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Abstract For a centerless group G, we can define its automorphism tower. We define
Gα: G0 = G, Gα+1 = Aut(Gα) and for limit ordinals Gδ = ⋃

α<δ Gα . Let τG be the
ordinal when the sequence stabilizes. Thomas’ celebrated theorem says τG < (2|G|)+
and more. If we consider Thomas’ proof too set theoretical (using Fodor’s lemma), we
have here a more direct proof with little set theory. However, set theoretically we get
a parallel theorem without the Axiom of Choice. Moreover, we give a descriptive set
theoretic approach for calculating an upper bound for τG for all countable groups G
(better than the one an analysis of Thomas’ proof gives). We attach to every element
in Gα , the αth member of the automorphism tower of G, a unique quantifier free type
over G (which is a set of words from G ∗〈x〉). This situation is generalized by defining
“(G, A) is a special pair”.

Keywords Automorphism tower · Axiom of Choice · Centerless group
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1 Introduction

Background Given any centerless group G, we can embed G into its automorphism
group Aut(G) as inner automorphisms. Since Aut(G) is also without center, we can do
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800 I. Kaplan, S. Shelah

this again, and again. Thus we can define an increasing continuous sequence 〈Gα|α ∈
ord〉—the automorphism tower. The natural question that arises, is whether this pro-
cess stops, and when. We define τG = min{α|Gα+1 = Gα}.

In 1939 (see [8]) Wielandt proved that for finite G, τG is finite. But there exist
examples of centerless infinite groups such that this process does not stop in any finite
stage. For example—the infinite dihedral group D∞ = 〈x, y|x2 = y2 = 1〉 satisfies
Aut(D∞) ∼= D∞. So the question remained open until 1984, when Simon Thomas’
celebrated work (see [6]) proved that τG ≤ (2|G|)+. He later (see [7]) improved this
to τG < (2|G|)+.

For a cardinal κ we define τκ as the smallest ordinal such that τκ > τG for all
centerless groups G of cardinality ≤ κ . As an immediate conclusion from Thomas’
theorem we have τκ < (2κ)+.

Notation 1.1 For a group G and a subgroup H ≤ G, let norG(H) be the normalizer
of H in G (sometimes denoted NG(H)).

For H ≤ G, we define the normalizer tower 〈norαG(H)|α ∈ ord〉 of H in G by
nor0

G(H) = H , norα+1
G (H) = nor(norαG(H)) and norδG(H) = ⋃{norαG(H)|α < δ}

for δ limit. Let τG,H = min{α| norα+1
G (H) = norαG(H)}.

This construction turns out to be very useful, thanks to the following:
For a cardinal κ , let τ nlg

κ be the smallest ordinal such that τ nlg
κ > τAut(A),H , for every

structure A of cardinality ≤ κ and every group H ≤ Aut(A) of cardinality ≤ κ .
In [1], Just, Shelah and Thomas found a connection between these ordinals: τκ ≥ τ

nlg
κ .

In this paper we deal with an upper bound of τκ , but there are results regarding lower
bounds as well, and the inequality above is used to prove the existence of such lower
bounds by finding structures with long normalizer towers. In [6], Thomas proved that
τκ ≥ κ+, and in [1] the authors found that one cannot prove in Z FC a better explicit
upper bound for τκ than (2κ)+ (using set theoretic forcing). In [4], Shelah proved that
if κ is strong limit singular of uncountable cofinality then τκ > 2κ (using results from
PC F theory).

It remains an open question whether or not there exists a countable centerless group
G such that τG ≥ ω1.

In a subsequent paper ([5]) we prove that τ nlg
κ ≤ τκ is also true without Choice.

Results After dealing with the normalizer tower in Sect. 2, Sect. 3 is devoted to our
main theorem: (of course, Thomas did not need to distinguish G and ω>G)

Theorem 1.2 (ZF)τ|G| < θP(ω>G) for a centerless group G. That is, there is a func-
tion from P(ω>G) onto τG.
Moreover, there is such a function onto

⋃{τG ′ + 1|G ′ is centerless and |G ′| ≤ |G|}.
This is essentially Theorem 3.16.

As one can gather from the theorem, here we deal with finding τG without Choice. We
define an algebraic and absolute property of G and a subset A ((G, A) is special—see
Definition 3.6), that allows us to find a bound to τG (see 3.15) in terms of A. We do
that by attaching to each element of Gα its quantifier free type over A.

As a consequence, we get Thomas’ Theorem without Choice in 3.14. Since Thomas
used Fodor’s lemma (and it is known that its negation is consistent with Z F), our result
is a strict generalization.
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The automorphism tower of a centerless groupwithout Choice 801

We conclude absoluteness. I.e. that for every cardinal κ , if V′ is a subclass of V
which is a model of Z F such that P(κ) ∈ V′, then τκ < (θP(κ))V

′
, and so τℵ0 < θ

L(R)
R

(see Conclusion 3.19).
Moreover, we give a descriptive set theoretic approach to finding τℵ0 in Sect. 4. We
show there that τℵ0 is less than or equal to the inductive ordinal of second order number
theory (see that section for the definition, and Conclusion 4.4).
In the last section, we improve the main result in some aspects for a wider class of
groups that satisfy a weaker algebraic property, though not absolute ((G, A) is weakly
special—see Definition 5.1). There, instead of working with quantifier free types over
A, we work with partial functions from ω>A to G, and we reduce the bound in the
case where A is finite.
A note about reading this paper How should you read this paper if you are not inter-
ested in the Axiom of Choice but only in the new and simpler proof of Thomas’
Theorem?
You can read only Sect. 3, and in there, you should read:
Definition 3.6, Claim 3.8, Conclusion 3.10, Claim 3.12, Claim 3.13, and then finally
Conclusion 3.14.

Notation 1.3 (1) G, H denote groups.
(2) For a group G, its identity element, will be denoted as e = eG .
(3) if A ⊆ G then 〈A〉G is the subgroup generated by A in G. Similarly, if x ∈ G,

〈A, x〉G is the subgroup generated by A ∪ {x}.
(4) For a group G, and a subset H ⊆ G, H ≤ G means that H is a subgroup of G.
(5) Let G be a group, and A some subset of G, then CG(A) is the centralizer of A in

G (i.e. {x ∈ G|∀a ∈ A[xa = ax]}).
(6) The center of G is Z(G) = CG(G).
(7) The language of a structure is its vocabulary.
(8) V will denote the universe of sets; V′ will denote a transitive class which is a

model of Z F .

