compose relations to obtain (w, Tm+l) 
satisfying (iii) as well. Specifically, we compose t&t:,+ 1 - - - t: for some r such that 
Dp(t:) Z= m. Then (iii) holds by Lemma 2.1, while (i) and (ii) hold because 
(w, Tm+‘) is an m-extension of (w, T’). 

Having defined the sequence ( (w, T”) : m E w ) , we obtain a condition (w, S) 
by setting 

I+1 
s/ = t* . 

This is easily seen to be a condition, since, by (iii), Dp(sJ = I+ 03. This (w, S) is 
an m-extension of (w, T”) for every m, so it is in n,,_, D,,, and it extends (in fact 
O-extends) (w, TO). El 

In Proposition 2.3, we can weaken the hypothesis from ‘closed under 
m-extensions’ to ‘closed under (m + 1)-extensions’ provided we strengthen the 
density hypothesis to assert that every condition has m-extensions (w, T) E D, 
with Dp(t,,J 2 m. This is because the extra hypothesis lets us dispense with 
composing relations; if we choose T’ in the proof in accordance with the stronger 
hypothesis, then we can set Tm+’ = T’. Then, as (w, S) is an (m + 1)-extension of 
(w, TmW1), we will have (w, S) E Dm. 

In the next proposition, it will be convenient to have a short notation for 
conditions obtained by fixing values. Suppose (w’, T’) is obtained from (w, T) by 
fixing values, so for some (unique) r we have (w, w ‘) E to - . - tr_l and tj = tr+,. In 
this situation, we write T - r for T’. 

Proposition 2.4. Let Zi (i < o) be Q-names of ordinals. Then every condition has 
a O-extension (w, S) with the following property. If 1 E o, if n = n(1) is the number 
such that sI has domain P(n), if (w, w*) E so - - - s~__~, if i c n, and if (w*, S - 1) 
has a O-extension forcing a particular value for q, then (w*, S - 1) forces a 
particular value for Zi. 

Proof. By Proposition 2.3, it suffices to show that, for each 1, every condition has 
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an Z-extension with the stated property for that particular 2. So let I be fixed and 
let (w, T) be given; we must construct an Z-extension (w, S) of (w, T) satisfying 
the conclusion of the proposition for the fixed 1. By definition of Z-extension, n(Z) 
is the same for (w, S) as for (w, T), so n is also fixed. There are only finitely 
many i < n and finitely many w * G II to consider. List the w *‘s in some arbitrary 
order. For the first w* in the list, inductively define conditions (w, T’) (i d n) by 

T’=T-1. 
If (w *, T’) has a O-extension forcing a particular value for ri, then let 
(w*, T’+l) be such a O-extension; otherwise let T’+l= T’. 

Let T’= T”. Now repeat the process for the next w* on the list, starting with T’ 
in place of T - I. Continue in the same way with all the other w*‘s. If we let Tk* 
be the T’ obtained at the end of the stage where w* was used and we let T” be 
the final T’ (T:* for the last w * on the list), then, for each w *: 

if i < n and some O-extension of (w *, Tk.) forces a particular value for 
Zi, then SO does (W *, Tk*), and (w*, T”) is a O-extension of (w*, TL.), 
so if i < n and some O-extension of (w*, T”) forces a particular value for 
Zip then SO does (w*, T”). 

Finally, we set s, =t,,, for m<Z and s, = t’;_[ for m B 1. Then (w, s) is an 
Z-extension of (w, T) and S - Z = T” has the desired properties. 0 

Proposition 2.5, Q is proper. 

Proof. Let x be a regular cardinal so large that HOI), the set of sets of hereditary 
cardinality <x, contains all the sets we are interested in. Let N be a countable 
elementary submodel of H&) containing Q. We must show that every condition 
(w, T) E N n Q has an (N, Q)-generic extension. 

We shall use the proof of Proposition 2.4 with a little extra caution. That proof 
involved some arbitrary choices, namely the Ti’s. Let us fix, once and for all, a 
choice function (on the nonempty subsets of Q, say) in N, to be used whenever 
such choices need to be made. The existence of a choice function in N follows, of 
course, from the elementarity of the submodel N of H(X). 

Let (Zi : i < o} be an enumeration of all the elements of N that are Q-names of 
ordinals. Proposition 2.4 gives us a O-extension (w, S) of (w, T) having the 
‘value-deciding’ property (as in the proposition) for the sequence ( ti : i < w ). 
This sequence is, of course, not in N, so the construction of S cannot be carried 
out in N, but any finite initial segment of it can be. Indeed, for each fixed 1, the 
proof of Proposition 2.4 for that Z involves q only for i c n, so it can be done 
within N. It is only in applying Proposition 2.3, i.e., in doing this proof repeatedly 
for ever larger values of Z (hence of n), that we need the whole sequence of ti’s 
and must therefore step outside N. 

For each i, the construction (outside N) must eventually lead to a condition 
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forcing a particular value for ti* Indeed, since 4 is a name of an ordinal, some 
condition extending (w, S) forces a particular value of rg. Extending it further, we 
may assume that this condition is a O-extension of (w*, S - I) for some I> i and 
some w* with (w, w*) ES~ - - - s[_~. Then (w*, S - I) forces a particular value for 
q. But this occurs at a finite stage of the construction and the construction up to 
that point could have been carried out in N. Thus, the value forced for q is in N. 

This shows that every particular value for 4 that is forced by an extension of 
(w, S) is in N. Since 4 ranges over all names in N for ordinals, we have shown 
that (w, S) is (N, Q)-generic. Cl 

The following partition theorem is the combinatorial property of Q on which 
the rest of the proof hinges. 

Theorem 2.6. Let (w, T) E Q and let C map the finite subsets of u) into (0, 1). 
Then either there is an extension (w ‘, T’) of (w, T) such that C maps Tree(w ‘, T’) 
to 0 or there is a O-extension (w, T’) of T such that C maps Tree( w, T’) - {w } 
to 1. 

Proof. Let C be given. The theorem asserts that the set of conditions (w, T) such 
that either C is constantly 1 on Tree(w, T) - {w} or there is an extension on 
whose tree C is constantly 0 is O-dense. By the remark following Proposition 2.3, 
it suffices to show that, for each m, the set 

D,,, = {(w, T) 1 either (w, T) has an extension on whose tree 
C is identically 0 or C is identically 1 on 

Lev;,,l+ + 1)) 

is m-dense in the strong sense that every condition (w, T) has an m-extension 
(w, T’) in D, with Dp(tk) 2 m. (Note that D, is trivially closed under 
(m + 1)-extensions.) Let m and (w, T) be given. We construct a suitable (w, T’). 
We may assume, by composing relations if necessary, that Dp(tJ 2 I for all 13 m. 

The core of the construction is the following definition. 
Let 4 be a positive integer, c = ( f( n : n E c0) an increasing sequence of natural ) 

numbers, and q = (q(n) :n E o) a subsequence of 5 with q(O) = c(O). We say 
that q is q-thin in g if the hypotheses 

(i) C(k) < 5r(0 are consecutive terms in the subsequence q, 
(ii) s, E tm for every m E [c(k), &I)), 

(iii) for each p E [k, I) at least one m E [c(p), l& + 1)) has 
Dp(s,,J 3 q + m - c(k), and 

(iv) t* := {(a, 6) E s~(+z~(~)+~ . . - s~(~)-~ 1 b = a or 
if a E Tree(w, T) then C(b) = l} 

imply that Dp(t*) 3 q. 
We consider two cases according to whether or not every increasing sequence fs 

of non-negative integers has a l-thin subsequence. 
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Case 1: Some 5 has no l-thin subsequence. 
Fix such a 5. We attempt to define inductively a l-thin subsequence by setting 

~(0) = fr(0) and, after q(n) has been chosen as f;(k), say, setting q(n + 1) = c(Z) 
for some I such that hypotheses (ii) to (iv) in the definition of l-thin imply 
Dp(t*) 3 q. By the case hypothesis, this attempt fails; at some stage, no suitable 1 
exists. Consider such a stage and fk k as above, so c(k) is the last v(n) defined. 
For every I > m, there exist 

s$) it, for every m E [c(k), c(Z)) 

such that, for each p E [k, Z), at least one m E [c(p), I;(p + 1)) has Dp(sc) 3 
I+ m - c(k), but t*, defined by (iv), has depth 0. Recall that depth 0 means 
that, for some a(I) E n(&k)) [= the n such that t f(k) has domain 9(n)], the only 6 
such that (a (I), b) E t* is b = a,. Clearly a@ must be in Tree(w, T) for otherwise t* 

would contain all pairs (@, b) ES& . . . sf&, which has depth al by hypo- 
thesis (iii) and Lemma 2.1. We thus have that, if (a(O, b) E s!$, - - - s&~__~ and 
b #u(I), then C(b) = 0. 

