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0. Introduction for non-logicians

The first part of the introduction tries to explain the aim to a general mathemat-
ical audience, so may be skipped by a knowledgeable reader; naturally we should
start by explaining what is first order logic and a general (abstract) logic from a
model-theoretic perspective.

We may consider classes of rings and classes of groups but usually we do not
consider a class containing structures of both kinds. Formally a ring is a structure
(or model) M consistent with its universe, a set of elements called |M | (but we may
write a ∈ M) and interpretations +M ,×M and 0M of the binary function symbols
+,× and the individual constant symbol (= zero place function symbol) 0. We also
write nM for {(a0, . . . , an−1) : a0, . . . , an−1 are elements of M}.

Generally we have a so-called vocabulary τ consisting of relation symbols (=
predicates) and function symbol x, each with a given number of places (= arity).

For a ring M we consider many times the set of n-tuples satisfying some equa-
tions. Model theorists usually look at a wider class of such sets, which start with
the family {{ā ∈ nM : ā satisfies an equation ϕ} : n ∈ N and ϕ an equation}
and close it under intersection of two (with the same n), complements inside the
relevant n(M) and projection (from n+1M to nM). So a first order formula for the
vocabulary τ, ϕ = ϕ(x0, . . . , xn−1) is a scheme giving for a τ -structure M a subset
ϕ(M) of nM as above. If n = 0, ϕ(M) ∈ {{〈〉}, ∅}, then we call ϕ a sentence and
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396 SAHARON SHELAH

say that M satisfies it, M |= ϕ iff ϕ(M) �= ∅; let L(τ ) be the set of first order
sentences or formulas in the vocabulary τ ; as we can add additional individual con-
stants, the difference is minor. We may consider sets definable with parameters,
i.e. ϕ(M, b̄) = {ā : M |= ϕ[ā, b̄]}.

There is much to be said for first order logic; e.g. this family of subsets of nM
for n ∈ N has better closure properties than the set “solutions of finitely many
equations”, i.e. varieties; however, we shall not say it here. But in first order logic
we cannot express, e.g. “a group G is locally finite, i.e. every finitely generated
subgroup is finite”. To express this we may allow: if ϕk(x0, . . . , xn−1) is a formula
for k ∈ N, then so is ϕ(x0, . . . , xn−1) =

∧

k

ϕk(x0, . . . , xk), i.e. ϕ(M) =
⋂
{ϕk(M) :

k}.
Allowing this we get the logic Lℵ1,ℵ0

; more generally,

�0 the logic Lλ,κ is defined similarly but the formulas have the form ϕ =
ϕ(〈xi : i<γ〉), γ<κ and we allow

∧

α<β

ϕα(x̄) for β < λ and

(∃y0, . . . , yα, . . .)α<lg(ȳ)ϕ(x̄, ȳ),

where we allow a formula to have < κ free variables; i.e. we consider
subsets of αM for α < κ and allow intersection of < λ (instead of two) and
projections “forgetting” < κ variables .

Another strengthening of first order logic is allowing ψ(ȳ) = (∃≥ℵ1xϕ(x, ȳ)), i.e.
ψ(M̄) = {b̄: for uncountably many a ∈ M we have M |= ϕ[b, ā]}. There are many
other logics.

Now first order logic has many good properties, including (recall, the cardinality
of a set A is the number of elements, which may be infinite, and the cardinality of
a model is the number of its elements, i.e. the cardinality of its universe ‖M‖)

�1 the downward LST (Löwenheim-Skolem-Tarski) property:

(a) if a sentence ψ ∈ L(τ ) has a model, i.e. M |= ψ, then it has a countable
model;

(b) if τ is a vocabulary, M is a τ -model, A ⊆ |M |, |A|+|τ |+ℵ0 ≤ λ < ‖M‖,
then there is a τ -model N of cardinality λ, a submodel of M such that
A ⊆ |N | and ThL(N) = ThL(M), where

• ThL(M) = {ψ ∈ L(τM ) : ψ a sentence M |= ψ}.

This (together with the upward LST property) means that first order logic does
not distinguish infinite cardinals.

�2 compactness: if T is a set of sentences in L(τ ) and every finite T ′ ⊆ T has
a model, i.e. for some τ -model M we have ϕ ∈ T ′ ⇒ M |= ϕ, then T has
a model.

The desirability of this should be obvious.

�3 interpolation: if τ0 = τ1 ∩ τ2 are vocabularies, ψ1 ∈ L(τ1), ψ2 ∈ L(τ2) and
ψ1 � ψ2, i.e. there is no model of ψ1∧¬ψ2, (equivalently if M is a (τ1∪τ2)-
model and M |= ψ1, then M |= ψ2), then there is ϕ ∈ L(τ0) such that
ψ1 � ϕ and ϕ � ψ2.
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NICE INFINITARY LOGICS 397

First order logic satisfies interpolation: this is Craig’s theorem. Lindström set out
to show that first order logic is the natural choice, recalling there are many logics;
for this he has first to define a logic, essentially (see more in Definition 1.9)

�4 a logic L consists of the following:

(a) a set of sentences L (τ ) for any vocabulary τ ; we can define formulas
ϕ(x0, . . . , xn−1) by adding to τ individual constants;

(b) satisfaction relation |=L , i.e. M |=L ψ, where M a model, ψ ∈
L (τM );

(c) natural properties such as preservation under isomorphisms and mono-
tonicity (i.e. τ1 ⊆ τ2 ⇒ L (τ1) ⊆ L (τ2)).

This seems too wide, so (see more in Definition 1.12):

�5 L is a nice logic if the set of sentences L (τ ) has some natural closure
properties such as:

• if ψ1, ψ2 ∈ L (τ ), then for some ψ ∈ L (τ ) we have:
M |= ψ iff M |= ψ1 and M |= ψ2.

There is a natural order on the class of logics:

�6 L1 ≤ L2 iff for every vocabulary τ and ψ1 ∈ L1(τ ) there is ψ2 ∈ L2(τ )
such that: if M is a τ -model, then M |=L1

ψ1 iff M |=L2
ψ2;

�7 L1,L2 are equivalent if L1 ≤ L2 and L2 ≤ L1.

Now we can phrase (really just one of the versions1 of)

� (Lindström theorem) The logic L is equivalent to L, first order logic when

(a) L is a nice logic;

(b) L satisfies LST to ℵ0 i.e. �1(a);

(c) L satisfies compactness; see �2.

This indicates that the family of nice logics not equivalent to L is the union of:

• the infinitary ones, usually above Lℵ1,ℵ0
;

• the somewhat compact, usually ℵ0-compact ones.

We here deal with the first.
Lindström’s theorem founded “abstract model theory”, where we have variables

over logics. In the seventies and eighties this area flourished but a reason for its
almost dying out is the lack of similar theorems for other logics, i.e. discovering (or
pointing out) “interesting” logics which can be characterized in a reasonable way.

The aim of this work is to present such an infinitary logic and prove that it has
some desirable properties. In particular it satisfies interpolation, which holds only
in a “few” cases. This solves some more specific old problems, and we hope it will
reopen the case of “abstract model theory”.

In more detail, we define the logic L1
κ for any suitable cardinal κ playing the role

of ℵ0 in first order logic:

1E.g. compactness just for countable theorems, but then we have to add that the occurrence
number is ℵ0 or just ℵ0; see Definition 1.11.
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398 SAHARON SHELAH

� L1
κ satisfies

(a) a downward LST; any sentence which has a model has one of cardi-
nality < κ;

(b) if the vocabulary has cardinality < κ, then the number of sentences is
κ;

(c) a weak substitute of compactness: well ordering is not definable;

(d) the L1
κ-theory of a product of two τ -models M1 ×M2 depends just on

the L1
κ-theories of M1 and M2;

(e) interpolation; see �3.

1. Introduction and preliminaries

1(A). Aims. We feel that this is an important one among my works and will attract
little attention. Is this an oxymoron? We do not think so. See below.

The investigation of model-theoretic logics and soft model-theory started with
Lindström theorems and was a central topic of model theory in the seventies. Major
aims were to find characterization theorems, new important logics and non-trivial
implications. The achievements were to a large extent summed up in the handbook
of Barwise and Feferman [Be85], but then the subject became quite muted. There
were some external reasons: stability theory and theoretical computer science draw
people away, and there were also some incidental personal reasons. But probably
the profound reason was a disappointment. The impression was that there were
just too many examples and counterexamples but not enough deep results and,
particularly, too many logics and too few characterization theorems (saying a logic
L is the unique logic such that ...). Recall that Lindström characterized first order
logic, e.g., as the only “reasonable” logic satisfying compactness (for ℵ0 sentences)
and the downward LST theorem (for one sentence, to ℵ0), (but see §1(D) below).
Still there was some activity later, particularly of Väänänen.

Here we try to reopen the case. A property which remained mysterious was
interpolation; see Makowsky [Mak85] in the handbook. It was known that Lℵ1,ℵ0

has interpolation (Lopez-Escobar) but not Lλ,κ when (λ, κ) �= (ℵ0,ℵ0), (ℵ1,ℵ0)
(Malitz). On Lκ,θ, see Dickman [Dic85]. However, the pair (L<∞,ω,L∞,∞) and even
(Lλ+,ω,L(2λ)+,λ+) has interpolation, a puzzling result. This leads naturally to a
question: does this interpolation come from the existence of an intermediate logic
which has interpolation? See more on the history of those questions and on inter-
polation and related subjects, [Mak85].

Let us recall some old questions on which we do not advance here. Feferman
raises the question

Question 1.1. Is there an ℵ0-compact logic strenghtening L(∃≥ℵ1) with interpo-
lation.

Note the plethora of extensions of L(∃≥ℵ1). For my taste preferable is

Question 1.2. 1) Is there a λ-compact logic stronger than first order satisfying
interpolation, for any λ?

2) Moreover, a fully compact one?
Of course, part (2) became a question only after fully compact logics > L were

discovered ([Sh:18]).
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The introduction of [Be85] mentions the (then latest advance): some compact
logic strengthening first order logic satisfies the Beth definability theorem ([Sh:199]),
a puzzling result. Also the pair (L(Qcf

ℵ0
),L(aa)) of logics satisfies interpolation,

again a puzzling result. Those cases give hope of better results using related new
logics. Returning to infinitary logics, the following old problems are (and will be)
our main concern:

Problem 1.3. Is there a logic L satisfying interpolation such that L<∞,ℵ0
⊆ L ⊆

L<∞,<∞?

Problem 1.4. Assume κ is strong limit singular of cofinality ℵ0. Is there a logic
L satisfying interpolation such that Lκ+,ℵ0

⊆ L ⊆ Lκ+,κ?

Later we have asked ourselves:

Problem 1.5. Is there, for an arbitrarily large cardinal κ, a logic L such that:

(a) Lκ,ω ⊆ L and has reasonable closure properties;

(b) L has the downward LST property in the sense that every sentence which
has a model N , has a model N of “small” cardinality; moreover, M ⊆ N ;

(c) L has interpolation;

(d) undefinability of well ordering (in a strong sense) which means: if M ex-
pands (H (λ),∈) and M |= ψ, then for some N we have
(α) N |= ψ,

(β) ordN is not well founded.
A posteriori we add

(γ) |N | is the union of ℵ0, an internal set of bounded cardinality; i.e.
for some 〈an : n < ω〉, θ,N |= “θ a cardinal such that |an| ≤ θ and
(∀b ∈ N)(

∨

n<ω
N |= “b ∈ an)”;

(e) L ⊆ Lθ,θ for a suitable θ.

