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Nonproper products

Andrzej Ros�lanowski, Saharon Shelah and Otmar Spinas

Abstract

We show that there exist two proper creature forcings having a simple (Borel) definition, whose
product is not proper. We also give a new condition ensuring properness of some forcings with
norms.

1. Introduction

In Ros�lanowski and Shelah [4], a theory of forcings built with the use of norms was developed
and a number of conditions to ensure the properness of the resulting forcings was given.
However, it is not clear how sharp those results really are and this problem was posed in
Shelah [7, Question 4.1]. In particular, he asked about the properness of the forcing notion

Q =
{
〈wn : n < ω〉 : wn ⊆ 2n, wn �= ∅ and lim

n→ω
|wn| = ∞

}
ordered by w̄ � w̄′ ⇔ (∀n ∈ ω)(w′

n ⊆ wn). In Section 2, we give a general criterion for
collapsing the continuum to ℵ0 and then in Corollary 2.8 we apply it to the forcing Q, just
showing that it is not proper.

That the property of properness is not productive, that is, is not preserved under taking
products, has been observed by Shelah long ago (see [6, XVII, 2.12]). However, his examples are
somewhat artificial and certainly it would be desirable to know of some rich enough subclass of
proper forcings that is productively closed. It was a natural conjecture put forth by Zapletal,
that the class of definable, say analytic or Borel, proper forcings would have this property.
Actually, it was only proved recently by Spinas [8] that finite powers of the Miller rational
perfect set forcing and finite powers of the Laver forcing notion are proper. These are two of
the most frequently used forcings in the set theory of the reals. However, in this paper we will
show that this phenomenon does not extend to all forcing notions defined in the setting of
norms on possibilities. In Section 4 of the paper, we give an example of a forcing notion with
norms which, by the theory developed in Section 2, is not proper and yet it can be decomposed
as a product of two proper forcing notions of a very similar type, and both of which have
a Borel definition. The properness of the factors is a consequence of a quite general theorem
presented in Section 3 (Theorem 3.3). It occurs that a strong version of halving from [4, Section
2.2] implies the properness of forcing notions of the type Q∗

∞(K, Σ). More on applications of
halving can be found in Kellner and Shelah [2, 3] and Ros�lanowski and Shelah [5].

Notation. Most of our notation is standard and compatible with that of classical textbooks
on Set Theory (like Bartoszyński and Judah [1]). However, in forcing we keep the convention
that a stronger condition is the larger one.
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In this paper, H will stand for a function with domain ω and such that (∀m ∈ ω)(2 �
|H(m)| < ω). We also assume that 0 ∈ H(m) (for all m ∈ ω); if it is not the case, then we fix
an element of H(m) and we use it whenever appropriate notions refer to 0.

Creature background: Since our results are stated for creating pairs with several special
properties, below we present a somewhat restricted context of the creature forcing, introducing
good creating pairs.

Definition 1.1. (1) A creature for H is a triple

t = (nor,val,dis) = (nor[t],val[t],dis[t])

such that nor ∈ R�0, dis ∈ H(ω1), and, for some integers mt
dn < mt

up < ω,

∅ �= val ⊆
⎧⎨
⎩〈u, v〉 ∈

∏
i<mt

dn

H(i) ×
∏

i<mt
up

H(i) : u � v

⎫⎬
⎭ .

The family of all creatures for H is denoted by CR[H].
(2) Let K ⊆ CR[H] and Σ : K → P(K). We say that (K, Σ) is a good creating pair for H

whenever the following conditions are satisfied for each t ∈ K:
(a) [Fullness] dom(val[t]) =

∏
i<mt

dn
H(i);

(b) t ∈ Σ(t) and if s ∈ Σ(t), then val[s] ⊆ val[t] and so also ms
dn = mt

dn and ms
up = mt

up;
(c) [Transitivity ] If s ∈ Σ(t), then Σ(s) ⊆ Σ(t).

(3) A good creating pair (K, Σ) is
(a) local if mt

up = mt
dn + 1 for all t ∈ K;

(b) forgetful if, for every t ∈ K, v ∈∏i<mt
up

H(i) and u ∈∏i<mt
dn

H(i), we have

〈v�mt
dn, v〉 ∈ val[t] ⇒ 〈u, u�v�[mt

dn,mt
up)〉 ∈ val[t],

(c) strongly finitary if, for each i < ω, we have

|H(i)| < ω and |{t ∈ K : mt
dn = i}| < ω.

(4) If t0, . . . , tn ∈ K are such that mti
up = m

ti+1
dn (for i < n) and w ∈∏

i<m
t0
dn

H(i), then we
let

pos(w, t0, . . . , tn) def=

⎧⎨
⎩v ∈

∏
j<mtn

up

H(j) : w � v & (∀i � n)(〈v�mti

dn, v�mti
up〉 ∈ val[ti])

⎫⎬
⎭ .

If K is forgetful and t ∈ K, then we also define

pos(t) = {v�[mt
dn,mt

up) : 〈v�mt
dn, v〉 ∈ val[t]}.

