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We are interested in the question of how much the order of a non-standard model of PA can determine the
model. In particular, for a model M , we want to characterize the complete types p(x, y) of non-standard
elements (a, b) such that the linear orders {x : x < a} and {x : x < b} are necessarily isomorphic. It is proved
that this set includes the complete types p(x, y) such that if the pair (a, b) realizes it (in M) then there is an
element c such that for all standard n, cn < a, cn < b, a < bc, and b < ac. We prove that this is optimal, because
if ♦ℵ1 holds, then there is M of cardinality ℵ1 for which we get equality. We also deal with how much the order
in a model of PA may determine the addition.
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1 Introduction

Let M be a model of Peano Arithmetic (PA). We write M< and M<,+ for the {<}-reduct and the {<,+}-reduct
of the model M , respectively. For an a ∈ M , we write M<a := {c ∈ M : M |= c < a} with the inherited linear
order. For any pair (a, b) of non-standard elements of M , we consider conditions

(M<a,<M) ∼= (M<b,<M); (∗)M,a,b

for every N , if M ≺ N , then (∗)N ,a,b; and (∗)pot
M,a,b

for every model N , if M ≡ N and for some M0 ≺ N , we have

{a, b} ⊆ M0 ≺ M , then (∗)N ,a,b. (∗)tp
M,a,b

The main aim of this paper is to solve the following questions for models of PA:

Question 1.1 What is the set of complete types p(x, y) such that if (a, b) realizes p(x, y), then we have
(∗)M,a,b? Given a model M and a and b ∈ M , when do we have (∗)pot

M,a,b or just (∗)tp
M,a,b? What if we restrict the

first question to ℵ1-saturated models?

For the problem as stated, on the one hand we give a sufficient condition, and on the other hand, for (∗)tp
M,a,b,

we prove its necessity, assuming ♦ℵ1 .

Question 1.2 How much does the linear order of a non-standard model M of PA determine M? Is there a
non-standard model M of PA such that for every model N of PA, if M< ∼= N<, then M ∼= N?

We discussed those problems with Gregory Cherlin and he proposed:
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Task 1.3 (Cherlin) Show that {M< : M |= PA} is complicated.

This question is too vague for our taste. Recall [1, Problem 14] asked by Friedman:

Question 1.4 Is there a model M of PA such that for every model N of PA, if M< ∼= N<, then M ≡ N?

Question 1.4 is of a different character since it only deals with the theory of N . Of course, a positive answer
to Question 1.2 would also give an answer to Question 1.4.

We may go half way: maybe the linear order of M does not determine M , say up to isomorphism, but just the
additive structure (from which the order is definable). This means

Question 1.5 How much does the order of a non-standard model M of a completion T of PA determine the
isomorphism type of (|M |,<M ,+M)?

A more general version of our question is

Question 1.6 Can we construct a non-standard model M of PA with few order automorphisms (for some
meaning of “few”)?

Recall that any countable non-standard model M of PA is recursively saturated and hence has many order
automorphisms (cf. [1]). Much has been done on other classes of structures: for Abelian groups and modules,
cf. [2]; for general first order structures, cf. [3]. In particular, there are non-standard models of PA with no
automorphism, this motivating the “order-automorphism” in Question 1.6. Now answer to Question 1.1 sheds
some light on Question 1.5.

Let us discuss the content of the present paper: First, in § 2, we introduce and deal with the equivalence
relations E�

M (for 0 ≤ � ≤ 6), and in Theorem 2.6 it is proved that aE2
M b implies (∗)M,a,b so aE2

M b is a sufficient
condition for a positive answer to Question 1.1, while for the so called 2-order rigid models M , we prove that the
isomorphism type of M< determines that of M<,+ but only up to almost isomorphism, shedding some light on
Question 1.5.

Then, in § 3, we get that even aE3
M b implies (∗)M,a,b. This shows that Theorem 2.6 is not interesting in its own

right, but its proof is a warm-up for § 3. Moreover this is only part of the picture, cf. § 5. In § 3, we also show that
if M is 3-order rigid then M<,+ is unique up to almost isomorphism.

In § 4, we show that E3
M is the right notion as if ♦ℵ1 holds then every countable model of PA has elementary

extension M of cardinality ℵ1 such that for a and b ∈ M\N we have aE3
M b if and only if M<a

∼= M<b. We
comment there on the case ¬aE4

M b.
For most results, some weaker version of PA suffices. We comment on this in § 5; so usually when a result

supercedes an earlier one, normally it has a harder proof and really uses more axioms of PA.

Convention 1.7 Models are models of PA. We call a model M of PA ordinary if N ⊆ M. Unless otherwise
specified, all models are ordinary models of PA.

2 Somewhat rigid order

We define some equivalence relations E�
M for models M (of PA). We shall deal with their basic properties in

Claim 2.4 and Observation 2.8, with the relations between them in Claim 3.1, with cofinalities of equivalence
classes in Observations 2.8 and 3.4, with question of order isomorphism and almost {<,+}-isomorphism (cf.
Definition 2.1) in Claims 2.5 and 3.3. We also note that we have E�

M ⊆ E5
M for �-order rigid models. Finally, we

prove versions of “if M<
1 and M<

2 are isomorphic then M<,+
1 and M<,+

2 are almost isomorphic”, cf. Theorems 2.6
& 3.5.

Definition 2.1 A function f : M → N is called an almost {<,+}-isomorphism if it is an isomorphism
from M< onto N< and for all a and b ∈ M there is an n ∈ N such that the distance between f (a +M b) and
f (a) +N f (b) is n. If there is such a function, M and N are called almost {<,+}-isomorphic.

Definition 2.2 An equivalence relation E on a model M is called convex if a <M b <M c and aEc implies
aEb. If x, y ∈ M , we say that x is multiplicatively small relative to y if for all n ∈ N, we have that x ×M n <M y.
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If x, y ∈ M , we say that x is exponentially small relative to y if for all n ∈ N, we have that xn <M y. We define
the following equivalence relations on M\N:

(a) We say aE0
M b if and only if there is an n ∈ N such that a <M b +M n and b <M a +M n.

(b) We say that aE1
M b if and only if there is some c ∈ M that is multiplicatively small relative to both a and b

such that a <M b +M c and b <M a +M c.
(c) We say aE2

M b if and only if there is an n ∈ N such that a <M b ×M n and b <M a ×M n.
(d) We say that aE3

M b if and only if there is some c ∈ M that is exponentially small relative to both a and b
such that a <M b ×M c and b <M a ×M c.

(e) We say aE4
M b if and only if there is an n ∈ N such that a <M bn and b <M an .

(f) We say aE5
M b if and only if there is an order-automorphism of M that maps a to b.

(g) We define E6
M to be the minimal convex equivalent relation on M which is refined by E5

M .

Note that we used Convention 1.7 (viz. that the model is ordinary) in parts (b) and (c). This extra assumption
could have been circumvented, e.g., by defining a +M n by repeated addition of 1M and a ×M n by repeated
additions of a, but that is less convenient.

Definition 2.3 For � ∈ {0, 1, . . . , 6}, M is called �-order rigid if for all a and b ∈ M , we have that (M<a,<M)
∼= (M<b,<M) implies that aE�

M b.

While we know that there are rigid linear orders and we know that there are rigid models of PA, it is harder to
build �-order rigid models of PA, our relevant result will be Theorem 4.6.

Claim 2.4

(1) For � ∈ {0, . . . , 6} the two place relation E�
M is an equivalence relation on M\N and is convex except

possibly for � = 5.
(1A) If aE3

M b, then any c ∈ M is exponentially small relative to a if and only if it is exponentially small relative
to b, and the set of these elements is convex and closed under products and sums.

(1B) If aE1
M b, then any c ∈ M is multiplicatively small relative to a if and only if it is multiplicatively small

relative to b, and the set of these elements is convex and closed under sums.
(2) If a, b ∈ M\N and aE2

M b, then (M<a,<M) ∼= (M<b,<M); moreover there is an automorphism of M<

mapping a to b, that is, aE5
M b.

(3) If a, b ∈ M\N, then (M<a,<M) ∼= (M<b,<M) if and only if aE5
M b.

(4) We have aE6
M b if and only if there is c ≤M min{a, b} and an order-automorphism f of M such that

max{a, b} ≤M f (c) if and only if this holds for c = min{a, b}.

Note that Claim 3.3 establishes a stronger version of Claim 2.4(2); however, the proof of Claim 3.3 uses Claim
2.4(2). Note furthermore that Claim 2.4(2) can be proved for weaker versions of PA than the proof of Claim 3.3,
cf. § 5.

P r o o f . Parts (1A) and (1B) are easy to check. For (1), let � = 3. If a1 E3
M a2 and let c witness it, then c

witnesses also a2 E3
M a2 and a2 E3

M a1, so reflexivity and symmetry hold. Finally, assume M |= a1 < a2 < a3; if
ak E3

M ak+1 and let ck witness this for k = 1, 2, then the product c1c2 witness a1 E3
M a3 by part (1A) and if a1 E3

M a3

then the same witness gives a1 E3
M a2 ∧ a2 E3

M a3 so transitivity and convexity holds. For � = 1 the proof is similar
(using part (1B) instead of part (1A)), also for � = 0, 2, 4 the proof is even easier and for � = 5, 6 it holds by the
definition.

