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Abstract. This paper deals with the splitting number s and polarized partition relations. In
the first section we define the notion of strong splitting families, and prove that its existence is
equivalent to the failure of the polarized relation (Z)) — ( Z)) ; ! We show that the existence of
a strong splitting family is consistent with ZFC, and that the strong splitting number equals the
splitting number, when it exists. Consequently, we can put some restriction on the possibility
that s is singular. In the second section we deal with the polarized relation under the weak

1,1
diamond, and we prove that the strong polarized relation (2;;) — (2:;)2 is consistent with

ZFC, even when cf (2°) = X (hence the weak diamond holds).
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1. Introduction

This paper deals with two problems. The first is a topological one, and it deals with
strong splitting families in P(). the second is a combinatorial one, and related to
the polarized partition relation.

Let us start with the topological problem. A family § = {Sy: o < k} C P(®) is
splitting if for every B € [@]® there exists an ordinal & < k so that |[BNSy| = |B\
S«| = Xo. In this case we say that Sy, splits B. The cardinal invariant s, the splitting
number, is defined as the minimal cardinality of a splitting family. A good source for
information about s (as well as other basic cardinal invariants on the continuum) is
van Dowen (in [10]). We follow, in this paper, his terminology.

Notice that the existence of one ordinal ¢ such that S splits B is enough for this
definition. We may ask, further, if one can find a family of subsets of w so that for
each B € [w]® almost every set among the sets in the splitting family splits B. This is
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the property of strong splitting families, and our topological problem is whether such
a property is possible.

For splitting families in the common sense, one can always take the collection of
all the subsets of @. But this does not work for strong splitting families. On one hand,
we need enough sets (in the family that we try to create) so that every B € [@]? is
split. On the other hand, we must be careful not to take too many sets, since otherwise
we will have some B € [w]® which is included in a lot of sets.

Let us describe the combinatorial problem. The balanced polarized relation (g) —

() ; ! asserts that for every coloring c: & x 8 — 2 there are A C o and B C 3 so that
otp(A) =7, otp(B) = 8, and ¢ | (A x B) is constant. This relation was first introduced
in papers of Erdos, Hajnal, and Rado (see [2] and [3]). A good reference for the basic

facts about this relation is [11].

If ¢« =y and B = §, we name this relation as a strong polarized relation. Our

question is whether the strong relation (Z) — (;);1 holds. As we shall see, the
topological problem above is deeply connected to this combinatorial question. In
fact, our ability to solve the combinatorial part enables us to give an answer to the
topological problem.

In the second section, we deal with the polarized relation on the continuum. The

starting point is the negative result of Erdos and Rado, that (‘g}) —+ (‘Z)‘ );1 under the
continuum hypothesis. Of course, the positive relation is also consistent (e.g., under

the PFA).
We have asked whether the correct generalization of the negative result is (25) >

sy 1,1 . .. . 20 soy L1, .
( © )2 . It was proved in [5] that the positive relation ( w) — ( w)z is consistent

with ZFC. But in that paper, cf (2%) > X, and one of the referees suggested to con-

) o\ 1,1
sider the possibility that cf (2?) = X | = (2w ) > (zw )2 . We shall prove the converse.

Let us try to explain the background of this interesting suggestion of the referee. If

<Oy, holds, then (2;)) - (2(3]) ; L cf (2?) = X then we know that a weak version of
the diamond holds. This version is the so-called weak diamond, and we denote it by
Dy, . It follows that this principle is equivalent to the cardinal assumption 2 Ro < 2%,
and since cf (2©) = X = 2%0 < 2%1 one might guess that under this assumption we
shall get (2(3’) - (2(:;) ) ;’l. As we shall see, the weak diamond does not imply this
negative result (in contrary to the full diamond). We also show that ®y is consistent

1,1
PR

We try to use standard notation. The combinatorial notation is due to [4]. We save
the letter H for monochromatic sets, when possible. The symbol A C* B means that
|A\ B| < Xg. Weuse k, A, i, T as cardinals, and «, 3, 7, 8, €, { as ordinals. n is a
finite ordinal, and @ is the first infinite ordinal. We use ¢ and 20 interchangeably.
The second section employs forcing arguments. We indicate that p < g means (in
this paper) that g gives more information than p in forcing notions. For background
in forcing (including the notation we adhere to) we suggest [9]. For background in
pcf theory (e.g., the covering numbers which appear at the end of the first section) the
reader may consult the monograph [8].

with the positive relation (%) — (
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2. Splitting Families and the Polarized Relation

Let us define the strong splitting property:

Definition 2.1. Strong splitting.