Note that if K is forgetful, then to describe a creature in K it is enough to give pos(t),nor[t]
and dis[t]. This is how our examples will be presented (as they all will be forgetful). Also, if
K is additionally local, then we may write pos(t) = A for some A ⊆ H(mt

dn) with a natural
interpretation of this abuse of notation.

If w, t0, . . . , tn are as in Definition 1.1(4) and si ∈ Σ(ti) for i � n, and u ∈ pos(w, s0, . . . , sk),
k < n, then pos(u, sk, . . . , sn) ⊆ pos(w, t0, . . . , tn) (remember Definition 1.1(2b)).

Definition 1.2. Let (K, Σ) be a good creating pair for H. We define a forcing notion
Q∗

∞(K, Σ) as follows.
A condition in Q∗

∞(K, Σ) is a sequence p = (wp, tp0, t
p
1, t

p
2, . . .) such that

(a) tpi ∈ K and m
tp
i

up = m
tp
i+1

dn (for i < ω) and
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(b) w ∈∏
i<m

t
p
0

dn

H(i) and limn→∞ nor[tpn] = ∞.

The relation � on Q∗
∞(K, Σ) is given by: p � q if and only if, for some i < ω, we have

wq ∈ pos(wp, tp0, . . . , t
p
i−1) (if i = 0 this means wq = wp) and tqn ∈ Σ(tpn+i) for all n < ω.

For a condition p ∈ Q∗
∞(K, Σ) we let i(p) = lh(wp).

2. Collapsing creatures

We will show here that very natural forcing notions of type Q∗
∞(K, Σ) (for a big local and

finitary creating pair (K, Σ)) collapse c to ℵ0, in particular answering [7, Question 4.1]. The
main ingredient of the proof is similar to the ‘negative theory’ presented in [4, Section 1.4],
and Definition 2.1 should be compared with [4, Definition 1.4.4] (but the two properties are
somewhat incomparable).

Definition 2.1. Let h : R�0 → R�0 be a nondecreasing unbounded function and let (K, Σ)
be a good creating pair for H. We say that (K, Σ) is sufficiently h-bad if there are sequences
m̄ = 〈mi : i < ω〉, Ā = 〈Ai : i < ω〉 and F̄ = 〈Fi : i < ω〉 such that

(α) m̄ is a strictly increasing sequence of integers, m0 = 0, and

(∀t ∈ K)(∃i < ω)(mt
dn = mi & mt

up = mi+1);

(β) Ai are finite nonempty sets;
(γ) Fi = (F 0

i , F 1
i ) : Ai ×

∏
m<mi+1

H(m) −→ Ai+1 × 2;
(δ) if i < ω, t ∈ K, mt

dn = mi and nor[t] > 4, then there is a ∈ Ai such that
for every x ∈ Ai+1 × 2, for some sx ∈ Σ(t) we have
nor[sx] � min{h(nor[t]), h(i)} and
(∀u ∈∏m<mi

H(m))(∀v ∈ pos(u, sx))(Fi(a, v) = x).

Proposition 2.2. Suppose that h : R�0 → R�0 is a nondecreasing unbounded function,
and (K, Σ) is a strongly finitary good creating pair for H. Assume also that (K, Σ) is sufficiently
h-bad. Then the forcing notion Q∗

∞(K, Σ) collapses c onto ℵ0.

Proof. The proof is similar to that of Ros�lanowski and Shelah [4, Proposition 1.4.5], but
for the reader’s convenience we present it fully.

Let m̄, Ā and F̄ witness that (K, Σ) is sufficiently h-bad. For i < ω and a ∈ Ai we define
Q∗

∞(K, Σ)-names ρ̇i,a (for a real in 2ω) and η̇i,a (for an element of
∏

j�i Aj) as follows:

�Q∗∞(K,Σ) ‘η̇i,a(i) = a and η̇i,a(j) = F 0
j−1(η̇i,a(j − 1), Ẇ �mj) for j > i’

and
�Q∗∞(K,Σ) ‘ρ̇i,a�i ≡ 0 and ρ̇i,a(j) = F 1

j (η̇i,a(j), Ẇ �mj+1) for j � i ’.

Above, Ẇ is the canonical name for the generic function in
∏

i<ω H(i), that is, p �Q∗∞(K,Σ)

‘wp � Ẇ ∈∏i<ω H(i)’. We are going to show that

�Q∗∞(K,Σ) ‘(∀r ∈ 2ω ∩ V)(∃i < ω)(∃a ∈ Ai)(∀j � i)(ρ̇i,a(j) = r(j))’.

To this end, suppose that p ∈ Q∗
∞(K, Σ) and r ∈ 2ω. Passing to a stronger condition if needed,

we may assume that (∀j < ω)(nor[tpj ] > 4). Let i < ω be such that lh(wp) = mi; then also

m
tp
j

dn = mi+j for j < ω (remember Definition 2.1(α)).
Fix k < ω for a moment. By downward induction on j � k choose sk

j ∈ Σ(tpj ) and ak
j ∈ Ai+j

such that
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(a) nor[sk
j ] � min{h(nor[tpj ]), h(i + j)} for all j � k;

(b) (∀u ∈∏m<mi+k
H(m))(∀v ∈ pos(u, sk

k))(F 1
i+k(ak

k, v) = r(i + k));
(c) for j < k:⎛

⎝∀u ∈
∏

m<mi+j

H(m)

⎞
⎠ (∀v ∈ pos(u, sk

j ))(F 1
i+j(ak

j , v) = r(i + j) & F 0
i+j(ak

j , v) = ak
j+1).

