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Abstract. It is shown that there is a subalgebra of the measure algebra forcing 
dominating reals. Also results are given about iterated forcing connected with 
random reals. 

Introduction 

In this work we will give results connected with random reals. All these results were 
discovered when the authors worked on building a model for Ks (measure) having 
cofinality co (see [BJ 1]) where Ks (measure) is the minimal cardinality of a family 
of measure zero sets covering the real line. That  problem remains open. 

In Sect. 1 we will show that under a certain assumption (K s (category)= b), 
there exists a subalgebra of the Random real algebra forcing dominating reals. We 
don't  know if this is true under ZFC. Our construction is by induction on a 
dominating family. The first stage is to build a name for the dominating real. 

In Sect. 2 we will show that an co-interation adds a random real which appears 
only in the limit if and only if there is an intermediate stage containing a perfect set 
of random reals over the ground model. We will give incisive applications of this 
last result by answering a question of J. Paulikowski and give more results about 
finite support iteration and random reals. 

The reader may ask what are the connections between Sects. 1 and 2. To supply 
information we can say that the problems of adding dominating reals and adding 
perfect sets of random reals are related by the following 

* The first author would like to thank NSF for its partial support under Grant DMS-8701828 
** The second author would like to thank U.S.-Israel BSF for partial support 
Note. In the first version of this paper we proved only a weak form of the main result of Sect. 2 (see 
2.2). Also, the first version contained a third section, but the main result of that version is a weak 
form of 2.5 
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130 H. Judah and S. Shelah 

Theorem [B J]. I f  there is a random real r over M and a dominating real over M[r] 
then there is a perfect tree of random reals over M. 

To get a dominating real from a perfect set of random reals is an open problem. 

1 Adding a dominating real 

In this section we will show that under CH, or MA (countable), there is a 
subalgebra ~ of the measure algebra (Random real algebra) such that forcing with 
~B yields a real which eventually dominates every function from co to co which is in 
the ground model. We will assume CH; minor changes to this construction will 
give a proof under M A  (countable). 

We will construct the algebra by induction on some fixed well order of o) ~ of 
order type o)1. In stage 0 we will give an co-sequence of maximal antichains, that we 
will use for the name of the dominating function. The main definition in this section 
is 

1.1 Definition. ~ is adequate for B=( (B , ,  a :Oc'co):ncco),  if 
(a) ~ is a subalgebra of the algebra of the Borel sets. 

(~+ = { B 6 ~  :kt(B)>0}; I =  { B � 9  :it(B) =0}).  

(b) For every t/in 2 <~ [-t/] belongs to ~3. 
(c) B.,0 belongs to ~B for all n c co and ~ c no). B. + 1, ô lk)--C B.,Q for all n ~ co, Q c"co, 

and kcco. 
(d) For each n ~ co, (B.,~ :q c 'co)  is the maximal antichain of ~3, and for each 

Q~nco 

#(B. + l, o~t~)) < #(B., 8)" 10- 2. 
k 

(e) For every X in ~3 + and all n ~ co, we have 

(~)~,. "there exists we  ["co] <So X~_ U B.,Q(mod(I)) 

or 

(fl).,. :there are infinitely many ~ �9 "co such that B., ~c~X �9 f13 +. 

(I) For every X in ~3 + 

{n < co :(~)~,.} is finite. 

(g) If X c ~3 + and ~(X)> 1 - # (~ ~oB.. ,0) then for infinitely many 0 c "co the set 

( X n B . , o ) -  w{B.+ 1,, : t / �9 "+ 1co} 

has positive measure. 

1.2 Fact. {n �9 co:(~)x,.} is an initial segment of co. []  

The next stage is to introduce the main tool used in the construction. This is a 
forcing notion which is essentially the Cohen real forcing. 
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Around random algebra 131 

1.3 Definition. 
(a) Let PFT~ be the set of all t~"z2  satisfying: 

(i) < >et 
(ii) if q e t  then e~_l(t/Itoet).,,, 

(iii) if t/e (tn" > 2) then (t/^ (0) e t v t/^ (1) e t) 
(b) Set P F T =  U PFT~ 

n 

(c) AP.  = {(t, f )  : t ~ PFT.  and f :  t ~ Q + ~a {0} and if q s t ch" > 2 then 

f(t/) = ~ f(t/^(t~ and f(< >):~ 0}. 