Let F ={Sq: a < k} be a family of subsets of @, and assume F is a splitting family.
For B € [@]® set Fp={Sq: (BC*Sy)or (BC* 0\ Sq)}-

F is a strong splitting family if | Fg| < s for every B € [0]®.

F is a very strong splitting family if | Fg| < |F| for every B € [®]®.

Remark 2.2. If F = {Sq: a < K} is a strong splitting family, then k¥ > s, since a
strong splitting family is, in particular, a splitting family.

We start with a claim that draws a connection of double implication between the
topological question of strong splitting families, and the strong polarized relation with
respect to the splitting number:

Claim 2.3. The equivalence claim.
(a) A strong splitting family (in P(w)) exists if and only if (J) - (7) ; L

(b) A very strong splitting family of cardinality u exists if and only if (g) > (“) .

w/?2

Proof. We prove part (a), and the same argument gives also part (b). Suppose (;) —

1,1 - . .
(;)2 , and assume toward contradiction that 7 = {Sq: @ < Kk} is a strong splitting

family. We define a coloring cx =c: s X ® — 2 as follows:
cla,n)=0<neSq.

This is done for every o < s and every n € @. Since () — (;);1, there are
Hy € [s]° and H; € [@]® so that ¢ | (Hp x H}) is constant. Without loss of generality,
o€ Hy,nc H = c(o,n) =0.

On one hand, F is strong splitting, so |Fg,| < s. On the other hand, if o € Hy
then H; C Sy (since ¢(o, n) = 0 for every n € Hj, and by the definition of ¢). So
clearly, H) C* Sq for every a € Hy. But |[Hyp| = s, so | Fp, | > s, a contradiction.

The opposite implication is similar. Suppose there is no strong splitting family,

aiming to show that (7 ) — (;);1 holds. Given a coloring c: s x ® — 2, we wish to
find a monochromatic cartesian product with the desired cardinalities. For ¢/ =0, 1
and for every a < 5, set S5, = {n € : c(a, n) = £}. Now, let F,. = F be the following

family:

{Sfxz a<5,£:O,1}.

By our assumption (in this direction), F is not a strong splitting family. Choose a
witness, i.e., a set B € [0]® such that | Fp| > s. Collect the ordinals of Fg, i.e., let Hp
be the set {a < 5: 3¢ € {0, 1}, S, € Fp}. Since | Fp| > 5 and £ ranges just over two
values, we may assume (without loss of generality) that ¢ = 0.

By a similar argument, we may assume that B C* 9 (and not in its complement)
for every @@ < 5. Moreover, we can replace (again, without loss of generality) the
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relation C* by C. This is justified by the fact that cf(s) > X upon noticing that
|@<®| = Xy. Consequently, one can choose a finite set of natural numbers which
occurs s-many times as the discrepancy between C* and C. Now, remove this set
from B, and we still have an infinite monochromatic set as required.

The last step is to observe that ¢ | (Hg x B) = 0. Since the coloring ¢ was arbitrary,
we are done.

Remark 2.4. 1If we add 2 = A X0 Cohen reals, so ¢ = A, then for every u € (Xo, 2]

we have (1) + (4))'". Moreover, (4) (};,1);1

Proof. Let Q be the forcing notion which adds A-many Cohen reals, (gg: 00 < 4).
Define ¢(et, n) = go(n). We claim that this coloring demonstrates the negative rela-
tion to be proved.”

Towards contradiction assume that A € [N]¥0, B € [u]¥1, and there exists a con-
dition pg so that po I-g ¢ | B X A =i. For every n € @ there is a maximal antichain 7,
which forces a truth value to the assertionn € A. Set U =|J{Dom(q): g € I,,n € ®}.
Since |U| = X we know that l-g B Z U.

Consequently, there is some a < u such that po ¥ a ¢ B, so one can choose a
condition p; > po such that p; I @ € B. Without loss of generality, & € Dom(p;).
Let p> be p; [ U. Choose a natural number 7. such that sup(Dom(p;())) < n..
There are n, p3 such that p, < p3, Dom(p3) C U and ps3 IFg ne <n € A. Define
ps=p1 | (Dom(p;)\U)Up3 and ps = psU (e, 1 —i). The condition ps forces
¢(a, n) # i, a contradiction.