2 The normalizer tower without Choice

Definition 2.1 (1) For a group G and a subgroup H ≤ G, we define norαG(H) for
every ordinal number α by:
• nor0

G(H) = H .
• norα+1

G (H) = norG(norαG(H)) (see 1.1).
• norδG(H) = ⋃{norαG(H)|α < δ.}, for δ limit.

(2) We define τ nlg
G,H = τG,H = min{α| norα+1

G (H) = norαG(H)}.
(3) For a set k, we define τ nlg

|k| as the smallest ordinal α, such that for every structure
A of power ‖A‖ ≤ |k|, τAut(A),H < α for every subgroup H ≤ Aut(A) of power

|H | ≤ |k|. Note that τ nlg
|k| = ⋃{τAut(A),H + 1| for such A and H}.

(4) For a cardinal number (i.e. some ℵ—so an ordinal) κ , define τ nlg
κ similarly.
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802 I. Kaplan, S. Shelah

Remark 2.2 Note that τ nlg
|k| is well defined (in Z F) since we can restrict ourselves to

structures with a specific (depending only on k) language and universe contained in
k. See Observation 2.3.

Observation 2.3 (1) (Z F) For any structure A whose universe is |A| = A there is
a structure B such that:
• A,B have the same universe (i.e. A = |B|).
• A,B have the same automorphism group (i.e. Aut(A) = Aut(B)).
• the language of B is of the form LB = {Rā |ā ∈ ω>A} where each Rā is a

lg(ā) place relation.
(2) (Z FC) If A is infinite then the language of B has cardinality at most |A|.
Proof Define B as follows: its universe is |A|. Its language is L = {Rā |ā ∈ n A, n <
ω} where RB

ā = o(ā), which is defined by o(ā) = { f (ā)| f ∈ Aut(A)}—the orbit of
ā under Aut(A). ��
Definition 2.4 For a set A, we define θA = θ(A) to be the first ordinal α > 0 such
that there is no function from A onto α.

Remark 2.5 (1) Z FC � θA = |A|+.
(2) Z F � θA is a cardinal number (i.e. some ℵ), and if A is infinite (i.e. there is an

injection from ω into A) then θA > ℵ0.
(3) Usually, we shall consider θV′

A where V′ is a transitive subclass of V which is a
model of Z F .

Claim 2.6 (ZF) If G is a group, H ≤ G a subgroup then τG,H < θG .

Proof If τG,H = 0 it is clear. If not, define F : G → τG,H by F(g) = α iff
g ∈ norα+1

G (H)\ norαG(H), and if there is no such α, F(g) = 0. By definition of
τG,H , F is onto. From the definition of θ , τG,H < θG . ��

We can do even more:

Claim 2.7 (ZF) For every set k, τ nlg
|k| < θP(ω>k).

Proof We may assume k is not finite (otherwise, τ nlg
|k| ≤ |k|!). Let

Bk = {(A, f, x)|A is a structure, LA ⊆ ω>k, |A| ⊆ k, f : k → Aut(A) ⊆ |A||A|,
x ∈ G = Aut(A) and H ≤ G, H = image( f )}

And let τ nlg −
|k| = ⋃{τG,H |G = Aut(A), H = image( f ), (A, f, x) ∈

Bk for some x}. Let F : Bk → τ
nlg −
|k| be the following map: F(A, f, x) = α iff

x ∈ norα+1
G (H)\ norαG(H), and if there is no such α, F(A, f, x) = 0 (where G =

Aut(A), and H = image( f )). Since F is onto τ nlg −
|k| , and obviously τ nlg

|k| ≤ τ
nlg −
|k| +1,

and θP(ω>k) is an infinite cardinal (in particular—a limit ordinal), it’s enough to show
that there is a one to one function from Bk to P(ω>k). It is enough to code A, f and
x separately, as |ω>(P(ω>k))| = |P(ω>k)| (this can be proved using the equality
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The automorphism tower of a centerless groupwithout Choice 803

|ω>(ω>k)| = |ω>k| (which is proved using a definable well known injective function
cd : ω × ω → ω and the fact that 2 ≤ |k| )).
x ∈ G and hence x ⊆ k × k.
f ∈ k(aa) for some a ⊆ k, and there is a definable bijection k(aa) → k×aa, so code
f as a subset of k × k × k.
A is a sequence of subsets of ω>k, i.e. a function in

ω>kP(ω>k), and we can encode such
a function as a member of P(ω>k). (Why? |ω>kP(ω>k)| = |ω>k(

ω>k2)| = |(ω>k2)| =
|P(ω>k)|). ��

Claim 2.8 Assume that V′ is a transitive subclass of V which is a model of Z F , G ∈ V′
a group, H ∈ V′ a subgroup then τV

G,H = τV′
G,H < θV′

G .

Proof By Claim 2.6, it remains to show that τV
G,H = τV′

G,H . By induction on α ∈ V′,
one can see that (norαG(H))

V = (norαG(H))
V′

(the formula that says that x is in
norG ′(H ′) is bounded with the parameters G ′ and H ′). ��

It is also true that τ nlg
|k| is preserved in V′, for every k ∈ V′, such that P(ω>k) ∈ V′:

Claim 2.9 Assume that V′ is a transitive subclass of V which is a model of Z F .

(1) If P(ω>k) ∈ V′ then (τ nlg
|k| )V

′ = (τ
nlg
|k| )V < θV′

P(ω>k).