For (2), assume, without loss of generality, that a < (n − 1)a < b < na, where 2 ≤ n ∈ N, and also there is
a c such that (n − 1)c = na − b. Then c < a because otherwise (n − 1)a ≤ (n − 1)c = na − b hence b ≤ a,
contradiction. Let X be a set of representatives for M/E0

M and, without loss of generality, assume that a and
c ∈ X . Now define f : M → M by first defining it on X and then extending it to all of M in the obvious way.
(The obvious way is: if y = x + k, where x ∈ X and k ∈ Z, then f (y) = f (x) + k and f is the identity on N.)
If x ∈ X , then let

f (x) =
{

x if x ≤ c,
n(x − a) + b otherwise.
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Clearly, f (c) = c and f (a) = b. Now check that f is as required.
For (3), first notice that if f exemplifies aE5

M b (i.e., is an automorphism of M mapping a to b), then f �M<a

is an isomorphism from (M<a,<M) onto (M<b,<M). Second, if f is an isomorphism from (M<a,<M), onto
(M<b,<M) we define a function g : M → M by: g(c) is f (c) if c <M a and is b + (c − a) if a ≤M c. Now
check the rest.

For (4), let E ′
M = {(a, b): for some order-automorphism f of M we have f (min{a, b}) ≥ max{a, b}}; clearly

this is symmetric (by definition), reflexive (using f = the identity) and as f is monotonic also convex (i.e., a ≤
a1 ≤ b1 ≤ b ∧ aE ′

M b implies a1 E ′
M b1). To prove transitivity it is now enough to show a1 < a2 < a3 ∧ a1 E ′

M a2 ∧
a2 E ′

M a3 implies a1 E ′
M a3 which hold by composing the automorphisms f1, f2 witnessing a1 E ′

M a2, a2 E ′
M a3

respectively. So E ′
M is a convex equivalence relation and obviously aE5

M b implies aE ′
M b.

Lastly, E ′
M is refined by any convex equivalence relation refining E5

M , so it follows that E6
M = E ′

M so we are
done. �

Claim 2.5 If f is an order-isomorphism from M1 onto M2 then f maps E0
M1

onto E0
M2

; if f is an almost
{<,+}-isomorphism from M1 onto M2 then f maps E1

M1
onto E1

M2
and E2

M1
onto E2

M2
.

P r o o f . Straightforward. �
Claim 2.5 is also true for embeddings, but this will not be used in this paper. For the next result, recall Definition

2.3(2):

Theorem 2.6 If M1 is 2-order rigid and M<
1 , M<

2 are isomorphic, then M1, M2 are almost {<,+}-isomorphic.

Note that Theorem 2.6 does not say “by the same isomorphism”. The assumption of Theorem 2.6 is too strong
to be true for models of full PA, but makes sense for weaker versions of PA, cf. Theorem 5.4. Part of the proof
serves as proof to Claim 3.6, and so is indirectly part of the proof of Theorem 3.5.

Question 2.7 Are M1 and M2 isomorphic when M1 and M2 are isomorphic as linear orders? Are M1 and M2

isomorphic when M1 and M2 are �-order rigid? Are M1 and M2 isomorphic when just M1 is �-order rigid? (The
main case is � = 3.)

For the proof of Theorem 2.6, we shall use the following observation:

Observation 2.8 Assume that a ∈ M\N. Then:

(1) 〈a + n : n ∈ N〉 is increasing and cofinal in a/E0
M ;

(2) 〈a − n : n ∈ N〉 is decreasing and unbounded from below in a/E0
M ;

(3) 〈n × a : n ∈ N〉 is increasing and cofinal in a/E2
M ;

(4) 〈min{b : n ×M b ≥ a} : n ∈ N〉 is decreasing and unbounded from below in a/E2
M .

(5) Moreover, there is some b such that 2b ≤ a < 2b+1; hence, in (3) and (4), we can use the sequence
〈2b+n : n ∈ N〉, 〈2b−n : n ∈ N〉 instead.

(6) For � = 1, 2, assume M� |= a × b = c� and M<
1 = M<

2 . Then c1 E5
M2

c2.
(7) For � = 1, 2, assume M� |= a1 × a2 × . . . × am = c� and M<

1 = M<
2 . Then c1 E5

M�
c2.

P r o o f . Items (1) to (5) are easy observations. Item (6) is essentially proved in the proof of (∗)5 in the proof
of Theorem 2.6 below. Item (7) has a similar proof. �

P r o o f o f T h e o r e m 2.6. By Claim 2.4(1), we easily get that

every E2
M�

-equivalence class is convex. (∗)0

Without loss of generality, we can assume that

<M1=<M2 (∗)1

hence M1 and M2 have the same universe and we write M := M<1
1 = M<2

2 . We also write <M for <M1=<M2 .
Also as usual

N ⊆ M� for � = 1, 2. (∗)2
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Now

if a, b ∈ M\N and a <M b and M2 |= a + b = c and M1 |= a′ + b = c, then aE2
M1

a′. (∗)3

[Why? Since M2 |= a + b = c and M2 satisfies PA, we have that [b, c)M2 = [b, c)M is isomorphic to [0, a)M2

as linear orders, and hence [b, c)M1 is isomorphic to [0, a)M1 as linear orders. Of course [b, c)M1 is isomorphic to
[0, c −M1 b) = [0, a′)M1 as linear orders. So [0, a)M1 , [0, a′)M1 are isomorphic as linear orders. But M1 is 2-order
rigid hence aE2

M1
a′ as required].

If a <M b and b ∈ M\N, then b, a +M1 b, and a +M2 b are E2
M1

-equivalent. (∗)4

[Why? Similar proof: (using the proof of Claim 2.4(3)) trivially bE2
M�

(a +M�
b) for � = 1, 2 and (a +M1

b)E5
M1

(a +M2 b); so use the fact that M1 is 2-order rigid to deduce (a +M1 b)E2
M1

(a +M2 b). This proves the
claim.]

If a, b ∈ M\N and a ×M�
b = c� for � = 1, 2, then c1 E2

M1
c2. (∗)5

[Why? For � = 1, 2, as M� is a model of PA, it follows that (M<c�
, <M) is isomorphic to (M<a ,

<M) × (M<b,<M), ordered lexicographically. Hence ((M1)<c1 , <M) = (M<c1 ,<M) and ((M2)<c2 ,<M) =
(M<c2 ,<M) are isomorphic (and trivially c1, c2 /∈ N) hence by the fact that M1 is 2-order rigid we have c1 E2

M1
c2

as promised.]

For a, b ∈ M\N, we have aE2
M2

b if and only if aE2
M1

b. (∗)6

[Why? First, assume aE2
M2

b; now, without loss of generality, a <M b, and pick 0 �= k ∈ N such that b <

k ×M2 a; in particular, b < a +M2 . . . +M2 a (where this is a sum of k summands). By (∗)4 we can prove by
induction on k that bE2

M1
a as required in the “only if” direction. (Alternatively by Claim 2.4(2) we have aE5

M b
hence by the fact that M1 is 2-order rigid, we get bE2

M1
a.)

Second, assume ¬(aE2
M2

b) and, without loss of generality, a <M b; note that we cannot use the same argument
as above by just interchanging M1 and M2, because we only assumed that M1 is 2-order rigid. As M2 |= PA, there
is c ∈ M2 such that M2 |= a × c ≤ b < a × c + a. It is clear that c /∈ N because we are assuming ¬(aE2

M2
b). By

(∗)5 we have (a ×M1 c)E2
M1

(a ×M2 c). But by (∗)4, we have that a ×M2 c and a ×M2 c +M2 a are E2
M1

-equivalent
hence by the choice of c and (∗)0 also a ×M2 c and b are E2

M1
-equivalent; so together with the previous sentence

(a ×M1 c)E2
M1

b. Clearly, c ∈ M\N satisfies ¬(aE2
M1

(a ×M1 c)), so by the definitions everything is as required in
the “if” direction.]

If a ∈ M\N, then (a/E2
M1

,<M) has cofinality ℵ0 and also its inverse has cofinality ℵ0. (∗)7

[Why? As M1 |= PA the sequence 〈a ×M1 2n : n ∈ N〉 is increasing and its members form an unbounded subset
of a/E2

M1
; similarly 〈min{b ∈ M : a ≤ b ×M1 2n} : n ∈ N〉 is decreasing and its members form a subset of a/E2

M1

unbounded from below. Applying the definition of E2
M1

yields the claim.]
For � = 1, 2, let X� = {(2b)M� : b ∈ M�}. Then

if a ∈ M\N, then X� ∩ (a/E2
M1

) has order-type Z

and is unbounded in (a/E2
M1

,<M) from above and from below. (∗)8

[Why? Fix � ∈ {1, 2} and a′ ∈ M\N. Since M� |= PA, there is some b� such that M� |= 2b� ≤ a′ < 2b�+1 =
2b� + 2b� . The claim follows from the definition of E2

M�
.]

We might hope that if a ∈ M\N and M� |= 2a = b� for � = 1, 2, then b1 E2
M1

b2. For � = 1, 2, define

(a) f� : M� → M� : a �→ (2a)M� , and

(b) let M∗
� be the model with universe X�, such that f� is an isomorphism from M� onto M∗

� .
�1

Then for � = 1, 2,

if a, b ∈ X�, then a +M∗
�

b = a ×M�
b. �2
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[This follows since PA � 2x 2y = 2x+y .]

If � = 1, 2 and a, b ∈ M�\N, then

(a) aE0
M�

b if and only if f�(a)E2
M∗

�
f�(b);

(b) aE1
M�

b if and only if f�(a)E3
M∗

�
f�(b); and

(c) aE2
M�

b if and only if f�(a)E4
M∗

�
f�(b).