(Plainly it is possible by Definition 2.1(δ).)
Since, for each j < ω, both Σ(tpj ) and Ai+j are finite, we may use König’s Lemma to pick an

increasing sequence k̄ = 〈k(	) : 	 < ω〉 such that

a
k(�+1)
j = a

k(�′)
j and s

k(�+1)
j = s

k(�′)
j ,

for 	 < 	′ < ω and j � k(	). Put wq = wp and tqj = s
k(j+1)
j , bj = a

k(j+1)
j for j < ω. Easily, q =

(wq, tq0, t
q
1, t

q
2, . . .) is a condition in Q∗

∞(K, Σ) stronger than p. Also, by clause (c) of the choice
of sk

j , we clearly have

(∀j < ω)(∀v ∈ pos(wq, tq0, . . . , t
q
j))(F 0

i+j(bj , v) = bj+1 & F 1
i+j(bj , v) = r(i + j)).

Hence,
q �Q∗∞(K,Σ) ‘(∀j < ω)(η̇i,b0(i + j) = bj & ρ̇i,b0(i + j) = r(i + j))’,

completing the proof.

Lemma 2.3. Suppose that positive integers N,M, d satisfy (N − 2) · 2M < d. Let A,B be
finite sets such that |A| � 2M and |B| � N . Then there is a mapping F̂ : A × dM → B with
the property that:

(�) if 2 � 	 � M , 〈ci : i < d〉 ∈∏i<d[M ]�, then there is a ∈ A such that, for every b ∈ B,
for some cb

i ∈ [ci]��/2� (for i < d), we have(
∀u ∈

∏
i<d

cb
i

)
(F̂ (a, u) = b).

Proof. Plainly we may assume that |A| = 2M and |B| = N � 2, and then we may pretend
that A = M2 and B = N .

For h ∈ A = M2 and u ∈ dM we let F̂ (h, u) < N be such that

F̂ (h, u) ≡
∑
i<d

h(u(i)) mod N.

This defines the function F̂ : A × dM → B = N , and we are going to show that it has the
property stated in (�). To this end, suppose that 2 � 	 � M and 〈ci : i < d〉 ∈∏i<d[M ]�. For
each i < d we may choose hi ∈ A so that

|(hi)−1[{0}] ∩ ci| � �	/2� and |(hi)−1[{1}] ∩ ci| � �	/2�.
Then, for some h ∈ A and I ⊆ d, we have |I| � d/2M and hi = h for i ∈ I. For i ∈ d \ I we
may pick c∗i ∈ [ci]��/2� and ji < 2 such that h�c∗i ≡ ji.

Now suppose b ∈ B. Take a set J ⊆ I such that

|J | +
∑

i∈d\I

ji ≡ b mod N

(possible as |I| � d/2M > N − 2, so |I| � N − 1). By our choices, we may pick cb
i ∈ [ci]��/2�

(for i ∈ I) such that
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if i ∈ J , then h�cb
i ≡ 1, and

if i ∈ I \ J , then h�cb
i ≡ 0.

For i ∈ d \ I we let cb
i = c∗i (selected earlier). It should be clear that then(

∀u ∈
∏
i<d

cb
i

)
(F̂ (h, u) = b),

as needed.

Example 2.4. Let m̄ = 〈mi : i < ω〉 be an increasing sequence of integers such that m0 = 0
and mi+1 − mi > 4i+3. Let h(	) = �	/2� for 	 < ω.

For j < ω we let H0
m̄(j) = i + 2, where i is such that mi � j < mi+1. Let K0

m̄ consist of all
(forgetful) creatures t ∈ CR[H0

m̄] such that
(1) dis[t] = 〈it, 〈Zt

j : mit � j < mit+1〉〉 for some it < ω and ∅ �= Zt
j ⊆ H0

m̄(j) (for mit � j <
mit+1);

(2) nor[t] = min{|Zt
j | : mit � j < mit+1};

(3) pos(t) =
∏

j∈[mit ,mit+1)
Zt

j .
Finally, for t ∈ K0

m̄ we let

Σ0
m̄(t) = {s ∈ K0

m̄ : it = is & (∀j ∈ [mit ,mit+1))(Zs
j ⊆ Zt

j)}.
Then (K0

m̄, Σ0
m̄) is a strongly finitary and sufficiently h-bad good creating pair for H0

m̄.
Consequently, the forcing notion Q∗

∞(K0
m̄, Σ0

m̄) collapses c onto ℵ0.

Proof. It should be clear that (K0
m̄, Σ0

m̄) is a strongly finitary good creating pair for H0
m̄.