As Z varies whle m is fixed, there are only finitely many possibilities for SE, 
namely the subsets of t,; similarly, there are only finitely many possibilities for 
a(I), namely the members of Lev (,,,, =)( I;(k)). By K&rig’s infinity lemma, there is a 
single infinite sequence (s, : m 3 c(k)) and there is a single a E Lev( c(k)) such 
that 

(ii’) s, c t, for all m, 
(iii’) for each p 2 k there is m E [c(p), fT(p + 1)) with Dp(s,,J 5 1 + m - f;(k), 
(iv’) for each 12 k, if (a, b) E sf(k~f(k)+l . l - s~(~)__~ and b #a, then C(b) = 0. 

For p 2 k, let sp* = sGk) * * . s~~+~)__~, and let S* be the sequence (s~+~:Z E 0). 
Then (a, S*) is an extension of (w, T) (obtained by fixing values to a, shrinking 
relations to s, and composing relations to s*). Note that (iii’) and Lemma 2.1 
ensure that Dp(s:+J 3 1 + c(k + I) - I;(k)+ a, as I+ 00, so (a, S*) is a condi- 
tion. Furthermore, (iv’) tells us that all the sets 6 E Tree(a, S*) except a itself 
have C(b) = 0. The exception can be eliminated by extending (a, S*) by king 
values. So we have an extension of (w, T) on whose tree C is identically 0. So 
(w, T) E D,. 

Case 2: Every 5; has a l-thin subsequence. 

Lemma 2.7. If 8 is a q-thin subsequence of q and q is a q-thin subsequence of 5, 
then 8 is a q + l-thin subsequence of f. 

ha tit P(k), C(Z), s,, and t* be as in hypotheses (i) to (iv) with 8 in place of 
Q and q + 1 in place of q. We must show that Dp(t*) a q + 1. Let {Y, Z} be a 
partition of [n(C(k)), n(c(Z))) into two pieces; we must show that either tt or tz 
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has depth 34. Observe that 

G= {(a, b) E (S&Y. * * @Q&Y I b = a or if a E Tree(w, T), then C(b) = l}, 

and similarly for tg. 
By hypothesis (iii) and definition of depth, we have, for each p E [k, I), at least 

one m = m@) E K(P), UP + I)) and at least one X = X@) E {Y, Z} such that 

Dp((sm)x) 2 4 + m - 5;(k). 

If there are k’ < I’ E [k, I) such that c(k’) and c(l’) are consecutive terms of q 
and x@) = Y for all p ,E [k’, Z’), then k’, I’, (s&, and tf satisfy hypotheses (i) to 
(iv) in the definition of ‘9’1 is q-thin in c”, so we have Dp(tc) 3 4, as desired. 

Otherwise, let k” and I” be such that q(k”) = 5;(k) and q(Z”) = c(Z). Clearly, 
k”, I”, (s,)z, and (t*)z satisfy hypotheses (i), (ii), and (iv) in the definition of “0 
is q-thin in q”. If we verify that (iii) also holds, then that definition allows us to 
conclude Dp(ti) 2 4, as desired. To verify (iii), let p E [k”, Z”) be given, and let k’ 
and I' be such that c(k’) = q(p) and c(Z’) = ~(p + 1). Since the hypothesis of the 
preceding paragraph fails, there must be p’ E [k’, 1’) with X@‘) = 2. So there is, 
by definition of X@‘), at least one m E I&‘), c(p’ + 1)) c [c(k’), f(Z’)) = 

MP)Y rl(P + 1)) with Dp((s,),) > 4 + m - f(k), so (iii) is verified and the 
lemma is proved. Cl 

Corollary 2.8. For every q, every increasing sequence c has a q-thin subsequence. 

Proof. Immediate by the lemma and the case hypothesis. Cl 

Let5;bethesequence(m,m+1,m+2,...)so~(k)=m+k,andlet~bean 
m-thin subsequence. Apply the definition of m-thin with k = 0 (so f;(k) = m = 
q(O)) and Z such that c(Z) = m + Z = q(l), and with s, = t,. Hypotheses (i) and 
(ii) are clear, and (iii) asserts that for each p E [0, I) 

Dp(t,+,)2m+(p+m)-m=p+m, 

which is true by our initial normalization of 7’. So, if we define t* by (iv), we have 
Dp(t*) >, m. Define 7” by 

i 

t, if r<m, 

t: = t* ifr=m, 

tr-.[ ifr >m. 

Then (w, T’) is an m-extension of (w, T), has Dp(t&) bm, and lies in D,,, 
because C is identically 1 on Lev(,,TPj(m + 1) by definition of t*. This completes 
the proof of the theorem. 0 

We apply Theorem 2.6 to obtain an improvement of Proposition 2.4 in the case 
that the names zi have only finitely many values. 
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Proposition 2.9. Let A be a Q-name for a subset of o. Then every condition has a 
Q-extension (w, S) with the following property. If 1 E o, if n = n(1) is the number 
such that sI has domain 9(n), if (w, w*) E so - - - s~._~, and if i < It, then (w*, S - 1) 
decides whether i E A. 

Proof. Let q be the Q-name forced (by all conditions) to be 1 if i E A and 0 if 
i $ A. So to decide whether i E A is the same as to force a particular value for q. 
Let (w, S) be as in Proposition 2.4 for this sequence (q : i E w). Let I, n, w*, and 
i be as in the present proposition. The desired conclusion would follow, by 2.4, if 
we knew that some O-extension of (w*, S - I) decides whether i E A. 

We apply Theorem 2.6 with (w *, S - 1) in the role of (w, T) and with the 
function C defined by 

C(a) = 1 iff for some r, (a, S - r) decides whether i E A. 

The first alternative in the theorem is that (w *, S - I) has an extension (w ‘, T’) 
on whose tree C is identically zero. Let (a, T”) be an extension of (w’, T’) 
deciding whether i E A. Then a is in the tree of (w’, T’), so C(a) = 0. But (a, T”) 
is an extension of (w*, S - I), hence is a O-extension of (a, S - r) for some r (the 
lowest level of a in the tree of (w*, S)). So C(a) = 1. This contradiction shows 
that the first alternative does not occur. 

So we have the second alternative in the theorem. That is, we have a 
O-extension (w * , T’) of (w *, S - I) such that C is identically 1 on the set 
L =Tree(w*, T’) - {w*}. Thus, for each a EL, (a, S-r) decides a value 
v(a) E (0, l} for 4, provided r is large enough. Our choice of S ensures that we 
can take the smallest posssible r, namely the one with a E Lev&,,sj(r), and still 
have (a, S - r) forcing q = u(a). 

Apply Lemma 2.2 to each of the terms in the sequence S - I, using w * in the 
role of w and using the partition given by the function 21. the result is a sequence 
of sub-relations s; E sk for k 3 I, With Dp(s;) 2 $Dp(s,), such that if (w *, b) E s; 
and w * # b, then v(b) = c where fi depends only on k. Since Dp(s;)+ 03, 
(w*, <s;+,: r E 0)) = (w, S’) is a condition, a O-extension of (w*, S). Composing 
relations, we can arrange that * is independent of k. 

We complete the proof by checking that (w *, S’) forces “ri = 9’. If not, then 
some extension (b, S”) forces “q = 1 - fi”, and, by extending further (fb&g 

values) we may assume b # w *. But then v(b) = 0, so (b, S - r) forces “q = ii”. 
This is absurd, as (b, S”) is an extension of (b, S - r). This contradiction 
completes the proof of the proposition. 0 

3. The extension by Q 

This section is devoted to the study of the forcing extension V[G] produced by 
adjoining to the universe V a V-generic subset G of Q. In this extension, we 
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define 

W=U{wI(w, T)EG}. 

A trivial genericity argument shows that W is an infinite subset of o. 

Proposition 3.1. For every set X s w in the ground model V, either W n X or 
W - X is finite. 