Problem 1.6. Is there a maximal such logic?
There is a feeling that Lindström’s theorem, EF-games and interpolation are

inherently connected; though I do not know of a formalization of it, the present
work gives evidence strengthening this feeling.

1(B). What is achieved. We feel that here we reasonably fulfill those old hopes
mentioned above, in the direction of non-compact logics (recall that by the Lind-
ström theorem, any (nice) logic stronger than first order logic fails downward LST
to ℵ0 or fails ℵ0-compactness).

Assuming for transparency κ = �κ, we find an interesting logic, L1
κ, such that:

�1 (A) L1
κ is a nice logic.

(B) It has a reasonable characterization: it is the maximal nice logic,
see Definitions 1.9, 1.12, such that (α,<) can be characterized up
to isomorphism by some ψα ∈ L1

κ for α < κ, and it has occurrence
number ≤ κ, see Definition 1.11, and well ordering is not definable
in a strong way.

(C) It satisfies interpolation2 (see �3 above or Definition 1.14 below,
answering an old question on the existence of such a logic).

2For consequences of interpolation, see [Mak85].
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(D) It is between L−1
<κ =

⋃
{Lλ+,ℵ0

: λ < κ} and
L0
<κ =

⋃
{Lλ+,λ+ : λ < κ}; see �0 above or Definition 1.20 below.

(E) It has many of the good properties of L0
κ := L0

<κ:
(α) downward LST, see �1 above, specifically every ψ ∈ L1

κ(τ )
has a model of cardinality < κ (see some variants in
Definition 2.14 below);

(β) well ordering is not an expressible3;

(γ) addition of theories; see Theorem 3.14;

(δ) product of (two) theories; see Theorem 3.14.
(F ) Alternative characterization: L1

κ is a minimal nice logic L for which
• for any ordinal α < κ we can characterize (α,<) up to

isomorphism by some ψα ∈ L ;
• we can characterize the class of (A ∪ P, A,∈),

where P ⊆ [A]≤μ is an ℵ0-cover (and A ∩ P = ∅)
for each μ < κ by some sentence from L
(see Definition 3.6);

• L is Δ-closed; see Definition 3.8;
• L has occurrence number ≤ κ; see Definition 1.11.

We do not have a generalization of the Feferman-Vaught theorem [FV59] on general
operations and not even the Mostowski one, [Mos52], on reduced products, even
for the product of countably many models; see Theorem 4.10.

Here in §2 we choose a definition of the logic closest to the way we arrive at it
and at the proof. For α, θ < κ we generalize the Ehrenfuecht-Fraisse game allowing
“rescheduling of debts”. This does not give an equivalence relation, so we close the
induced relation to an equivalence relation and a sentence; i.e. the class of models
of a sentence is the union of some such equivalence classes. Then we prove the basic
properties.

In §3 we deal with the deeper properties as promised in �1 above: non-definabil-
ity of well ordering, characterization and interpolation.

In §4 we show how close is our logic to L0
κ and deal with sums and products. We

intend to continue in [Sh:F1046], in particular concerning Problem 1.4.
More than once, lecturing on this, some in the audience “complain” that this

definition does not sound like a definition of logic. So in [Sh:F1046] we intend to
give a presentation close to the way logics are traditionally defined (we could have
done it for L1

κ, too) but our characterization theorem shows that we shall get the
same logic.

The logic L1
κ from §1 is quite satisfactory: many of the good properties of L<κ,ℵ0

and interpolation, and a characterization (parallel to the Lindström theorem). But
compared to L<κ,ℵ0

we lose the upward LST.

Question 1.7. Letting κ = �κ, is there an L such that L−1
κ ≤ L ≤ L0

κ satisfying
interpolation and the upward LST theorem?

We intend to deal with this in [Sh:F1046].

3That is, if ψ is a sentence and for every ordinal α for some M,M |= ψ and (PM , <M ) is a
well ordering of order type ≥ α, then for some model M of ψ, (PM , <M ) is not a well ordering.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:797



NICE INFINITARY LOGICS 401

1(C). Why characterizations? Note that characterization theorems are central
for several reasons:

�2 (a) per se, uniqueness results are nice, of course;

(b) historically, the Lindström theorem has this form;

(c) they prove that a logic is a natural logic;

(d) for a logic which lacks such a theorem we may well suspect that
• there are many relatives of similar good properties, without a

special reason to prefer one or another.

How good is a characterization theorem? Of course, it all depends on the properties
appearing in the characterization being natural and preferably well established.

The situation of having reasonable logics which we can strengthen while preserv-
ing their main positive properties but neither seeing a maximal one nor proving
such an extension does not exist has been prominent in the area, e.g., the most
well-established ones such as L(Q) = L(∃≥ℵ1) and also Lκ+,ℵ0

.
Why here do we tend to look at strong limit cardinals, in particular, κ = �κ?

Note that in a first order formula with a fixed finite vocabulary, with predicates
only (for transparency), the number of sentences of quantifier depth q has order
of magnitude �q, iterated power of q times. In infinitary logic, if we like that still
there is a sentence expressing the “quantifier depth ≤ α theory”, we need κ = �κ.
A price is that for κ singular, we lose full substitution, and moreover, full closure
under conjunctions of < κ. This is resolved if we demand that κ is a strong limit
regular, i.e. (strongly) inaccessible, that is fine, but the existence of such cardinals
is unprovable in ZFC.

1(D). Directions ignored here. We do not deal here with some other major
directions:

�3 (a) ℵ0-compact (nice logic);

(b) logics without negation and continuous logic;

(c) almost isomorphism (and absolute logic).

We may look at model theory, essentially replacing “isomorphic” by “almost iso-
morphic”, that is, isomorphisms by potential isomorphisms, i.e. isomorphism in
some forcing extension. In [Sh:12] we have suggested reconsidering a major theme
in model theory, counting the number of isomorphism types. We call M,N almost-
isomorphic when M,N have (the same vocabulary and) the same L∞,ℵ0

-theory,
equivalently isomorphic in some generic extension. For a theory T let Iai(λ, T ) be
|{M/ ≡L∞,ℵ0

: M a model of T of cardinality λ}|. This behaves nicely: if T has

cardinality ≤ λ, is first order or just ⊆ Lλ+,ℵ0
, then İai(λ, T ) ≤ λ < μ ⇒ İai(μ, T ) ≤

İai(λ, T ) (on İai(−, T ) for ℵ0-stable T : see a work of Laskowski-Shelah in prepara-
tion). In [Sh:12] we also define “M is ai-rigid, i.e. a �= b ∈ M ⇒ (M,a) �≡L∞,ℵ0

(N, a)” and have the downward LST theorem for it. Later Nadel suggested further
to consider homomorphisms, in particular for abelian groups; see [EM02, Ch. IV,
§3, p. 487], more Göbel-Shelah [GbSh:880], Göbel-Herden-Shelah [GbHeSh:948].
Barwise characterized the relevant logic, L∞,ℵ0

, by absoluteness: (among logics
with satisfaction being absolute under forcing it is maximal).
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1(E). Can soft model theory be applied? What about applications of soft
model theory? There are some applications using compact logics. Concerning
1(D), 1(E) on other directions see [Be85]. See [Sh:384] on extending first order
logic by second order quantifiers restricted in some ways. Of course, the expressive
power of the logic depends on the restriction; see the examples below. In cofinality
logic, L(Qcf

C) with C a class of regular cardinals, we are allowed to say: the formula
ϕ(x, y), possibly with parameters, defines a linear order with no last element of
cofinality from C, recalling that the cofinality of a linear oder I is the minimal
cardinality of an unbounded (equivalently cofinal) subset. If C is non-trivial, this
logic is a very interesting logic (e.g., fully compact), in particular showing what we
cannot prove, so full compactness is not sufficient to characterize first order logic.
But its expressive power is weak, so we do not expect it to have applications.

In [Sh:384] (where you can find something about the history of the topic) we
prove the compactness of the quantifier (that is, for first order logic extended by it)
L ceab = L(Qceab), quantifying over complete embeddings of one atomless Boolean
ring into another. Moreover, for this logic we prove completeness for a natural
set of axioms. Now consider the problem “can the automorphism groups of a 1-
homogeneous4 Boolean algebra be non-simple?”5 Much is known about this group
and, in particular, that it is “almost” simple; see Rubin-Štěpánek [Rv89]. It was
known that there may exist such Boolean Algebras, as by [Sh:b, IV] in some generic
extension, all automorphisms of P(ω)/finite are trivial (i.e. induced by permuta-
tions π of Z such that {n ∈ Z : n ≥ 0 but π(n) < 0} is finite) and van Dowen notes
that the group of trivial automorphisms of P(ω)/finite is not simple (as the sub-
group of the automorphisms induced by permutations of ω is a normal subgroup)
and the quotient is isomorphic to (Z,+). Alternatively, Koppelberg [Kop85] has
directly constructed such Boolean Algebras of cardinality ℵ1 assuming (the more
natural assumption) CH. So by the completeness theorem (as the set of axioms is
absolute), as the relevant facts are expressible in L(Qceab), the existence is proved
in ZFC. Some may want to consider a direct proof. It almost certainly will give
more specific desirable information.

Another helpful quantifier is on branches of trees (see [Sh:72]). In Fuchs-Shelah
[FuSh:766] it is used to eliminate the use of diamonds, i.e. to prove in ZFC the
existence of valuation domains R such that there are R-modules which are universal
(i.e., the family of submodules is linearly ordered by inclusion) but not standard.
Note the obvious examples (which are called standard): R itself or appropriate
quotients. Actually the completeness theorem for this logic gives an absoluteness
result which is used.

We believe that quantifiers with completeness and compactness will be useful,
so it is worthwhile to find such quantifiers. Hopefully, we will see more in [Sh:800].

1(F). Preliminaries.

Notation 1.8. 1) τ denotes a vocabulary, i.e. a set of predicates and function
symbols so that each P ∈ τ has arityτ (P ) < ω places and each function symbol
F ∈ τ has arityτ (F ) < ω places; of course, individual constants are zero-place

4A Boolean algebra B is 1-homogeneous if it is atomless and for every a, b ∈ B \{0B}, we have
B ∼= B � b (equivalently for a, b ∈ B \ {0B, 1B} for some automorphism f of B, f(a) = b).

5That is, it has no normal subgroup which is neither the full group nor the one-element
subgroup.
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NICE INFINITARY LOGICS 403

function symbols and we may write arity(P ), arity(F ) when τ is clear from the
context.

1A) For a structure M let τM be the vocabulary of M ; for a predicate P from
τM , PM is the interpretation of P , so an arityτ (P )-place relation on |M |, the uni-
verse of M ; similarly for a function symbol F from τ and in particular for an
individual constant c from τ .

2) L denotes a logic; see Definition 1.9.
3) x̄, ȳ, z̄ denote sequences of variables (with no repetition). Usually x̄ = 〈xi :

i < α〉. so α = �g(ᾱ) but even possibly x̄ = 〈xs : s ∈ S〉 and then we let �g(x̄) = S.
4) We say that τ is a relational vocabulary when it has no function symbol.