So our problems are connected. We would like to show that under the continuum
hypothesis there is a strong splitting family. We quote the following result (in a
more general form), about strong polarized relations under the local assumption of
the GCH. The proof appears in [11]:

Proposition 2.5. Polarized relation and the GCH.

Assume 2% = k. .
+ +4y L

Then (%) = (%), -

K

We can conclude:

Corollary 2.6. The existence of strong splitting families.
Suppose 2%0 = X .
Then there exists a strong splitting family.

Proof. By proposition 2.5, (gé) - (gé);l Since ¥ < s < 2%0, we have (under the

continuum hypothesis) s = ¥, so (2) > (2) ; l, and by Claim 2.3 we know that a
strong splitting family exists.

Definition 2.7. The strong splitting numbers.

(a) Let ss (= the strong splitting number) be the minimal cardinality of a strong
splitting family, if one exists.

(b) Similarly, 55’ (= the very strong splitting number) is the minimal cardinality of a
very strong splitting family, if one exists.
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Claim 2.8. The equality claim.
If there is a strong splitting family, then s = ss.

Proof. Let k be ss. By remark 2.2, k > s. Assume toward contradiction that K > s.

We shall prove that (7) — () "1 Lete: sx @ — 2 be any coloring. For every a < s,

define Sq = {n€ w: c(ct,n) =0}. Define F, = F = {S¢: ot <s}. Since |F|<s <K
(by the assumption toward contradiction), F is not a strong splitting family.

Choose a witness, B. It means that B € [0]® and |Fp| = s. For each S € Fp
we have (B C* Sy) or (BC* @\ Sy). Without loss of generality, B C* S, for every
o < s, and moreover, B C Sy, for s-many o’s (recall that cf(s) > Xg). Let H be the set
{a <s: Sq € Fp}. By the construction, ¢ | (H x B) =0,s0 (;) — (Z);l By claim

2.6, (j)) — ( ;);1 implies that there is no strong splitting family, a contradiction.

Remark 2.9. We thank David Milovich for informing us the consistency of ss = k for
every regular Kk > X. The interested reader can find the proof (among other results)
in [7].

It is not known if s can be a singular cardinal. In general, it seems that ss is more
convenient to deal with. By the previous results, under some circumstances, we can
infer about s from what we know about ss. The following claim illustrates this idea.

Claim 2.10. Suppose there is a strong splitting family.
If s = ¢, then s is a regular cardinal. Similarly, if a very strong splitting family exists
then ss’ = ¢ implies the regularity of c.

Proof. Assume toward contradiction that cf(s) < s. By the assumption of the claim,
¢ is also a singular cardinal. Choose an unbounded increasing sequence of ordinals
(&y: v < cf(c)), whose limit is ¢. Choose a strong splitting family F = {Sq: o < s}.

For every B € [0]® we know that | Fp| < s. Denote the set {&t < s: S¢ € Fp} by
Hp. Clearly, |Hp| < 5. We claim that there is an H C ¢, |[H| = cf(c) such that H ¢ Hp
for every B € [®]®.

Choose an enumeration {Hy : & < c} of the Hp’s. We can assume that sup{ |[He|:
€ < &} < cforevery y < cf(c). For every y < cf(c) choose a, € ¢\ (U{He: € <
&}U{ag: B <y}). Thisis possible, since || J{He: & <&, }| < |&)|-sup{|He|: € <
&y} <c. SetH = {ay: y<cf(c)}, and we have the desired H.

Now define 7' = {Sq: @ € H}. Clearly, |F'| = |H| < cf(c) < ¢ =s. But if
B € [0]® then there is an ordinal o € H so that Sy splits B (by the fact that H ¢ Hp).
So F' is a splitting family whose cardinality is strictly less than s, a contradiction.
The proof of the second assertion is identical.

Recall that cov(A, i, 6, 2) is the minimal cardinality of a family of subsets of A,
the cardinality of each member is below i, such that every set in [A]<? is covered by
a member from this family. By a similar argument, we can conclude

Corollary 2.11. Splitting properties and covering numbers.

(a) Suppose cov(s,s,5,2) > c.
Then there is no strong splitting family.
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(b) If 1 > cf(u) and cov(u, W, W, 2) > c then there is no very strong splitting family
of cardinality L.