Proof. Let X be given; we show that the conditions forcing the desired 
conclusion form a dense set. Let (w, T) be any condition. For each k, let 
t; = (t& or (tk)w-x, whichever has the greater depth (either one in case of equal 
depth). By definition of depth, Dp(t;) 3 Dp(tk) - 1, so (w, T’) is a condition 
extending (w, T). Suppose t; = (t& for infinitely many X. (The o - X case is 
analogous.) Let T” be the subsequence of T’ consisting of only those t; that equal 
(tk)x. (The codomain of such a t; may need to be defined differently in T” than in 
T’, to match the domain of the next term in T”.) Then (w, y) is an extension of 
(w, T’) (obtainable by composing and then shrinking relations), and it clearly 
forces W-Xcw. Cl 

The main theorem of this section will assert that any P-point ultrafilter in V 
generates a P-point in V[G]. We first check that it will suffice to prove that it 
generates an ultrafilter. 

Lemma 3.2. Let % be a P-point, and let H be a V-generic subset of some proper 
notion of forcing. If % generates an ultrafilter % in V[H], then this @ is a P-point 
in V[H]. 

Proof. Since every set in % has a subset in %, it suffices to show that, if 
(Xn : n E o> is a sequence in V[H] of sets in %, then some set Y E % is almost 
included (i.e., included modulo a finite set) in every X,. By [7, III. 1.161, there is 
a countable set S E V such that each X,, E S. As % is a P-point in V, there is 
Y E % almost included in every set in S (7 %, hence almost included in every 
x,. cl 

As Q is proper, Lemma 3.2 can be applied to it. We have stated the lemma for 
arbitrary proper forcing notions in order to apply it to iterations of Q in the next 
section. 

Theorem 3.3. Every P-point in V generates a P-point in V[G]. 

Proof. Let % be a P-point in V. By the preceding lemma, we need only show 
that the filter %! generated by % in V[G] is an ultrafilter. By genericity, it suffices 
to show that, if (w, T) forces “A c o”, then some extension forces either 
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Y? GA” or “B n A = 0” for some B E %. According to Proposition 2.9, we may 
assume that, if I E w, if n = n(Z) is the number such that tr has domain 9(n), if 
(w, w*) E to. * s tl-l, and if i < n, then (w*, T - I) decides whether i EA. 

Consider any w * E Tree(w, 7’). Then w * E Lev (,,n(Z) for all sufficiently large 1. 
Thus, for any fixed i E o, (w*, T - I) will decide whether i E A once Z is large 
enough; of course the decisions agree as Z varies, since (w*, T - I’) extends 
(WY 7’ - I) (by fixing values) if I’ 2 1. Let A(w *) be the set of those i E o for 
which the decision is positive, i.e., (w*, T - I) IF “i E A” for all sufficiently large 1. 
Partition Tree(w, T) by putting into one class all those w’ for which A(w*) E %. 
By Theorem 2.6, we can extend (w, T) to arrange that all of Tree(w, T) is in a 
single class. Note that, when we form this extension, we do not destroy the fact 
that, for i EA(w*) (resp. i $A(w*)), (w*, T-Z)Il-“i EA” (“i $A”) for all 
sufficiently large 1. We assume henceforth that A(w *) E % for all w * E 
Tree(w, T); the case that o -A(w*) E % for all w” E Tree(w, T) is handled 
analogously, with A replaced by its complement. As % is a P-point, let B E % be 
almost included in each A( w *). 

Inductively define a sequence (c(n) : n E co) of natural numbers, starting with 
5;(O) = 0, and increasing so rapidly that, if w* E Lev,,, T)( g(n)), then 

(i) B -A(w*) c c(n + l), and 
(ii) if i EA(w*) and i < f(n), then (w*, T - 5;(n + 1)) It-“i CA”. 

Think of c as partitioning o into blocks [f(n), c(n + 1)) and consider the four sets 
obtainable by taking the union of every fourth block: 

4 = U {[5(n), ST@ + 1)) 1 n =i (mod 4)). 
As % is an ultrafilter, it contains exactly one of these sets. By omitting a few 
terms (at most 3) from the 5 sequence, we may assume X2 E %. Replacing B with 
X2 n B, which is also in %, we may assume B s X2. 

We define an extension (w, T’) of (w, T) as follows. Let n be the function 
such that tl E &J,,(~+~) for all 1. Then tL is to be the element of Kn~~~4k~~,n~5~4k+4~~ 
given by t; = tcqakj (as relations). This defines a condition because 
Dp(t;) = DP(&++ 00. Notice that Lev(,, TeJ( k + 1) E Lev(,,&&tk) + 1) c 
Lev,,, 7#(4k + I)). 

To complete the proof of the theorem, we show that (w, T’) forces “B GA”. 
Suppose it did not, and fix an element i E B and an extension (21, S) of (w, T’) 
forcing ‘5 $ A”. Since B EX~, let k be such that i E [c(4k + 2), 5(4k+ 3)). 
Let w* = u fl n(c(4k + 4)). So w* E Lev,,,Ttj(k + 1) G Lev(,,&(4k + 1)) and 
(w*, T’ - (k + l)), being compatible with (v, S), cannot force “i EA”. We will 
obtain a contradiction by showing that (w *, T - c(4k + 4)), of which (w *, T’ - 
(k + 1)) is an extension, does force “i E A”. Since w* E Lev,,,&~(4k + 1)) and 
iEB and ia c(4k + 2), clause (i) in the definition of c implies that i E A(w*). 
Since also w* E Lev (,,0(5(4k + 3)) and i d c(4k + 3), clause (ii) in the 
same definition implies that (w*, T - 5;(4k + 4)) II “i E A”, the desired 
contradiction. 0 
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Our next goal is to show, under suitable hypotheses, that every two ultrafilters 
in V have a common finite-to-one image in V[G]. In fact, for this purpose, a 
single finite-to-one function works for all ultrafilters simultaneously. Specifically, 
let f E V[G] b e a function from o to o that is constant precisely on intervals 
[a, b) where a and b are consecutive elements of W (or a = 0 and b is the first 
element of IV); for example 

f(x) = the number of elements of W that are 6x. 

Prqmsition 3.4. Let X be an infinite subset of w in V, and let 3 be an ultrafilter in 
V. There exists Y E % such that f (X) 1 f(Y). 

Proof. Let X, %, and a condition (w, T) E Q be given. We shall find Y E % and 
an extension of (w, T) forcing “f(X) zf(Y)“; by generic&y of G, this will suffice 
to prove the proposition. By a preliminary extension of (w, T) (fixing values), we 
may assume that the first element of W is forced to be a particular number p, and 
we decide to put no smaller numbers into Y. Then the statement to be forced, 
‘Y(X) 2f (Y)“, is equivalent to “If a and b are consecutive elements of W and if 
Y has elements in [a, b), then so does X”. 

Extending (w, T) by composing relations and fixing values, we may assume 
that the function n : to+ co, such that tl has domain .9(n(Z)), grows so rapidly that 
each interval [n(Z), n(Z + 1)) meets X and that n(0) >p. Let Y0 and Y1 be defined 

bY 

Y = U {[n(Z), n(Z + 1)) 1 E = i (mod 2)). 

These two sets constitute a partition of [p, o), so one of them in %; assume for 
notational simplicity that it is Y1. Let t; = tu. Then (w, T’) is an extension of 
(w, T). Notice that the set ps(w, T’) of possible elements of W (given (w, T’)) is 
included in n(0) U YO. Thus, (w, T’) forces “W s n(0) U Y,“, which implies “If 
y E [n(k), n(k + 1)) with k odd and if a my <b with a, b E W, then a <n(k) and 
b B n(k + 1)“, which in turn implies “If y E Y1 n [a, b) with a, b E W, then [a, b) 
includes an interval [n(k), n(k + 1)) for some k”. Finally, since every interval 

[n(k), n(k + I)) meets X, we see that (w, T’) forces “If Y1 meets [a, b) with 
a, b E W, then X also meets [a, b)“, as desired. Cl 

If % is an ultrafilter in V, let % be the filter it generates in V[G]. Observe that, 
for any function g : co--, o, g(e) is generated by the sets g(X) with X E %. 

Corollary 3.5. Assume that there is a P-point in V. Then, for any two ultrafilters 
a1 and SL, in V, f(@) = f(s). 