Recall

Definition 1.9. 1) A logic L consists of

(a) function τ �→ L (τ ) giving a set of sentences ϕ (or formulas ϕ(x̄); see
Convention 1.10 below) for any vocabulary τ ; the function is a class function
that is a definition;

(b) |=L , satisfaction, i.e. the relation M |=L ϕ for M a model, ϕ ∈ L (τM );

(c) renaming: the function π̂, depending on (τ1, τ2, π,L ), is a one-to-one func-
tion from L (τ1) onto L (τ2) when π is an isomorphism from the vocabulary
τ1 onto the vocabulary τ2 (i.e. if P ∈ τ1 ⇒, then π(P ) ∈ τ2 is a predicate
and arityτ1(P ) = arityτ2(π(P )) and similarly for F ∈ τ1);

(d) if π is an isomorphism from the vocabulary τ1 onto the vocabulary τ2
and M1 is a τ1-model and M2 = π(M1) is naturally defined, then ϕ ∈
L (τ1(M1))⇒ [M1 |= ϕ ⇔ M2 |= π̂(ϕ)];

(e) (isomorphism): if M1,M2 are isomorphic τ -models and ϕ ∈ L (τ ), then
M1 |=L ϕ ⇔ M2 |=L ϕ;

(f) (monotonicity): if τ1 ⊆ τ2, then L (τ1) ⊆ L (τ2) and for any τ2-model M2

and ϕ ∈ L (τ1) we have M2 |= ϕ ⇔ (M2�τ1) |= ϕ.

Convention 1.10. We define a formula ϕ = ϕ(x̄) in L (τ ) as a sentence in L (τ ∪
{ci : i < �g(x̄)}) with ci(i < α) pairwise distinct individual constants not from τ
and if ϕ(x̄) ∈ L (τ ) and ā ∈ 	g(x̄)M , then M |=L ϕ[ā] means M+ |=L ϕ, where

M+ is the expansion of M by cM
+

i = ai for i < �g(x̄); in fact, �g(x̄) can be any
index set.

Definition 1.11. For a logic L , the occurrence number oc(L ) of L is the minimal
cardinal κ (or ∞) such that L (τ ) =

⋃
{L (τ ′) : τ ′ ⊆ τ is of cardinality < κ} for

any vocabulary τ .

Definition 1.12. We say that a logic L is nice when:

(a) (α) Applying predicates: if P ∈ τ is an n-place predicate, then
P (x0, . . . , xn−1) ∈ L (τ ) is a formula of L (τ ).

(β) Equality: x0 = x1 ∈ L (τ ); i.e. for any individual constants c0, c1 ∈ τ
there is ϕ ∈ L (τ ) such that M |= ϕ iff cM0 = cM1 .

(γ) Applying6 functions: for an n-place function symbol F ∈ τ ,
x0 = F (x1, . . . , xn−1) is a formula of L (τ ).

6We may put together clauses (a)(α) and (a)(γ) allowing P (σ0(x̄), . . . , σn−1(x̄)), σ� a term;
the choice is immaterial.
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(b) (α) L is closed under conjunction, i.e. for every ϕ1, ϕ2 ∈ L (τ ) there is
ϕ3 ∈ L (τ ) such that for every τ -model M we have:
M |= ϕ3 iff M |= ϕ1 and M |= ϕ2.

(β) L is closed under existential quantifier, (∃x), i.e. for any ϕ ∈ L (τ∪
{c}), c an individual constant not in τ , there is ψ ∈ L (τ ) such
that for any τ -model M we have M |= ϕ iff M+ |= ϕ for some
(τ ∪ {c})-expansion M+ of μ.

(γ) L is closed under negation, i.e. for any ϕ ∈ L (τ ) there is ψ ∈ L (τ )
such that for any τ -model M,M �|=L ϕ ⇔ M |=L ψ.

(c) Restricting a sentence ψ to a predicate P, ψ�P ∈ L (τ ) when ψ ∈ L (τ ),
where P ∈ τ is a unary predicate, and τ is a relational vocabulary; see
Definition 1.15, Notation 1.8(4).

(d) Weak substitution, that is, has substitution for weak schemes; see Defini-
tion 1.17 below.

Remark 1.13. 1) Above we prefer (a)(γ) on using R′(σ0, . . . , σm−1), where each
σ	 = σ	(x̄) is a term.

2) Below we can define the multi-sort version.

Definition 1.14. 1) A logic L satisfies interpolation when for any sentence ψ1 ∈
L (τ1), ϕ2 ∈ L (τ2) and τ = τ1 ∩ τ , we have: if ϕ1 � ϕ2, i.e. for any (τ1 ∪ τ2)-model
M,M |= ϕ1 ⇒ M �= ϕ2, then for some sentence ψ ∈ L (τ ) we have ϕ1 � ψ and
ψ � ϕ2.

2) The natural definition for multi-sort languages.

Definition 1.15. 1) We say that ϕ ≡ ψ�P , where ϕ, ψ ∈ L (τ ) or pedantically7

ϕ = ψ�τP , where P is a unary predicate in the vocabulary τ and τ is of minimal
cardinality such that ψ ∈ L (τ ) when :

for any τ -models M,M |= (ψ�τP ) iff PM is non-empty, closed under FM for
every function symbol from τ and M�PM |= ψ; see below.

2) For a τ -model M and unary predicate P let N = M�PM be the τ -model with
universe PM , for n-place predicate Q ∈ τ we have QN = QM ∩n|N | and for n-place
function symbol F ∈ τ, FN (ā) = b ⇔ ā ∈ n|N | ∧ b ∈ N ∧ FM (ā) = b.

Definition 1.16. Let L be a logic.
0) atL (τ ) is the set of atomic formulas ϕ(x̄) from Definition 1.12(a); bsL (τ ) =

{ϕ,¬ϕ : ϕ ∈ atL (τ )}; we may omit L if it is clear from the context.
1) Let ϕ �L ψ, where ϕ, ψ ∈ L (τ ) mean that M |= ϕ ⇒ M |= ψ for any

τ -model (this does not depend on τ by Definition 1.9).
2) We say that ϑ̄ is an (L , τ1, τ2)-interpretation scheme when:

(a) L is a logic.

(b) τ1, τ2 are vocabularies.

(c) ϑ̄ = 〈ϑϕ(x̄)(x̄) : ϕ(x̄) ∈ atL (τ2)〉.
(d) ϑϕ(x̄)(x̄) is a formula in L (τ1), so ϕ = P (x0, . . . , xn−1), x̄ = 〈x	 : � < n〉 or

ϕ = (x0 = F (x1, . . . , xn)), x̄ = 〈x	 : � ≤ n〉.
7Of course ψ�τ is not uniquely determined. We may like to be more liberal in restricting a

model; in Notation 1.8(1) allow FM to be a partial function for F , a function symbol from τ(M).
We may combine this with restriction (see Definition 1.15). Then we still have to demand PM �= ∅
(except if we go further and allow empty models). Note that M |= “¬F (ā) = b” when FM (ā) is
not well defined.
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2A) Above we say that the ((L1, τ1, τ2)-interpretation) scheme ϑ̄ is simple when
ϑx0=x1

has the form (x0 = x1).
3) For ϑ̄ as above we say that N = Nϑ̄[M ] = M1[ϑ̄] when

(a) |N | = |M |/ϕ=(x0, x1), which means that

• EM
ϕ=

= {(a, b) : M |= ϕ(a, b)} is an equivalence relation on |M | or just
some non-empty subset;

• |N | = {a/EM
ϕ=

: a ∈ M and M |= ϕ=[a, a]}.
(b) N |= ϕ[ā] ⇔ M |= ϑϕ(x̄)[ā] for ϕ(x̄) ∈ at(τ2) and ā ∈ ω>M of length �g(x̄).

(Note: not for every such ϑ̄ and τ1-model M1 is Nϑ̄[M2] well defined. We need that
ϕ=(−,−) defines an equivalence relation on |M1|, which is a congruence relation
for the τ2-relations and functions we define and, of course, the definition of the
functions gives a function, similarly below; but if ϑ̄ is simple this problem does not
arise.)

4) We say that the logic L satisfies full substitution8 when: if τ1, τ2 are vo-
cabularies, ϑ̄ = 〈ϑϕ(x̄)(x̄) : ϕ(x̄) ∈ atL (τ2)〉 is a simple (L , τ1, τ2)-interpretation
scheme, and ψ2 ∈ L (τ2), then there is ψ1 ∈ L (τ1) such that: if M1 = Nϑ̄[M2], see
below, so M	 is a τ	-model for � = 1, 2, then M1 |= ψ1 ⇔ M2 |= ψ2.

5) We say that the logic L satisfies substitution when we require ϑ̄ to be simple.

Definition 1.17. 1) We say that ϑ̄ is a weak (L , τ1, τ2)-scheme (but L is imma-
terial so can be omitted) when :

(a) τ1, τ2 are vocabularies.

(b) ϑ̄ = 〈ϑϕ(x̄)(x̄) : ϕ(x̄) ∈ at(τ2)〉.
(c) The formulas ϑϕ(x̄) are atomic (or the conjunction of two atomic for equal-

ity) formulas in which we substitute some variables by individual constants;
moreover:

(α) If ϕ(x̄) is equal to (x0 = x1), so �g(x̄) = 2, then ϑϕ(x̄) = (x0 =
x1 ∧ Pϕ(x̄)(x0, c̄ϕ(x̄)).

(β) If ϕ(x̄) = P (x̄), so P ∈ τ2 is a predicate, then

•1 ϑ(x̄) = Qϕ(x̄)(x̄, c̄) where,

•2 Qϕ(x̄) is a predicate from τ1,

•3 c̄ is a sequence of individual constants from τ1,

•4 so arityτ2(P ) = �g(x̄), arityτ1(Qp) = �g(x̄) + �g(c̄).

(γ) If ϕ(x̄) = (x0 = F (x1, . . . , xn)), so F ∈ τ2 is a function symbol, then

•1 ϑϕ(x̄)(x̄) is (x0 = HF (x1, . . . , xn, c̄F )) or QF (x0, . . . , xn, c̄F ),

•2, •3 as above.

2) We say that L has weak substitution when L satisfies Definition 1.16(4), but
restricting ourselves to weak schemes.

Remark 1.18. 1) The meaning of Definition 1.17(1)(c)(γ) is

(∗)1 • ϑϕ(x̄)(x̄) = (x0 = HF (x1, . . . , xn, c̄F ));

• HF ∈ τ1 is a function symbol of arity n+ �g(c̄F );

• c̄F is a sequence of individual constants

8We do not use full substitution, as for κ singular, L0
κ,L

1
κ are not closed under full substitution.
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or

(∗)2 similarly using QF (x0, . . . , xn, c̄F ).

2) Why in Definition 1.17(1)(c) do we need the “moreover”; i.e. why is the second
version stronger? As we demand the c̄ϕ’s to be as in the end, it does not matter
whether we ask it or not. We could further demand that c̄ϕ = 〈c∗〉 for all ϕ̄ ∈ at(τ2).

3) In the “weak (L , τ1, τ2)-scheme” (hence in “weak substitution)” we may use
first order formulas (instead of atomic); that is, our results will not be affected by
this change in the definition.