Proof. Assume toward contradiction that there exists a strong splitting family, and let
F ={Sq: o < s} exemplify it. For every B € [0]® let Hp = {a < s: S € Fp}. By
our assumption toward contradiction we know that |Hp| < s for every B.

By the assumption that cov(s, s, s, 2) > ¢, one can pick aset H C s, |H| < s which
is not covered by the family {Hp: B € [0]®}. Now set F/ = {Sq: ot € H}.

Since |H| < s, we know that | 7’| < s. By the nature of H we have H ¢ Hp for
every B € [@]®. Hence, given B € [@0]® one can pick an ordinal a € H \ Hp, s0 Sy
splits B. It means that ' is a splitting family whose cardinality is strictly less than s,
a contradiction. Here, again, the second part of the corollary follows in a similar way.

Remark 2.12. The definition of s is generalized naturally to higher cardinals (see, for
example, [12]). s, is the minimal cardinality of a A-splitting family in [A]*. Tt is
known that s, > A if and only if A is weakly compact (see [12]).

In this case, the main claim of this paper can be applied to s, yielding (7) >

(7) ; "if and only if there is a strong A-splitting family in [A]*. The existence result

under the assumption 2% = At follows.
In a subsequent paper [6] we prove also that the positive relation (Z) — ( ;);1
(and hence the non-existence of strong splitting families) is also consistent with ZFC.

3. Polarized Relations and the Weak Diamond

We prove, in this section, the consistency of positive polarized relations with the weak
diamond. The following definition comes from [1]:

Definition 3.1. The weak diamond.
Dy, means that for every F: ®172 — 2 there exists g € “12 so that for every f € ®12
the set S={a < X: F(f | a) =g(a)} is stationary (in X).

The idea is pretty simple. The diamond sequence provides a tool for guessing
many initial segments of every A C X (in the sense of A N« for stationarily many
a-s). The weak diamond does not give the set A, but it gives a way to guess the color
of AN a (again, for stationarily many a-s) once a coloring of “'~2 is in hand.

It is shown in [1] that 2%0 < 2%1 = @y, (and as noted by Uri Avraham, @y, =
2%0 < 2%1 50 actually we have an equivalence). This gives rise to the following
simple fact.

Proposition 3.2. Weak diamond and low cofinality.
Suppose cf(2?) = X. then x| holds.

Proof. By Zermelo-Konig, cf (2®1) > X, hence cf (2?) = X implies 2% # 291, j.e.,
29 <2 which yields Py, .
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As described in the introduction, one could suspect that @, entails negative po-
larized relations (similar to the impact of the real diamond). The following claims

show that @y, is not strong enough. The first claim deals with (%) — (%) b1 and

w/n
the second deals with () — (rf))r]; L

We shall use the Mathias forcing Mp for proving the main result of this section.
Let D be a nonprincipal ultrafilter on @. We define M as follows. The conditions in
Mp are pairs of the form (s, A) when s € [@]<®, A € D and min(A) > max(s). For
the order, (s1,A;) < (sp,A) if and only if s C 55, A1 2 Ay and s, \ 51 C Ay. The
Mathias forcing is o-centered, hence satisfies the ccc. It follows that a finite support
iteration of these forcing notions is also ccc.

Let G C Mp be generic over V. The Mathias real x¢ is defined as J{s: 34 €
D, (s,A) € G}. Notice that in VM> we have (x¢ C* B) V (x¢ C* @\ B) for every
B € [0]®NV. In a way, it means that the Mathias forcing adds a pseudo-intersection
to the ultrafilter D. By iterating these forcing notions we create the monochromatic
subsets.

Claim 3.3. Weak diamond and ®;.
The positive relation (2!) — (‘3)1),1! !is consistent with @y, , and even with cf (2%0) =
X,

Proof. By Theorem 3.4 below.

Theorem 3.4. Weak diamond and the continuum.

1,1 . . . .
;))n’ is consistent with @y, and even with cf (2“0) =

(a) The strong relation ( ;)) — (
X.
(b) Moreover, suppose X| < 8 = cf(0) < u, and u = uXo (in V). There is a ccc

forcing notion P, |P| = u, IFp 2%0 = u, and for every A € (R, u] if cf(A) ¢
2 b1
{Xo, 0} then V¥ = (5) — (3),, -

Proof. We prove the second assertion of the theorem. By choosing any u = u X0 >
cf(u) = X and 6 = Ky, A = u we will get a proof to the first assertion. So choose an
ordinal § € [i, u) so that c¢f(8) = 6. We define a finite support iteration (IP;, Q;: i <
8, j < &) of ccc forcing notions, such that |P;| = u for every i < 8.