Proof. Since ‘f( (%I) = f (%$)” is an equivalence relation on ultrafilters, it suffices 
to prove the corollary under the additional hypothesis that s is itself a P-point. 
By Theorem 3.3, the filter % is an ultrafilter (in fact a P-point); hence so is 
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f(s). So it suffices to prove that f (%$) c f ((I!&), and by the observation 
immediately preceding the corollary, it suffices to show that f(X) E f (e,) for 
every X E K. But this is immediate by Proposition 3.4. •J 

Proposition 3.6. There is no function g : w + o in V such that, for all n E o, the 
nth element of W is <g(n). 

Proof. Suppose (w, T) forced “for all n E CL), the nth element of Wis sg(n)“, for 
a certain g. Let no be larger than the number of elements of w. For sufficiently 
large k (e.g., any k >g(no)), the extension (w, T - k) of (w, T) has ps(w, T - k) 
consisting of elements of w and numbers larger than g(no). Thus, (w, T - k) 
forces “the noth element of W is >g(no)“, a contradiction. 0 

4. Preservation of P-points in iterations 

In this section, which is nearly independent of the preceding ones, we show 
that, for proper notions of forcing, countable-support iteration preserves the 
property that a P-point in the ground model generates a P-point in the extension. 

Throughout this section, (P,, QIy : a < A) is a countable-support proper forcing 
iteration of limit length A. That is, 

PO is the trivial notion of forcing (with just one element), 
P a+1 = P, * Qcy (the two-step iteration), 
Ps = direct limit of (P,),+ if /3 has uncountable cofinality, 
Ps = inverse limit of (PoI)pCb if /3 has cofinality CO, and 
P, It- “Qw is a proper notation of forcing”. 

We write PA for the inverse or direct limit of (Pa),<* according as the cofinality of 
A is o or larger. By [7, 111.3.21, each P, (a Q h) is proper. 

Theorem 4.1. For any countable-support proper forcing iteration (P,, Qe : < A) 

and any P-point %, if, for each (Y < A, 

P, Ik ‘% generates a P-point”, 

then also 

PA II- “% generates a P-point”. 

Proof. By Lemma 3.2, it suffices to prove that 

PA IF “% generates an ultrafilter”. 

The case cf(A) > o is an easy consequence of the fact that, in this case, every 
real added by PA is already added by P, for some cy < A [7, V.4.41, hence either 
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includes or is disjoint from a member of %. We may therefore assume that 
cf(A) = w. Indeed we may assume that A = o by passing to a cofinal w- 
subsequence of the iteration. More precisely, let ( cu, : n E co) be an increasing 
w-sequence cofinal in A, let PA = P, and let QL = P,,am+l. Then (Pi, QA : n < CO) 

is a proper forcing iteration of length w with (inverse) limit PL = Pn, and each PA 
forces “a generates a P-point”. SO if the theorem is true for o-length iterations, 
we obtain that Pk (=Pn) forces “(92 generates a P-point”, as desired. 

Henceforth, we assume A = o. We are given that 

P, II- 9% generates a P-point” 

for each n E w, and we wish to prove, for the limit forcing, 

P, II- “a generates an ultrafilter”. 

For this we consider an aribtrary Pm-name A and an arbitrary condition p E P, 
forcing “A E o”, and we find a set B E % and an extension q of p forcing that 
“BcA or BnA=@“. 

We claim that it will suffice to carry out the proof under the following 
additional assumption. 

Hypothesis 4.3. For every k < CO, every generic (over V) Gk E Pk containing 
p 1 k, and every r E Pm/ Gk extending p r [k, o), there exists B E % such that, for 
each n E CO, some extension r’ of r in P, /Gk forces “B fl n c AtGk)“. 

To see that this hypothesis entails no loss of generality, suppose that the 
desired result had been established under the hypothesis but that, for the 
particular p and A under consideration, the hypothesis fails. Let k, Gk, and r 
constitute a counterexample to the hypothesis. We work temporarily in V’ = 
V[GJ. In this universe, we have a P-point %’ generated by %, an o-length 
iteration of proper forcing 

(PL, QA:n E 0) = (P,+,,IG,, Qi%b:n E o) 

with inverse limit PL = P,/G,, a condition p’ = r E PL (the r from the failure of 
Hypothesis 4.3), and a P:-name A’ for the complement of AtGk) (so all conditions 
force “A’ = w _ A(Gk)” ). Consider Hypothesis 4.3’, obtained by putting these 
primed objects in place of the corresponding unprimed objects in Hypothesis 4.3. 

If 4.3’ holds, then, by our supposition, so does the primed version of the 
desired conclusion. That is, we have B’ E 9.l’ and an extension q’ of p’ in PL 
forcing “B’ GA’ or B’ n A’ = 0”. As % generates %‘, let B be a subset of 
B’. Then we have (still in V’ = V[GJ) 

q ’ extends p ’ in PL, and 

q’lt-“Bc A’or BnA’=8”. 

Returning to V, find s E Gk forcing the facts just displayed. As p 1 k E Gk, we 
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may assume that s extends p 1 k. Then 4 = (s, 4 ‘) is a condition in P’ extending p 

(as 4 rk=s extends p rk and s forces 4 r[k, o)=q’ to extend p’=r which 
extends p 1 [k, CL))) and forcing “B n A = 0 or B GA”. Thus, B and 4 are as 
desired. 

There remains the case that Hypothesis 4.3’ fails. Let k’, Gkt, and r’ be a 
counterexample in V ’ = V[GJ. Thus, Gkl is a V’-generic subset of P;CI = Pk+kf/ 
Gk containing p’ r k’ = r 1 [k, k + k’), and r’ is an extension of p’ 1 [k’, w) = 
r f [k’, w) in P:/G,’ = (P,/Gk)/Gkt. Let H be the V-generic subset Gk * Gkf of 
P k+kv. Then r’ E P,/H. Working in V[H] = V[Gk, Gkf], construct a sequence 
( qn : n E w ) of conditions in P,/H such that: 

4 n+l extends 4,, . 

For each m C n, q,, It-m E AcU, or 4,’ It- m $ Atm. 

Let ff = {m E o 1 for some, hence for all, n > m, qn Ilm EA(~}. Thus, qn II- 
Atm n n = A Cl n. Since R is in V[H] and % generates an ultrafilter there, we 
have a B E % included in or disjoint from a. 

Suppose first that B c a. For every n E o, qn forces Atm f7 n = A 17 n 2 B n n. 
That 4,’ extends r’ and forces B n n sAtH), being true in V[H] = V[G,, Gkt], 
must be forced over V[Gk] by some s E Gkf. This implies that the condition 
(s, qn) E P,/G, forces (over V[G,J) B fl n CAM. We can arrange for s to be an 
extension of p’ 1 k’ as p’ 1 k’ E Gkl. But then (s, 4”) is an extension of r (as s 
extends p’ 1 k’ = T 1 [k, k + k’) and s forces 4,’ to extend r’ which extends 
r r[k+k’, 0)) forcing BnncA (G*). That this can be done for every n E w 
contradicts our supposition that k, Gk, r constitute a counterexample to 4.3. 

There remains the case that B is disjoint from A. Now, for every n E w, qn 
extends r’ and forces B n n c w - A @Q = A’(Gk’). that this can be done for every 
n E o contradicts our supposition that k’, GkC, r’ constitute a counterexample to 
4.3’. 

These contradictions show that, if 4.3 fails then 4.3’ must hold, and so we 
always get the desired extension of p forcing “B c A or B n A = $3”. 

Thus, we may, and henceforth do, assume Hypothesis 4.3. Before constructing, 
under this hypothesis, the desired B E % and extension 4 of p forcing “B c A” 
(the alternative B n A = 0 was needed only to make 4.3 and 4.3’ symmetric), we 
need some more preliminary information. 

Lemma 4.4. If % is a P-point and X, E (42 for each n E o, then there exists Y E % 
such that, for infinitely many n E w, Y - n E X,. 

Proof. As % is a p-point, there exists 2 E Q almost included in each X,. 
Inductively define an increasing sequence of natural numbers n(Z) by setting 
n(0) = 0 and choosing n(Z + 1) so large that 2 - n(2 + 1) c X&. Being an 
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ultrafilter, % must contain either UI [n(22), n(2Z + 1)) or its complement 
UI [n(2Z + l), n(21+ 2)). A ssume the latter; the other case is analogous. Then ‘% 
contains the set Y = 2 n Ul [n(2Z+ l), n(2Z + 2)). Since Y is disjoint from 
[n(2Z), n(2Z + 1)) for every I, we have 

Y - n(2Z) = Y - n(2Z + 1) c 2 - n(2Z + 1) c XnCzl). 