�3

[Why? Look at the definitions and do basic arithmetic.]
By (∗)8 and (∗)6, there is an order isomorphism h from X1 onto X2 such that

(a) h�{(2n)N : n ∈ N} is the identity, and

(b) if a ∈ M\N, then h maps X1 ∩ (a/E2
M1

) onto X2 ∩ (a/E2
M2

).
�4

By �3 and �4 and the definition of E0
M∗

�
, we get that

if a, b ∈ X1, then aE0
M∗

1
b implies that h(a)E0

M∗
2
h(b). �5

Suppose that M∗
� |= a� + b� = c� for � = 1, 2 and assume that h(a1) = a2, and h(b1) = b2; then

(a) c1 E2
M�

c2 and

(b) c1 E0
M∗

�
c2.

�6

[Why? If a1 ∈ N or b1 ∈ N the conclusion follows easily, so we can assume a1, b1 /∈ N. For � = 1, 2, by
�2 we have M� |= a� × b� = c�. Also by �4(b) we have that x ∈ X1\N implies x E2

M1
h(x). We recall that

by (∗)6, we have E2
M1

= E2
M2

and can conclude that a1 E2
M2

a2 and b1 E2
M2

b2. This implies that for some n ∈ N,
we have M2 |= a1 < n × a2 ∧ a2 < n × a1 ∧ b1 < n × b2 ∧ b2 < n × b1. Therefore M2 |= a1 × b1 < n2 × a2 ×
b2 ∧ a2 × b2 < n2 × a1 × b1, and hence (a1 ×M2 b1) and (a2 ×M2 b2) are E2

M2
-equivalent and also are E2

M1
-

equivalent.
So by (∗)5 we have that (a1 ×M2 b1) and (a1 ×M1 b1) are E2

M1
-equivalent and also that (a2 ×M1 b2) and

(a2 ×M2 b2) are E2
M1

-equivalent. Together with the previous paragraph, by (∗)6, they are E2
M�

-equivalent. In
particular, c1 and c2 are E2

M�
-equivalent as required in clause (a) of �6. By �3, �1(b), and �6(b) the claim

follows.]
Concludingly, by �4 and �6(b), we are done. �

3 More for E3
M

In this section, we say more about the equivalence relations E�
M . In Claim 3.1 we deal with basic properties: When

is E�
M ⊆ E�+1

M ? When does �-order rigidity imply (� + 1)-order rigidity? Which of the relations are preserved
under + and ×? We also prove one half of our answer to Question 1.1: in Claim 3.3, we prove a1 E3

M b implies
a1 E5

μa2. Concerning the weak form of uniqueness of the additive structure, in Theorem 3.5, we prove, e.g., if M1

and M2 are order isomorphic and M1 is 3-order rigid then M<,+
1 and M<,+

2 are almost isomorphic (i.e., the “error”
in + is finite), but this is not necessarily the same isomorphism. We end by relating E3

M and E4
M in Claim 3.8.

Claim 3.1

(1) For � = 0, 1, 2, 3, 5, we have that E�
M refines E�+1

M .
(2) If � = 0, 1, 2, 3, 4, 5, 6 and for k = 1, 2, we have ak E�

M bk, then (a1 + a2)E�
M(b1 + b2).

(3) If � = 2, 3, 4 and for k = 1, 2, we have ak E�
M bk , then (a1 ×M a2)E�

M(b1 ×M b2).
(4) Part (3) holds also for � = 5, 6.
(5) If � = 0, 1, 2, 3, then �-order rigidity implies (� + 1)-order rigidity.
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P r o o f . Recall that E3
M refines E5

M by Claim 2.4(3),(4). Part (1) just requires a careful reading of the
definitions. For part (2), firstly, assume � = 0, so by the assumption for k = 1, 2 there are mk, nk ∈ N such that
M |= ak + mk = bk + nk . Now let m := m1 + m2 ∈ N and n := n1 + n2 ∈ N. Then M |= (a1 + a2) + (m1 +
m2) = (b1 + b2) + (n1 + n2), and hence (a1 + a2)E0

M(b1 + b2) as required.
Secondly, assume � = 2, so by the assumption, for k = 1, 2 there is nk ∈ N such that M |= ak < nk × bk ∧

bk < nk × ak . Let n = max{n1, n2} ∈ N; then M |= (a1 + a2) < n1b1 + n2b2 ≤ nb1 + nb2 = n(b1 + b2) and
similarly M |= (b1 + b2) < n(a1 + a2). Therefore (a1 + a2)E2

M(b1 + b2).
Now assume � = 1, 3; without loss of generality, a1 <M b1 and as E�

M is convex (cf. Claim 2.4(1)), without
loss of generality, a2 ≤M b2. Let ck be a witness for ak E�

M bk (for k = 1, 2); then easily c = max{c1, c2} witnesses
(a1 + a2)E�

M(b1 + b2).
The case � = 4 is easy, too. For the case � = 5, assume that fk is an order-automorphism of M mapping ak to

bk for k = 1, 2. Define a function f from M to M by

f (x) :=
{

f1(x) if x <M a1,
b1 + f2(x − a1) if a1 ≤M x ,

and check that f does what it is supposed to do.
Finally, in the case of � = 6, let ck = min{ak, bk}; by Claim 2.4(4) there is dk ≥ max{ak, bk} such that ck E5

M dk

so ak, bk ∈ [ck, dk ] for k = 1, 2. But by the result for � = 5, we have that (c1 + c2)E5
M(d1 + d2). Therefore

a1 + b1, a2 + b2 ∈ [c1 + c2, d1 + d2] and we are done.
For part (3), assume � = 2. For k = 1, 2 let nk witness ak E2

M bk and choose n = n1n2 noting that n1, n2 > 0 by
Definition 2.2(c). Now M |= a1 × a2 < (n1 × b1) × (n2 × b2) = n × (b1 × b2) and similarly M |= (b1 × b2) <

n(a1 × a2).
The proof for � = 3 is easy, too. For � = 4, we use the convexity of E4

M : without loss of generality, a1 ≤ a2 and
b1 ≤ b2 and so there are n and m ∈ N such that a2 ≤ an

1 , b2 ≤ bm
1 . Therefore, a1 × b1 ≤ a2 × b2 ≤ an

1 × bm
1 ≤

(a1 × b1)n+m and hence (a1 × b1)E4
M(a2 × b2).

For part (4), we follow he proof of Theorem 2.6. Let � = 5; for k = 1, 2, if ck = ak ×M bk , there is an order
isomorphism hk from M<ak × M<bk onto M<ck and let fk be an order automorphism of M mapping ak to bk .
Combining these, we get an order-isomorphism g1 from M<c1 onto M<c2 . Let g be the order automorphism
of M such that g extends g1 and that c1 ≤ d ∈ M implies that g(d) = c2 + f1(d − c1); so g witnesses (a1 ×
b1)E5

M(a2 × b2) as promised. For � = 6, the claim of part (4) follows as in the proof of part (3).
Finally, part (5) follows from the definition of m-order rigidity and part (1). �

Question 3.2 Is E5
M convex for every M?

Claim 3.3 If a1 E3
M a2, then there is an order-automorphism of M mapping a1 to a2, i.e., a1 E5

M a2.

P r o o f . Without loss of generality, we can assume that a1 <M a2. If a1 E2
M a2 then a1 E5

M a2 by Claim 2.4(2),
so, without loss of generality, ¬(a1 E2

M a2) hence n × a1 < a2 for n ∈ N. This means that by the definition of E3
M

and the assumption a1 E3
M a2, there are c ∈ M\N and n ∈ N such that

c <M a1, M |= cn < a1, and (c − 1) ×M a1 <M a2 ≤M c ×M a1. (∗)1

Clearly a2 E2
M(c ×M a1) and thus, again by Claim 2.4(2), we can assume without loss of generality that

M |= a2 = c ×M a1. (∗)2

We now define an equivalence relation E on M\N:

x Ey if and only if there is an n ∈ N such that |x − y| < cn. (∗)3

Clearly E is a convex equivalence relation. For every n ∈ N, we have 0 + cn = cn < a1 and cn + a1 < 2 × a1 <

a2; therefore, we can choose a set X of representatives for E such that 0, a1, a2 ∈ X . Note that

if b1, b2 ∈ M≤a1 , then b1 Eb2 implies (c × b1)E(c × b2). (∗)4

[Why? We have |(c × b2) − (c × b1)| = c × (|b2 − b1|), and so for any n ∈ N, we have |(c × b2) − (c ×
b1)| < cn+1 if and only if |b2 − b1| < cn . This means that (∗)4 is true indeed.]
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Now we define a function f from M into M by

f (x) :=

⎧⎪⎪⎨
⎪⎪⎩

x if x E0;
c × x if x ∈ X and x �= 0;

f (y) + (x − y) if x Ey ∈ X , y �= 0, and y ≤M x ; and
f (y) + (y − x) if x Ey ∈ X , y �= 0, and x <M y.

(∗)5

Note that f is well defined and is an order-preserving injective function onto M by (∗)4. As f (a2) = c × a1 = a2,
we have a1 Ea2. Consequently, we are done. �

If we compare this with (∗)7 of the proof of Theorem 2.6, then we can observe the following:

Observation 3.4

(1) For any a ∈ M\N we have:
(a) the sequence 〈�a1+2−n � : n ∈ N〉, that is 〈max{b : b in M, a divides b and (�b/a�)2n ≤ a} : n ∈ N〉 is

a decreasing sequence from {b : a′ < b for every a′ ∈ a/E3
M} unbounded from below in it

(b) the sequence 〈�a1−2−n � : n ∈ N〉, that is 〈max{b : (�a/b�)2n ≤ a} : n ∈ N〉 is an increasing sequence
included in {b : b < a′ for every a′ ∈ a/E3

M} and unbounded from above in it.
(2) For a ∈ M\N we have:

(a) the sequence 〈�(1 + 2−n)a� : n ∈ N〉, is a decreasing sequence in {b ∈ M : b above a/E1
M} cofinal in

it
(b) the sequence 〈�(1 + 2−n)a� : n ∈ N〉, is an increasing sequence in {b ∈ M : b below a/E1

M} cofinal
in it.