To show that it is sufficiently h-bad, let Ai = i+22, Bi = Ai+1 × 2 = i+32 × 2 and Mi = i + 2.
Since |Bi| · 2Mi = 2i+4+i+2 < mi+1 − mi

def= di, we may apply Lemma 2.3 for A = Ai, B = Bi,
M = Mi and d = di to get functions F̂i : Ai × diMi → Bi with the property (�) (for those
parameters). For a ∈ Ai and v ∈∏j<mi+1

H0
m̄(j), we interpret Fi(a, v) as F̂i(a, u) where u ∈

di(i + 1) is given by u(j) = v(mi + j) for j < di. It is straightforward to show that m̄, Ā =
〈Ai : i < ω〉 and F̄ = 〈Fi : i < ω〉 witness that (K0

m̄, Σ0
m̄) is h-bad.

The above example (together with Proposition 2.2) easily gives the answer to [7,
Question 4.1]. To show how our problem reduces to this example, let us recall the following.

Definition 2.5 (see [4, Definition 4.2.1]). Suppose 0 < m < ω and, for i < m, we have
ti ∈ CR[H] such that mti

up � m
ti+1
dn . Then we define the sum of the creatures ti as a creature

t = Σsum(ti : i < m) such that (if well defined, then):
(a) mt

dn = mt0
dn, mt

up = m
tm−1
up ;

(b) val[t] is the set of all pairs 〈h1, h2〉 such that:
lh(h1) = mt

dn, lh(h2) = mt
up, h1 � h2,

and 〈h2�mti

dn, h2�mti
up〉 ∈ val[ti] for i < m,

and h2�[mti
up,m

ti+1
dn ) is identically zero for i < m − 1;

(c) nor[t] = min{nor[ti] : i < m};
(d) dis[t] = 〈ti : i < m〉.

If, for all i < m − 1, we have mti
up = m

ti+1
dn , then we call the sum tight.

Definition 2.6. Let (K, Σ) be a local good creating pair for H, let m̄ = 〈mi : i < ω〉 be
a strictly increasing sequence with m0 = 0. We define the m̄-summarization (Km̄, Σm̄,Hm̄) of
(K, Σ,H) as follows:
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(1) Hm̄(i) =
∏mi+1−1

m=mi
H(m);

(2) Km̄ consists of all tight sums Σsum(t� : mi � 	 < mi+1) such that i < ω, t� ∈ K, mt�

dn = 	;
(3) if t = Σsum(t� : mi � 	 < mi+1) ∈ Km̄, then Σm̄(t) consists of all creatures s ∈ Km̄ such

that s = Σsum(s� : mi � 	 < mi+1) for some s� ∈ Σ(t�) (for 	 = mi, . . . ,mi+1 − 1).

Proposition 2.7. Assume that (K, Σ) is a local good creating pair for H, and m̄ = 〈mi :
i < ω〉 is a strictly increasing sequence with m0 = 0. Then:

(1) (Km̄, Σm̄) is a good creating pair for Hm̄;
(2) the forcing notion Q∗

∞(Km̄, Σm̄) can be embedded as a dense subset of the forcing notion
Q∗

∞(K, Σ) (so the two forcing notions are equivalent).

Corollary 2.8. Let H : ω → ω be increasing, H(0) � 2, and let g : R�0 → R�0 be an
unbounded nondecreasing function. We define (KH

g , ΣH
g ) as follows: KH

g consists of all creatures
t ∈ CR[H] such that

(1) dis[t] = 〈it, At〉 for some it < ω and ∅ �= At ⊆ H(it);
(2) nor[t] = g(|At|), mt

dn = it, mt
up = it + 1 and pos(t) = At.

For t ∈ KH
g we let

ΣH
g (t) = {s ∈ KH

g : it = is & As ⊆ At}.
Then (KH

g , ΣH
g ) is a local strongly finitary good creating pair for H. The forcing notion

Q∗
∞(KH

g , ΣH
g ) collapses c onto ℵ0. In particular, the forcing notion Q defined in Section 1

is not proper.

Proof. Let p ∈ Q∗
∞(KH

g , ΣH
g ). Plainly, limi→∞ |Atp

i | = ∞, so we may find a condition q � p
and an increasing sequence m̄ = 〈mi : i < ω〉 such that

(1) m0 = 0, m1 = lh(wq), mi+1 − mi > 4i+3;
(2) if mi � m

tq
k

dn < mi+1, then |Atq
k | = i + 2.

Now we define a condition q∗ in Q∗
∞((KH

g )m̄, (ΣH
g )m̄) by

wq∗
= wq, tq

∗
i = Σsum(tqk : mi+1 � k < mi+2) (for i < ω).

The forcing notion Q∗
∞(KH

g , ΣH
g ) above the condition q is equivalent to the forcing notion

Q∗
∞((KH

g )m̄, (ΣH
g )m̄) above q∗. Plainly, Q∗

∞((KH
g )m̄, (ΣH

g )m̄) above q∗ is isomorphic to
Q∗

∞(K0
m̄, Σ0

m̄) of Example 2.4 above the minimal condition r with wr = wq∗
. The assertion

follows now by the last sentence of Example 2.4.