4) Also, in the “weak (L , τ1, τ2)-scheme” we may add c̄ϕ = 〈c∗〉, for one c∗,
and/or demand that ϑ̄ is simple. For the latter change in the proof of Theorem 3.4,
we have to say that “without loss of generality, all ‖Mα,n‖ have cardinality ≥ μ1

and in fact = μ1”; for this we need a suitable version of LST, so have to add the
assumption “L satisfies the suitable version of LST”.

Definition 1.19. 1) For logics L1,L2 let L1 ⊆ L2 mean that: L1(τ ) ⊆ L2(τ )
for any vocabulary τ and M |=L1

ϕ is equivalent to M |=L2
ϕ when ϕ ∈ L (τ ) and

M is a τ -model.
2) For logics L1,L2 let L1 ≤ L2 or L2 is stronger than L1 mean that for

every τ and ϕ ∈ L1(τ ) there is ψ ∈ L2(τ ) such that ϕ, ψ are equivalent, i.e.
M |=L1

ϕ ⇔ M |=L2
ψ for any τ -model M .

3) We say that the logics L1,L2 are equivalent, L1 ≡ L2 when L1 ≤ L2 and
L2 ≤ L1.

Definition 1.20. 1) The logic Lκ,θ for κ ≥ θ ≥ ℵ0 is defined like first order logic,
but Lκ,θ(τ ) is the closure of the set of atomic formulas under ¬ϕ,

∧
i<α ϕi, where

α < κ and (∀x0, . . . , xi, . . .)i<αϕ where α < θ; a sentence is a formula with no free
variables and satisfaction is defined naturally.

1A) First order logic is L = Lℵ0,ℵ0
.

2) Let Lκ,θ,γ(τ ) be the set of formulas ϕ(x̄) ∈ Lκ,θ(τ ) of quantifier depth ≤ γ
and similarly in the other cases.

3) Let L0
≤κ,≤θ = Lκ+,θ+ ,L0

<κ,<θ =
⋃
{L0

≤κ1,≤θ1
: κ1 < κ, θ1 < θ}; similarly

L0
≤κ,≤θ,<γ , etc.

4) Let L−1
κ = L0

<κ,ℵ0
,L0

κ = L0
<κ,<κ.

5) We define the logic L∞,θ,γ by induction on the ordinal γ such that L∞,θ,γ(τ )
is a set of cardinality ≤ �γ(|τ |+ ℵ0), increasing with γ as follows:

• for γ = 0, the logic is the set of basic sentences;

• for γ limit, it is
⋃
{L∞,θ,β(τ ) : β < γ};

• for γ = β + 1, it is the set of sentences of the form (∃x̄)
∧

i<α ϕi(x̄) or
its negation where �g(x̄) < θ, ϕi(x̄) a formula from L∞,θ,β(τ ) with α <
�β(|τ |+ ℵ0).

Observation 1.21. If κ is strong limit singular, then there is no logic L such
that:

(a) L−1
κ ≤ L ≤ L0

κ,

(b) L satisfies full substitution.
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Note that

Claim 1.22. 1) In Definition 1.20 for κ singular, Lκ+,θ ≤ Lκ,θ ⊆ Lκ+,θ; i.e. every
sentence in Lκ+,θ(τ ) is equivalent to one in Lκ,θ (and Lκ,θ(τ ) ⊆ Lκ+,θ(τ )), so it
seems pointless to allow κ to be singular as was originally done. Still this is the
tradition and we use it.

2) If κ is a regular cardinal, then the logics L0
κ,θ and L0

<κ,θ are equal.

3) If κ = �κ, then L0
<κ,<κ,<κ = L0

<κ,<κ.

2. The logic L1
κ

Our main definition is

Definition 2.1. For a vocabulary τ, τ -models M1,M2, set Γ formulas in the vocab-
ulary τ in any logic (each with finitely many free variables if not said otherwise (see
Definition 2.3(4)), cardinal θ and ordinal α we define a game � = �Γ,θ,α[M1,M2] as
follows, and using (M1, b̄1), (M2, b2) with their natural meaning when Dom(b̄1) =
Dom(b̄2).

(A) The moves are indexed by n < ω (but every actual play is finite); just
before the n-th move we have a state sn = (A1

n, A
2
n, h

1
n, h

2
n, gn, βn, n).

(B) s = (A1, A2, h1, h2, g, β, n) = (A1
s , A

2
s, h

1
s , h

2
s , gs, βs, ns) is a state (or n-state

or (θ, n)-state or (θ,< ω)-state) when:
(a) A	 ∈ [M	]

≤θ for � = 1, 2,

(b) β ≤ α, so an ordinal,

(c) h	 is a function from A	 into ω,

(d) g is a partial one-to-one function from M1 to M2 and let g1s = g1 =
gs = g and let g2s = g2 = (g1s)

−1,

(e) Dom(g	) ⊆ A	 for � = 1, 2,

(f) g preserves satisfaction of the formulas in Γ and their negation; i.e. for
ϕ(x̄) ∈ Γ and ā ∈ 	g(x̄)Dom(g) we have M1 |= ϕ[ā] ⇔ M2 |= ϕ[g(ā)];

(g) if a ∈ Dom(g	), then h	(a) < n.
(C) We define the state s = s0 = s0α by letting ns = 0, A1

s = ∅ = A1
s , βs =

α, h1
s = ∅ = h2

s , gs = ∅; so really s depends only on α (but in general, this
may not be a state for our game as possibly for some sentence ψ ∈ Γ we
have M1 |= ψ ⇔ M2 |= ¬ψ).

(D) We say that a state t extends a state s when A	
s ⊆ A	

t, h
	
s ⊆ h	

t for � = 1, 2
and gs ⊆ gt, βs > βt, ns < nt; we say that t is a successor of s if in addition
nt = ns + 1.

(E) In the n-th move,
the anti-isomorphism player (AIS) chooses (βn+1, ιn, A

′
n) such that:

ιn ∈ {1, 2}, βn+1 < βn and Aιn
n ⊆ A′

n ∈ [Mιn ]
≤θ,

the isomorphism player (ISO) chooses a state sn+1 such that
• sn+1 is a successor of sn

• Aιn
sn+1

= A′
n

• A3−ιn
sn+1

= A3−ιn
sn ∪Dom(g3−ιn

sn+1
)

• if a ∈ A′
n\Aιn

sn , then hιn
sn+1

(a) ≥ n+ 1
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• Dom(gιnsn+1
) = {a ∈ Aιn

sn : hιn
sn(a) < n+ 1}, so it includes Dom(gιnsn)

• βsn+1
= βn+1.

(F ) • The play ends when one of the player has no legal moves (always occur
as βn < βn−1) and then this player loses; this may occur for n = 0.

• For α = 0 we stipulate that ISO wins iff s0α is a state.

Discussion 2.2. 1) This is a parallel to EF-games. Note that we like on the one
hand for the game to have ≤ ω moves, really each play has < ω moves and deals
with sets of cardinality ≤ θ and on the other hand we do not like well ordering to
be definable, i.e. allow M1 to be well ordered while M2 to be non-well ordered but
still the ISO player wins. We do this by “rescheduling our debts”, i.e. using the
hn’s.

Definition 2.3. 1) Let E 0,τ
Γ,θ,α be the class {(M1,M2) : M1,M2 are τ -models and

in the game �Γ,θ,α[M1,M2] the ISO player has a winning strategy}, where Γ is a
set of formulas in the vocabulary τ , each with finitely many free variables.

2) E 1,τ
Γ,θ,α is the closure of E 0,τ

Γ,θ,α to an equivalence relation (on the class of τ -

models).
3) Above we may replace Γ by qf(τ ), which means that Γ = the set at(τ ) or

bs(τ ) formulas in the vocabulary τ .
4) Above if we omit τ we mean that τ = τΓ and if we omit Γ we mean bs(τ ).

Abusing notation we may say that M1,M2 are E 0,τ
Γ,θ,α-equivalent.

Fact 2.4. Assume �Γ,θ,α[M1,M2] is well defined and M1,M2 are τ -models.
1) The game �Γ,θ,α[M1,M2] is a determined game and is without memory; i.e.

during a play, being a winning situation does not depend on the history, just on
the current state, also only M	�τΓ are relevant.

2a) The relation E 0
Γ,θ,α holds for (M1,M2) whenM1,M2 are isomorphic τ -models.

2b) If M1
∼= M ′

1,M2
∼= M ′

2, then M1E 0
Γ,θ,αM2 ⇔ M ′

1E
0
Γ,θ,αM

′
2.

2c) E 0
Γ,θ,α is reflexive and symmetric.

3) The relation E 1
Γ,θ,α is an equivalence relation on the class of τ -models.

4) If α is a limit ordinal, then M1E 0
Γ,θ,αM2 iff [β < α ⇒ M1E 0

Γ,θ,βM2].

5) E 1
Γ,θ,α has ≤ �α+1(|Γ|+ θ) equivalence classes.

6) If τ1 ⊆ τ2,Γ1 ⊆ Γ2, θ1 ≤ θ2 and α1 ≤ α2 and M1E
0,τ2

Γ2,θ2,α2
M2, then

M1E
0,τ1

Γ1,θ1,α1
M2.

Proof. 1) Obvious.
2a) Let g∗ be an isomorphism from M1 onto M2. Now a winning strategy for

the player ISO in �Γ,θ,α[M1,M2] is to preserve “gsn ⊆ g∗”.
2b) Should be clear.
2c) Let us check.
Reflexivity:
Follows from part (2a) as M ∼= M .
Symmetry:
Reading the definition carefully it should be clear.
3),4) Easy, too.
5) We prove by induction on α that there is an equivalence relation E 2

Γ,θ,α on

the class of τ (Γ)-models such that M1E 2
Γ,θ,αM2 ⇒ M1E 0

Γ,θ,αM2 and E 2
Γ,θ,α has

≤ �α+1(|Γ|+ θ) equivalence classes. For α = 0, recall clause (F) of Definition 2.1,
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so easilyM1E 0
Γ,θ,αM2 means that Γ	 = {ϕ : M	 |= ϕ and ϕ ∈ Γ, ϕ is a sentence} does

not depend on �; clearly E 0
Γ,θ,α is an equivalence relation with ≤ 2|Γ| equivalence

classes and E 1
Γ,θ,α = E 0

Γ,θ,α; let E 2
Γ,θ,α = E 0

Γ,θ,α. For α a limit ordinal use part (4)

and choose E 2
Γ,θ,α =

⋂
{E 2

Γ,θ,β : β < α}, recalling that �α(|Γ|+θ) =
∑

{�β(|Γ|+θ) :

β < α}.
Lastly, for α = β + 1 use the induction hypothesis and �α(|Γ|+ θ) = 2�β(|Γ|+θ).

Alternatively use Lθ+,θ+,α; i.e. use the proof of Claim 2.8, when we replace �α(|Γ|+
θ) by �(|Γ|+θ)+ .

6) Easy. �2.4

Definition 2.5. We define the logic L1
≤θ as follows: a sentence ψ ∈ L≤θ(τ ) iff

the sentence is defined using (or by) a triple (qf(τ1), θ, α) which means: τ1 is a
sub-vocabulary of τ of cardinality ≤ θ and α < θ+ and for some sequence 〈Mα :
α < α(∗)〉 of τ1-models of length α(∗) ≤ �α+1(θ) we have: M |= ψ iff M is
E 1
qf(τ1),θ,α

-equivalent to Mα for some α < α(∗).
2) Let L1

κ =
⋃
{L1

≤θ : θ < κ}, so L1
θ+ = L1

≤θ.