Let A P =  U AP,. Define a partial order on AP as follows: If ( t , f ) e A P , ,  
t l  

( t ' , f ' )eAP. , ,  let ( t , f ) < ( t ' , f )  iff n<n',  t =  t'n">--2, fc=f'. 
(d) For  every Lebesgue measurable A__C ~ we define fA: 0,> 2 ~ / b y  

(e) If A =lira(T) (--all branches of the tree T) we will write f r  for fA. If 
(t, f )  e AP,  we say that A satisfies (t, f )  if for all ,1 e t, f(~) <fA('7). Set 

AP,(A) = {(t, f )  E AP,  : A satisfies (t, f ) } ,  AP(A) = U AP,(A). 
n 

1.4 Fact. If #(A)4=0 and G~AP(A),  and G is sufficiently generic, then 
T= u {t : ~(t, f )  ~ G} is a perfect tree satisfying 

(i) /~(lim Tn[q 0 = F(~) for all ~/e T, where F = u{f :S( t ,  f )  e G}. In part icular ,  
#(lim T)=  F(< >) (by the Lebesgue density theorem). 

(ii) lira TC=A (modulo a measure zero set). 
(iii) Vq#(A c~lql) > 0-~ #(lira Tc~ [~/]) < #(A c~ [r/]. []  

The first stage of the proof is to show that we can find 
B =  <<B.,v : 0 ~"co):n e co> satisfying the conditions on 1.1. This will be used to 
construct the name for the dominating real. 

1.5 Lemma. There is B = (( B~, v : 0 ~ %@ : n < co) and ~3 such that ~B is adequate for 
B. 

Proof We define, by induction on n, ~3,, and <B,,v:r ~"co) such that 
(i) ~3, satisfies 1.1 (a), (b). 

(ii) <B,,v :0enco), for m<n,  satisfies 1.1 (c), (d), and (e). 
(iii) ~._-c~B.+I and ~3. is generated by {[~/] :t/~'~ 
(iv) If X ~ ~++ 1 then "--7 (~)~,.. Let ~3 = L) ~. .  

n 

The induction, n = 0:~3 o is the algebra generated by {[~] : t /s  ~ 
Fix Q h : i < c o > = 2  <0,, be such that {i:th=q} e[co]0, for each t/e2<% 
n + 1 : It is clearly enough to define <B. + ~, r : < co> for each ~ e"(o. For  this we 

remark that 
X 

w.l.o.g, we assume that It/.] riB., o ~ fB +. 
Let 

Ao = [q,] c~B,, 0, 

C O = [B,,o]\A o . 
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132 H. Judah and S. Shelah 

Let 
Sk = {(t, f )  e AP(A) : f ( (  )) < #(Ak) .1 O-(k + 3)}, 

T k = {(t, f )  ~ AP(A) :f(< >) < #(Ck). 10 -(k + 3)}, 

Rk = Sk X T k . 

Over a model N, forcing with R k gives two positive sets, let them be Ak, C k. Now we 
define the following forcing iteration (P~, Qi: i e co>, satisfying 

[~e,"~Q,= gi when A, = Ao\  U Aj, C, = Co\  ~ C~ 
j<i  j<i  

Clearly P1 -~R0. 
Let P,o =limP/. Let N <  (H(N1, e, < > be countable and containing B.. o. Then 

clearly Po, e N. 
Let Go, be a generic filter for Po, over N. Then we obtain a sequence 

( (A i, C~> : i < co>, satisfying 
(a) For  each j, k < co 

#(Ajn Ck) = O, 

#(Aj~Ak)=O if j :~k ,  

#(CjC~Ck)=O if j#:k .  

(b) -2. 
J i 

(c) If [q]c~B,, e e f8 + then there exists infinitely many k's such that 

M [ r / ] ~ k ) > O  or U([r/])nQ)>O 

(by genericity of Go,). 
(d) #([~/] ~ B . , e -  w {Aju G :J < co}) > O. 
Let 

B.  + 1, ~<2k> = Z k ,  

Bn+ l, y2k+ l> = C k  �9 

Then (Bk+,,r :k<co)  satisfies the required conditions. 

Fact. ~3 = B, satisfies condition 1.1 (g). 

[Proof Use (c), (d), and that for each r/, {i:q=r/i ) is infinite.] 

1.6 Lemma. Suppose that ~B is adequate for B = (( B,, e : Q e "co ) : n e co), and assume 
that ~ = ( u, : n < co> is such that u, a ["co] < ~o, and there is a Cohen real over a model 
containing fB and ~. Then there exists BC__2o,\ 0 U B,,Q such that the Boolean 

F I < o ,  Q~U n 

algebra generated by ~Bu{B} is adequate for B. 