Let Qg be (a name of) a forcing notion which adds p reals (e.g., Cohen forcing).
For evefy J < o let D; be a P;-name of a nonprincipal ultrafilter on @ over the
extension with P;. Let Q1 ; be the Mathias forcing Mp . Qi is a ccc forcing notion
which adds an infinite set A; C @ such that (YBe€ D;)(A; C*BVA; C* w\B). At
the end, set P = [ J{P;: i < 8}.

Since every component satisfies the ccc, and we use finite support iteration, P
is also a ccc forcing notion and hence no cardinal is collapsed in VF. By virtue of
Qo, 2%0 = u after forcing with P (since Qp adds p-many reals, and the length of
the iteration is 8, which is of size u). Let A be any cardinal in (X, ] such that

cf(A) ¢ {Xy, 6}, and let n be a finite ordinal. Our goal is to prove that (2) — (2)):: !
in V.

Let ¢ be a name of a function from A X @ into n. For every o« < A we have a
name (in V) to the restriction ¢ | ({a} x @). P is ccc, hence the color of every pair of
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the form (o, n) is determined by an antichain which includes at most X conditions.
Since we have to decide the color of ¥y-many pairsin¢ | ({} X @), and the length of
Pis 8, cf(4) > X we know that ¢ | ({at} X @) is a name in P o) for some i(ax) < 6.

For every j < & let U; be the set {a < A: i(at) < j}, so (Uj: j < 0) is C-
increasing with union A. Recall that c¢f(8) = 6 # cf(1), hence for some j < § we
have U; € [A]*. Choose such j, and denote I i by U. We shall try to show that U/ can
serve (after some shrinking) as the first coordinate in the monochromatic subset.

Choose a generic subset G C P, and denote A ;[G] by A. For each o € U we know
that ¢ [ ({at} X A) is constant, except a possible mistake over a finite subset of A. But
this mistake can be amended.

For every a € U choose k(o) € @ and m(a) < n so that (V¢ € A)[¢ > k(o) =
¢[G)(et, £) = m(@)]. nis finite and cf(A) > X, so one can fix some k € ® and a color
m < n such that for some U, € [U]* we have a € Uy = k(a) =k Am(a) = m.

Let Bbe A\ k, so B € [®]®. By the fact that{; C U we know that ¢(ot, £) = m for

every oo € Uy and £ € B, so U; x B is monochromatic under c, yielding the positive
1,1

relation (2) — (i)n , as required.

. . A a1
Remark 3.5. Assume A is an uncountable regular cardinal. Denote by ( IJ) —st ( u)
n

the assertion that for every coloring ¢: A X t — n there exists B € [u]* and a station-
ary subset U/ C A so that ¢ | U x B is constant. Our proof gives the consistency of

(ﬁ,) —t (g)i 1, when A is regular.

Recall that if cf(x) > Ko and & < s then (£) — (£)}'" (this is [5, Claim 1.4]).

0]
We can use this claim for accomplishing the proof of 3.3, as shown below.

Proof of Claim 3.3. Choose 8 = W, < u, cf(u) = Xy and u = u 0. Use the iteration
in the proof of 3.4 over some ordinal § € (u, ™) so that cf(8) = X,. By the prop-
erties of the Mathias forcing we have s = 8 = X, in the extension. For showing this,
we shall prove that ¥; < s < X,.

If {Sq: o < K} is asplitting family in V and k < X, then there exists an ordinal
j < & such that S¢ € VFi for every a < K (since cf(8) = @,). But then, the Mathias
real added in the j-th stage is almost included in Sy or its complement for every
o < K, a contradiction. Hence ¥ < s.

On the other hand, one can introduce a splitting family of size X, in VF. Along
a finite support iteration, a Cohen real is added at every limit stage. Choose a cofinal
sequence of limit ordinals in &, of length X,. Since every Cohen real is a splitting real
(over the old universe), the collection of the Cohen reals along the cofinal sequence
establishes a splitting family of size X, so s < X, in VE,

It follows from the remark above that (¢!) — (! );1 since @ = cf(®;) < s. On

(0]
the other hand, u = 2%0 g0 cf (2“0) = Xy, hence @y, as required.
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