Remark 2.6. 1) The present definition of the logic in Definition 2.5 is interesting
mainly for κ a strong limit such that κ = �κ and it seems to me that it makes
the presentation transparent. Note that L1

≤θ is similar to the set of formulas of

quantifier depth < θ+.
2) Why? Just note that for vocabulary τ of cardinality ≤ θ,L1

≤θ(τ ) has cardi-
nality �θ+ , and it helps to have arbitrary Boolean combinations of formulas of a
fixed quantifier depth [< θ+]. Note that if ϕ(x̄) ∈ L1

κ(τ ) has infinitely many free
variables, we cannot “close” it to a sentence.

3) We may instead define L
1,∗
≤θ by: ψ ∈ L1

≤θ(τ ) iff for some τ ′ ⊆ τ of cardinality

≤ θ and some sequence 〈Mi : i < i(∗)〉 of τ ′-models of cardinality ≤ 2θ and some
γ < θ+ we have: a τ -model M satisfies ψ iff ME 1

qf(τ ′),θ,γMi for some i.

Claim 2.7. 1) L1
≤θ is a nice logic; see Definition 1.9.

2) The logic L1
≤θ has full substitution.

3) L1
≤θ(τ ) has cardinality ≤ |τ |θ + �θ+ for any vocabulary τ .

4) If κ = �κ, then L1
κ is a nice logic, L1

κ(τ ) has cardinality κ whenever τ is a
vocabulary of cardinality < κ and L1

κ(τ ) has cardinality |τ |<κ+κ for any vocabulary
τ .

5) In part (4), if κ is regular, then the logic L1
κ has full substitution.

6) If θ, α < κ and τ is a vocabulary of cardinality < κ, then for any set U
of E 1

qf(τ),θ,α-equivalence classes for some ψ ∈ L1
κ(τ ) we have {M : M/E 1

qf(τ),θ,α ∈
U } = {M : M a τ -model of ψ}.

Proof. 1), 2) Just check Definitions 1.9, 1.12, 1.16(5) but still elaborate upon the
relatively more substantial Definitions 1.12, 1.16(5).
Clause (a): Atomic formulas

Just note that if M1E 0
qf(τ),θ,αM2 for α = 0 (any θ), then M1,M2 satisfies the

same τ -atomic sentences.
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Clause (b)(α): Conjunction, (similarly Disjunction)

Just note that if ϕ	 is defined using (qf(τ	), θ	, α	) and if τ = τ1 ∪ τ2, θ =
max{θ1, θ2}, α = max{α1, α2}, then the equivalence relation E 1

qf(τ),θ,α refines the

equivalence relation E 1
qf(τ�),θ�,α�

for � = 1, 2.

Clause (b)(β): Existential Quantifier

Assume ϕ ∈ L1
≤θ(τ ∪ {c}) is defined by the triple (qf(τ ∪ {c}), θ, α) and ϕ(x) is

the corresponding formula ∈ L1
≤θ(τ ) and ∃xϕ(x) is the naturally defined sentence.

Now if M1,M2 are E 0
qf(τ),θ,α+1-equivalent τ -models, then M1 |= ∃xϕ(x) iff M2 |=

(∃x)ϕ(x) by the definition of the game. Hence this holds for “M1,M2 are E 1
qf(τ),θ,α+1-

equivalent τ -models”.
Clause (b)(γ): Negation

Obvious by the definition because for any vocabulary τ of cardinality ≤ θ the
equivalence relation E 1

qf(τ),θ,α has ≤ �α+1(θ) equivalence classes by Fact 2.4(5).

Clause (c): Restricting to a unary predicate P

Easily follows if ψ is defined using (qf(τ ), θ, α) and without loss of generality
P ∈ τ . Then so is ψ�P .
Clause (d): We prove more: Full substitution:

Assume we are given vocabularies τ1, τ2 and consider substituting ϕP (x0, . . . ,
xarityτ2

(P )−1) ∈ L1
≤θ(τ0) for P ∈ τ2 treating F (x0, . . . , xarity(F )−1) = xarity(F ) as an

(arityτ2(F )+1)-place predicate. Let ϕP be defined by (qf(τ+arity(P )), θP , αP ) and let

α0 = sup{αP : P ∈ τ2}.
We are given ψ ∈ L1

≤θ(τ1) and we shall find ψ′ ∈ L1
≤θ(τ2), which says that if we

substitute ϕP (x0, . . . , xarityτ2
(P )) instead of P (x0, . . .) in ψ for every P ∈ τ1, we get

(up to equivalence) ψ′. Let ψ be defined by (qf(τ1), θ1, α1). Let α2 = α1 + α0 and
then easily there is ψ′ as required defined by (qf(τ2), θ1, α2). �2.7

Claim 2.8. 1) Let κ = �θ+ .
L1
≤θ ≤ L0

κ; i.e. every formula of L1
≤θ is equivalent to, hence can be looked at, as

a formula of L0
κ.

2) L−1
≤θ ≤ L1

≤θ.

Remark 2.9. For many purposes we identify them, i.e. say L1
≤θ ⊆ L0

κ; this gives
another reasonable version of subformulas.

Proof. 1) We first prove:

�1 If s is a state in the game �qf(τ),θ,α[M1,M2] and β = βs, τ = τ (M	), ā1 =

〈a1ε : ε < ε(∗)〉 ∈ θ+>(M1), then list Dom(gs) and ā2 = 〈a2ε : ε < ε(∗)〉,
where a2ε = gs(a

1
ε) and M2 |= ϕ[ā1] ⇔ M2 |= ϕ[ā2] for every ϕ = ϕ(〈xε :

ε < ε(∗)〉) ∈ L∗
β :=

⋃
ζ<β L(�ζ(θ+|τ |))+,θ+(τ ), or just ϕ ∈ L∗

β = L∞,θ+,β(τ );

see Definition 1.20(5), then s is a winning state for the player ISO in the
game.

[Why? We prove this by induction on β. First, for β = 0 this is trivial as s
is a state. Second, for β limit, any choice of the AIS player includes an ordinal
γ = βns+1 < β, so the ISO player may “pretend” that the given state s has
βs = γ + 1 and use the induction hypothesis. Third, if β = γ + 1, let the AIS
player make his choice (βns+1, ι, A). Now ISO has to extend gιs adding some ≤ θ
elements of Mι to its domain, the elements in {a ∈ Dom(gιs) : h

ι
s(a) < ns + 1} ∪A.
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Let b̄ι list them. Let x̄ = 〈xε : ε < ε(∗)〉 and let ȳ = 〈yε : ε < �g(b̄ι)〉 and define
ϕ∗(ȳ, x̄) =

∧
{ϕ(ȳ, x̄) ∈ L∗

γ : Mι |= ϕ[b̄, āι]}.
So Mι |= ϕ∗[b̄, āι]; hence Mι |= (∃ȳ)ϕ∗(ȳ, āι) and hence by the assumption of �1

we have M3−ι |= “(∃ȳ)ϕ∗(ȳ, ā3−ι)”. Hence there is b̄3−ι ∈ 	g(b̄ι)(M3−ι) such that
M3−ι |= ϕ∗[b̄3−ι, ā3−ι].

Now the player ISO can make its move getting the state t, a successor of s such
that gt = gs ∪ {〈b1ε, b2ε〉 : ε < �g(ȳ)〉, gt maps b̄1 to b̄2 and nt = ns + 1 and βt = γ,
clearly possible. As the ordinal βns+1 chosen by the AIS is ≤ γ also t is as required
in �1 but so, by the induction hypothesis also it is a winning state.]

Let

�2 Eτ,θ,α = {(M1,M2) : M1,M2 are τ -models satisfying the same sentences
from L∗

α}.

Now we shall prove �3 and by �3(d) we are done.

�3 (a) Eτ,θ,α is an equivalence relation with ≤ (�α+1(θ + |τ |)) equivalence
classes.

(b) Eτ,θ,α is an equivalence relation included in {(M1,M2) : M1,M2 are
τ -models such that the player ISO wins in �qf(τ),θ,α[M1,M2]}.

(c) Eτ,α,θ refines the equivalence relation E 1
qf(τ),θ,α.

(d) E 1
qf(τ),θ,α has ≤ �α+1(θ + |τ |)-equivalence classes.

[Why? Clause (a) follows from the number of such sentences being ≤ �α(θ + |τ |);
clause (b) follows by �1; clause (c) follows from (b) and the definitions of E 0

qf(τ),θ,α

and E 1
qf(τ),θ,α. Lastly, clause (d) follows from clauses (a) + (c).

2) Easy. �2.8

Remark 2.10. 1) The proof above may seem wasteful but for our purposes this is
immaterial.

2) We can do better as follows; i.e., another proof of Claim 2.8 runs as follows:
By induction on the formula. Without loss of generality we deal with a formula

ΘN,d̄,θ,α,Γ(x̄); by induction on β ≤ α we prove:

�1 If n ∈ [−1, ω) and γ(1), γ(2) < θ+, b̄ ∈ γ(2)N,h	 : γ(�) → ω letting x̄ =
〈xi : i < γ(2)〉;u	 ⊆ γ(�) for � = 1, 2,g a one-to-one mapping from u1

onto u2 (so n = −1 ⇒ γ(1), γ(2) = 0), then for some formula ϕ(z̄, x̄) =
ϕ0
N,d̄,θ,α,Γ,h1,h2,g,β

(x̄) ∈ L0
κ we have: for any model M of the vocabulary of

N and c̄ ∈ (	g(d̄))M and ā ∈ 	g(b̄)M , letting
• A1

n = Rang(c̄), A2
n = Rang(d̄),

• gn has domain {ci : i ∈ u} and gn(ci) = dg(i) for i ∈ u,

• h	
n(ci) = dh�

(i),
the following are equivalent:
(i) M |= ϕ[c̄, ā],

(ii) (An, Bn, h
1
n, h

2
n, gn, β) is a winning position for the equivalence player

in the game �N,θ,α,Γ[(M, c̄), (N, d̄)].
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�2 Similarly we have a formula ϕ1
N,c̄,θ,α,Γ,h,h′,β(z̄, x̄) expressing the situation

after the AIS player moves.

The proof is straightforward.

The Crucial Claim 2.11. We have Mn ≡L1
θ
Mω for n < ω and even Mn |= ψ[ā] ⇔

Mω |= ψ[ā] when:

(a) ψ(z̄) ∈ L1
≤θ(τ ), a formula,

(b) Mn ≺L∂+,θ+
Mn+1, where ∂ = �θ+ ,

(c) Mω :=
⋃

n<ω Mn,

(d) ā ∈ 	g(z̄)(M0),

(e) τ = τ (Mn) for n < ω.

Remark 2.12. In fact the logic L0
∂+,θ+,θ+ suffices; see Definition 1.20(2).

Proof. Without loss of generality, |τ | ≤ θ. We shall prove by induction on β < θ+

the following:

�β s is a winning state for the ISO player in the game �qf(τ),θ,α[Mn,Mω] when
for some k we have
(a) s is a state in this game,

(b) n ≤ k < ω,

(c) βs = β,

(d) Rang(g2s ) ⊆ Mk,

(e) if b ∈ A2
s , then b ∈ Mh2

s(b)
,

(f) letting ā1 list Dom(gs) and ā2 be 〈gs(a1i ) : i < �g(ā1)〉 and λβ = �β(θ)
for every ϕ(x̄) ∈ Lλ+

β ,θ+ we have Mk |= ϕ[ā1] ⇔ Mω |= ϕ[ā2].