Proof. A = 2o,\ U U B., ~. Set Q = { ((t i, f/): i < k) : k ~ co and ((ti, f3 E AP(A)) and 
/ l < 7 0  ~ 61,1rt 

(f~((>) < 10-(i+ 1))}. We give the following natural order to Q: 

((t~, f i t ) : /<  k 1) =< <(t 2, fi2)" i < k 2 ) 

if k 1 =<k 2 and for each i<k  ~ there is ni such that 

t} c . ,  >=2, 

f f  =f~21 t~ 
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Around random algebra 133 

(<Q, < ) is essentially a finite support product of AP(A). Since it is countable, it is 
essentially a Cohen real forcing.) Now we define some Q-names: [-Write members 
of Q as (F, f) .]  Let 

~= w{t:(3(t, f ) ~  G)(F(i) = t)}, 

= u {/:  (3(-f,, f )  ~ G)(f(i) =f )} .  

Then the following fact holds in a generic extension: 
(a) Z is a perfect tree 
(b) f(~/)= #(lim~n[~/]) 
(c) if i < co and n e co and Q e u, then 

p(lim ~ n B., 0) = 0 

(d) B = U lim Z satisfies the requirements of the lemma. 

Let ~B' be the Boolean algebra generated by ~Su{B}. 
We will show only (d). The rest is clear. The conditions 1.1 (a)-(c) are clear. We 

need to show 1.1 (d), 1.1 (e), 1.1 (f), and 1.1 (g). Clearly 1.1 (d) follows from 1.1 (e). 
Therefore we will show 1.1(e), l.l(f), and 1.1(g) for X ~  '+. If X = X 1  
w X z u . . . u X ,  (a disjoint union) then it is enough to show 1.1 (e)-(g) for each Xi. 
Therefore w.l.o.g, there is Ye f15 + such that X ~ { YnB, Y\B}. Now Y~ ~B +, thus Y 
satisfies 1.1 (e)-(g) and clearly 

We start by showing that if for infinitely many Q, 

u(YnB,,Q-- w { w {(Bi,, :q eJco} :n < j <  co})>0: 
then for infinitely many Q, 

{(Bj,, Jco} : .  < j  < co})>0. 

This is clear when X = YnB, using a density argument. We only recall that for 
such 0 

H(YnBn,QnA)>O. 

Therefore we may assume X =  Y - B .  We will give a density argument. Let 
((to, fo), ...,(tk, fk))eQ. Let ~ be such that 

u(B,, ~) < min {/~(A n [q]) - fi(q): ~/e ti A i < k} 

and 
#(YnB.,Q- u{w{B],, :~/e/co} : n < j  < co} > 0 .  

1 e 
Fix k(*) such that i>=~ke)~ < ]--6 where 

e=#(YnB.,Q- w{w{B],, :q e]co} : n<j< co}. 

i>=k(*) ~ .  For k < i_-< k(*), let ti{( )}, =f /{(  )} < 10" Now 

for 
each i < k(*) we can find (si, gi) E AP such that s i ~ C, gi ~fi, ((si, gi) : i < k(*)) e Q and if 
T is a perfect tree satisfying for all q e si 

 (lim T n  Err-l) = g,(,1) 
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134 H. Judah and S. Shelah 

then 

/~(lim T n B  m e) < e 
' k(*)lO" 

(The si are obtained by taking a clopen approximation of Bm, e with small error, 
then deleting all this from the t~ by enlarging it to si.) Then we get that (g, ~) > (~ f )  
and 

and thus 

(g, ~ ) [ [ - "# (XnB. ,~ -  u{u{B],n :t/eJe)} : n < j <  co} > 0". 

Claim. The condition 1.1 (g) holds. 

[Proof By using the above fact, the case not covered is when X = B -  Y. But in this 
case take Y and p and n such that 

P I~-"#(B- Y) - u {(B0, . +1 : 6 e n + i(o} : n < j  < co} > 0". 

Then p is essentially a clopen set p such that #((/5- Y ) -  u {(Be,. + 1 : 6 e "+ lo)}) > 0. 
The rest follows by a density argument.] 

Now we will use this in order to prove 

To do this we will use the following 

Claim. Let E be in ~3 + and assume that F = E n A  has positive measure. Then for 
almost all n e e  o, there are infinitely many 6 e"co such that FnB., e has positive 
measure. 

ProofLetC.= U U Be, mandC=UC. .Letnbebigenough.  LetEo=E\C..  
m < n  e ~ u m  n 

Then E o e ~  + and # ( E o - F ) < I 0  -"+l  ~(because Eo-FC=e~,.Be,.I._ / Also Eo 

satisfies the condition for (g) and so there are infinitely many 6's such that Eo n Be,. 
- w{Be,.+ 1:6 e"+ ice} has positive measure. We finish the proof by showing that 
each one of these 6 works: Let 

Z= EonBe,.-w{Be,.+ 1 :Qe"+i(o}. 