P r o o f . Straightforward. �
Theorem 3.5

(1) If M1 is 3-order rigid and f is an order-isomorphism from M1 onto M2 then f maps Ek
M1

onto Ek
M2

for
k = 3, 4.

(2) In part (1), moreover M<,+
1 , M<,+

2 are almost isomorphic.
(3) For any M, let E7

M = {(a, b) : (�log2(a)�)E4
M1

(�log2(b)�)}. Assume there is an order-isomorphism f from
M1 onto M2 mapping E4

M1
to E4

M2
, e.g., as in the conclusion of part (1) and f maps E7

M1
onto E7

M2
, then

M<,+
1 and M<,+

2 are almost isomorphic.

P r o o f . (1) By the assumption and by Claim 3.3, respectively,

(a) E3
M1

⊇ E5
M1

(b) E3
M�

⊆ E5
M�

for � = 1, 2.
(∗)0

Easily by Claim 2.4(1), we have that

every E3
M�

-equivalence class is convex. (∗)1

Without loss of generality,

(a) <M1=<M2 hence

(b) M1 and M2 have the same universe, and

(c) E5
M1

= E5
M2

so E3
M2

⊆ E5
M2

⊆ E5
M1

= E3
M1

.

(d) Let M := M<
1 = M<

2 . Then E5
M1

= E5
M = E5

M2
= E3

M1
.

(∗)2

Also as usual,

N ⊆ Mk for k = 1, 2. (∗)3
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If a <M b and b ∈ M\N, then b, a +M1 b, a +M2 b are E3
M1

-equivalent. (∗)4

[Why? By the definition of E3
M .]

If a ∈ M, b ∈ M\N and a ×Mk b = ck for k = 1, 2, then c1 E3
M1

c2 and c1 E5
M c2. (∗)5

[By Observation 2.8(6), we have c1 E5
M c2 and use (∗)0(a) to deduce c1 E3

M1
c2.]

If M� |= a1 × a2 × . . . × an = b� for � = 1, 2, then b1 E3
M1

b2 and b1 E5
M b2. (∗)6

[Why? Similar to (∗)5, i.e., by Observation 2.8(7).]

E4
M1

= E4
M2

. (∗)7

[Why? Let a, b ∈ M\N be given. For � = 1, 2 and n ∈ N, let a�,n be such that M� |= an = a�,n .
First, assume aE4

M2
b and, without loss of generality, a < b. So for some n ∈ N we have M2 |= a < b < an

so M2 |= a < b < a2,n . Also a1,n E3
M1

a2,n by (∗)6, so by Claim 3.1(1) we have a1,n E4
M1

a2,n . Hence for some m,
M1 |= (a1,n)m ≥ a2,n , in fact, even m = 2 is sufficient. So M1 |= b < a1,mn , but a <M b. Together, this yields
aE4

M1
b.

Second, assume ¬(aE4
M2

b) and, without loss of generality, a <M b. So for every n ∈ N, a2,n <M b and by
(∗)6, we have a2,n E3

M1
a1,n hence a1,n/E3

M1
has a member < b, and so in particular a1,n+1/E3

M1
has a member < b,

but a1,n/E3
M1

is below a1,n+1/E3
M1

(remember the definitions!) so a1,n <M b. As this holds for every n ∈ N we
conclude ¬(aE4

M1
b).]

Let

I k
d = {c ∈ M : Mk |= cn < d for every n ∈ N} for d ∈ M and k = 1, 2. (∗)8

Now

I 1
d = I 2

d for d ∈ M. (∗)9

[Why? By (∗)7, since I �
d = {c : c/E4

M�
is below d}.]

E3
M2

= E3
M1

. (∗)10

[First, if a1 E3
M2

a2 then by Claim 2.4(3),(4) we have a1 E5
M2

a2

We recall that M<
1 = M = M<

2 and therefore the latter is equivalent to a1 E5
M1

a2. Since we are assuming that
M1 is 3-order rigid, this implies a1 E3

M1
a2.

Second, assume ¬(a1 E3
M2

a2) and, without loss of generality, a1 <M a2. As M2 |= PA, for some c ∈ M we
have M2 |= ca1 ≤ a2 < (c + 1)a2 so by the previous sentence c /∈ I 2

a1
hence by (∗)9 also c /∈ I 1

a1
.

By (∗)5 we have (c ×M1 a1)E3
M1

(c ×M2 a1) and as c ×M2 a1 ≤M a2 clearly (c ×M2 a1)/E3
M1

≤ a2/E3
M1

so
together (c ×M1 a1)/E3

M1
is smaller or equal to a2/E3

M1
so for some a3 ∈ a2/E3

M1
we have c ×M1 a1 < a3. As

c /∈ I 1
a1

this implies a1, a3 are not E3
M1

-equivalent, so by the choice of a3 also ¬(a1 E3
M1

a2), so we are done proving
(∗)10.]

Hence by (∗)7 and (∗)10, part (1) holds.
Parts (2) and (3) follow from part (1) and Claim 3.6 below for the function x �→ 22x

, and the equivalence
relation E4

M . �
Claim 3.6 The models M1, M2 are almost {<,+}-isomorphic when for k ∈ {1, 2},

(a) Ek is a convex equivalence relation on Mk\N;
(b) h is an order-isomorphism from M1 onto M2 mapping E1 onto E2;
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(c) fk is a function definable in Mk , is increasing, maps N into N, for each Ek-equivalence class Y the set
{a ∈ M : fk(a) ∈ Y } has the order type of Z and is unbounded from below and from above in Y ; and

(d) if a1 Eka2 and b1 Ekb2 then (a1 + b1)Ek(a2 + b2).

P r o o f . As in the proof of Theorem 2.6. �

Claim 3.7 Assume that h is an order-isomorphism from M1 onto M2 and M1 is 4-order rigid. Then for
a, b ∈ M , we have that h(a)E4

M2
h(b) implies aE4

M1
b.

P r o o f . Without loss of generality, h is the identity and let M<
1 = M = M<

2 . Define EM = {(a, b): there
are n ∈ N, c1 ∈ M , and c2 ∈ M such that c1 ≤M minM{a, b} and maxM {a, b} ≤ c2 and (M<c1)

n ∼= M<c2}. Easily
EM is a convex equivalence relation, E4

M�
⊆ EM for � = 1, 2 and E4

M1
= EM . �

Claim 3.8

(1) Assume that a ∈ M is non-standard and I = {b/E3
M : b ∈ a/E4

M}, naturally ordered. Then the linear order
I can be embedded into R>0 with dense image.

(2) If M is ℵ1-saturated then the embedding is onto R>0.
(3) Moreover, if we define +I by (b1/E3

M) +I (b2/E3
M) = (b3/E3

M) when b1 ×M b2 = b3, then the embedding
commutes with addition, so the image is an additive sub-semi-group of R. Also 1R belongs to the image.

P r o o f . As in Definition 4.1, but we elaborate: Fix a ∈ M and for b ∈ a/E4
M let Sb = {m1

m2
: m1, m2 ∈ N\{0}

and M |= bm2 ≥ am1
}
. Clearly, Sb is a subset of Q>0 and as M is a model of PA, clearly Sb is an initial segment of

Q>0. By the definition of b ∈ a/E4
M , we necessarily have that Sb �= ∅ and Sb �= Q>0, so together rb = sup(Sb)

belongs to R>0.
Again by PA,

(a) rb1 ≤ rb2 when b1 ≤M b2 are from a/E4
M . [Why? Follows directly from the definition of Sb1 and Sb2 .]

(b) rb1 = rb1 if and only if b1 E3
M b2 for any b1 and b2 ∈ a/E4

M . [Why? By the definition of E3
M .]

(c) if Q |= m1
m2

< m3
m4

where m� ∈ N\{0} for � = 1, 2, 3, 4 then for some b ∈ a/E4
M we have R |= m1

m2
≤ rb <

m3
m4

. [Why? Let n ∈ N\{0} be such that M |= b < an , exists as b ∈ a/E4
M . Without loss of generality,

m2 = m4 call it m, so necessarily m1 < m3 and, without loss of generality, m1 + n < m3. Now by the
definition of b �→ rb the requirement on b means that M |= bm ≥ am1 and bm < am3 . Let b be the minimal
element of M such that M |= bm ≥ am1 . Then M |= bm−1 < am1 , and hence M |= bm < am1 b ≤ am1 an =
am1+n ≤ am3 ; so b is as required.]

(d) {rb : b ∈ a/E4
M} is a dense subset of R>0. [Why? By (c).]

(e) If M is ℵ1-saturated then {rb : b ∈ a/E4
M} = R>0, i.e., part (2). [Why? For any real r and n we can find

b1, b2 ∈ a/E4
M such that r − 1

n < rb2 < r < rb2 < 1
n by (d) and “Q is dense in R”.]

(f) Part (3) of the claim holds. [Why? By the rules of exponentiation which can be expressed in PA.]

Together we are done. �

So we can arguably say that the distance between E3
M and E4

M is small.

4 Constructing somewhat rigid models

In this section, we assume that λ is regular.

Definition 4.1 For any model M |= PA, we define

(a) ZM = Z[M ] to be the ring generated by M (so a ∈ ZM iff a = b ∨ a = −b for some b ∈ M , of course ZM

is determined only up to isomorphism over M ; similarly below); when, as usual, M is ordinary, without
loss of generality, ZM ⊇ Z;
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(b) QM = Q[M ] be the field of quotients of ZM ; in fact, it is an ordered field, if M is ordinary then, without
loss of generality, QM ⊇ Q; and

(c) RM = R[M ] be the closure of QM adding all definable cuts, so in particular it is a real closed field. Note
that R[M ] is a sub-field of the Scott-Cauchy completion R̄[M ] of Q[M ] and that for so called “rather
classless” models M , R[M ] coincides with R̄[M ]. (Cf. more on completions in [4].)