(2) If k = κ a cardinal number and P(κ) ∈ V′ then (τ nlg
κ )V

′ = (τ
nlg
κ )V < θV′

P(κ)

Proof (2) follows from (1), as we have an absolute definable bijection cd : ω>κ → κ .
For a set k ∈ V′, such that P(ω>k) ∈ V′ let

Ak = {(G, H)|There is a structure A, with |A| ⊆ k, such that

G = Aut(A) and H ≤ G, |H | ≤ |k|}

It is enough to prove that (Ak)
V = (Ak)

V′
, because by definition

(τ
nlg
|k| )

V =
⋃

{τG,H + 1|(G, H) ∈ (Ak)
V}

=
⋃

{τG,H + 1|(G, H) ∈ (Ak)
V′ }

= (τ
nlg
|k| )

V′
< θV′

P(ω>k)

So let us prove the above equality: (Ak)
V′ ⊆ (Ak)

V, since if (G, H) ∈ (Ak)
V′

and
A ∈ V′ a structure such that G = Aut(A) then A ∈ V and (Aut(A))V = (Aut(A))V

′
,

because (Aut(A))V ⊆ |A||A| ⊆ P(k × k) ∈ V′. So (G, H) ∈ (Ak)
V, as witnessed by

the same structure.
On the other hand, suppose (G, H) ∈ (Ak)

V. So let A be a structure on s ⊆ k such
that G = Aut(A). By Observation 2.3, we may assume that LA = {Rā |ā ∈ ω>s},
and each Rā is a lg(ā) place relation. (This is not necessary, it just makes it more
convenient.) Define XA = {āˆb̄| lg(ā) = lg(b̄) ∧ b̄ ∈ RA

ā }. Observe that:
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804 I. Kaplan, S. Shelah

• XA ∈ V′, as XA ⊆ ω>k.
• A can be absolutely defined using XA and s: its universe is s, and for each ā ∈ ω>s,

Rā = {b̄| lg(b̄) = lg(ā) ∧ āˆb̄ ∈ XA}.
So in conclusion, A ∈ V′, and so G ∈ V′ as before. In addition H ∈ V′, because
H is the image of a function in k(ss). But there is an absolute definable bijection
k×ss → k(ss), and k×ss ⊆ P(k × k × k) ∈ V′. By definition (G, H) ∈ (Ak)

V′
and

we are done. ��

3 The automorphism tower without Choice

Definition 3.1 For a centerless group G, we define the sequence 〈Gα|α ∈ ord〉:
• G0 = G.
• Gα+1 = Aut(Gα)

• Gδ = ⋃{Gα|α < δ} for δ limit.

Remark 3.2 By the standard definition of Aut(G), we do not have that G ⊆ Aut(G).
However, recall that Inn(G) is the group of all inner automorphisms of G, i.e. con-
jugations by elements of G. Since G is centerless, this definition makes sense—
G ∼= Inn(G) ≤ Aut(G), and Aut(G) is again without center. So we can uniformly
identify Inn(G) with G, and so Gα ≤ Gα+1. This sequence is therefore monotone
and continuous.

Definition 3.3

(1) Define the ordinal τG by τG = min{α|Gα+1 = Gα}. We shall show below that
τG is well defined.

(2) For a set k, we define τ|k| to be the smallest ordinal α such that α > τG for all
groups G with power ≤ |k|.

(3) For a cardinal number κ (i.e. some ℵ), define τκ similarly.

Definition 3.4 For a group G (not necessarily centerless) and a subset A, we define an
equivalence relation EG,A on G by x EG,A y iff tpqf(x, A,G) = tpqf(y, A,G) where
tpqf(x, A,G) =

{σ(z, ā)| ā ∈ n A, n < ω, σ a term in the language of groups (i.e. a word)

with parameters from A,

z is its only free variable and G |� σ(x, ā) = e}

Remark 3.5

(1) Note that x EG,A y iff there is an isomorphism between 〈A, x〉G and 〈A, y〉G

taking x to y and fixing A pointwise.
(2) The relation EG,A is definable and absolute (since tpqf(x, A,G) is absolute).

Definition 3.6 We say (G, A) is a special pair if A ⊆ G, G is a group and EG,A =
{(x, x)|x ∈ G} (i.e. the equality).
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The automorphism tower of a centerless groupwithout Choice 805

Example 3.7

(1) If G = 〈A〉G then (G, A) is special.
(2) If A � G and CG(A) = {e} then (G, A) is special (because for all g ∈ G,

〈gag−1|a ∈ A〉 determines g).
(3) By (2) and 3.9 (see below), if G is centerless then (Aut(G),G) is special. So in

general, the converse of (1) is not true.
(4) There is a group G with center such that (Aut(G), Inn(G)) is special, e.g. Z/2Z,

but
(5) If G is not centerless then (3) is not necessarily true, even if |Z(G)| = 2:

It is enough to find a group which satisfies the following properties:
(a) Z(G) = {a, e} where a �= e.
(b) Hi ≤ G for i = 1, 2 are two different subgroups of index 2.
(c) Z(G) = Z(Hi ) for i = 1, 2
Let π be the homomorphism π : G → Aut(G) taking g to ig (where
ig(x) = gxg−1). Then Inn(G) = image(π). We wish to find x1 �= x2 ∈ Aut(G)

with x1 EAut(G),Inn(G)x2. So define xi (g) =
{

ag g /∈ Hi

g g ∈ Hi
. Since x2

i = id,

xiπ(g)x
−1
i = π(xi (g)) = π(g) and the fact that xi /∈ Inn(G) (because Z(G) =

Z(Hi )) it follows that tpqf(x1, Inn(G),Aut(G)) = tpqf(x2, Inn(G),Aut(G)).
Now we have to construct such a group. Notice that it is enough to find a center-
less group satisfying only the last two properties, since we can take its product
with Z/2Z. So take G = D∞ = 〈a, b|a2 = b2 = e〉, and Ha = ker ϕa where
ϕa : G → Z/2Z takes a to 1 and b to 0. In the same way we define Hb, and
finish.

The following is the crucial claim:

Claim 3.8 Assume G1 � G2, CG2(G1) = {e} and that (G1, A) is a special pair. Then
(G2, A) is a special pair.

Proof First we show that CG2(A) = {e}. Suppose that x ∈ CG2(A), so xax−1 = a
for all a ∈ A. Since conjugation by x (i.e. the map h �→ xhx−1 in G1) is an automor-
phism of G1, (as G1 is a normal subgroup of G2), it follows from (G1, A) being a
special pair (by Remark 3.5, Clause (1)) that it must be id. Hence, x ∈ CG2(G1), but
we assumed CG2(G1) = {e} and hence x = e.