So Y is as required. Cl 

Fix a regular cardinal x big enough so that all the sets we shall need to consider 
belong to H(X). Fix a countable elementary submodel N of HOI) that contains 
the ultrafilter %, the forcing sequence (P,, Qn :n E w), the name A, and the 
condition p E P, fixed earlier. Since N is countable and % is a P-point, choose 
B* E %! such that, for all X E % n N, B* is almost included in X. Let B be as in 
Hypothesis 4.3 with k = 0 (hence Gk trivial) and r = p ; replacing B* with B* I? B, 
we can arrange that 

4.5. For each n E o, some extension r of p in P, forces “B* n n c A”. 

Lemma 4.6. Let k E o, let q E Pk be (N, Pk)-generic, let Gk be a V-generic subset 
of Pk containing q, and let (Xn : n E o ) be a sequence in N[G,] of sets Xn E %. 
Then, for infinitely many n E o, B* - n c X,. 

Proof. Since the forcing Pk is proper, [7, 111.2.11] tells us that N[Gk] is an 
elementary submodel of H(x) v[G~l Therefore, it is true in N[Gk] that % 
generates a P-point. Applying Lemma 4.4 in N[G,], we obtain Y in Q n N[Gk] 
such that Y - n c Xn for infinitely many n. Note that we can take Y to be in %, 
not merely in the ultrafilter in N[Gk] generated by %, by shrinking Y if necessary. 
Since YE V n N[G,], we have, by [7, 111.2.12(c)], YEN. Therefore B* is almost 
included in Y. For the infinitely many n that satisfy Y - n E X,, and are larger 
than all the (finitely many) elements of B* - Y, we have B* - n = X,. 0. 

We shall complete the proof of Theorem 4.1 by constructing an extension q of 
p in P, forcing “B* GA”. The construction is an inductive one, producing one 
component of q at a time. After k steps, we shall have an approximation pk to q, 
correct in the first k components. In detail, we shall define a sequence of 
conditions pk E P,, starting with p” = p, and satisfying, for all k E w, 

(1) Pk+l is an extension of pk, and pktl 1 k =pk 1 k, 
(2) pk It- “B* n k GA)‘, 
(3) pk 1 k is (N, Pk)-generic, 
(4) pk r k IF “pk 1 [k, o) E N[Gk]“, and 
(5) pk 1 k It- “for every n E o, there is an extension t of pk 1 [k, o) in P,/G, 

forcing ‘B* n n ,A(@’ “. 
Before proceeding with the construction, we make a few explanatory remarks. 
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First, as incdicated by the context, II- refers to forcing with P, in (2) and to forcing 
with Pk in (4) and (5); the word ‘forcing’ in (5) refers to forcing with Pa/G,. 
Second, the choice of p” as p is consistent with requirements (1) to (5). Indeed, 
(1) to (3) are trivial for k = 0 (as PO is trivial), (4) says p E N which is true by our 
choice of N, and (5) is exactly fact 4.5 above. Third, (1) implies that, for each k, 
pn 1 k is independent of n once n 2 k. Since P, is an inverse limit, we can define 
4 E p, bY 

then 4 extends every pk, in particular p, and it forces “B* s A” by (2). Thus, CJ 
will be as desired, so the proof will be complete once we construct the pk’s. 

Suppose that, for a certain k, pk has been constructed and satisfies (2) through 
(5). We wish to construct pk+’ so that the induction hypotheses continue to hold. 
By (1) we have no choice about the first k components; pk+’ 1 k must equal 
pk r k. The rest of pk+‘, which we must construct, is best viewed as consisting of 
two parts, the component r =pk+‘(k) and the rest s =pk+’ 1 [k + 1, CO). Here 

pk 1 k IF “r E Qk and r ik ‘s E (P,/Gk)/w ” 

where Gk and H are the names of the canonical gHMXiC subsets of Pk and Qk 
respectively. In terms of r and s, the five requirements on pk+’ are as follows. 

(1) pk 1 k It- “(r, s) extends pk r [k, w)“, 
(2) pk 1 k IF “(r, s) II- ‘B* n (k + 1) ,AtGk” “, 
(3) Q” r k, r) is (N, &+&generic, 
(4) pk 1 k IF “r Il- ‘s E N[Gk+,]’ “, and 
(5) pk r k IF “r II- ‘for every n E o, there is an extension f of s in Pw/Gk+l 

forcing ((B* n n EA(~*+~)))’ “. 
We can make several simplifications here. The only requirement not of the 

form “pk 1 k Ii- - - -” is (3), which follows from 

pk f k Il- “t is (N[Gk], Qk)-generic”, 

by [7, p. 911, since pk r k is (N, &)-generic. To satisfy all these requirements, it 
suffices to work in a generic extension V[Gk] where Gk c Pk is a V-generic set 
containing pk r k; if we can produce r and s in V[Gk], having all the five 
properties that we want pk 1 k to.force, then the “forcing = truth” and maximum 
principles produce &-names forced by pk 1 k to denote such r and s. Henceforth, 
we work in V[Gk], with Gk as above, and we adopt the notational convention that 
the value, with respect to Gk, of a &name such as Qk will be denoted by the 
same symbol in lightface, e.g., Qk. Names that were not boldface to begin with, 
like pk(k), will have their Gk-values denoted by the same symbol. (This 
ambiguity seems to cause less di&ulty than any attempt to resolve it would.) 

In V[Gk], we seek r and s such that 
(1) (r, s) extends pk 1 [k, co) in Pm/G,, 
(2) (r, s) II- “B* n (k + 1) GA(~~)“, 
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(3’) r is (N[GJ, Q,)-generic, 
(4) r IF “s E N[GJ[H]“, and 
(5) r II- “for every n E 0, there is an extension t of s in (P,/G,J/H forcing 

dB* n It E A@&)(H), “. 

(Here H is, in accordance with our convention, the Gk-value of H. Though it is 
lightface, it is still a name, the Qk-name of the canonical generic subset of Qk.) 

We simplify the problem further by replacing (3’) and (4) by 
(6) (r, s) E Wd 

(6) implies (4) by definition of N[G,][H]. It does not imply (3’), but if we have 
(6), or just t E N[G,], then we can obtain (3’) by extending r, since Qk is proper 
and N[G,J is an elementary submodel of HVIGkl(~) by [7, III.2.111. Of course 
extending r preserves the truth of (l), (2), (4), and (5). 

Thus, our goal is to produce some r and s satisfying requirements (I), (2), (5), 
and (6) in V[Gk]. Because pk 1 k E Gk, induction hypotheses (2) (4) and (5) 
imply the following facts, in which we have abbreviated pk 1 [k, w) as p and ACG”) 
as A. 

4.7. p IF “B* n k ok”. 

4.8. p E N[G,J. 

4.9. For every n E o, there is an extension t of jj in Pm/G, forcing “B* f7 n ~2”. 

We obtain r and s by first constructing a multitude of candidates and then 
selecting appropriate ones. For each finite sequence q of zeros and ones, choose, 
if possible, an extension pq of 13 in P, /Gk that forces rl to be an initial segment of 
(the characteristic function of) A, i.e., forcing 

“A f? length(q) = {i < length(q) 1 q(i) = 1)“. 

Let T be the set of those q for which ps exists. Clearly T is a tree (closed under 
initial segments). Being defined from P,/G,, A, and $j, all of which are in N[G,] 
(as P,, A E N and 4.8 holds), T belongs to N[G,]. By 4.9, every initial segment of 
(the characteristic function of) B* is majorized componentwise by at least one 
q E T; in particular, T has infinite height. 

For each q E T, consider an arbitrary V[G&generic H c Qk with p,,(k) E H. 
We wish to apply hypothesis 4.3 with k + 1 in place of k, Gk *H in place of Gk, 
and pq 1 [k + 1, o) in place of r. To see that the hypothesis is applicable, we must 
check that p 1 (k + 1) E Gk *H and that p,, r [k + 1, w) extends p 1 [k + 1, 0). 
Both verifications are easy because Gk contains both pk 1 k, an extension of 
p 1 k, and conditions forcing prl to extend p which in turn extends p 1 [k, w). 
Applying 4.3, we obtain a set Ct, E % such that 

4.10. For each n E w, some extension t of p,, r [k + 1, w) in (P,/G,)fH forces 
“Ctl n n E A@+‘. 
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Since this statement is true in V[G,][H], it is forced over V[Gk] by some rt7 E H; 
since p,(k) E H, we can arrange that rt, extends p,(k). 