(d) We let SM = Rbd
M/Rinfi

M where (“bd” stands for bounded, “infi” stands for infinitesimal)
1. Rbd

M = {a ∈ RM : RM |= −n < a < n for some n ∈ N},
2. Rinfi

M = {a ∈ Rbd
M : RM |= −1/n < a < 1/n for every n ∈ N},

3. jM is the function from Rbd
M into R such that M |= n1/m1 < a < n2/m2 implies that R |= n1/m1 <

jM(a) < n2/m2 for n1, n2, m1, m2 ∈ Z such that m1, m2 > 0. (Cf. Claim 3.8.)

Definition 4.2 Let AP = APλ be the set of a such that

(a) a = (M, �) = (Ma, �a);
(b) M is a model of PA;
(c) |M |, the universe of M , is an ordinal < λ+;
(d) � is a set of ≤ λ of types over M ;
(e) each p ∈ � has the form {ap,α < x < bp,α : α < λ} where for α < β, we have that M |= ap,α < ap,β <

bp,β < bp,α; and
(f) M omits every p ∈ �.

In the following, we may write Ma
<b instead (Ma)<b. Alternatively, replace M0

b by (Ma)<b in the proof of Main
Claim 4.5 below.

Definition 4.3

(1) We define the binary relation ≤AP on AP by: a ≤AP b iff Ma ≺ Mb and �a ⊆ �b.
(2) Let APT = {a ∈ AP : Ma is a model of T }.
(3) Let APsat = {a ∈ AP : Ma is saturated} and APsat

T = APT ∩ APsat.

Claim 4.4

(1) The binary relation ≤AP is a partial order of AP.
(2) If 〈aα : α < δ〉 is ≤AP-increasing, δ a limit ordinal < λ+ then aδ = ⋃{aα : α < δ} defined by Maδ

=⋃{Maα
: α < δ}, �aδ

= ⋃{�aα
: α < δ}, is a ≤AP-lub of 〈aα : α < δ〉.

(3) Assume λ = λ<λ > ℵ0. If a ∈ AP then there is b such that a ≤AP b and Mb is saturated (of cardinality λ).

P r o o f . Easy. �

Main Claim 4.5 If (A) then (B) where:

(A) (a) λ = ℵ0, a ∈ AP
(b) Ma |= a∗ > b∗ > n for n ∈ N and a∗, b∗ are not E3

Ma
-equivalent

(c) F is an order isomorphism from Ma
<a∗ onto Ma

<b∗
(B) there are b, c∗ satisfying

(a) a ≤AP b
(b) c∗ <Mb a∗ so c∗ ∈ Mb but c∗ /∈ Ma

(c) some p ∈ �b is equivalent to {F(a1) < x < F(a2) : a1, a2 ∈ Ma and Mb |= a1 < c∗ < a2 ≤ a∗} re-
calling F is the isomorphism from (A)(c).

P r o o f . The proof of this claim is long and complicated and we believe that it cannot be easily digested.
Therefore, we have an informal discussion of the proof after the end of the proof. We recommend that the reader
try to look at it from time to time, in particular if he or she has lost track of the main idea of the proof. We hope
that this will help.
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In this proof, we use a∗, b∗, c∗ as fixed and use symbols such as a or ai as variables.
Stage A. We start with various definitions.

(a) Let � = �a be the set of formulas ϕ(x) = ϕ(x, ā) with ϕ(x, ȳ) ∈ L(τPA) and ā ∈ lh( ȳ)(Ma).
(b) We write ϕ′(x) � ϕ′′(x) if both are from � and Ma |= (∀x)(ϕ′(x) → ϕ′′(x).
(c) If ϕ := ϕ(x) := ϕ(x, ā) ∈ �, we write ϕ(Ma) = ϕ(Ma, ā) = {b ∈ Ma : Ma |= ϕ[b, ā]}
(d) If k ∈ N, we define �k

a = �k
Ma

as the set of σ (x0, . . . , xk−1) := σ (x0, . . . , xk−1, ā) such that σ (x̄, ȳ) is
a definable function in Ma and ā ∈ lh( ȳ)(Ma). If k = 1, we omit it in the notation and write σ (x, ȳ) and
σ (x) in this case. �1

(e) We let ξ(ϕ) = ξ(ϕ(x)) = jM(log2(|ϕ(Ma)|)/ log(a∗)) for ϕ := ϕ(x) ∈ �a such that ϕ(M) ⊆ [0, a∗)M ;
cf. Definition 4.1(d).

(f) If ϕ1, ϕ2 ∈ �,ϕ2(M) �= ∅ and σ ∈ �a, then we let σ ′ := σ [ϕ1, ϕ2] be the following function from ϕ1(M)
to ϕ2(M) ∪ {0}, definable in M : M |= σ ′(a) = b if and only if a ∈ ϕ1(M) and b = max{b : either b =
0 and σ (a) < min(ϕ2(M)) or b ∈ ϕ2(M) and b ≤ σ (a)}.

In (e), by “|ϕ(Ma)|” and “log2”, we mean the obvious things. Of course, both are expressible by a formula in
L(τPA). If (f), one could say that σ ′ is such σ restricted to ϕ1(M) while ensuring that the image lies in ϕ2(M) ∪ {0}.

We now define P; it will serve as a set of approximations to tp(c∗, Ma, Mb):
We let P consist of pairs ϕ̄ = (ϕ1, ϕ2) such that

(a) ϕ� = ϕ�(x) are from �;
(b) ϕ1(x) � x < a∗ and ϕ2(x) � x < b∗; �2

(c) if a1 < a2 are from ϕ1(Ma), then [F(a1), F(a2)]M ∩ ϕ2(M) �= ∅;
(d) ξ(ϕ1(M)) > ξ(ϕ2(M)).

We let ϕ̄′ ≤ ϕ̄′′ if and only if ϕ′′
� (x) � ϕ′

�(x) for � ∈ {1, 2}.
Note that (ϕ1(x, ā), ϕ2(x, ā2)) ∈ P is not definable in Ma mainly because of �2(c). Also observe that

if ϕ̄ ∈ P and ϕ(x) ∈ � then for some t ∈ {0, 1} we have (ϕ1(x) ∧ ϕ(x)t, ϕ2(x)) ∈ P

(and is ≤P -above ϕ̄; recall that ϕt is ϕ is t = 1 and is ¬ϕ if t = 0). �3

[Why? We have that Ma |= |ϕ1(M) ∩ ϕ(M)| ≥ 1
2 |ϕ1(M)| or Ma |= |ϕ1(M)\ϕ(M)| ≥ 1

2 |ϕ2(M)|. As a∗ /∈ N,
clearly ξ(ϕ1(x) ∧ ϕ(x)) = ξ(ϕ2(x)) or ξ(ϕ2(x) ∧ ¬ϕ(x)) = ξ(ϕ2(x)). So clearly we are done proving �3.]

Stage B. We arrived at a major point: how can we continue to omit members of �a? This stage of the proof is
devoted to proving the following statement:

If ϕ̄ ∈ P, σ (x) ∈ �a and p(x) ∈ �a, then for some ϕ̄′ and n we have

(a) ϕ̄ ≤ ϕ̄′ ∈ P and �4

(b) ϕ′
0(x) � σ (x) /∈ (ap,n, bp,n).

For the proof, we use what can be called a “wedge question”:
Case 1. There is d ∈ Ma such that ϕ̄′ := (ϕ1(x) ∧ σ (x) = d, ϕ2(x)) ∈ P.
In this case obviously ϕ̄ ≤ ϕ̄′ ∈ P. Also as d ∈ Ma and Ma omit p(x) recalling p(x) ∈ �a, clearly d does not

realize p(x) hence for some n and d /∈ (ap,n, bp,n)Ma ; so ϕ̄′ and n are as promised.
Case 2. Not case 1. So

ξ(ϕ(x) ∧ σ (x) = d) ≤ ξ(ϕ2(x)) for every d from Ma. (∗)4.1

Clearly there is a minimal d∗ ∈ Ma satisfying

Ma |= |{c ∈ ϕ1(M) : σ (c) ≤ d∗}| ≥ 1

2
|ϕ1(Ma)|. (∗)4.2
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So

Ma |= |{c ∈ ϕ1(M) : σ (c) ≥ d∗}| ≥ 1

2
|ϕ2(Ma)|. (∗)4.3

But Ma omits the type p(x) as p(x) ∈ �a and d∗ ∈ Ma, so for some n and d∗ /∈ (ap,n, bp,n). So one of the
following sub-cases occurs:

Sub-case 2a: d∗ ≤ ap,n . Let ϕ′
1(x) = ϕ1(x) ∧ (σ (x) ≤ ap,n+1) and ϕ′

2(x) = ϕ2(x). Now the pair ϕ̄′ = (ϕ′
1, ϕ

′
2)

is as required, noting (by (∗)4.1 that

Ma |= |ϕ′
1(M)| ≥ |{a ∈ ϕ1(M) : σ (c) ≤ d∗}| ≥ 1

2
|ϕ1(M)|

hence

ξ(ϕ′
1(x)) = ξ(ϕ1(x)) > ξ(ϕ2(x)) = ξ(ϕ′

2(x)).