Remark 2.9. (1) If, for example, g(x) = log2(x), then the creating pair (KH
g , ΣH

g ) is big
(see [4, Definition 2.2.1]), and we may even get ‘a lot of bigness’. Thus, the bigness itself is not
enough to guarantee properness of the resulting forcing notion.

(2) Forcing notions of the form Q∗
∞(K, Σ) are special cases of Q∗

f (K, Σ) (see [4, Definition
1.1.10 and Section 2.2]). However, if the function f is growing very fast (much faster than H),
then our method does not apply. Let us recall that if (K, Σ) is simple, finitary and big and has
the halving property, and f : ω × ω → ω is H-fast (see [4, Definition 1.1.12]), then Q∗

f (K, Σ)
is proper. Thus, one may wonder if we may omit halving; can the forcing notion Q∗

f (KH
g , ΣH

g )
be proper for H and f suitably ‘fast’?
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3. Properness from halving

It was shown in [4, Theorem 2.2.11] that halving and bigness (see [4, Definitions 2.2.1, 2.2.7])
imply properness of the forcings Q∗

f (K, Σ) (for fast f). It occurs that if we have a stronger
version of halving, then we may get the properness of Q∗

∞(K, Σ) even without any bigness
assumptions.

Definition 3.1. Let (K, Σ) be a forgetful good creating pair.
(1) Let t ∈ K and ε > 0. We say that a creature t∗ ∈ Σ(t) is an ε-half of t if the following

hold:
(i) nor[t∗] � nor[t] − ε;

(ii) if s ∈ Σ(t∗) and nor[s] > 1, then we can find t0 ∈ Σ(t) such that

nor[t0] � nor[t] − ε and pos(t0) ⊆ pos(s).

(2) Let ε̄ = 〈εi : i < ω〉 be a sequence of positive real numbers and m̄ = 〈mi : i < ω〉 be a
strictly increasing sequence of integers with m0 = 0. We say that the pair (K, Σ) has the (ε̄, m̄)-
halving property if, for every t ∈ K with mi � mt

dn and nor[t] � 2, there exists an εi-half of
t in Σ(t).

Definition 3.2. Let (K, Σ) be a good creating pair. Suppose that p ∈ Q∗
∞(K, Σ) and

I ⊆ Q∗
∞(K, Σ) is open dense. We say that p essentially belongs to I, written p ∈∗ I, if there

exists i∗ < ω such that, for every v ∈ pos(wp, tp0, . . . , t
p
i∗−1), we have (v, tpi∗ , t

p
i∗+1, t

p
i∗+2, . . .) ∈ I.

Note that if I ⊆ Q∗
∞(K, Σ) is open dense, p ∈∗ I and p � q, then also q ∈∗ I.

Theorem 3.3. Let ε̄ = 〈εi : i < ω〉 be a decreasing sequence of positive numbers and m̄ =
〈mi : i < ω〉 be a strictly increasing sequence of integers with m0 = 0. Assume that, for each
i < ω, ∣∣∣∣∣

∏
n<mi

H(n)

∣∣∣∣∣ � 1/εi.

Let (K, Σ) be a good creating pair for H and suppose that (K, Σ) is local and forgetful and
has the (ε̄, m̄)-halving property. Then the forcing notion Q∗

∞(K, Σ) is proper.

Proof. We start with two technical claims.

Claim 3.4. Let a � 2 and I ⊆ Q∗
∞(K, Σ) be open dense. Furthermore, suppose that p ∈

Q∗
∞(K, Σ) and i < ω is such that i(p) � mi and nor[tpn] > a for every n � mi − i(p). Finally,

let v ∈∏n<mi
H(n). Then there exists q ∈ Q∗

∞(K, Σ) such that
(a) p � q, wp = wq and tpn = tqn for every n < mi − i(p);
(b) nor[tqn] � a − εi for every n � mi − i(p);
(c) either, letting q[v] = (v, tqmi−i(p), t

q
mi−i(p)+1, t

q
mi−i(p)+2, . . .), q[v] ∈∗ I or else there is no

r � q[v] such that r ∈ I, wr = v and nor[trn] > 1 for every n.

Proof of the claim. We know that (K, Σ) has the (ε̄, m̄)-halving property and therefore, for
each n � mi − i(p), we may choose an εi-half tq0

n ∈ Σ(tpn) of tpn. For n < mi − i(p) put tq0
n = tpn

and let wq0 = wp. This defines a condition q0 = (wq0 , tq0
0 , tq0

1 , tq0
2 , . . .) ∈ Q∗

∞(K, Σ). Plainly, (a)
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and (b) hold for q0 instead of q. Now if there is no r � q
[v]
0 with r ∈ I, wr = v and nor[trn] > 1

for every n < ω, we can let q = q0. Hence, we may assume that such r = (wr, tr0, t
r
1, t

r
2, . . .) does

exist.
Pick j < ω large enough such that nor[trn] � a − εi for every n � j. Now we define q ∈

Q∗
∞(K, Σ):
(1) wq = wp, tqn = tpn for n < mi − i(p);
(2) tqn = trn−mi+i(p) for n � mi − i(p) + j;
(3) for mi − i(p) � n < mi − i(p) + j let tqn ∈ Σ(tpn) be such that

nor[tqn] � nor[tpn] − εi � a − εi and pos(tqn) ⊆ pos(trn−mi+i(p))

(exists by the halving property).
Clearly p � q and (a), (b) hold. Also, for every u ∈ pos(v, tqmi−i(p), . . . , t

q
mi−i(p)+j) we have

q[u] � r, and hence q[u] ∈ I, as I is open. Consequently, q[v] ∈∗ I.