Z has positive measure by the choice of 6. Z is disjoint from U U BQ, k (because 
k < n  e e u k  

Z = Eo). Z is disjoint from U Be,. (because Z = Be,. and we can choose 6 r u.). Z is 
e~u. 

disjoint from U Be, k for all k > n (because it is disjoint from u {Be,. + 1 : 6 e "+ ice}). 
e e U k  

Therefore we conclude that Z is disjoint from C and it is a subset of E. Hence Z__c E 
- -C = F, and so F has positive measure.] 

Claim. The condition 1.1 (e) holds. 

[Proof Let (t, f )  e Q and k = lg(O. 

Case 1. (t, f ) I~-"X = YnB" for some Ye ~3 +. Let n such that (B)y ,. holds. Clearly 
we may assume that YnA has positive measure. Then there are two cases 

(i) {~ : #(YnAnBe,,) > O} is finite. 
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Around random algebra 135 

In this case we have (a)~,.. By previous claim, this case holds only for finitely 
many n. Therefore for almost all n we have 

(ii) {e :P(YnAnBo, . )  > 0} is infinite. 

1 
Let 0 be such that  #(YnAnBe , . )  > 0} and p(Bo,.) < l~v4q-. Then find (tk, fk) e AP 

such that if T is any perfect tree satisfying "for all/1 e tk 

#(lim Tn  T[~]) =fk01)" 

1 
then It(B.. oA lira (r)) < 1 0 k + 5 o" Therefore (t, f )  ^ (tk, fk) forces that 

It(B~, onX) > �89 Y) > 0. 

Case 2. (F, f-) ]k- "X = Y -  B" for some Y~ ~ +. Like Case 1, we assume (fi)r,,. Pick 
such that 

It(B,,o) < rain {It(An It/] -f~(t/) : t/~ t, and i < k} = e. 

Fix k(*) such that  
1 i 

E/F< i>=k(*) ~ #(Bn'~nY)" 

[This will imply #(i_>_~(*)Ti) < l I t (B" 'Qn  Y)'] Now for each i<k(*) we can find 

(si, gi)eA such that  siAE, g~Af~, ((s~,g~)'i<k(*))~Q and if T is any perfect tree 
satisfying for all t/e si 

then 

It(lim Tn  [/7]) = g,(t/) 

g 
#(lim TnB.,o) < k(*)lO" 

(We can get this condition by using a clopen approximation to Bn, o c~ Y and then we 
extend t i by deleting this clopen set.) Then clearly (g, r (t, f )  and 

Therefore 

(g, g)t~-it(YnB.,onB) < ~ . 

This finishes the proof  of the lemma. 

(g, g)[[-"#(Y-- B) > ~ > 0"].  

[] 

1.7 Theorem (CH). There exists ~,  a subalgebra of  the measure algebra, such that 

V ~  (3 f V g ~ oo~' n V) (3nVm > n) (g(m) <f(m)).  

Proof. Let ( f i : i < c o l )  be such that  

(Vi < j  < col) (3nVm > n) (fi(m) <fj(m)) 

and (Vfe cr176 ~ col) (3nVm > n) (f(m) <fi(m)). We will get ~B by transfinite induction 
on co 1. 
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StageO: Let ~3o, B be given by 1.5. Let (B~: i<co)  be an enumeration of 
(Bn,  q : ~ ~ no,)). 

Stage a: Let !D* = U ida. By induction hypothesis !D* is adequate for B. Let 
f l < a  

i . �9 u, = {S, .  t < f~(n)}, 

and let N be a countable model for ZFC* (a sufficiently rich part of set theory) 
containing ~*, B, (u,: n < co), etc. Then by 1.6 (because N is countable) there is B= 
such that 

(i) #(B~(~J <0 Bi,)=0. 
\ n i = f ~ ( n )  

(ii) The algebra generated by ~B* u {B~} is adequate. 

This finishes the construction. Let ~ = U ~3~. Let f be the following ~3-name 

{ ((n,i) ,Bi)  : i <co, n< o)} . 

Then clearly 

B, 1~ f(n)= i". 

By construction we have that 

(*) B~ [~"(Vn)(f~(n) <f(n)". 
We will show that 

0 I~Va3nVm > n) (s <_tim))". 

Clearly that is enough. 
If this claim is false then for almost all e < o  h there exists 

A~e!D such that A~l~-(J~~ 

Let {A~ : i < co} be a maximal subset of ~B satisfying 

i , j ,  

A~ I~- (3~) (f(n) <=f~(n)) . 