The case s = s0β , the initial state, suffices to prove the desired result.

First Case: β = 0.
Trivial.

Second Case: β a limit ordinal.
If the AIS makes its move choosing (A, ι, β1), the ISO player may pretend that

βs = β + 1 and use the induction hypothesis. This is O.K. as β < β + 1, as in
proving Claim 2.8.

Third Case: β = γ + 1.
As in the proof of Claim 2.8. �2.11

We can sum up the easy properties but first we present two definitions.

Definition 2.13. 1) We say that N codes [N ]≤λ when for some two-place predicate
R we have that {set(b,N) : b ∈ N} is a cofinal subset of ([N ]≤λ,⊆).

2) In this case for b ∈ N let set(b,N) = setR(b,N) = {a : aRNb} and if R is
clear from the context we may omit it.

For our results it seems helpful to define some variants of “L satisfies the down-
ward LST”.
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Definition 2.14. Let L be a logic, τ0 a vocabulary, ψ0 ∈ L (τ0) a sentence with
τ0 of minimal cardinality or T ⊆ L (τ0), i.e. a set of sentences with |τ0| minimal.

1) L satisfies LSTι
<κ when for every vocabulary τ of cardinality < κ and ϕ ∈

L (τ ) we have LSTι
<κ(ϕ); see below. If ι = 0, we may omit it.

If κ = λ+, we may write “λ” instead “< κ”. LSTι
<κ(ψ) means LSTι

<κ({ψ}) and
similarly below and LSTι

<κ(≤ θ) means LSTι
<κ(T ) when |T | ≤ θ; the reader may

concentrate on the case κ = λ+.
2) For ι = 0, let LSTι

<κ(T ) mean: if T has a model N of cardinality ≥ κ, then
it has a model M of cardinality λ for arbitrarily large cardinals λ < κ.

3) If ι = 1, similarly but M ⊆ N (moreover we can demand A ⊆ M for a given
A ∈ [N ]<κ).

4) For ι = 2, let LSTι
<κ(T ) mean: if N is a model of T of cardinality ≥ κ, then

for arbitrarily large λ < κ we have that if N+ is an expansion of N and τ (N+) has
cardinality ≤ λ, then some M+ ⊆ N+ of cardinality λ satisfying M = M+�τT is a
model of T .

5) For ι = 3, as in ι = 2, but we further assume that N+ codes [N ]≤λ; see
Definition 2.13 and we further conclude that for some 〈dn : n < ω〉 ∈ ω(M+) we
have |M+| =

⋃
{set(dn, N+) : n < ω}.

6) We define LSTι,∗
<κ(T ) similarly but for a pregiven μ < κ we can demand that

‖M‖ = ‖M‖μ and similarly LSTι,∗
<κ.

Conclusion 2.15. Assume θ < κ = �κ.
1) L1

≤θ is a nice logic with full substitution; see Definition 1.12.

2) L1
κ is a nice logic and if κ is regular (equivalently strongly inaccessible), then

it has full substitution.
3) L−1

κ ≤ L1
κ ≤ L0

κ; in fact, Lθ+,ℵ0
≤ L1

≤θ ≤ L�θ+ ,θ+ (really L1
≤θ ≤ L�θ+ ,θ+,θ+

and even ≤ L∞,θ+,θ+).
4) L1

κ satisfies the following versions of the downward LST:

(a) Every sentence ψ ∈ L1
κ which has a model has a model of cardinality < κ.

(b) L1
κ has LSTι

<κ for ι ≤ 3 (see Definition 2.14 above).

(c) For every ψ ∈ L1
κ there is ∂ < κ such that: ifN is a model of ψ of cardinality

λ and μ = μ<∂ ≤ λ or at least μ =
∑

n<ω μn ≤ λ and (μn)
<∂ = μn for

n < ω, then some submodel M of N of cardinality μ is a model of ψ.

Proof. 1) By Claim 2.7.
2) Follows as L1

≤θ is ⊆-increasing with θ and the defintion of L1
κ in Definition

2.5(2).
3) We have L1

≤θ ≤ L�θ+ ,θ+ (and moreover L1
≤θ ≤ L�θ+ ,θ+,θ+) by Claim 2.8. So

by the definition, L1
κ ≤ L0

κ. Note that if M1,M2 are E 1
qf(τ),ℵ0,α

-equivalent, then

M1 |= ψ ⇔ M2 |= ψ for every ψ ∈ L
�

+
α ,ℵ0,α

; hence Lθ+,ℵ0
≤ L1

≤θ and so by the

definitions, L−1
κ ≤ L1

κ.
4) Clause (a) follows by part (3) and the parallel results on Lλ+,θ+ of Hanf (see,

e.g., [Dic85]). Clauses (b), (c) follow by Claim 2.11. �2.15

3. Serious properties of L1
κ

First we prove a strong form of non-definability of well ordering.

Claim 3.1. Let κ = �κ, so a strong limit cardinal.
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1) Property (d) of Problem 1.5 holds.
2) Moreover, if (A), then (B), where τ is a vocabulary to which the predicates

P,<,R (unary, binary, binary) belong and:

(A) (a) ψ ∈ L1
≤θ(τ ) is defined using (qf(τ ), θ, α),

(b) θ ≥ |τ |,
(c) ∂ = �α+1(θ),

(d) μ = 2∂ ,

(e) M |= ψ,

(f) (PM , <M ) ∼= ((2μ)+, <),

(g) M is a τ -model satisfying:
{{a : aRMb} : b ∈ M} = [M ]≤μ

or just the former family is cofinal in the latter family (both ordered
by inclusion).

(B) There are a τ -model N and a sequence 〈bn : n < ω〉 such that:
(α) N |= ψ,

(β) (PN , <N ) is not well ordered,

(γ) bn ∈ N and N |= (∀x)(xRbn → xRbn+1),

(δ) N |= (∀b)
∨

n<ω
[bRbn].

Proof. 1) Follows by 2) of the claim.
2) Without loss of generality, |M | is an ordinal, PM = (2μ)+ and <M is the

usual order of the ordinals on |M |. By induction on n we choose a sequence
〈(Mn,γ , β̄n,γ , b̄n,γ) : γ < (2μ)+〉 such that

�1 (a) β̄n,γ = 〈βn,γ,	 : � < n〉 is a decreasing sequence of ordinals from PM ,
which are > γ and b̄n,γ = 〈bn,γ,	 : � < n〉 is a sequence of members
of M .

(b) Mn,γ ≺L∂+,θ+
M, ‖Mn,γ‖ = μ and bn,γ,	, βn,γ,	 ∈ Mn,γ for � < n

(recall μ = 2∂).

(c) For γ1<γ2<(2μ)+ we have (Mn,γ1
, b̄n,γ1

, β̄n,γ1
)∼=(Mn,γ2

, b̄n,γ2
, β̄n,γ2

);
note that the isomorphism is unique as <M is a well ordering and
necessarily the isomorphism maps bn,γ1,	 to bn,γ2,	 and βn,γ1,	 to
βn,γ2,	 for � < n.

(d) If n = m+ 1, then
(i) β̄n,γ�m = β̄m,ζ and b̄n,γ�m = b̄m,ζ when ζ = βn,γ,m,

(ii) Mm,βn,γ,m
≺L∂+,θ+

Mn,γ ,

(iii) a ∈ Mm,βn,γ,m
⇒ M |= aRbn,γ ,

(iv) if b ∈ Mm,βn,γ,m
, then {a : M |= aRb} ⊆ {a : M |= aRbn,γ}.

For n = 0 just choose M0,γ = M0 ≺L∂+,θ+
M, ‖M0‖ = μ (O.K. as μ∂ = μ, in fact

an overkill).
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For n = m+ 1, choose M ′
m,γ , b

′
m,γ such that:

�2 (i) If a ∈ Mm,γ , then aRMb′m,γ .

(ii) Moreover if b ∈ Mm,γ , then {a ∈ M : M |= aRb} ⊆
{a ∈ M : M |= aRb′m,γ}.

(iii) Mm,γ ∪ {b′m,γ} ∪ {γ} ⊆ M ′
m,γ .

(iv) M ′
m,γ ≺L∂+,θ+

M and ‖M ′
m,γ‖ = μ.

The number of (M ′
m,γ ,Mm,γ , β̄m,γ+1, b̄n,γ+1, γ, b

′
m,γ)/

∼= is ≤ 2μ, so for some un-

bounded Yn ⊆ (2μ)+, the models 〈(M ′
m,γ ,Mm,γ+1, β̄m,γ+1, b̄n,γ+1, γ, b

′
m,γ) : γ ∈ Yn〉

are pairwise isomorphic.
For any ζ <(2μ)+, let γζ= Min(Y \(ζ+1)),Mn,ζ = M ′

m,γζ
, b̄ζ,n = b̄m,γζ

ˆ〈b′m,γζ
〉,

β̄n,ζ = β̄m,γζ
ˆ〈γζ〉. Clearly 〈(Mn,ζ , b̄n,ζ , β̄n,ζ) : ζ < (2μ)+〉 is as required.

Having carried the induction, it is easy to find models Nn and elements a	, b	 for
� < n by induction on n < ω such that:

�3 (a) (Nn, a0, . . . , an−1, b0, . . . , bn−1) is isomorphic to (Mγ,n, β̄γ,n, b̄γ,n)
for every γ < (2μ)+

(b) Nm ≺L∂+,θ+
Nn if m < n.

Now easily by Claim 2.11 the model N =
⋃

n Nn and the sequence b̄ = 〈bn : n < ω〉
are as required in clause (B) with 〈an : n < ω〉 witnessing clause (β) of clause
(B). �3.1

Conclusion 3.2. For κ = �κ, the logic L1
κ satisfies:

SUDWO1
κ (strong undefinability of well ordering), which means:

If ψ ∈ L1
κ(τ ), |τ | < κ and <,R are two place predicates from τ , then for every

large enough μ1 < κ for arbitrarily large enough μ2 < κ we have:

� If λ > μ2 and A is a τ -expansion of (H (λ),∈, μ1, μ2, <) with < the order on
the ordinals and RA being ∈, that is ∈ �H (λ), then we can find B, an, dn
(for n < ω) such that

(a) B |= ψ ⇔ A |= ψ,

(b) B |= “dn+1 < dn < μ2” for n < ω,

(c) B |= “an ⊆ an+1 has cardinality ≤ μ1”,

(d) if e ∈ B, then B |= “e ∈ an” for some n.
We may add

(d)+ if e ∈ B and B |= “|e| ≤ μ1”, then B |= “e ⊆ an” for some n.

Remark 3.3. There are other variants. At the moment the distinction is not crucial.

Proof. By Claim 3.1. �3.2

Theorem 3.4. First Characterization Theorem
We have L ≤ L1

κ; i.e. every ψ ∈ L is equivalent to some ψ′ ∈ L1
κ (i.e. for any

vocabulary τ, . . .) when:

� (a) κ = �κ hence is a strong limit uncountable cardinal,

(b) L is a nice logic,

(c) Υ, the occurrence number of L , is ≤ κ,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:797



416 SAHARON SHELAH

(d) L−1
κ ≤ L , i.e. Lθ+,ℵ0

≤ L for θ < κ or just

(d)− for every ordinal α < κ, the model Mα expanding (α,<) is
characterized up to isomorphism by some sentence from L1

κ(τ (Mα)),
so |τ (Mα)| < κ,

(e) L satisfies SUDWO1
κ.