Claim 3.5. Let a � 3 and I ⊆ Q∗
∞(K, Σ) be open dense. Suppose that p ∈ Q∗

∞(K, Σ) and
i < ω is such that i(p) � mi and nor[tpn] > a for every n � mi − i(p). Then there exists q ∈
Q∗

∞(K, Σ) such that
(a) p � q, wp = wq and tpn = tqn for n < mi − i(p);
(b) nor[tqn] � a − 1 for every n � mi − i(p);
(c) for every v ∈∏n<mi

H(n), either q[v] ∈∗ I, or else there is no r ∈ I such that r � q[v],
wr = v and nor[trn] > 1 for all n.

Proof of the claim. Let 〈vl : l < k〉 enumerate
∏

n<mi
H(n); thus k � 1/εi. Applying

Claim 3.4 k times, it is straightforward to construct a sequence 〈ql : l � k〉 ⊆ Q∗
∞(K, Σ) such

that
(1) q0 = p, ql � ql+1, wql = wp and tql

n = tpn for every n < mi − i(p);
(2) nor[tql

n ] � a − l · εi for every n � mi − i(p);
(3) 〈ql, ql+1, vl, a − l · εi〉 are like 〈p, q, v, a〉 in Claim 3.4.

Then clearly q = qk is as desired.

We argue now that the forcing notion Q∗
∞(K, Σ) is proper. So suppose that N is a countable

elementary submodel of (H(χ),∈) (for some sufficiently large regular cardinal χ), K, Σ, . . . ∈ N .
Let p ∈ N ∩ Q∗

∞(K, Σ) and let 〈I� : 	 < ω〉 list with ω-repetitions all open dense subsets of
Q∗

∞(K, Σ) from N .
By induction on 	 < ω, we choose integers i� and conditions p� ∈ N ∩ Q∗

∞(K, Σ) as follows.
We set p0 = p and i0 > i(p) is such that nor[tp0

n ] > 3 for all n � mi0 − i(p).

Now assume that we have defined p� ∈ N ∩ Q∗
∞(K, Σ) and i� < ω so that wp = wp� and

nor[tp�
n ] > 3 + 	 for every n � mi�

− i(p). Applying Claim 3.5 (inside N) to 3 + 	, I�, p�, i� here
standing for a, I, p, i there, we may find a condition p�+1 ∈ N ∩ Q∗

∞(K, Σ) such that

(a)� p� � p�+1, wp = wp� = wp�+1 and tp�
n = t

p�+1
n for all n < mi�

− i(p);
(b)� nor[tp�+1

n ] � 2 + 	 for every n � mi�
− i(p);

(c)� for every sequence v ∈∏n<mi�
H(n), if there exists r ∈ I� such that r � p

[v]
�+1, wr = v

and nor[trn] > 1 for every n, then p
[v]
�+1 ∈∗ I�.

Then we choose i�+1 > i� so that nor[tp�+1
n ] > 3 + 	 + 1 for all n � mi�+1 − i(p).

After the inductive construction is carried out, we let q be the natural fusion determined by
the p� (so wq = wp and tqn = tp�

n whenever n < mi�
− i(q)). Plainly, q ∈ Q∗

∞(K, Σ) (remember
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(a)�+1+(b)�) and it is stronger than all p� (for 	 < ω). Let us show that q is (N, Q∗
∞(K, Σ))-

generic. To this end, suppose I ∈ N is a dense open subset of Q∗
∞(K, Σ) and r ∈ Q∗

∞(K, Σ) is
stronger than q. Pick a condition r0 = (v, tr0

0 , tr0
1 , tr0

2 , . . .) � r and 	 < ω such that
(∗) r0 ∈ I, I = I� and lh(v) = mi�

;
(∗∗) nor[tr0

n ] > 1 for every n < ω.
Then r0 � q[v] � p

[v]
�+1. Therefore, by (c)�, we see that p

[v]
�+1 ∈∗ I� and hence we may find

u ∈ pos(v, tr0
0 , . . . , tr0

k ) (for some k < ω) such that p
[u]
�+1 ∈ I�. Then p

[u]
�+1 ∈ N ∩ I is compatible

with r.
Note that the above argument shows also that, for every open dense subset I ∈ N of

Q∗
∞(K, Σ), the set {q[v] : v ∈∏n<mi

H(n) & i < ω} ∩ I is predense above q.