Claim. {A~, : i < co~ is a maximal antichain. 

[Proof If not there is A ~ B s.t. over A, ~3 forces dominating reals, use then the fact 
that A is isomorphic to the measure algebra.J 

Let a > sup {ai: i e co}. 

Claim. 01~"(] ~ (f(n) <=f~(n)). 

[Proof. If not there exist A e ~3 such that 

A I~"(V~n) Qf~(n) <f(n))".  

Let i e co such that #(A~inA ) > 0. Then 

A~,nA }- (32) (f(n) <=f~(n)), a contradiction.J 

This claim contradicts (*). 

1.8 Remark. Clearly we can replace CH by b = Kb(meager)= MA(countable). 
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2 Adding random reals in ~-stages 

In this section we will give a characterization of the property of adding random 
reals in limit stages of finite support iteration. 

2.1 Theorem. Let Q = < P~, Q~ : ~ < fi> be a finite support iterated forcing satisfying 
c.c.c. Let Pp=lim(~. Then the following are equivalent: 

(i) There exists r a P#-measure such that r is random over V and I~ / ' r  ~ V P~, 
O~ < f l ' .  

(ii) There exists ~ < ~ and a perfect tree T in V~ such that [T] = {set of branches 
of T} is a perfect tree of random reals over V. 

Proof (i)~(ii) Clearly it is enough to show the theorem when V ~ CH, because Pp is 
the same, and has the same antichains, after the collapse with countable 

�9 NO conditions, of 2 to N 1. Also these models have the same Borel measure zero sets. 
Assuming CH, let <A,: e <col)  be a sequence of measure zero sets satisfying 
(i) A.__cAp, ~</~<co. 

(ii) For every measure zero set A in V there exists e < col such that A ____ A,. For 
each c~, let <T~":n < o)> be a sequence of positive perfect trees satisfying 

2 -  U ETa"] = A  ~ . 
n 

By assumption 

01~/ ' re?ET~"]" ,  foreach e<col .  

Again for each e < e h there exist no, r~ such that 

b- " r  E r , ,  p# ~ [T~"]" 

w.l.o.g./~= co. 
There exists i < co such that 

By c.c.c, there exists G~___ Pi generic over V s.t. 

B = {~ "r~ �9 G,} �9 [co,]~' 

Therefore if Go~ is generic over V and G,o I i = Gi then 

V[G~] ~r[G~] �9 (3 [T:o] 
e e B  

But r[Go,] q~ V[GI] and 

Therefore in V[GJ 

v[6,]# 0 [ r :q+~ 
~ E B  

0 [T,.] contains a perfect tree T. 
~ B  

Because IB[ = N1 we have that [T] is a perfect tree of random reals. 
(ii)---, (i) is easy, remember that every new real defines a new branch in an old 

perfect tree. 

2.2 Corollary. The random real algebra cannot be the union of co-many algebras, 
each one not adding random reals. 
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2.3 Corollary. There exists two models M ~_ N satisfying 
O) (3r ~ N) (r random over M )  

(ii) N ~ #{r: r random over M} = O. 

Proof Let M = L and let r be random over L. Let N = M[r] [c], when c is Cohen 
over L[r].  It is enough to show that no new real in N is random over m. For  this, by 
applying 2.1 (remember that every ~o-iteration adds a Cohen real), it is enough to 
show that in M[r] there is not a perfect tree of random reals over M. But this is a 
well known result of Chichon (see EBJ 2]). 

2.4 Remark. 2.3 answers a question Paulikowski. He also showed that if c is 
Cohen over V and r is random over V[c], then in V[c] [r] there are Cohen reals 
over V[r]. 

2.5 Corollary. Let P,o=lim(Pi, Q i : i < o )  be a finite support iteration of ccc 
partially ordered sets. Then the following are equivalent: 

(i) There exists r a Po~-name such that r is random over V e`, i< co. 
(ii) For each i< r in V p~, the following holds 

#(u{A : #(A)=0 A A ~ Ve'})=0. 

Proof (i) ~ (ii). Let i < co. By applying 2.2 there existsj > i and a perfect tree T in  V ~'j 
such that all branches of T are random reals over V v~. If/~([T]) = 0  then r is not 
random over V P~, therefore 

# ( I T ] ) > 0 .  

Then U (IT] +q) is a measure one set of random reals over VP~. 
qeQ 

(ii)--~ (i). Trivial. 

2.6 Remark. In [JS] there are necessary and sufficient conditions to ensure that a 
forcing P adds a measure one set of random reals. 
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