Remark 3.5. 1) We could add the downward LST and restrict somewhat SUDWOκ.
2) As L1

κ satisfies the demands (by Conclusion 2.15) we can rephrase Theorem
3.4 as: L is ≤-maximal such that (a)-(e) hold.

Proof. Assume toward a contradiction that ψ∗ ∈ L (τ ) is a sentence which is not
equivalent to any sentence of L1

κ(τ ). As the occurrence number of L is≤ κ by clause
(c) of the assumption, without loss of generality the vocabulary τ has cardinality
< Υ ≤ κ. Similarly by L being a logic, using clauses (c),(d) of Definition 1.9,
without loss of generality the symbols we add to τ in (∗)3(a) below do not belong
to τ . We shall derive another sentence ψ∗∗ in a somewhat larger vocabulary, and
let (μ1, μ2) be as in Definition 3.2 for ψ∗∗ and μ1 ≥ θ∗ where θ∗ = |τ |+ ℵ0.

Let

(∗)0 (a) {Pi : i < i(∗)} list the predicates in τ .

(b) {Hj : j < j(∗)} list the function symbols in τ .

(c) Let the vocabulary τ1 be

• the set of predicates {P ′
i : i ≤ i(∗)},

• the set of function symbols {H ′
j : j < j(∗)},

• arityτ1(P
′
i(∗)) = 2,

• arityτ1(P
′
i ) = arityτ (Pi) + 1 for i < i(∗),

• arityτ1(H
′
j) = arityτ (Hj) + 1 for j < j(∗).

(d) For a τ1-structure B and c ∈ B let NB
c be the τ -model (if it exists)

such that

• it has universe {d : B |= P ′
i(∗)(d, d)},

• (Pi)
NB

c = {ā : 〈c〉 ˆ ā ∈ (P ′
i )

B} for i < i(∗), j < j(∗),
• H

NB
c

j (ā) = (H ′
j)

B(〈c〉 ˆ ā) for i < i(∗).

For each α < κ, let θ(α) = θα = |α| + ℵ0, so the equivalence relation E 1
qf(τ),θ(α),α

is well defined, and has < �θ(α)+ equivalence classes, say 〈Nα,ε/E 1
qf(τ),θ(α),α : ε <

εα < �θ(α)+(|τ |)〉.
By the definition of L1

≤θ(τ ), which is ≤ L1
κ(τ ), for each such pair (α, ε) there is a

sentence ϑα,ε ∈ L1
≤θ(α)(τ ), which defines Nα,ε/E 1

qf(τ),θ(α),α and moreover for every

u ⊆ εα the sentence ϑα,u = ∨{ϑα,ε : ε ∈ u} belongs to L1
κ(τ ), i.e. up to equivalence.

Hence by our assumption toward a contradiction for some ζ(α) < εα there are

(∗)1 (a) Mα, Nα ∈ Nα,ζ(α)/E
1
qf(τ),θ(α),α,

(b) Nα |= ψ∗ but Mα |= ¬ψ∗.

By the definition of E 1
qf(τ),θ(α),θ there is a sequence M̄α such that

(∗)2 (a) M̄α = 〈Mα,k : k ≤ k(α)〉, so k(α) < ω,
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(b) Mα,0 = Mα,Mα,k(α) = Nα,

(c) Mα,k,Mα,k+1 are E 0
qf(τ),θ(α),α-equivalent for k < k(α),

(d) let Mα,k
∼= Mα,k(α) for k ∈ (k(α), ω).

Without loss of generality the universes of the models Mα,k(α < κ, k < ω) are
pairwise disjoint and τ ⊆ H<ℵ0

(|τ |). For large enough λ we have 〈〈Mα,k : k ≤
k(α)〉 : α < κ〉 ∈ H (λ) for every α < κ and so λ > κ; let Aλ = A(λ) be a model
such that:

(∗)4 (a) the vocabulary τ2 of Aλ is τ1 ∪ {<,E,R,R1, F1, F2} ∪ {cα : α ≤ θ+∗ },
with cα individual constants, F1, F2 unary function symbols,
<,E binary predicates,

(b) the universe is H (λ),

(c) among the elements c
A(λ)
α (α < θ∗) will be κ, θ∗, θ

+
∗ , μ1, μ2, τ, τ1 and

every symbol in τ and α ≤ θ∗ ⇒ cθ∗+α(A) = α; so

c
A(λ)
0 = κ, c

A(λ)
1 = θ∗, etc.,

(d) the functions ωα+ k �→ Mα,k and α �→ k(α) are F
A(λ)
1 , F

A(λ)
2

respectively,

(e) <A(λ) is the order on the ordinals,

(f) EA(λ) is an equivalence relation such that
the equivalence classes of EA are {|Mα,k| : α < κ and k < ω},

(g)(α) RA(λ) = {(a, b) : a ∈ b ∈ H (λ) and |b| ≤ μ1},
(β) R

A(λ)
1 = ∈�H (λ),

(h) (P ′
i(∗))

A(λ) = {(a, ωα+ k) : k < ω, α < κ and a ∈ Mα,k},

(i) (P ′
i )

A(λ) = {ā ˆ〈ωα+ k〉 : α < κ, ā ∈ P
Mα,k

i and k < ω} for i < i(∗),
(j) H

A(λ)
j is an (arityτ (Hj) + 1)-place function satisfying

HA
j (ā ˆ〈ωα+ k〉) = H

Mα,k

j (ā) for j < j(∗), α < κ and k < ω.

Let ψ∗∗ say:

(∗)5 (a) one first order sentence saying all relevant (set-theoretic) properties,

(b) description of τ, τ1,

(c) (∀α < κ)(Mα,0 |= ψ∗ and Mα,k(α) |= ¬ψ∗).

Why possible? For clauses (a),(b) as L−1
κ ≤ L , by clause (d) of the assumption or

just ensuring {a : a < c1} isomorphic to θ+∗ if we just assume clause (d)− of the
assumption and then the rest is said by a first order sentence. For clause (c) as the
logic has restriction and weak substitution (see clauses (c),(d) of Definition 1.12)
recalling that the logic is closed under the first order operations.

Now apply SUDWO1
κ to ψ∗∗, (Aλ, μ1, μ2), and we get B, an, dn(n < ω) as there.

Now:

(∗)6 Without loss of generality, τ, τ1 are interpreted in B as τ, τ1 respectively;

similarly the individual constant cα for α < θ+∗ is interpreted as c
A(λ)
α .

Hence if B |= “c is an ordinal < κ and k(c) = F2(c)”, then for k <
k(c),m ≤ k(c) we have:
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(a) MB
c,m defined naturally as NB

FB
1 (c,m)

is a τ -model (i.e. no non-standard

predicates!),

(b) MB
c,0 |= ψ and MB

c,k(c) |= “¬ψ”,
(c) B |= “in the game �qf(τ),θ∗,c[M

B
c,k,M

B
c,k+1] the ISO player wins”.

(∗)7 Let k(∗) = FB
2 (d0).

(∗)8 We fix a winning strategy stk for ISO in B’s sense in the game
�qf(τ),θ∗,d[N

B
d0,k

, NB
d0,k+1].

Now for each k < k(∗) by induction on n < ω we choose sn,k ∈ B such that:

(∗)9 (a) B |= “s̄n,k = 〈s0,k, . . . , sn,k〉 is an initial segment of a play of the game
�qf(τ),θ∗,d0

[MB
d0,k

,MB
d0,k+1]”.

(b) B |= “in this initial segment sn,k the ISO player uses his
winning strategy stk”.

(c) The AIS player chooses:
(α) if n is even, then ιn = 1 and A′

n = {e ∈ B : e ∈ MB
d0,k

,

that is, B |= “P ′
i(∗)(e, F1(d0, k))” and B |= “eRan”;

(β) if n is odd, then ιn = 2 and A′
n = {e ∈ B : e ∈ MB

d0,k+1 and

B |= “eRan}”;
(γ) the “ordinal” βsn,k

= dn+1.

This can be done and gk = {(a1, a2): for some n we have B |= “g
sn,k
n (a1) = a2”};

it is an isomorphism from MB
d0,k

onto MB
d0,k+1. As this holds for every k < k(∗) we

get that MB
d0,0

,MB
d0,k(∗) are isomorphic, so by (∗)6(b) we get a contradiction. �3.4

Definition 3.6. Let Θθ,R be the sentence (for R a binary predicate) such that
M = (|M |, RM ) |= Θθ,R iff P = {{a : aRM b} : b ∈ M} is a (θ,ℵ0)-cover of
Dom(PM ) which means: it is a family of subsets of Dom(R) = {a : aRM b for some
b ∈ M} each of cardinalilty ≤ θ such that any u ∈ [Dom(RM )]≤θ is included in the
union of countably many such sets.

Claim 3.7. 1) Θθ,R can be expressed by a sentence in L1
≤θ+({R}).

2) In fact, if M1,M2 are E 1
qf({R}),θ+,ω+ω+1-equivalent {R}-models, then M1 |=

Θθ,R ⇔ M2 |= Θθ,R.
3) If M1E 1

qf(τ),θ,αM2 and α ≥ ω + ω + 1 and cf(θ) ≥ ℵ0, then ‖M1‖ = ‖M1‖ or

‖M1‖, ‖M2‖ > θ.
4) If M1E

1
qf(τ),θ,αM2 and ‖M1‖ ≤ θ and α ≥ ω + ω + 1, then M1

∼= M2.

Proof. 1) By 2) of the claim.
2) Toward a contradiction, assume this fails; without loss of generality,

M1E
0
qf({R}),θ+,ω+ω+1M2. By symmetry, without loss of generality, assume M2 |=

Θθ,R but M1 |= ¬Θθ,R. We simulate a play of the game �qf({R}),θ+,ω+ω+1(M1,M2)
in which the ISO player uses a (fixed) winning strategy st.

Case 1: There is B∗ ∈ [M1]
≤θ not included in a countable union of sets from

{{a : aRM1b} : b ∈ M1}. Here �qf({R}),θ,ω+ω+1[M1,M2] suffices; we now simulate a
play in which the ISO player uses st.
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In the first move we let the AIS player choose βs1 = ω + ω and choose ιs1 =
1, A1

s1
= B∗ ∈ [M1]

≤θ, see above. Let the ISO player (using st) complete the choice
of the state s1 (which is a winning state itself, of course).

Let n(∗) be minimal such that:

(∗) B := {a ∈ A1
s1 : h1

s1(a) < n(∗)− 7} is not included in a countable union of

sets from {{a : aRM1b} : b ∈ B}.

By the case assumption, n(∗) is well defined. In the following n(∗)−2 moves, the AIS
player takes care that βs2 = ω+n(∗), . . . , βsn(∗) = ω+1 (and ιs2 = · · · = ιsn(∗) = 1).

So gsn(∗) is a function whose domain includes {a ∈ A1
s1 : h1

s1(a) < n(∗)}, hence
includes B. Now as M2 |= Θθ,R we can find cn ∈ M2 for n < ω such that (∀b ∈
B)

∨
n gsn(∗)(b)R

M2cn and AIS player takes care that βsn(∗)+1
= ω and {cn : n <

ω} ⊆ A2
sn(∗)+1

.