Next assume that x EG2,A y where x, y ∈ G2 and we shall prove x = y. There
is an isomorphism π : 〈x, A〉G2 → 〈y, A〉G2 taking x to y and fixing A pointwise.
We wish to show that x = y, so it is enough to show that x−1π(x) ∈ CG2(A).
This is equivalent to showing x−1π(x)aπ(x−1)x = a, i.e. x−1π(xax−1)x = a, i.e.
π(xax−1) = xax−1 (remember that π(a) = a) for every a ∈ A. But xax−1 is an
element of G1 (as G1 � G2), and π : 〈xax−1, A〉G1 → 〈π(xax−1), A〉G1 must be id
because (G1, A) is a special pair, and we are done. ��
Note 3.9 If G is centerless then G � Aut(G), and CAut(G)(G) = {e}.
Conclusion 3.10 Assume G is centerless and (G, A) is a special pair. Then:
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806 I. Kaplan, S. Shelah

(1) (Gα, A) is a special pair for every α ∈ ord.
(2) CGα (A) = {e} for every α.

Proof (2) follows from (1). (why? by the first stage in the proof of Claim 3.8 with
G1 = G2). Prove (1) by induction on α. For limit ordinal, its clear from the definitions,
and for successors, the previous claim finishes the job using the above note. ��
Conclusion 3.11 Let γ be an ordinal, G a centerless group. Then:

(1) CGγ (G) = {e}.
(2) norGγ (Gβ) = Gβ+1, for β < γ .
(3) norβGγ (G) = Gβ for β ≤ γ .

Proof (1) Follows from Conclusion 3.10 and from the fact that (G,G) is a special
pair.

(2) The direction norGγ (Gβ) ≥ Gβ+1 is clear from the definition of the action
of Gβ+1 on Gβ . The direction norGγ (Gβ) ≤ Gβ+1 follows from the previ-
ous clause: suppose y ∈ norGγ (Gβ), so conjugation by y is in Aut(Gβ). By
definition there is z ∈ Gβ+1 such that yxy−1 = zxz−1 for all x ∈ Gβ , in
particular—for all x ∈ G, So y = z (by (1))

(3) By induction on β.
��

Claim 3.12 If G is centerless and (G, A) is a special pair then:

(1) (Z FC) |Gα| ≤ 2|A|+ℵ0 for all ordinals α.
(2) (Z F) There is a one to one absolutely definable (with parameters Gα , A, and at

most 2 distinguished elements from G) function from Gα into P(ω>A) for each
ordinal α.

Proof (1) follows from (2). The natural way to define the function f is f (g) =
tpqf(g, A,Gα), which is a set of equations. Luckily it is easy to encrypt equations
as elements of ω>A: We can assume that there are at least two elements in A—a, b
(if not, G = {e} because CG(A) = {e}). Let σ(z, c̄) be a word over A (i.e. c̄ is a
sequence in A), so it is of the form . . . zmi cni

i zmi+1cni+1
i+1 . . . where ni ,mi ∈ Z, ci ∈ c̄,

and i = 0, . . . , k −1. First we code the exponents sequence with a natural number, m,
using the bijection cd : ω>ω → ω, and then we code the sequence of indices where z
appears, call it l. Then we encrypt σ by al ˆbˆamˆb and after that—the list of elements
of A in σ by order of appearance.
Note that our function is definable as promised. ��
Claim 3.13 If G is centerless then:

(1) (Z FC) If |Gα| ≤ λ for all ordinals α, then τG < λ+.
(2) (Z F) If |Gα| ≤ |A| for all ordinals α and a set A, then τG < θA. It is enough to

assume that there is a function from A onto Gα for each ordinal α.

Proof (1) follows from (2), but with Choice, it is much simpler—Gλ+ = ⋃{Gα|α <
λ+}. Since |Gλ+| ≤ λ and 〈Gα〉 is increasing, it follows that there must be some
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The automorphism tower of a centerless groupwithout Choice 807

α < λ+ such that Gα = Gα+1.
(2): Let σ = θA. Assume that for all α < σ , Gα �= Gα+1. Then the function f :
Gσ → σ defined by f (g) = α iff g ∈ Gα+1\Gα is onto σ . So θGσ > σ , but by
assumption |Gσ | ≤ |A|, so θA ≥ θGσ > σ = θA—a contradiction. ��
So as promised, here is Thomas’ theorem proved in a different way, without Choice:

Conclusion 3.14 (Z FC) Thomas’ theorem: if G is a centerless group then τG <

(2|G|)+. Moreover, τκ < (2κ)+.

Proof Taking A = G, so that (G, A) is a special pair, applying 3.12 and 3.13 we get the
result regarding τG . Noting that (2κ)+ is regular and that there are, up to isomorphism,
at most 2κ groups of order κ we are done. ��

Now we deal with the case without Choice.

Main theorem 3.15 (ZF) If (G, A) is a special pair and G is a centerless group, then
τG < θP(ω>A).

Proof By Claim 3.13, Clause (2), we only need to show that |Gα| ≤ |P(ω>A)|, but
this is exactly Claim 3.12, Clause (2). ��

Now we shall improve this by:

Main theorem 3.16 (ZF) For every set k, τ|k| < θP(ω>k).

Proof We may assume 2 ≤ |k|. Recall that
τ|k| = ⋃{τG + 1|G is centerless and |G| ≤ |k|}, but we can replace this by
τ|k| = ⋃{τG + 1|G ∈ G} where
G = {G|G is centerless and G ⊆ k}. By the previous Theorem (3.15), we know
that τ|k| ≤ θP(ω>k) (because for all G ∈ G, as (G,G) is a special pair (see 3.6),
τG < θP(ω>G) ≤ θP(ω>k)), but we want a strict inequality.
Let τ−

|k| = ⋃{τG |G ∈ G}, clearly τ|k| ≤ τ−
|k| +1, and since θP(ω>k) > ℵ0 (see Remark

2.5), it is enough to prove τ−
|k| < θP(ω>k).

For each G ∈ G we define a function RG : P(ω>k) → τG which is onto: first we
define a function from P(ω>k) onto GτG (using Claim 3.12), then from GτG onto τG

(using Claim 2.6, and Claim 3.11).
Let B = {(x,G)|G ∈ G, x ∈ P(ω>k)}. Define a function R1 : B → τ−

|k| by
R((x,G)) = RG(x), (note—since RG is definable, there is no use of Choice). By def-
inition, R1 is onto. Now it is enough to find an injective function R2 : B → P(ω>k).
A group G = 〈|G|, ·,�−1〉 is a triple of nonempty subsets of ω>k (|G| is the universe
set of G). As we already mentioned (see the proof of 2.7), |ω>P(ω>k)| = |P(ω>k)|
(as 2 ≤ |k|), and we are done. ��

We postpone the proof of the following absoluteness lemma to the appendix.