Since N[G,] is an elementary submodel of HVrG*I(x), we can and do take 
(P,, C17’ ‘1, :rl E T) to be in N[G,]. 

For each m E w, let C, be the intersection of the Cq’s for q E T of length m. As 
an intersection of finitely many sets in %, C, is also in %. Furthermore, the 
sequence (C, :m E o) is in N[G,]. By Lemma 4.6, with pk r k in place of 4, 
there are infinitely many m E co with B* - m E C,. Fix such an m > k, and fix an 
q E T of length m majorizing the characteristic function of B* (restricted to m) 
componentwise, i . e . , B* fl m c {i < m 1 q(i) = l}. Recall that such an rl exists by 
(4.9). We set r = rV and s =pv 1 [k + 1, 0). We arranged in the preceding 
paragraph that these be in N[Gk], so (6) holds, Since r extends p,,(k), (r, s) 
extends p,, which extends J? =pk 1 [k, w), so (1) holds. Since m > k, 

B*n(k+l)~B*nmg{i<m(q(i)=l} 

and this last set is forced to be a subset of k: by ps, hence also by the extension 
(r, s). Since x = AcG”), we have verified requirement (2). It remains to check (5): 

r IF “For every n E o, there is an extension t of s in 

(Po/Gk)/H forcing ‘B* n n .x(m) “. 

If B* were changed to C,, , the resulting statement would be true simply by 
definition of r = ‘;r. Now m was chosen so that 

B* -mcC,cC,. 

Thus, to obtain (5), i.e., to change CY back to B*, it suffices to prove that 

r It- “s II- ‘B* n m c A@+ “. 

But B* f7 m E {i <m 1 q(i) = l}, and r extends p,,(k), so it more than suffices to 
prove 

p,(k) It “s It ‘{i < m 1 q(i) = 1) E A(m) “. 

Since s =pII 1 [k + 1, w), this reduces to 

pq It- “(i < m ) q(i) = l} CA”, 

which is true by definition of p,.,. 
This completes the proof that r and s have the required properties; it thus 

completes the proof of Theorem 4.1. Cl 

5. The consistency of (A) 

Assume the continuum hypothesis in the ground model V. Let (P,, (2, : ar c 
&) be a countable support forcing iteration in which each Qa denotes the basic 
forcing Q of Section 2 in the forcing extension VP*. Let P = P, be the (direct) 
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limit of this iteration, and let G be a V-generic subset of P. Our goal in this 
section is to prove 

Theorem 5.1. If 5?& and s are non-principal ultrajilters in V[G], then there exists 
a finite-to-one f : w+ w in V[G] such that f (42,) = f(s). 

Before embarking on the proof, we fix some notation and obtain some 
preliminary information about P and the forcing extension V[G]. For each 
a! < Hz, let Gar be the restriction of G to P,, a V-generic subset of P,. Let 
Q= E V[G,] be the G,-value of the name Qa, and let H, be the V[G,]-generic 
subset of Q& given by G; thus G,,, = G, *H,. Since Qar is the Q of Section 2, as 
calculated in V[G,], all the results about forcing with Q in Sections 2 and 3 are 
applicable to the forcing by Qa over V[ Ga] that produces V[ Gac+ J. 

By Proposition 2.5, P, It- “QU is proper” for every (Y < K2. By [7, 111.3.21, each 
P,, including P+ = P, is proper. 

By Theorem 3.3, every P-point in V[Gar] generates a P-point in V[G,+,]. 
Using this fact at sucessor stages and Theorem 4.1 at limit stages, one sees by 
induction on CY that 

5.2. Every P-point in V generates P-points in all V[G,] (CY < N,) and in V[G]. 

The definition of Q in Section 2 makes it obvious that Q has the cardinality of 
the continuum; thus P, It- “Qm has the cardinality of the continuum”. Since we 
have assumed the continuum hypothesis in the ground model V, we find by [7, 
III.4.1.1, that: 

5.3. For every LY < rC,, P, has a dense subset of cardinal@ <K,. So P, 112’” = K1. 

5.4. P satisjies the K2 chain condition. 

(In [7, 111.4.1], a cardinality bound on Qi in V” is assumed; in the present 
context, this seems to require that we know the continuum hypothesis in Vs a 
priori, so the proof seems circular. But in fact, in order to get the continuum 
hypothesis in V” one needs the cardinality bounds only for Qj in Vq for j < i, so 
the apparent circularity reduces to a legitimate induction.) The chain condition 
(5.4) implies that forcing with P preserves all cardinals a&; properness implies 
that it also preserves rC1. Thus, 

5.5. Cardinals are absolute between V and V[G]. 

We shall also need the following immediate consequence of [7, V.4.41. 

5.6. For any real x E V[G], there exists LY < K2 with x E V[G,], and the smallest 
such a has cofinality so. 
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The next lemma is implicit in the proofs of 111.3.2 and 111.4.1 in [7]. For all 
CY<&, we consider Pa-names x of reals (viewed as functions w-+2) as being 
specified by giving, for each n E o, a maximal antichain A(x, n) in P, and, for 
each p E A(x, n), a value V(X, n, p) E (0, 1) such that p It “x(n) = v(x, n, p)“. It is 
well known that every name of a real is equivalent, in the sense of equality forced 
by all conditions, to one of this sort. When we are interested only in conditions 
extending a particular 4, then the antichains A(x, n) need to be maximal only in 
the weaker sense that no extension of 4 can be added to them; we then refer to x 
as a name for a real relative to 4. We call such a name x hereditarily countable if, 
for each n, A(x, n) is countable and all the P,-names of reals, occurring in the 
conditions ps constituting any p = (ps : j3 < a) E A(x, n), are hereditarily 
countable. 

As usual, let x be a regular cardinal so large that H(X) contains all sets of 
interest to us. 

Lemma 5.7. Let N be a countable elementary submodel of H(X) that contains P, 
and let p be an (N, P)-generic condition. Then for every ordinal (Y c K2 in N and 
every Pa-name x E N for a real, there is a hereditarily countable Pa-name y relative 
to p such that p IF “X = y”. 

Proof. The (N, P)-genericity of p implies that p 1 ar is (N, Pa)-generic for all 
a E N. The lemma is proved by induction on LY. To obtain y, first replace each of 
the antichains A(x, n) by its intersection with N. Generic&y ensures that these 
intersections are maximal relative to p 1 a, in the sense described above, and that 
the name x’ obtained in this way is forced by p r a! to equal x. Since N is 
countable, the antichains A(x’, n) = A(x, n) n N are countable. If 4 = (% : /3 < 

a) is in one of these antichains, hence in N, then N also contains an 
enumeration, in an W-sequence, of all the (countably many, as the iteration has 
countable support) non-trivial components qs. Thus, each of these components 
q6 is in N and can therefore, by induction hypothesis, be replaced by a 
hereditarily countable Pg-name. Doing this simultaneously for all such 4 and /3, 
we obtain the desired name y. Cl 

CoroMary 5.8. If x is a P-name for a real, then the set of conditions that force x = y 
for some hereditarily countable y is dense. 

Proof. Given x and an arbitrary condition 4, let N be a countable elementary 
submodel of H&) containing P, q, and x. As P is proper, 4 has an (N, P)-generic 
extension p. By the lemma, p II- “x = y” for some hereditarily countable y. Cl 

Lemma 5.9. For each CY < KZ, there are only K1 hereditarily countable P&-names, 
relative to any particular condition. 
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Proof. We proceed by induction on LY. A hereditarily countable name x is 
determined by countably many countable antichains A&, n) and the function 
v(x, n, p). Since we are assuming the continuum hypothesis, and therefore 
Kp = K1, it suffices to check that there are at most K1 conditions p = (ps : fi < (Y) 

that can occur in these antichains. Since our iteration uses countable supports, we 
need only check that there are, for each /3, at most K1 possibilities for ps. But ps 

is required to be a hereditarily countable name, so the induction hypothesis gives 
us what we need. Cl 

Lemma 5.10. Let 8 E V[G] b e a set of reals. There is an &-closed unbounded set 
of ordinals LX < K2 for which 9 f~ V[G,] E V[GJ. 

proof. Fix a P-name 9 for 9. For each y < X2 and each hereditarily countable 
P,-name y for a real, consider a maximal antichain B(y) of conditions that decide 
whether y E $. By 5.4 and 5.9, there are only K1 conditions altogether in these 
antichains. Since P is the direct limit of the PB ‘s, there is a single Pp (y < fi < K2) 
containing all these conditions. We claim that SF n V[G,] E V[Gp]. Indeed, we 
claim that 

9 n V[G,,] = (ytGy) 1 y is a hereditarily countable P,-name 

and some p E GB forces y E s}. 