4. A nonproper product

Here, we give an example of two proper forcing notions Q∗
∞(K1, Σ1) and Q∗

∞(K2, Σ2) such
that their product Q∗

∞(K, Σ) collapses c onto ℵ0.
Throughout this section, we write log instead of log2.

Definition 4.1. Let x, i ∈ R, x > 0, i � 0 and k ∈ ω \ {0}. We let

fk(x, i) =
log(log(log(x)) − i)

k

in the case that all three logarithms are well defined and attain a value at least 1. In all other
cases we define fk(x, i) = 1.

Lemma 4.2. (1) fk(x/2, i) � fk(x, i) − 1/k;
(2) letting j = (log(log(x)) + i)/2, if fk(x, i) � 2, then fk(x, j) = fk(x, i) − 1/k;
(3) letting j as in (2), if min{fk(x, i), fk(y, j)} > 1, then fk(y, i) � fk(x, i) − 1/k;
(4) if x� 224+i

and z such that log(log(z)) = (log(log(x)) + i)/2, then fk(z, i) = fk(x, i)− 1/k.

Proof. (1) Note that, for x � 2, we have

(∗) log(x − 1) � log(x) − 1.

Indeed, x � 2 implies x − 1 � x/2. Applying log to both sides, we get log(x − 1) � log(x/2) =
log(x) − 1.

If x < 222+i

, then log(log(log(x)) − i) < 1 (if at all defined), and fk(x, i) = 1 = fk(x/2, i). So
assume x � 222+i

. Then log(x) � 22+i � 2 and log(log(x)) − i � 2, and hence we may apply
(∗) with log(x) and log(log(x)) − i and obtain

log
(

log
(

log
(x

2

))
− i
)

= log(log(log(x) − 1) − i) � log(log(log(x)) − 1 − i) � log(log(log(x)) − i) − 1.

By dividing both sides by k, we arrive at (1).
(2) Note that fk(x, i) � 2 implies log(log(x)) − i � 4 and hence log(log(x)) − j =

(log(log(x)) − i)/2 � 2. Consequently,

fk(x, j) =
log(log(log(x)) − j)

k
=

log((log(log(x)) − i)/2)
k

=
log(log(log(x)) − i) − 1

k
= fk(x, i) − 1

k
.
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(3) By assumption we have log(log(y)) − j � 0. By plugging in the definition of j and adding
j − i to both sides, we obtain log(log(y)) − i � 1

2 (log(log(x)) − i) and hence log(log(log(y)) −
i) � log(log(log(x)) − i) − 1. After dividing by k, we reach (3).

(4) Note that

fk(z, i) =
1
k

log(log(log(z)) − i) =
1
k

log((log(log(x)) − i)/2)

=
1
k

[log(log(log(x)) − i) − 1] = fk(x, i) − 1
k

.

We are going to modify the example in Corollary 2.8 and Example 2.4.
Let m̄ = 〈mi : i < ω〉 be an increasing sequence of integers such that m0 = 0 and mi+1 −

mi > 4i+3. For j < ω let H(j) = i + 2, where i is such that mi � j < mi+1, and let g(x) = x.
The local good creating pair (KH

g , ΣH
g ) introduced in Corollary 2.8 is denoted by (K1, Σ1). By

Example 2.4 we know that ((K1)m̄, (Σ1)m̄) (see Definition 2.6) is sufficiently bad and hence
(by Proposition 2.7) the forcing Q∗

∞(K1, Σ1) collapses c into ℵ0.
Recall that, for a creature t ∈ K1, we have
(1) dis[t] = 〈it, At〉 for some it < ω and ∅ �= At ⊆ H(it);
(2) nor[t] = |At| and pos(t) = At.

Let ln = |H(n)| and

kn = �
√

max{k ∈ ω \ {0} : fk(ln, 0) > 1}� if ln > 2216
,

and kn = 2 if ln � 2216
. Certainly we have limn→∞ ln = ∞ and therefore limn→∞ kn = ∞ as

well (and the sequence 〈kn : n < ω〉 is nondecreasing). Note also that limn→∞ fkn
(ln, 0) = ∞.

Definition 4.3. Let K consist of all creatures t ∈ CR[H] such that
(1) dis[t] = 〈mt, At, it〉 for some mt < ω and ∅ �= At ⊆ H(mt), and it ∈ ω, 0 � it �

log(log(lmt));
(2) nor[t] = fkmt (|At|, it), mt

dn = mt, mt
up = mt + 1 and pos(t) = At.

For t ∈ K we let

Σ(t) = {s ∈ K : ms = mt & As ⊆ At & is � it}.

Lemma 4.4. The pair (K, Σ) is a local forgetful strongly finitary good creating pair for H.
The forcing notion Q∗

∞(K, Σ) collapses c to ℵ0.

Proof. It is straightforward to check that (Km̄, Σm̄) inherits the sufficient badness of
((K1)m̄, (Σ1)m̄) (remember Lemma 4.2(1)). Then use Proposition 2.7.