Lemma 3.17 Let V′ ⊆ V a transitive class which is a model of Z F. Let (G, A) be
a special pair, and suppose G,P(ω>A) ∈ V′. Then, for every ordinal δ ∈ V′, the
automorphism tower 〈Gβ |β < δ〉 in V′ is the same in V (i.e. V |�“ 〈Gβ |β < δ〉
is the automorphism tower up to δ”).
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Using this lemma, we can finally deduce the following theorem.

Theorem 3.18 (1) Let V′ ⊆ V a transitive subclass, which is a model of Z F. If
P(ω>k) ∈ V′, then (τ|k|)V = (τ|k|)V

′
< θV′

P(ω>k).

(2) If κ is a cardinal number in V′ such that P(κ) ∈ V′, then (τκ)V = (τκ)
V′
<

θV′
P(κ).

(3) In particular, τℵ0 < θ
L(R)
R

.

Proof Obviously, we need only to see (1). Let
G = {G|G is a centerless group and G ⊆ k}. By the assumption on k, it is easy to see
that GV = GV′

. Hence τV|k| = ⋃{τG + 1|G ∈ GV} = ⋃{τG + 1|G ∈ GV′ } = τV′
|k| (the

second equality is Lemma 3.17). By Theorem 3.16, we have τV′
|k| < θV′

P(ω>k). ��

If we apply Lemma 1.8 from [1], which says that τ nlg
κ ≤ τκ and get:

Main Conclusion 3.19 Let V′ ⊆ V be as before (but now assume V |� Z FC). If
P(ω>k) ∈ V′, then τ nlg

|k| ≤ τ|k| < θV′
P(ω>k).

Note 3.20 We actually don’t need to assume that V is a model of Z FC and we address
this subject in [5]. For a cardinal number κ , we show that τ nlg

κ ≤ τκ is true even without

Choice, but for a general k, we get τ nlg′
|k〈<ω〉| ≤ τ|k〈<ω〉| (see the definitions there).

4 The descriptive set theoretic approach

In this short section we give a descriptive set theoretic approach into finding a bound
on τℵ0 . We start with the definition.

Definition 4.1 Let A be structure with universe A = |A|.
(1) For a formula ϕ(x, X)—a first order formula in the language of A, where x is a

single variable and X is a monadic variable (i.e. serves as a unary predicate—
varies on subsets of the structure, so not quantified inside the formula)—we
define a sequence 〈Xϕα ⊆ A|α ∈ Ord〉 by:
• Xϕ0 = ∅.
• Xϕα+1 = Xϕα ∪ {x ∈ A|ϕ(x, Xϕα) is satisfied in A}.
• Xϕδ = ⋃{Xϕβ |β < δ} for δ limit.

(2) For such a formula ϕ, let δϕ = min{α|Xϕα = Xϕα+1}.
(3) Let δ = δ(A)—the inductive ordinal of the structure—be the first ordinal such

that for any such formula ϕ (allowing members of A as parameters), δϕ < δ.

For more on this subject see [2], and for more on descriptive set theory, see [3].

Theorem 4.2 For a centerless group G with set of elements ω the height of its auto-
morphism tower is smaller than the inductive ordinal of the structure A with universe
ω ∪ P(ω) the operations of N , membership, and G (i.e. its product and inverse).
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Remark 4.3 In this version of the theorem we do not need to use parameters in Defini-
tion 4.1. However the theorem holds even without assuming that the structure contains
G, but then we need parameters (G (as a group) can be encoded as a subset of ω). In
that case this is second order number theory. Hence the conclusion is:

Conclusion 4.4 If A is the standard model of second order number theory (as above),
then τℵ0 ≤ δ(A).

Remark 4.5 Starting with any group G, we should look at the natural structure with
universe

⋃{nG|n < ω} ∪ P(⋃{nG|n < ω}), equipped with the group operation and
natural “set theoretic” operations.

Proof (of the theorem; sketch) By the definition it is enough to find a formula 

such that X
α encodes Gα (including its multiplication and inverse). By (G,G) being
special, we know that we can identify members of Gα with sets of finite sequences
of ω (see the proof of Claim 3.12). It is well known that the operations of N allow
us to encode finite sequences, and in this structure we can encode finite sequences of
subsets of ω.
Hence, much like the proof of Lemma 3.17 (in the appendix—it is advised to read it
in order to understand this proof), we can find three formulas as in Definition 4.1—

′(x, X), 
′′(x, y, X) and 
′′′(x, y, z, X) such that if X
α encodes Gα then:

• x satisfies 
′(x, X
α ) iff x encodes a quantifier free type of an element in Gα+1.
• x, y satisfies 
′′(x, y, X
α ) iff x, y ∈ Gα+1 and x ◦ y = id.
• x, y, z satisfies 
′′′(x, y, z, X
α ) iff x ◦ y = z.

Define 
(x, X
α ) to say that x encodes a triple (a, b, c) where a ∈ Gα+1, b encodes
a pair (d, d−1) where d ∈ Gα+1 and c encodes a triple (e, f, e ◦ f ) where e and f
are from Gα+1. Now we have successfully encoded Gα+1 as required. ��

5 A relative of the main theorem

Here we improve the main theorem by considering pairs (G, A) that satisfy a weaker
condition than being special. Namely, we find a bound on τG for centerless groups G
with a subset A such that (G, A) is weakly special. This bound, when interpreted in
Z FC , is the same bound as one gets using Thomas’ proof from [7].

Definition 5.1

(1) For a centerless group G, and subgroups H1, H2, we say that a homomorphism
(really a monomorphism) ϕ : H1 → H2 is good if there is an automorphism
ψ : GτG → GτG (so actually an inner automorphism of GτG ) such that ϕ = ψ �
H1.

(2) If A ⊆ G, let Ek
G,A be the equivalence relation on G defined by: x Ek

G,A y iff
there is a good homomorphism taking x to y and fixing A pointwise.