To see this, note first that the ‘2’ direction is obvious. For the converse, consider 
any element of 9 n V[G,,]. By Corollary 5.8 and generic@ of G, it has a 
hereditarily countable name y. By the choice of /3 and genericity of GP, some 
condition p in GP decides whether y E s. Since ycG) =ycGy) E 9 = Sir(G), no 

condition in GP E G can force y $ s, so p must force y E $. Therefore Y(~Y) E 9, 
as desired. 

For each y < K2, let h(y) be a /3 < K2 as in the preceding paragraph. Let C be 
the set of ordinals CR2 that are closed under h. Then C is closed and unbounded, 
so the set of ordinals in C with coiinality X1 is &-closed and unbounded. Consider 
any such ordinal o. By 5.6, each real in V[G,] is already in V[G,] for some 
y < LY. Therefore, by choice of h, 

9 n V[Gcrl = La titGy) 1 Y is a hereditarily countable P,-name 

and some p E Ghtyj forces y E gF}, 

which is in V[G,] since h(y) < LY for all y < LY. Cl 

Proof of Theorem 5.1. For each LY < X2, let 

~,=U{WI(W,T)EW, 
and, for x E o, 

fa(x) = the number of elements of W, that are <x. 
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Thus, these are the W and f of Section 3, in the context of the Q,-forcing that 
adjoins H, to V[G,]. Each f’ is a finite-to-one function o + (c), and we shall find, 
for each pair of ultraflters, a1 and %z, in V[G], an a such that f,(%,) =fa(“u,). 

Since we are assuming the continuum hypothesis in the ground model, there is 
a P-point in V, and it generates a P-point q in V[G] by 5.2. To complete the 
proof, it suffices to find, for any ultrafilter %I in V[G], an K,-closed unbounded 
set of LY’S <K, for which f=(%,) = for(s). Indeed, if we do this for both O&1 and 
N, then, since the two X,-closed unbounded sets intersect (in an &-closed 
unbounded set) there exists (an K,-closed unbounded set of) LK < K2 with 

fa(%) =fm(%) =f&(%)* 
So let an ultrafilter %I E V[G] be. given. By Lemma 5.10, there is an X,-closed 

unbounded set of ac< Kz such that %I n V[G,] E V[GJ. For such an LY, 
%1 n V[G,] is clearly an ultrafilter in the sense of V[G,]. So is 4!& n V[G,], since 
the P-point in V that generates %& also generates P-points in every V[G,], by 
5.2. By Corollary 3.5, applied to Q,-forcing over V[G,], 

Since 910 n V[G,] generates %,-,, fm(9& fl V[G]) generates fa(&). Therefore 
fxJ%) rfm(%)* Finally, since fm(9Q is an ultrafilter and f,(4&) a filter, it follows 
that f*(N) =fm(%). 0 

We conclude this section with some additional information about the model 

WI- 

Theorem 5.2. In V[G], the following are true. 
(a) 2%=X2. 
(b) There is a P-point generated by K1 sets. 
(c) b = 81. 
(d) d = K2. 
(e) s = X2. 

Proof (a) By 5.6, all reals of V[G] are in some V[ G,], and by 5.3 each of the K2 
V[G,]‘s contributes only K1 reals. So in V[G], 2% =G rC2. On the other hand, each 
step in the iteration adds a new real (cf. 3.1) and cardinals are preserved (5.5), so 
2K”= X2 in V[G]. 

(b) The %&-, in the proof of Theorem 5.1 is generated by sets in the ground 
model, and there are only K1 such sets. 

(c) b is always uncountable, and, by a theorem of Solomon [9], no ultraiilter is 
generated by fewer than b sets. So (c) follows from (b). 

(d) By 5.6, any family of K1 reals is included in V[G,] for some LY < KZ. But 
then by 3.6 that family fails to dominate the function 

n H the nth element of W,. 
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(e) Again, any family of tC1 subsets of o lies in some V[G,] and therefore, by 
3.1, fails to split W,. Cl 

6. The consistency of (B) 

In this section, we show how to modify the previous construction so as to 
obtain a model containing both a simple P,,-point and a simple P,,-point. 

As before, we assume the continuum hypothesis in the ground model V, and 
we let G be a V-generic subset of the direct limit P = P, of a certain countable 
support iteration (P,, Qa : a < K,). This iteration differs from the previous one in 
that, in Vpo, Qa is not the Q described in Section 2 but rather the subset 

{(w, T) 1 for each /3 < ar, there exists an extension 

(w’, T’) of (w, T) such that ps(w’, T’) c_* WP}. 

Here, E * denotes inclusion modulo a finite set, and Ws is the PP+l-name (hence 
also Pa-name) for the subset lJ {w 1 (w, 7’) E G,} adjoined to Vfi by forcing with 
Qs. The ordering of Qa is the same as for Q. 

Let G be a V-generic subset of P, and, as in the previous section, let G, and 
Ha be the corresponding V-generic subset of P, and V[G,]-generic subset of 
QLy = QiGa), respectively. 

Theorem 6.1. In V[G], there exist simple P,,-points and simple P,-points. 

Before starting the proof of this theorem, we need some preliminary 
information about the forcing notions involved. 

To say that a condition (w, T) in Q has an extension (w ‘, T’) with 
ps( w ‘, T’) E * X implies that we can obtain, by composing relations in (w, T) a 
condition (w, T*) such that Dp((t&) is an unbounded function of n. To see this, 
note that any extension (w’, T’) is obtainable from a composing-relations 
extension by shrinking relations and fixing values. These last two operations 
cannot convert a (w, T*) with Dp((t&) bounded to a (w’, T’) with Dp((t&) 
unbounded, but this unboundedness is needed if we are to have ps(w ‘, 7”) c* X. 

On the other hand, if (w, T) has a composing-relations extension (w, T*), with 
Dp((t&) unbounded, then we can find, for any prescribed m, an n-extension 
(w, T’) of (w, T) with ps(w, T’) c,* X. To see this, first note that T* can be taken 
to agree with Tin the first m components, since only the behavior for large n of tz 

matters. Then compose relations again, beyond t& to arrange that Dp((t&)+ 
a. Finally replace tt with ti = (t& for ah n b m. Observe also that, if Y z* X, 
and DP((&)Y) is unbounded, then Dp((t&) is also unbounded, because this 
unboundedness is preserved both by composition of relations and by shrinking t,, 

to (tn>x- 

Lemma6.2. If /3< y<&, then Wvc* Ws. 
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mf. We show by induction on LY that fl< y < LY implies WY c* Ws. It suffices to 
deduce, from this induction hypothesis, that Ws c* W, for all B C a. We work in 
V[G,] and consider any (w, T) E Qa. Given any B < cy, we have an extension 
(w’, T’) E Q with ps(w’, T’) c* Ws. By induction hypothesis, it follows that 
ps(w’, T’) c* Ws for all 6 s /3. The induction hypothesis and the remark 
preceding the lemma show that we can construct (w’, T’) so that it has extensions 
satisfying ps( w”, T”) G* WY for any prescribed y E [/3, a). Thus, we can construct 
(w’, T’) so that it is in Q,. Thus, we have shown that, for each /3 < LY, the set 

((~‘9 T’) E Q, 1 PS(W’, T’) G* W,} 

is dense in Q=. Every condition in this dense set clearly forces “W, G* W,“, so 
w,c*ws. cl 

The core of the proof of Theorem 5.1 is the following proposition, which 
carries over to the present forcing construction some crucial properties of the 
construction in the preceding section. 

Proposition 6.3. For each LY < X2 and each non-limit /I < CX: 
(a) P,,JPfi is a proper notion of forcing in V’b. 
(b) Every P-point in VP@ generates a P-point in Vtpa+l). 
(c) For every A E o in V[Gdy], either W, s* A or W, s* o -A. 