Sub-case 2b: d∗ ≥ ap,n . Let ϕ′
1(x) = ϕ2(x) ∧ (σ (x) ≥ bp,n+1) and ϕ′

2(x) = ϕ2(x). We note by (∗)4.2 that

Ma |= |ϕ′
1(M)| ≥ |{c ∈ ϕ1(M) : σ (c) ≥ d∗}| ≥ 1

2
|ϕ1(M)|;

thus,

ξ(ϕ′
1(x)) = ξ(ϕ1(x)) > ξ(ϕ2(x)) = ξ(ϕ′

2(x)),

and so ϕ̄′ = (ϕ′
1, ϕ

′
2) is as required, and we are done proving �4.

Stage C. How do we omit the new type? Recall that c∗ will realize a type to which ϕ̄ ∈ P is an approximation
and we have to omit the relevant type from clause (B)(c) of the claim.

This stage is dedicated to proving the following statement:
If ϕ̄ ∈ P and σ (x) ∈ �a, then for some ϕ̄′,

(a) ϕ̄ ≤ ϕ̄′ ∈ P; �5

(b) for some a1 < a2 ≤ a∗, we have ϕ′
1(x) � a1 ≤ x < a2 and ϕ′

1(x) � ¬(F(a1) ≤ σ (x) < F(a2)).

First note

if there is ϕ̄′ ∈ � such that ϕ̄ ≤ ϕ̄′ and ξ(ϕ′
1)/ξ(ϕ′

2) > 2, then the conclusion of �5 holds. (∗)5.1

[Why? For pairwise disjoint sets, we have |⋃i Ai | = ∑
i |Ai |. A version of this is provable in PA; we

use this to find ϕ′′
1 (x) ∈ � such that ϕ′′

1 (Ma) ⊆ ϕ′
1(Ma), Ma |= |ϕ′

1(Ma)|/|ϕ′′
1 (Ma)| ≤ |ϕ2(Ma)| and σ [ϕ′′

1 , ϕ2],
which was defined in Clause �1(f), is constant, say, constantly e, hence e ∈ ϕ2(Ma). So ξ(ϕ′′

1 (x)) ≥
ξ(ϕ′

1(x)) − ξ(ϕ′
2(x)) > 2ξ(ϕ′

2(x)) − ξ(ϕ′
2(x)) = ξ(ϕ′

2(x)) hence (ϕ′′
1 , ϕ′

2) belongs to P and ϕ̄ ≤ ϕ̄′ ≤ (ϕ′′
1 , ϕ′

2).
As e ∈ ϕ2(Ma) ⊆ [0, b∗)Ma and F is onto Ma

<b∗ for some d <Ma a∗ we have F(d) = e. By �3, without loss of
generality, ϕ′′(x) � x < d or ϕ′′(x) � d ≤ x so we can choose (a1, a2) as (0, d) or as (d, a∗). So we are done.]

So we can assume (∗)5.1 does not apply. Without loss of generality, for no ϕ̄′ ∈ � do we have ϕ̄ ≤ ϕ̄′ and

ξ(ϕ′
1)/ξ(ϕ′

2) > (1 + 1

8
)ξ(ϕ1)/ξ(ϕ2) (∗)5.2

(where 1
8 is an arbitrary choice and can be replace by any fixed ε > 0).

[Why? We try to choose ϕ̄n by induction on n ∈ N such that ϕ̄n ∈ P, ϕ̄0 = ϕ̄, ϕ̄n ≤ ϕ̄n+1, and ξ(ϕn
1 )/ξ(ϕ′

2) ≥
(1 + 1

8 )nξ(ϕ1)/ξ(ϕ2). So for some n we have ξ(ϕn
1 )/ξ(ϕ′

2) > 2 and we can apply (∗)5.1, contradiction. But ϕ̄0 is
well defined, hence for some n, ϕ̄n is well defined but we cannot choose ϕ̄n+1. Now ϕ̄n is as required in (∗)5.2.]

Clearly,

if a1 < a2 are from ϕ1(M) b1 ≤ F(a1) < F(a2) ≤ b2 are from ϕ2(M) and they are

such that ξ(ϕ1(x) ∧ a1 ≤ x < a2 ∧ σ (x) /∈ [b1, b2)) > ξ(ϕ2(x) ∧ b1 ≤ x < b2), (∗)5.3

then we are done. So from now on we assume that there are no a1, a2, b1, and b2 as in (∗)5.3.

(a) Let k∗ ∈ N\{0} be large enough such that (ξ(ϕ1) − ξ(ϕ2))/ξ(ϕ2) > 2/k∗.
(b) Let n(1) ∈ N be large enough such that ξ(ϕ1) − ξ(ϕ2) > 1/n(1) and ξ(ϕ2) > (k∗ + 1)/n(1). (∗)5.4
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(c) Let n(2) > n(1).

We furthermore define:

(a) Let ψ1(x1, x2; y1, y2) := x1 < x2 ∧ ϕ1(x1) ∧ ϕ1(x2) ∧ y1 < y2 < b∗.
(b) Let ψ2(x1, x2; y1, y2) be the conjunction of ψ1(x1, x2, y1, y2) and |{x : ϕ1(x) ∧ x1 ≤ x < x2}|n(1) ≥ |{y :

ϕ2(y) ∧ y1 ≤ y < y2}|n(1) × a∗.
(c) Let ϑ2(x1, x2) := (∃y1, y2)(ψ2(x1, x2; y1, y2). (∗)5.5

(d) Let ψ3(x1, x2; y1, y2) be the conjunction of ψ2(x1, x2; y1, y2) and |{x : ϕ1(x) ∧ x1 ≤ x < x2 ∧ σ (x) /∈
[y1, y2)}|n(2) < |{y : ϕ2(a) ∧ y1 ≤ y < y2}|n(2) × a∗.

(e) Finally, let ϑ3(x1, x2) := (∃y1, y2)ψ3(x1, x2, y1, y2).

So, by our assumptions (for clause (b), use “(∗)5.3 does not apply”) we have

(a) if a1 < a2 are from ϕ1(Ma) then Ma |= ψ1[a1, a2; F [ϕ2](a1), F [ϕ2](a2)]

(b) if Ma |= ψ2[a1, a2; F [ϕ2](a1), F [ϕ2](a2)] then

Ma |= ψ3[a1, a2; F [ϕ2](a1), F [ϕ2](a2)]

Ma |= ϑ3[a1, a2].

(∗)5.6

Clearly

if Ma |= ψ3[a1, a2; bι
1, bι

2] for ι = 1, 2 then [b1
1, b1

2)Ma ∩ [b2
1, b2

2)Ma �= ∅. (∗)5.7

It is well known that in linear orders, the intersection of any finite family of intervals is non-empty if and only
if the intersection of any two is non-empty. A version of this statement can be proved in PA; therefore, for some
σ (x1, x2) ∈ �2

a , we have

if Ma |= ϑ3[a1, a2], then σ (a1, a2) ∈ ϕ2(M) and for every b1, b2 ∈ ϕ2(M),
(∗)5.8

we have that Ma |= ψ3[a1, a2; b1, b2] implies that σ (a1, a2) ∈ [b1, b2)Ma .

Now

(a) let ε ∈ QM ⊆ RM be a true rational such that ξ(ϕ2) > ε > ξ(ϕ2)k∗/(k∗ + 1) + 1/n(1) and (∗)5.9

(b) let d∗ = �(a∗)ε� ∈ Ma computed in Ra and c∗ = �(a∗)ε−1/n(1)�.

In Ma, we can define an increasing sequence 〈a1,i : i < i(∗)〉 with i(∗) ∈ Ma such that

a1,0 = 0,

a1,i(∗) = a∗, and (∗)5.10

a1,i+1 = min{a : ϕ1(a) and a1,i < a and |ϕ1(Ma) ∩ [a1,i , a)| is d∗}.
Then d∗ ≤ |{a : ϕ1(a) and a1,i(∗)−1 ≤ a < a∗}| ≤ 2d∗. In Ma, we can define

(a) u = {i < i(∗) : Ma |= ϑ3[a1,i , a1,i+1]} and v = {i < i(∗) : i /∈ u}. (∗)5.11

(b) Furthermore, let ϕ1,i (x) := ϕ1(x) ∧ a1,i ≤ x < a1,i+1.

The following statement follows and will be used in Case 1 below:

(a) For i < i(∗), we have ξ(ϕ1,i (x)) = ε.
(b) If i < i(∗) and i ∈ v, then

Ma |= |ϕ2(Ma) ∩ (F(a1,i ), F(a1,i+1))Ma | (∗)5.12≥ |ϕ1,i (Ma)| × a−1/n(1)
∗ = b∗ × a−1/n(1)

∗ .
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[Why? Clause (a) is obvious by the definition of ξ(−) and a1,i+1. For clause (b) note that by the
definition of ϑ3 in (∗)5.5(e) we have Ma |= ¬ψ3[a1,i , a2,i ; F [ϕ2](a1,i ), F [ϕ2](a2,i )], but by (∗)5.6(a) we have
Ma |= ψ3[a1,i , a2,i ; F(a1,i ), F(a1,i )]. By the definition of ψ3 in (∗)5.5(d) we are done.]

The following observation will be used in Case 2 below:

if i1 < i2 are from u then F(a1,i1) < σ M(a1,i2 , a1,i2+1). (∗)5.13

[Why? Obvious by (∗)5.8.]
We define terms σ1(x1, x2), σ2(x1, x2) ∈ �2

a such that if i < i(∗) then

(a) Ma |= σ1(a1,i , a1,i+1) < σ (a1,i , a1,i+1) < σ2(a1,i , a1,i+1),
(b) ϕ2(Ma) ∩ [σ Ma(a1,i , a1,i+1), σ

Ma
2 (a1,i , a1,i+1))Ma has ≤ c∗ elements in the sense of Ma,

(c) ϕ2(Ma) ∩ [σ Ma
1 (a1,i , a1,i+1), σ Ma((a1,i , a1,i+1))Ma has ≤ c∗ in the sense of Ma, (∗)5.14

(d) if i < j are from u, then Ma |= σ2(a1,i , a1,i+1) < σ (a1, j , a1, j+1),
(e) Ma |= σ1(a1,i , a1,i+1) < σ (a1,i , a1,i+1) < σ2(a1,i , a1,i+1), and
(f) if i ∈ u, then Ma |= σ1(a1,i , a1,i+1) < F(a1,i ) < σ (a1,i , a1,i+1) < F(a1,i+1) < σ2(a1,i , a1,i+1).