(3) We say that the pair (G, A) is weakly special if Ek
G,A is {(x, x)|x ∈ G}.

Remark 5.2 If x Ek
G,A y then also x EG,A y but not necessarily the other direction, and

so if (G, A) is special, it is also weakly special (so the name is justified).
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Claim 5.3 If G is centerless, G1 = Aut(G), and (G, A) is weakly special, then so is
(G1, A).

Proof The proof is identical to the proof of 3.8, since conjugation is a good homo-
morphism, G � G1 and GτG = (G1)τG1 . ��

And much like Conclusion 3.10 we have:

Conclusion 5.4 If G is a centerless group and (G, A) is (weakly) special then so is
(Gα, A) for every ordinal α, and CGα (A) = {e}.

The converse is true as well:

Claim 5.5 If for every ordinal α, CGα (A) = {e} then (G, A) is weakly special (so one
can take this as the definition).

Proof Suppose ϕ is a good homomorphism taking x to y and fixing A pointwise. Let
ψ ∈ Aut(GτG ) be such that ψ � G = ϕ. Then, by definition, ψ has to be conjugation
by some element of GτG , and by assumption CGτG (A) = {e}; hence ψ = id. ��
Definition 5.6 Denote by PF(A, B) the set of all partial functions from A to B (i.e.
such that the domain is a subset of A).

Definition 5.7 Say that a set A is pseudo finite if there is no function from A onto ω
(i.e. θA ≤ ω). Obviously, if A is finite, it’s also pseudo finite.

Definition 5.8 Let w0(x) = x , wn+1(x, 〈yi |i < n + 1〉) = wn(xyn x−1, 〈yi |i < n〉).
Definition 5.9 Call a tuple (G, A, B,h) 2-special if

(1) (G, A) is weakly special.
(2) A ⊆ B ⊆ G.
(3) h is a function, with domain G and if A is pseudo finite then

h : G → ⋃{PF(n>A, B)|n < ω}, and if not, then h : G → PF(ω>A, B).
(4) If g ∈ G and ā ∈ dom(h(g)), then wlg(ā)(g, ā) = h(g)(ā).
(5) If g ∈ G, g′ ∈ GτG and wlg(ā)(g′, ā) = h(g)(ā) for all ā ∈ dom(h(g)), then

g = g′.

Remark 5.10 (1) If (G, A, B,h) is 2-special then by (4) and (5) h is injective.
(2) So we characterize every g ∈ G by the set of special equations (with parameters

in B) it satisfies. The advantage over 3.12 is that we use fewer equations.

Claim 5.11 Suppose that (G, A, B,h) is 2-special, then there is some h1 extending h
such that (Aut(G), A, B,h1) is 2-special. Moreover, the function (G, A, B,h) �→ h1
is definable.

Proof Recall that G1 = Aut(G). As (G, A) is weakly special, CG1(A) = {e}. Define
h1 as follows:

h1 � G = h. For g ∈ G1\G, and a ∈ A, let fg,a = h(gag−1) (as G � G1, this is
well defined). Let dom(h1(g)) = {b̄ˆa|b̄ ∈ dom( fg,a), a ∈ A}, and

h1(g)(b̄ˆa) = fg,a(b̄).
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Now we check that the definition holds: (1) holds by 5.3. (2) is obvious.
(3): Obviously dom(h1(g)) ⊆ ω>A, so if A is not pseudo finite we are done. In the
case where A is pseudo finite, there is some n = n(g) such that dom( fg,a) ⊆ n>A
for all a ∈ A (otherwise, the function a �→ min{n < ω| dom( fg,a) ⊆ n>A} is onto
an unbounded subset of ω, and for every such subset there is a function from it onto
ω). Hence dom(h1(g)) ⊆ n+1>A, so h1 : G1 → ⋃{PF(n>A, B)|n < ω}.
(4): For g ∈ G, since h1(g) = h(g), there is nothing to prove. Suppose g ∈ G1\G and
b̄ˆa ∈ dom(h1(g)) (recall that by definition, the length of an element from dom(h1(g))
is not zero). Let n = lg(b̄). We have

• wn+1(g, b̄ˆa) = wn(gag−1, b̄) by the definition of wn+1.
• wn(gag−1, b̄) = h(gag−1)(b̄) = fg,a(b̄) by (4) and the choice of fg,a .
• fg,a(b̄) = h1(g)(b̄ˆa) by the definition of h1.

So, wn+1(g, b̄ˆa) = h1(g)(b̄ˆa).
(5): Suppose g ∈ G1, g′ ∈ GτG , and wlg(ā)(g′, ā) = h1(g)(ā) for all ā ∈

dom(h(g)). If g ∈ G, then since h1(g) = h(g), g′ = g by assumption. Suppose
g ∈ G1\G. In this case, we have that for all a ∈ A and b̄ ∈ dom( fg,a),

wlg(b̄)(g
′a(g′)−1, b̄) = wlg(b̄ˆa)(g

′, b̄ˆa) = h1(g)(b̄ˆa)

= fg,a(b̄) = h(gag−1)(b̄).

(Why? the first equality is by definition of wn , the second by assumption, the third by
definition of h1, and the fourth by the choice of fg,a).
So wlg(b̄)(g

′a(g′)−1, b̄) = h(gag−1)(b̄) for all b̄ ∈ dom(h(gag−1)). By (5),

g′a(g′)−1 = gag−1 for all a ∈ A. By (1), and by 5.4, g = g′. ��
Claim 5.12 Let (G, A) be weakly special. The function h defined by h(g) = {(〈〉, g)}
witnesses that (G, A,G,h) is 2-special.

Proof Checking the definition, all clauses are trivial, for example, (4): for any g ∈ G,
w0(g) = h(g)(〈〉) = g. ��
Conclusion 5.13 Assume (G, A) is weakly special. Then for all α ≤ τG , there is a
function hα (in fact defined uniformly) that shows that (Gα, A,G,hα) is 2-special.