We are now going to define the desired factoring Q∗
∞(K, Σ) � P0 × P1 into proper factors

P0, P1. For this we recursively define an increasing sequence n̄ = 〈ni : i < ω〉 so that n0 = 0
and ni+1 is large enough such that

kni+1 � 2 ·
∏

j<ni

H(j).

We put U0 =
⋃

i<ω[n2i, n2i+1) and U1 =
⋃

i<ω[n2i+1, n2i) and we let π0 : ω → U0 and π1 : ω →
U1 be the increasing enumerations.

Definition 4.5. Let 	 ∈ {0, 1}. We define H� = H ◦ π� and we introduce K�, Σ� as follows:
(1) K� consists of all creatures t ∈ CR[H�] such that
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(i) dis[t] = 〈mt, At, it〉 for some mt < ω and ∅ �= At ⊆ H�(mt), and it ∈ ω, 0 � it �
log(log(ln)), where n = π�(mt);

(ii) mt
dn = mt, mt

up = mt + 1, pos(t) = At and nor[t] = fkn
(|At|, it) (where again n =

π�(mt));
(2) for t ∈ K� we let

Σ�(t) = {s ∈ K� : ms = mt & As ⊆ At & is � it}.

Lemma 4.6. (1) For 	 ∈ {0, 1}, (K�, Σ�) is a local forgetful good creating pair for H�.
(2) Let m̄0 = 〈m0

i : i < ω〉 and ε̄0 = 〈ε0
i : i < ω〉 be such that π0(m0

i ) = n2i and ε0
i = 2/kn2i

.
Then (K0, Σ0) has the (ε̄0, m̄0)-halving property.

(3) Let m̄1 = 〈m1
i : i < ω〉 and ε̄1 = 〈ε1

i : i < ω〉 be such that π1(m1
i ) = n2i+1 and ε1

i =
2/kn2i+1 . Then (K1, Σ1) has the (ε̄1, m̄1)-halving property.

Proof. (1) The proof should be clear.
(2) Let t ∈ K0, nor[t] � 2, dis[t] = 〈m,A, i∗〉. Let n = π0(m) � n2i (so m0

i � m = mt
dn).

Define j = (log(log(|A|)) + i∗)/2 and let z be such that log(log(z)) = j. Certainly, kn �
2 and fkn

(|A|, i∗) � 2, so log(log(|A|)) − i∗ � 16 and hence i∗ < j � �j� < log(log(|A|)) �
log(log(ln)). Let t∗ ∈ K0 be such that dis[t∗] = 〈m,A, �j�〉. Clearly t∗ ∈ Σ0(t). We are going
to argue that t∗ is an ε0

i -half of t (in (K0, Σ0)).
By (∗) of the proof of Lemma 4.2(1) and then by Lemma 4.2(2), we have

nor[t∗] = fkn
(|A|, �j�) =

1
kn

log(log(log(|A|)) − �j�)

� 1
kn

log((log(log(|A|)) − j) − 1) � 1
kn

(log((log(log(|A|)) − j)) − 1)

= fkn
(|A|, j) − 1

kn
= fkn

(|A|, i∗) − 2
kn

� nor[t] − ε0
i .

Now let s ∈ Σ0(t∗) be such that nor[s] > 1. Let dis[s] = 〈m,A′, i′〉, thus A′ ⊆ A and i′ � �j� �
j. Let t0 ∈ K0 be such that dis[t0] = 〈m,A′, i∗〉. Then t0 ∈ Σ0(t) and pos(t0) = A′ = pos(s).
Also, nor[s] > 1 implies log(log(|A′|)) > i′ � j. By the definition of z we conclude |A′| > z.
Noting that |A| > 224+i∗

, we apply Lemma 4.2(4) to obtain

nor[t0] = fkn
(|A′|, i∗) � fkn

(z, i∗) = fkn
(|A|, i∗) − 1

kn
� nor[t] − ε0

i .

(3) The proof is similar to that of (2) above.

Corollary 4.7. (1) The forcing notions Q∗
∞(K�, Σ�) (for 	 = 0, 1) are proper.

(2) Let Q = {p ∈ Q∗
∞(K, Σ) : i(p) = ni, i < ω}. Then Q is a dense suborder of Q∗

∞(K, Σ)
and it is isomorphic with a dense suborder of the product Q∗

∞(K0, Σ0) × Q∗
∞(K1, Σ1).

Consequently, the latter forcing collapses c to ℵ0.

Proof. (1) Let m̄0, ε̄0 be as in Lemma 4.6(2). By the choice of n̄ we have∣∣∣∣∣∣
∏

n<m0
i

H0(n)

∣∣∣∣∣∣ =

∣∣∣∣∣
∏{

H(j) : j ∈
⋃
�<i

[n2�, n2�+1)

}∣∣∣∣∣ �
∏

j<n2i−1

H(i) � 1
2
kn2i

= 1/ε0
i .

Consequently, Theorem 3.3 and Lemma 4.6(1) and (2) imply that Q∗
∞(K0, Σ0) is proper.

Similarly for Q∗
∞(K1, Σ1).

(2) The proof should be clear.
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