[Why? Let σ2(a1,i , a1,i+1) be maximal such that the relevant part of (a) and (b) and (d) hold and σ1(a1,i , a1,i+1)
be minimal such that the other part of (a) and (c) and (e) hold. By (∗)5.8, we can finish.]

Now the proof splits into cases:
Case 1: Ma |= |v| ≥ i(∗)/3. Here we shall use �2(c). Let v1 = {i ∈ v : Ma |= “|{ j ∈ v : j < i}| is even”}, so

Ma |= |v1| ≥ i(∗)/6. Let ϕ′
1(x) := ϕ1(x) ∧ (∃z)[z ∈ v1 ∧ x ∈ [a1,z, a1,z+1) ∧ ¬(∃y)(ϕ2(y) ∧ y ∈ [a1,z, a1,z+1) ∧

y < x)].
Let ϕ′

2(x) := ϕ2(x) ∧ (the number |{y : ϕ2(a) ∧ y < x}| is divisible by c∗).
Now

(a) ϕ̄′ := (ϕ′
1(x), ϕ′

2(x)) ∈ P,
(b) ξ(ϕ′

1(x)) = ξ(ϕ1(x)) − ε, and (∗)5.15

(c) ξ(ϕ′
2(x)) = ξ(ϕ2(x)) − ε + 1/n(1).

So

ξ(ϕ′
1(x))/ξ(ϕ′

2(x)) = (ξ(ϕ1(x)) − ε)/(ξ(ϕ2(x) − ε + 1/n(1))

≥ (ξ(ϕ1(x) − ξ(ϕ2(x))/(ξ(ϕ2) − ξ(ϕ2)k∗/(k∗ + 1))

= (k∗ + 1)(ξ(ϕ1(x)) − ξ(ϕ2(x)))/ξ(ϕ2) > 2,

and we fall under (∗)5.1, thus finishing the proof of �5.
Case 2: Ma |= |u| ≥ i(∗)/3. In Ma, define u2 = {i ∈ u : |{ j ∈ ϕ1(M) : j < i}| is even}. So Ma |= |u1| ≥

i(∗)/6. Now Ma satisfies

|ϕ1(M)| ≤ (i(∗) + 1)d∗ ≤ 7|
⋃

{ϕ1(Ma) ∩ [a1,i , a1,i+1) : i ∈ u1}|

= 7
∑

{|ϕ1(Ma) ∩ [a1,i , a1,i+1)| : i ∈ u1}|

≤ 7
∑

{|ϕ2(Ma) ∩ [σ1(a1,i , a1,i+1), σ2(a1,i , a1,i+1))| × a1/n(1)
∗ : i ∈ u1}|

≤ 7|
⋃

{ϕ2(Ma) ∩ [σ1(a1,i , a2,i+1), σ2(a1,i , a1,i+1)) : i ∈ u2}| × a1/n(1)
∗

< 7 × |ϕ2(Ma)| × a1/n(1)
∗ .

Together |ϕ2(M)| ≤ 7 × |ϕ2(M)| × a1/n(1)
a∗ . But as n(1) was chosen large enough, i.e., 1/n(1) < ξ(ϕ2(Ma) −

ξ(ϕ2(Ma)), contradiction. So we are done proving �5.
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Stage D. We define the sets T = T1 ∪ T2 ∪ T3 of tasks where

T1 = {(1, ϕ(x)) : ϕ(x) ∈ �}, towards completeness;

T2 = {(2, σ (x), ϕ(x)) : σ (x) ∈ �a and ϕ(x) ∈ �a}, towards preserving ϕ(x) is omitted; and

T3 = {(3, σ (x)) : σ (x) ∈ �a}, toward “stopping F” and “omitting the new type”.

�6

Clearly T is countable, let 〈sn : n < ω〉 be an enumeration of T. We now choose ϕ̄n by recursion on n such that:

(a) ϕ̄n ∈ P,
(b) ϕ̄m ≤ ϕ̄n for m < n,
(c) if n = m + 1 and sm = (1, ϕ(x)), then ϕn(x) � ϕ(x) or ϕn(x) � ¬ϕ(x), �7

(d) if n = m + 1 and sm = (2, σ (x), p(x)), then for some k, we have that ϕn(x) � σ (x) /∈ (ap,k, bp,k), and
(e) if n = m + 1 and sm = (3, σ (x)), then for some a1,m < a2,m ≤ a∗, we have that ϕ′

n(x) � a1,m ≤ x < a2,m

and ¬(F(a1,n) ≤ σ (x) < a2,m).

Why does the recursion work? Choosing ϕ̄0 is trivial; for the successor step, if sm ∈ T1, we use �3; if
sm ∈ T2, we use �4; and if sm ∈ T3, we use �5. In more detail, if sm = (3, σ (x)), let σ ′(x) be defined by
σ ′(x) = min{y : y = b∗ or σ (x) ≤ y ∧ ϕ(y)}; now apply �5 to (ϕ̄m, σ ′(−)).

We note that:

{ϕn(x) : n < ω} is a complete type over Ma. (∗)7.1

[Why? By clause (c) of �7 and the choice of T1.]
By compactness, there are N and c∗ such that

(a) Ma ≺ N and

(b) c∗ realizes {ϕn(x) : n < ω}.
(∗)7.2

Since T is a completion of PA, it has definable Skolem functions, and therefore, without loss of generality,

N is the Skolem hull of Ma ∪ {c∗}. (∗)7.3

Now, by �7(d),

N omits every p ∈ �a. (∗)7.4

Also by �7(c)

N omits {F(a) < x < F(a1) : a0 < c∗ < a1 ≤ a∗ and {a0, a1} ⊆ Ma}. (∗)7.5

By renaming, without loss of generality, the set of elements of N is a countable ordinal, so we can finish the proof
of the claim. �

As announced at the beginning of the proof of Main Claim 4.5, in the following, we shall give an informal
discussion of the proof that will help the reader:

(1) Note that a natural approach is to approximate the type of c∗ by formulas ϕ(x) with parameters from M
such that ϕ(x) � x < a∗ and Ma thinks that |ϕ(Ma)| is large enough than b∗. Then for σ (x) ∈ �a (i.e., a term
with parameters from M), which maps {c : c <M a∗} into {d : d <M b∗} we have to ensure σ (c∗) will not realize
the undesirable type, so it is natural to “shrink” ϕ(x) to ϕ′(x) such that “|ϕ′(M)| is large enough then |ϕ(M)|/b∗”
in the sense of M and σ (−) is constant on ϕ′(M). This requires that also |ϕ(M)|/b∗ is large. So a natural choice
to make the statement “ϕ(x) is large” precise would be, e.g., “for every n ∈ N, M |= |ϕ(M)| ≥ bn

∗”. This is fine
if ¬(a∗E4

M b∗), but not if we know ¬(a∗E3
M b∗) but possibly a∗E4

M b∗. This issue motivates the main definition of
P above.

(2) We shall say that (ϕ1, ϕ2) ∈ P is a “poor man’s substitute” to the original problem when (a) [0, a∗)Ma is
replaced by ϕ1(M), (b) [0, b∗)Ma is replaced by ϕ2(M), (c) F�[0, a∗)Ma is replaced by F�ϕ1(Ma), really rounded
to ϕ2(M), and (d) a∗ > b∗ ∧ ¬(a∗E3

Ma
, b∗) is replaced by ξ(ϕ1) > ξ(ϕ2). (Cf. �1(e) in the proof of Main Claim

4.5.)
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(3) Why do we demand condition �2(d) in the proof of Main Claim 4.5?
Assume Ma ≺ M and a ∈ M\Ma, a <M a∗ and F+ is an automorphism of M�{<} extending F then { f (a1) :

a1 <M a∗, a1 <M a}, {F(a2) : a2 ∈ Ma, a∗ < a2 < a∗}) is a cut of Ma, which F+(a) realizes in M . If M “thinks”
|ϕ2(M)| is � b∗, F may be one-to-one from ϕ2(M) onto some definable subset ϕ′

2(M) ⊆ [0, b∗)M . A reasonable
suggestion is to demand |ϕ2(M)| � b∗. To make the discussion more transparent, consider the case Ma |= a∗ <

b∗b∗.
But then let E be the definable convex equivalent relation on [0, a∗) such that each equivalence class is of size

b∗∗, then the cut the new element realizes is really a cut of [0, a∗)/E . Now F+ maps every E-equivalence class to
some E ′-equivalence class, E ′ a definable convex equivalence relation on [0, b∗∗) and F as a map from [0, a∗)/E
into [0, b∗)/E ′ is defined, possible if |[0, a∗)/E | = |[0, b∗)/E ′|.

The solution is via clause �2(d), which tells us that in parts (1) and (2) of this discussion, ξ(ϕ1) > ξ(ϕ2) is a
real substitute, cf. clause (d) in part (2).

(4) Why do we have clause �2(c) as part of the definition of P? If not, ϕ2(−) might be irrelevant to the type
we like to omit. Therefore �2(c) is necessary in the definition.

(5) We ask and answer some natural questions about the construction. Let φ̄ = (φ1, φ2) ∈ P be such an
approximation.