Proof By induction on α we define hα such that for β < α, hβ ⊆ hα . For α = 0, this
is exactly the previous claim. For α = β + 1, this is the definable version of 5.11. For
α limit, let hα = ⋃{hβ |β < α}. It is easy to see that Definition 5.9 holds. ��

We conclude with:

Theorem 5.14 If (G, A) is a weakly special pair, then:

(1) (Z F) If A is pseudo finite, τG < θ⋃{PF(n>A,G)|n<ω}, and if not, τG < θPF(ω>A,G).
(2) (Z F) If A is finite, τG < θ⋃{n(G∪{g})|n<ω} where g /∈ G. If, moreover, there is a

function from ω onto G, then τG < θω = ℵ1.
(3) (Z FC) τG < (|G||A| + ℵ0)

+.
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Proof (3) follows from (1) by classical cardinal arithmetics (recall that | PF(A, B)| =
|B||A|, provided that 2 ≤ |B|).
To prove (1), we use Claim 3.13, Clause (2): from 5.13, we know that for all α,
if A is pseudo finite, then |Gα| ≤ |⋃{PF(n>A,G)|n < ω}|, and if not, |Gα| ≤
| PF(ω>A,G)| as witnessed by hα .
(2): | PF(A, B)| = |A(B ∪ {b})|, where b /∈ B so if A is finite, since |ω>A| = |ω|,
τG < θ⋃{n(G∪{g})|n<ω} where g /∈ G. If there is a function from ω onto G, there is
such a function from ω onto G ∪ {g}. Since |ω| = |ω>ω|, there is a function from ω

onto
⋃{n(G ∪ {g})|n < ω}, and we are done. ��

The Z FC version of 5.14 is not really new, although it is not mentioned explicitly
in [7]: one can prove it using a slight modification of the proof there (i.e. using Fodor).

From (2) above, we easily get:

Conclusion 5.15 If G is (pseudo) finitely generated then τG < θω = ℵ1.

The case where G is finitely generated is interesting, also due to the fact that the
tower is absolute:

Lemma 5.16 Let V′ ⊆ V a transitive class which is a model of Z F. Let G be
a centerless group, finitely generated by A. Then, for every ordinal δ ∈ V′, the
automorphism tower 〈Gβ |β < δ〉 in V′ is the same in V (i.e. V |� “ 〈Gβ |β <

δ〉 is the automorphism tower up to δ”).

We prove this lemma in the appendix. In conclusion, we have:

Conclusion 5.17 If G is finitely generated then τG < ℵL
1 .

Comparing Theorem 5.14 with Theorem 3.15:
First of all, the condition—(G, A) is weakly special—is weaker than (G, A) is special
(note that specialty is absolute, while weak specialty is not) so 5.14 is stronger in that
aspect. In 3.15, G does not appear in the bound, only A, so the bounds are not directly
comparable. However, the bound in the last theorem is better in the case where A is
finite. If G = A, then the theorems are the same, because | PF(ω>G,G)| = |P(ω>G)|.

6 Appendix: Absoluteness lemmas

Here we shall prove the absoluteness lemmas (Lemma 3.17, 5.16).

Lemma 6.1 Let V′ ⊆ V a transitive class which is a model of Z F. Let (G, A) be
a special pair, and suppose G,P(ω>A) ∈ V′. Then, for every ordinal δ ∈ V′, the
automorphism tower 〈Gβ |β < δ〉 in V′ is the same in V (i.e. V |� “ 〈Gβ |β <

δ〉 is the automorphism tower up to δ”).

Proof Let T = 〈Gβ |β ∈ ordV′ 〉. We shall prove by induction on α < δ that T � α+1
is the automorphism tower in V up to α + 1.
For α = 0 this is clear since G ∈ V′.
For α limit this follows from the definitions.
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Suppose α = β+ 1. By the induction hypothesis T � α is the automorphism tower up
to α in V, so (Gβ)V = (Gβ)V

′ ∈ V′. For every ρ ∈ Aut(Gβ) = Gα in V, we need to
show that ρ ∈ (Gα)V

′
.

A short explanation of what follows: by our assumption, the set of quantifier free types
over A is in V′. To show that ρ is in V′, we would like to identify, in an absolute way,
its quantifier free type over A. In order to do that, we identify small pieces of the
action of ρ on Gβ : for each h ∈ Gβ , we find what is ρ � 〈A ∪ {h}〉, by describing
the quantifier free type of 〈ρ, h〉 in Gα over A (i.e. a type in 2 variables). These types
amount to normal subgroups of A ∗ 〈x, y〉. After describing the restrictions of ρ to
〈A ∪ {h}〉 for all h, we demand that they agree on their common domains, and this
allows us to define ρ as their union.
Without loss of generality A is a subgroup of G—if not, replace it with 〈A〉G (we
can define a function from ω>A onto ω>〈A〉G as in Claim 3.12). Let A = A ∗ 〈x〉
i.e. the free product of A and the infinite cyclic group. As in 3.12 there is an absolute
definable function from ω>A onto A, so P(A) ∈ V′. Let B = A ∗ 〈x, y〉, and by the
same reasoning P(B) ∈ V′.
For every g ∈ Gα , there is a homomorphism ϕg from A onto 〈A ∪ {g}〉Gα defined
by x �→ g, and fixing A pointwise. By 3.10 ((Gα, A) is special), g �→ ker(ϕg) is
injective, and absolutely definable (ker(ϕg) is basically just tpqf(g, A,Gα)). Note that

by the induction hypothesis, ϕV
g = ϕV′

g for g ∈ Gβ . Similarly, for g, h ∈ Gα , there is
a homomorphism ϕg,h from B onto 〈A ∪ {g, h}〉Gα fixing A pointwise and taking x
to g and y to h, and (g, h) �→ ker(ϕg,h) is injective.
The following definition allows us to interpret the type of g in the type of some pair
(h1, h2) (see example below):

Definition 6.2 Let B ⊆ B

(1) For every σ ∈ B, Let ψσ : A → B be the homomorphism defined by x �→ σ ,
ψσ � A = id.

(2) For g ∈ Gβ we say that g is affiliated with B (denoted g ∝ B) if there is a word
σg = σ(x, y, a) ∈ B (a are parameters from A) such that ker(ϕg) = ψ−1

σg
(B).

Example 6.3 Let ρ ∈ Gα, h ∈ Gβ . If B = ker(ϕρ,h) then for every g ∈ Gβ , g ∝ B
iff there exists σg such that ϕρ,h(σg) = g (i.e. g ∈ 〈A ∪ {h, ρ}〉Gα ∩ Gβ ). It could
easily be verified that this is indeed true, using the equality ϕϕρ,h(σ ) = ϕρ,h ◦ ψσ for
every σ ∈ B, and 3.10.