Proof. We remark first that (a) is sufficient to ensure that PA/P, is proper, for 
/3 < A, when A is a limit ordinal and fi is not. This can be seen by looking carefully 
at the proof [7, III.3.21 of the preservation of properness under iteration; that 
proof essentially uses only (a), not properness of QLy. See also [7, X.2.3 and 
X.2.61. Similar remarks apply to the conjunction of (a) and (b); P-points in 
V[GB] for non-limit /I generate P-points in V[G,] for limit A > /3, by essentially 
the same proof as in Section 4. 

To prove 6.3, we proceed by induction on (Y. 
If cy is a successor, say D = y + 1, then the forcing notion Qcr in V[G,] consists 

of ah (w, T) having an extension satisfying ps(w’, T’) c* WV, because of Lemma 
6.2. By the proof of that lemma, this (w’, T’) can be taken to be in Qa: also. 
Thus, 

Q&= {(w, T) 1 PS(W, T) E* WY> 

is dense in Qa. The extensions of any (w, T) E Qh are the same in Q& as in Q. 
Thus, forcing with Qa, with Q&, and with Q are all equivalent. Now (a) follows 
from the properness of Py+l /Pp = P,lPB and Proposition 2.5. (b) follows from 
P-point preservation from V[Gp] to V[G4] and Theorem 3.3. And (c) follows 
from proposition 3.1. 

If QI is a limit ordinal of cofinality w, let (y(n) :n E o) be u&al in a. Q, 
consists, by Lemma 2.2, of alI (w, T) having, for each n, an extension with 
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ps(w’, T’) c* WY@). As we saw before Lemma 2.2, each such (w, T) has, for 
each n E o, an n-extension (w ‘, T’) E Qcy with ps(w ‘, T’) s* Wv(nJ. This fact 
allows us to do a fusion argument (cf. Proposition 2.3) to obtain an extension 
(w”, T”) with ps(w”, T”) c * W,+) for all n E 0 simultaneously. Thus, 

Q&= {(w, T) 1 for all n E CI), ps(w, T) c* WY,,,} 

is dense in Qly. The extensions in Q of any (w, T) E Q h are all in Q ’ , so forcing 
with Qa, with Q&, and with Q are all equivalent. As in the successor case, this 
completes the proof. 

Finally, we consider the case that cy has cofinality X1. Let KS be any V-generic 
subset of Ps. To prove (a), it suffices, since KS is arbitrary, to show that P,+,/K, 
is proper in V[KB]. In V[K@], let N be a countable elementary submodel of H(X) 
containing P,+JKB, where x is, as usual, a sufficiently large regular cardinal. Let 
a condition (q*, r*) E (Pa+,/KB) n N be given, where 4’ E Pa/K, and q*Il- “r* E 
Q=“. Since 4’ has countable support and Q! has uncountable colinality, 9’ E Py/KB 
for some y -=c a. Since N is an elementary submodel of H(X), we can take y to be 
an element of N. Let p be the supremum of a n N. Since N is countable and 
cf( cu) is not, and since y E N, we have y < p < cy. By the induction hypothesis and 
the first paragraph of this proof, P,/KB is proper. Let 4 be an (N, P,/KB)-generic 
extension of 4’ in P,/KB. We intend to define p and r such that 4 It- “p E Pa/G,“, 
(4, p) ik “r is an extension of r* in Q=“, and (9, p, r) is (N, P,+,/KB)-generic. This 
will suffice to complete the proof of (a), since (4, p, r) will then be an extension 
of (q*, r*). To obtain such p and r, we work with an arbitrary V[KB]-generic 
K,, c P,/KB containing 4, and we find, in V[KB, KJ, a p E P,I(KB * Kp) and an r 
such that p IF “r is an extension of r. in Q=” and (p, r) is (N[K,], P,,,/KB.K,)- 
generic. Carrying out this construction in V[KB](G’Kp) with the canonical generic 
subset of P,/KB as Kp, we would then get the required names p and r. (See [7, p. 
911 for genericity of (4, p, r).) 

Let (q:i < o) be an enumeration of all the (P,+l/K,)-names in N[K,] of 
ordinals. Since q* II- “r* E Qa” and Kp contains the extension 4 of q*, the K,-value 
r* of r* is a member (w*, To) of Q#. Combining the fusion argument in the 
cf(cu) = w case above with the fusion argument in the proof of Proposition 2.4 (by 
interleaving the steps of the two constructions), we obtain an extension (w, S) of 
r such that ps(w, S) E* W, for all 6 E or I? N (countably many S’s) and such that 
the conclusion of 2.4 holds. As in the proof of Proposition 2.5, the fusion 
argument can be carried out so that every finite part of it takes place in N[K,] 
and therefore the particular values of the xi’s forced by extensions of (w, S) all lie 
in N[KJ. If (w, S) were in Qa, we could use it as r (i.e., use its standard name as 
I”) and take p to be trivial. Unfortunately, although we have ps(w, S) c* WC for 
all c < p since a: n N is cofinal in p, we do not know that (w, S) has extensions 
with ps(w’, S’) E* WC for ~1 G g < cy. In other words, (w, S) is in Q,, but it is not 
forced by the trivial condition in Pa/K, to be in Qtr. This difhculty is remedied by 
using a non-trivial condition as p, namely (w, S) itself. We define p E PO/K, to be 
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(w, S) E Q, = P,+,/K, c Pa/K, (SO p is the sequence consisting of (w, S) in Q, 
followed by trivial conditions in Qr for p < 5; < cu) and we define r to be the 
standard (P&,)-name for (w, S). Since p forces all WC for ~1 d 5 < CK to be 
subsets of ps(w, S) modulo finite sets, it forces r E Qa, so p and r are as required 
to finish the proof of (a). 

To prove (b), let % be a P-point in V[&] and let A be a (P,,,/&)-name for a 
subset of CO. Starting with any condition (q’, r”) in (P,+,/I$), we first proceed as 
in the proof of (a), using an N that contains % and the name A, until we obtain 
(w, S) as there. Then we follow, in N[K,], the proof of Theorem 3.3 to obtain an 
extension (w’, S’) of (w, S) in Q, forcing A to be included in or disjoint from 
some set in the ultrafilter in N[K,] generated by %. (It does generate an 
ultrafilter, by the induction hypothesis, the first paragraph of this proof, and the 
fact that N[K,I is an elementary submodel of H(x)~~@~~~]) because Kp contains 
the (N, P,/K@)-generic condition q.) Finally, as in the proof of (a), we extend q 
by putting (w’, S’) in the pth and cuth components and trivial conditions between 
them. The resulting condition in P,+ 1 /I$ forces A to include or be disjoint from a 
set in %. 

The proof of (c) is just like that of (b) except that, instead of using the proof of 
Theorem 3.3 to extend (w, S) to (w ‘, S’), we use the proof of Proposition 3.1. 
This completes the proof of Proposition 6.3. 0 

Corollary 6.4. (a) P is proper. 
(b) Every P-point in V generates a P-point in V[G]. 

Proof. See the first paragraph of the proof of Proposition 6.3. 0 

proof of Theorem 6.1. Just as in Section 5, we see that P satisfies the Kz chain 
condition by [7, 111.4.11. Therefore each real in V[G] is in V[Ga,] for some 
a<&. 

Since we are assuming the continuum hypothesis in the ground model V, there 
is a P-point, in fact (necessarily) a simple P,,-point, % in V. By Corollary 6.4(b), 
% generates a P-point % in V[G], and % is a simple P,,-point because it is 
generated by the same almost decreasing &sequence as %. (K, is absolute by 
Corollary 6.4(a) or because an ultrafilter % cannot be generated by countably 
many sets.) 

Since every real in V[G] is in some V[G,], Proposition 6.3(c) implies that the 
sets W, (a: C &) and the cofinite sets generate an ultrafilter in V[G]. By Lemma 
6.2, the We constitute a strictly almost decreasing X,-sequence, so this ultrafilter is 
a simple P&-point. Cl 

As in Section 5, the model V(G] is easily seen to satisfy 2% = HZ. We can also 
show that b = K1 and d = s = & by the same method as in Section 5, but in fact 
these equations follow from the existence of simple PNI- and P%-points, by work 
of Nyikos [5]. 
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