Question: Why do we approximate a complete type?
Answer: If we divide ϕ1 to two sets, at least one has the same ξ(−).

Question: Why can we continue to omit p(x) ∈ �a?
Answer: If σ (−) is a function with domain ϕ1 definable in Ma, let d∗ be maximal such that |{a ∈ ϕ1(M) :

σ (a) < d∗}| ≤ 1
2 |ϕ2(M)|, i.e., is in the middle in the right sense. If σ−1{d∗} is large enough, it is easy to see

that everything is fine; otherwise, for some n we have d∗ /∈ (ap,n, bp,n), so ϕ1(M) ∧ σ (x) /∈ (ap,n, bp,n) has
≥ 1

2 (ϕ2(M)) elements.

Question: Why can we guarantee that such σ (x) does not realize the forbidden new type?
Answer: This is a major point. If ξ(ϕ1) > 2ξ(ϕ2), this is easy (as in the case we use ¬a∗E4

M b∗). If for some
a1 < a2, we have ξ(ϕ′

2) > ξ(ϕ′
2), we let

ϕ′
2(x) = (ϕ2(x) ∧ a1 ≤ x < a2 ∧ σ (x) /∈ (F(a1), F(a2))

and

ϕ′′
2 (x) := (ϕ2 ∧ F(a1) ≤ x < F(a2))

and we are done, so assume there are no such a1 and a2.
We consider two possible reasons for the “failure” of a suggested pair (a1, a2). One reason is that maybe the

length of the interval [F(a1), F(a2)) of ϕ2(M1) is too large. The second is that it is small enough but σ (−) maps
the large majority of ϕ1(M) ∩ [a1, a2) into [F(a1), F(a2)). In the second version, we can define a version of
its property satisfied by (a1, a2, F(a1), F(a2)). So we have enough intervals of a “pseudo second kind” (where
“pseudo” means using the definable version of the property). So dividing ϕ1(M) into convex subsets of equal

(suitable) size (essentially this means that aξ(ϕ2)∗ , ζ ∈ R>0 is small enough) by 〈ai : i < i(∗)〉 we have: for some
such interval [ai , ai+1) there are b1 and b2 as above. For those for which we cannot define (F(a1), F(a2)) we can
define it up to a good approximation. If there are enough, (this may include “pseudo cases” in respect to F), we
can replace ϕ1(M) by ϕ′

1(M) = {ai : i < i(∗)} and ϕ′
2(−) defined by the function above.

So |ϕ′(M)| is significantly smaller than |ϕ1(M)|, essentially ξ(ϕ′
1) = ξ(ϕ1) − ξ(ai+1 − ai ) ∼ ξ(ϕ1) − ξ(ϕ2) +

ζ where ζ is quite small. But we are over-compensating, so we decrease ϕ2(x) to ϕ′
2(x) which is quite close to

{F(ai ) : [ai , ai+1) is of the pseudo second kind} and ξ(ϕ′
2) is essentially ξ(ϕ2) − ξ(ϕ2) + ζ ∼ ζ . So both lose

similarly in the ξ(−) measure, but now, if we have arranged the numbers correctly ξ(ϕ′
2) > 2ξ(ϕ′

2), a case we
know how to solve.

If there are not enough is of the pseudo second kind, the function essentially inflates the image getting a finite
cardinality arithmetic contradiction.

Theorem 4.6 Assume ♦ℵ1 . If M is a countable model of PA, then M has an elementary extension N of
cardinality ℵ1 such that E5

N = E3
N , i.e., is 3-order rigid.
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P r o o f . Without loss of generality, M has universe a countable ordinal. As we are assuming ♦ℵ1 , we
choose a partial function Fα from α to α for α < ℵ1, i.e., F̄ = 〈Fα, α < ℵ1〉 such that for every partial function
F : ℵ1 → ℵ1, for stationarily many countable limit ordinals δ we have Fδ = F�δ.

We now choose aα ∈ APℵ0 by recursion on α < ℵ1 such that

(a) Ma0 = M and �a0 = ∅,
(b) 〈aβ : β ≤ α〉 is ≤AP-increasing continuous, and
(c) if α = δ + 1 where δ is a countable limit ordinal, Maδ

has universe δ and for some aδ, bδ the tuple
(aδ, aδ, bδ, Fδ) satisfies the assumptions of Main Claim 4.5 on (a, a∗, b∗, F), they are necessarily unique
(cf. Main Claim 4.5(A)(c)), then aδ+1 satisfies its conclusion (for some cδ).

Why does the recursion work? For α = 0, recall clause (a). For α = 1, as �a0 = ∅ let Ma1 be a countable
model such that M = Ma0 ≺ Ma1 , M �= Ma1 and withour loss of generality, the universe of Ma1 is a countable
ordinal.

Finally, let �a1 = ∅. If α is a limit ordinal, use Main Claim 4.4(2), i.e., choose the union. This obviously works.
For α = β + 1, if clause (c) applies, then use Claim 4.5. For α = β + 1 > 1, if clause (c) does not apply, this is
easier than 4.5 (or choose (a∗, h∗, F) such that (aβ, a∗, b∗, F) are as in the assumption 4.5, this is possible because
Maβ

is non-standard, cf. the case α = 1, and note that a, b ∈ Maβ
\N implies aE5

Ma
b because Ma is countable; so

we can use 4.5).
Now that we have seen that the recursion works, let N = ⋃{Maα

: α < ℵ1}. Clearly N is a model of T of
cardinality ℵ1. We know that E3

N ⊆ E5
N by Claim 3.3. Towards a contradiction, assume a∗E5

N b∗ but ¬(a∗E3
N b∗)

where a∗, b∗ ∈ N\M . Without loss of generality, b∗ < a∗ and let F be an order-isomorphism from N<a∗ onto
N<b∗ . So S = {δ : F�δ = Fδ} is stationary and E = {δ : a∗, b∗ ∈ Maδ

, Maδ
has universe δ and F maps Maδ

<a∗ onto
Maδ

<b∗ } is a club of ℵ1.
Choose δ ∈ S ∩ E and use the choice of aδ+1, i.e., clause (c) to get a contradiction. �

Theorem 4.7 Assume λ = λ<λ and ♦S where S = Sλ+
λ = {δ < λ+ : cf(δ) = λ}. Then for any model M of PA

there is a λ-saturated model N of Th(M) of cardinality λ+ such that E5
N ⊆ E4

N .

P r o o f . The proof is similar to that of Theorem 4.6, but the analogue of Main Claim 4.5 is much easier. �

Conjecture 4.8 (1) Assume λ is strong limit singular of cofinality ℵ0 and ♦S where S = Sλ+
ℵ0

= {δ < λ+ :
cf(δ) = ℵ0} and �λ. If M is a model of PA, then Th(M) has a λ-universal model N of cardinality λ+ which is
3-order rigid.

(2) Any model M of PA has a 3-order rigid elementary extension.

5 Weaker version of PA

We may wonder what is the weakest version of PA needed in the results proved in this paper. In the following,
we define some weak versions of PA and comment on which of them are sufficient for which results of Sections
1 and 2. When we discuss the exponentiation function x �→ 2x , we prefer to add a new function symbol to the
vocabulary and the relevant axioms, rather than an axiom stating that some definition has those properties. In the
following, all models are models of PA−4 (cf. Definition 5.1), having the signature of τPA if not said otherwise.

Definition 5.1 We define the first order theories PA� for � ∈ {−1, . . . ,−4}.

(a) For � = −4, we use the obvious axioms of addition and product and order, that is axioms describing the
non-negative part of a discrete ordered ring.

(b) If � = −3, we also add division with remainder by any n ∈ N.
(c) If � = −2, we use the axioms of PA−3 and also add division with remainder.
(d) If � = −1, we use the axioms of PA−2 and add a unary function F2 written 2x with the obvious axioms for

x �→ 2x , including

(∀x)(∃y)(2y ≤ x < 2y+1).
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Claim 5.2 If M and N are models of PA−4; then Claim 2.4(1), (1A), (1B), (3), (4), Claim 2.5, Claim 3.1(1),
(2), (3), (5), and Observation 2.8(1), (2), (3) hold.

Claim 5.3 If M is a model of PA−3, then Claim 2.4(2) holds.

P r o o f . The only difference to the original proof is: Why can we choose c1 and c2?
Now if we assume M |= PA this is obvious, but we are assuming M |= PA−3, still we can divide b − a

by n − 1 and then get c1 and m < n − 1 such that b − a = (n − 1) × c2 + m. Let c2 = a − c1, so b = a +
(n − 1) × c2 + m = c1 + n × c2 + m. We still have to justify using a − c2, i.e., showing c2 ≤ a, but otherwise
b − a = (n − 1) × c2 + m ≥ (n − 1) × a + m, i.e., b ≥ n × a + m, contradiction. �

Theorem 5.4 If M1 and M2 are models of PA−1, then Theorem 2.6 holds, i.e., if M2 is 2-order-rigid and M1

and M2 are order-isomorphic, then M1 and M2 are almost {<,+}-isomorphic.

P r o o f . The proof proceeds as for the proof of Theorem 2.6 with the following minor additions: in the proof
of (∗)3 we use M2 |= PA−4; in the proof of (∗)5 we use M� |= PA−2; in the proof of (∗)0 we use M2 |= PA−2; in
the proof of (∗)7 we use M1 |= PA−4; and in the proof of (∗)8, �2 we use M� |= PA−1. �

Claim 5.5

(a) If M |= PA−3 then Observation 2.8(4) holds.
(b) If M |= PA−1 then Observation 2.8(5) holds.

P r o o f . Straightforward. �
We close the paper with an open question (for more context, cf. Definition 2.3(2)):

Question 5.6 Is there a 2-order rigid model of PA−1?
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