We shall find an absolute first order formula
(H,P(ω>A),Gβ) that will say “H is a
normal subgroup of A = A∗〈x〉 and there exists an automorphismρ ∈ Aut(Gβ) = Gα

such that H = ker(ϕρ)”.
If we succeed then if ρ ∈ (Gα)V then 
(ker(ϕρ),P(ω>A),Gβ) will hold. Since
ker(ϕρ) ∈ V′, and 
 was absolute, there is some ρ′ ∈ (Gα)V

′
such that ker(ϕρ) =

ker(ϕρ′) so ρ = ρ′ and we are done.
Let us describe 
. It will say that H is a normal subgroup of A and that for each
h ∈ Gβ there exists a subgroup B = Bh ≤ B with the following properties:
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(1) B is a normal subgroup of B.
(2) H ⊆ B, and B ∩ A = H .
(3) For every a ∈ A, a ∝ B and σa = a (equivalently B ∩ A = {e})
(4) h ∝ B and σh = y.
(5) If g ∝ B and both σ1 and σ2 witness that, then σ1σ

−1
2 ∈ B.

(6) If g1, g2 ∝ B then so is g1g2 and σg1g2 = σg1σg2 .
(7) If g ∝ B then there exists g′ ∈ Gβ such that g′ ∝ B and xσgx−1 = σg′ .

B = Bh induces a monomorphism ρB whose domain is HB = {g ∈ Gβ |g ∝ Bh}. It
is a subgroup of Gβ containing A and h (why? because of the conditions on Bh). For
every g ∈ HB define ρB(g) to be the element g′ ∈ Gβ as promised from property (7)
(so the range of ρB is also HB). Note that for every g1, g2 ∈ HB , if σg1σ

−1
g2

∈ B then
g1 = g2.
Why? Since B is normal, ψσ induces ψ ′

σ : A → B/B, and so the condition g ∝ B
becomes ker(ϕg) = ker(ψ ′

σg
). Now, if σ0 ∈ B, then ψ ′

σ0σ
= ψ ′

σ so ψ ′
σg1

= ψ ′
σg2

and
hence ker(ϕg1) = ker(ϕg2).

Now it an easy exercise to see that ρB is a well defined monomorphism,
After definingρB we demand that for every h1, h2 ∈ Gβ and all suitable B1 and B2,ρB1

and ρB2 agree on their common domain. Thus we can define ρH = ⋃{ρBh |h ∈ Gβ},
and demand that ρH will be an automorphism (i.e. onto). Now all that is left is to say
that H = ker(ϕρH ), and 
 is written.
(There is no problem with writing this in first order. Moreover, the formula is bounded
in its parameters.)
Why is
 correct? because if
(H, . . .) is true, then H = ker(ϕρH ) by definition. On
the other hand, if H = ker(ϕρ) for some ρ, then:

• For each h, ker(ϕρ,h) will be a suitable Bh (by the example above).
• If B satisfies the conditions above, then ρB � A = ρ � A because by condition

(2) ker(ϕρB (a)) = ψ−1
xax−1(H) = ker(ϕρ(a)). Hence, ρ−1 ◦ ρB � A = id and by

3.10, ρB � HB = ρ � HB . So all the ρBs agree on their common domains.

In conclusion, the demands on H are satisfied, and we are done. ��
Lemma 6.4 Let V′ ⊆ V a transitive class which is a model of Z F. Let G ∈ V′
be a centerless group, finitely generated by A. Then, for every ordinal δ ∈ V′, the
automorphism tower 〈Gβ |β < δ〉 in V′ is the same in V (i.e. V |� “ 〈Gβ |β <

δ〉 is the automorphism tower up to δ”).

Proof As above, let T = 〈Gβ |β ∈ ordV′ 〉, and we shall prove by induction on α < δ

that T � α + 1 is the automorphism tower in V up to α + 1.
For α = 0 this is clear since G ∈ V′.
For α limit this follows from the definitions.
Suppose α = β + 1. By the induction hypothesis T � α is the automorphism tower in
V up to α, so (Gβ)V = (Gβ)V

′ ∈ V′. Let ρ ∈ Aut(Gβ) = Gα in V. We need to show
that ρ ∈ (Gα)V

′
.

We prove by induction on j ≤ β, that the sequence I j = 〈ρ � Gi |i ≤ j〉 is in V′. For
j = β, we will have that ρ = ρ � Gβ ∈ V′.
j = 0: Since A is finite, (A(Gβ))V = (A(Gβ))V

′
, so ρ � A ∈ V′. 〈A〉 = G, so
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ρ � G ∈ V′. (It is just the set of pairs (g, h)where g ∈ G, h ∈ Gβ , and there is a finite
sequence a0, . . . , an−1 ∈ A and a function ε : n → {±1}, such that g = ∏

aε(i)i and
h = ∏

ρ(ai )
ε(i)).

j limit: Let ρ � G j = ⋃{ρ � Gi |i < j}. Using it we can define I j = 〈ρ � Gi |i ≤ j〉.
j = i + 1: ρ � G j is the set of all pairs (g, h) such that

• g ∈ G j , h ∈ Gβ and for all g′ ∈ A, ρ(gg′g−1) = hρ(g′)h−1.

Note that this condition is absolute, and hence we are done if it works. Why is that
true? Obviously if (g, h) ∈ ρ � G j , then this condition holds. Conversely, it is enough
to show that for each g, there is exactly one h such that (g, h) satisfies this condition.
Suppose that for h1, h2 we have that for all g′ ∈ A, h1ρ(g′)h−1

1 = h2ρ(g′)h−1
2 . So,

working in V, we let h′
1 = ρ−1(h1), h′

2 = ρ−1(h2), and we get that conjugation by
(h′

1)
−1h′

2 is id on G. By the fact that (Gβ, A) is special, this implies that h′
1 = h′

2, so
h1 = h2.
Note that this proof is simpler than the proof of the previous lemma. This is due to the
fact that here, given ρ, we have that ρ � G is “automatically” in V′, while this is not
the case in general. ��
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