The rest should be clear.

Case 2: There is b∗ ∈ M1 such that B∗ = {a ∈ M1 : aRM1b∗} has cardinality > θ.
Here �qf({R}),θ+,ω+1 suffices, and let B ⊆ B∗ be of cardinality θ+. We simulate

a play in which the AIS player takes care that βs1 = ω, ιs1 = 1, A1
s1 = {b∗} ∪B.

We let n∗ be minimal such that h1
s1(b∗) < n∗−7 and |{b ∈ B : h1

s1(b) < n∗−7}| ≥
θ+.

The rest should be clear.
3), 4) Should be clear. �3.7

Recall

Definition 3.8. 1) A logic L is Δ-closed when: for vocabularies τ1 ⊆ τ2 with
τ2\τ1 finite, and sentences ψ, ϑ ∈ L (τ2) if K0 = {M�τ1 : M |= ψ},K1 = {M�τ1 :
M |= ϑ} are complementary classes of τ1-models, then some ϕ ∈ L (τ1) define K1.

2) A logic L is strongly Δ-closed when: for relational vocabularies τ1 ⊆ τ2
with τ2\τ1 finite, unary predicate P ∈ τ2\τ1 and sentences ψ, ϑ ∈ L (τ2), if K0 :=
{(M�τ1)�PM : M |= ψ and PM �= ∅} and K1 := {(M�τ1)�PM : M |= ϑ and
PM �= ∅} are complementary classes of τ1-models, then some ϕ ∈ L (τ1) define
K1.

3) A logic L has dullness-elimination when : if τ1, τ2 are relational vocabularies,
i.e. with predicates only, τ2 = τ1 ∪ {P}, P a unary predicate, ψ2 ∈ L (τ2) and for
every M |= ψ2 we have Q ∈ τ1 ⇒ QM = QM �PM and PM �= ∅, then for some
ψ1 ∈ L (τ1) we have {M : M a τ1-model of ψ1} = {(M�τ1)�PM : M a τ2-model of
ψ2}.

4) We say that the logic L is Δ-closed in C for C a class of cardinals when : if in
part (1) we assume just thatK0∩Kτ

C,K0∩Kτ
C are complementary inKτ

C = {M : M
a τ -model of cardinality from C}, then for some ψ ∈ L (τ1) for every τ1-model M
of cardinality ∈ C we have M |= ψ ⇔ M ∈ K0.

Claim 3.9. 1) The logic L1
≤θ has dullness-elimination.

2) If τ is empty, M1,M2 are τ -models of cardinality > θ, then M1,M2 are
E 1
qf(τ),θ,α-equivalent for α < θ+.

3) Also ‖M1‖, ‖M2‖ ≥ θ and cf(θ) = ℵ0 is O.K. in part 2) of Claim 3.9.

Proof. 1) Easy (or use the sum theorem (see Theorem 3.16) and part 2) of Claim
3.9.

2), 3) Easy. �3.9
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Theorem 3.10. Second Characterization Theorem
Let κ = �κ. Then L1

κ is the minimal logic L (up to equivalence) such that:

⊕ (a) L is a nice logic,

(b) L−1
κ ≤ L , i.e. Lθ+,ℵ0

≤ L for θ < κ,

(c) Θθ,R is equivalent to some sentence in L for θ < κ,

(d) L is Δ-closed,

(e) L has dullness-elimination.

Remark 3.11. Putting together Theorems 3.4, 3.10 we get full characterization.

Proof. First L1
κ satisfies clause (a) by Conclusion 2.15(2), clause (b) by Conclusion

2.15(3), clause (c) by Claim 3.7(1) and clause (d) by Theorem 3.13 and Observation
3.12(1) below, and lastly L1

κ has dullness-elimination by Claim 3.9(1), so together
L1
κ satisfies ⊕ of Theorem 3.10. Second, we shall assume that L satisfies ⊕ and

ψ ∈ L1
κ(τ ) and we shall find ψ′ ∈ L (τ ) equivalent to it (it will be ϕ1 below). By

“L satisfies weak substitution” without loss of generality τ has predicates only.
We deal with and define naturally ψ[P ] ∈ L1

κ(τ ), P a new unary predicate and
let τ ′ = τ ∪ {P}, so ψ[P ] says that (M�τ )�PM satisfies ψ.

Let θ, α < κ and let ψ ∈ L1
κ(τ ) be defined using (qf(τ ), θ, α), so |τ | < κ. We let

∂ = �α+1(θ + |τ |) and μ = 2∂ . Let τ+ = τ ∪ {R1, R}, arity(R1) = 3, arity(R) = 2
and R,R1 /∈ τ . For i = 0, 1 let K	 be the class of τ+-models M such that:

�	 (a) (|M |, RM ) |= Θμ,R and PM �= ∅.
(b) {Bb : b ∈ M} is ⊆-directed where Bb = {a ∈ M : aRM b}.
(c) For each b ∈ M the set {(a1, a2) : (a1, a2, b) ∈ RM

1 } is a well ordering
of Bb of order type ≤ μ.

(d) If b1, b2 ∈ M and Bb1 ⊆ Bb2 ⊆ PM , then
(M�τ )�Bb1 ≺L∂+,∂+ (M�τ )�Bb2 ; in particular Bb1 is

closed under FM for any function symbol F ∈ τ .

(e) If b ∈ M , then for some c we have Bc = Bb ∩ PM ⊆ Bc ⊆ PM .

(f) If b ∈ M and Bb ⊆ P , then (M�τ )�Bb |= ψ[P ] iff � = 1.

(g) If Q ∈ τ , then QM = QM �PM .

Now:

(∗)1 Clauses (b),(c),(d),(e),(g) of �	 can be described by some ϕ ∈ L(2μ)+,ℵ0
(τ1).

[Why? Note clause (c), so obvious.]

(∗)2 Clause (f) can be expressed by a sentence from L (τ+).

[Why? Let 〈Nα : α < 2μ〉 list the τ -models with universe ⊆ μ. For each b ∈ M
such that Bb ⊆ PM let gb be the unique one-to-one function from Bb onto some
ordinal γb ≤ μ such that

• if a1, a2 ∈ Bb, then (a1, a2, b) ∈ RM
1 ⇔ gb(a) < gb(a2).
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Hence for such a b there is a unique αb such that gb is an isomorphism from
(M�τ )�Bb onto Nα. For each α there is a formula ψα(x) ∈ Lμ+,ℵ0

(τM ) such that
for every b ∈ M we have M |= ψα[b] iff b is as above and αb = α.

So for every u ⊆ 2μ, ψ′
u(x) =

∨
α∈u ψα(x) belongs to L(2μ)+,ℵ0

(τM ), hence is
equivalent to some ψ′′

u(x) ∈ L (τM ). Now (∗)2 should be clear.]

(∗)3 K	 is definable by some ϕ	 ∈ L (τ+) for � = 1, 2.

[Why? By clause (b) of the assumption, some ϕ′ ∈ L (τ+) is equivalent to ϕ, where
ϕ is from (∗)1. By clause (c) of the assumption some ϕ′′ ∈ L (τ+) is equivalent
to Θθ,R. But by clause (a) of the assumption L is a nice logic; hence (see clauses
(b)2, (b)3, (c) of Definition 1.12) there is a sentence ϕ′

	 ∈ L (τ+) equivalent to ϕ	

from (∗)2. By clause (b)2 of Definition 1.12, there is ϕ	 ∈ L (τ+) equivalent to
ϕ′ ∧ ϕ′′ ∧ ϕ′

	, so we are done.]

(∗)4 For � = 1, 2 the classes {(M1�τ )�PM1 : M1 ∈ K1}, {(M2�τ )PM
i ,M2 ∈

K2} are equal to {M : M a τ -model of ψ}, {M : M a τ -model of ¬ψ},
respectively.

By L being Δ-closed and having dullness-elimination (see clauses (d),(e) of the
theorem’s assumption) we are done. �3.10

We can note and recall

Observation 3.12. 1) If the logic L satisfies interpolation, then it is Δ-closed.
2) L is Δ-closed and has dullness-elimination iff L is strongly Δ-closed.
3) If L satisfies interpolation with finitely many sorts (so the interpolant men-

tions only the common sorts), then L is strongly Δ-closed.
4) The logic L satisfies interpolation and dullness-elimination iff L satisfies

interpolation for finitely many sort models.
5) In Theorem 3.10 we can replace clauses (d),(e) by

(d)′ for every μ < κ,L is Δ-closed in {λ : λ = λμ}; see Definition 3.8.

Proof. Should be clear. �3.12

Theorem 3.13. 1) For κ = �κ the logic L1
κ satisfies interpolation.

2) Also if ψ ∈ L1
≤θ(τ1) where θ < κ, the vocabularies τ0 ⊆ τ1 have cardinality ≤ θ

and ∂ = �θ+ , μ = 2∂ , then we can find a sequence 〈ψα : α < (2∂)+〉 of members of
L1
≤2∂ (τ0) such that:

(a) � ψ → ψα for α < (2∂)+,

(b) if τ0 = τ1 ∩ τ2 and ϑ ∈ L1
≤θ(τ2) a sentence such that � ψ → ϑ, then

� ψα → ϑ for some α < (2∂)+.

Proof. 1) This means that we should prove the existence of ψ ∈ L1
κ(τ0) such that

� ψ1 → ψ and � ψ → ψ2 when we assume:

�1 (a) τ1 ∩ τ2 = τ0,

(b) ψ	 ∈ L1
κ(τ	) for � = 1, 2,

(c) � ψ1 → ψ2.
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Toward a contradiction we assume this fails. Without loss of generality, τ	(� < 3)
are vocabularies of cardinality < κ.

Let θ∗ be such that θ∗ < κ, θ∗ ≥ |τ1| + |τ2| and ψ	 ∈ L1
≤θ∗

for � = 1, 2. For

each θ ∈ [θ∗, κ) as L1
≤θ(τ0) is closed under conjunction (and conjunctions) of ≤ θ

formulas and negations, clearly

�2 for every α < κ we can choose M1
α,M

2
α such that

(a) M1
α is a τ1-model,

(b) M2
α is a τ2-model,

(c) M1
α�τ0,M2

θ �τ0 are E 1
qf(τ0),|α|,α-equivalent,

(d) M1
α |= ψ1,

(e) M2
α |= ¬ψ2,

and continue naturally as in the proof of Theorem 3.4.
2) Similarly. �3.13

Theorem 3.14. If κ = �κ, then L1
κ satisfies the addition and product theorems,

that is (all the models are τ -models for a fixed vocabulary τ ; for the sum case we
assume τ has no function symbols (in particular no individual constants or only
unary functions) and the relevant models have disjoint universes):

(a) sum: ThL1
κ
(M1 +M2) = ThL1

κ
(M1) + ThL1

κ
(M2), that is,

(a)′ if ThL1
κ
(M	) = ThL1

κ
(N	) for � = 1, 2, then ThL1

κ
(M1 +M2) = ThL1

κ
(N1 +

N2),

(b) product: ThL1
κ
(M1 ×M2) = ThL1

κ
(M1)× ThL1

κ
(M2), that is,

(b)′ if ThL1
κ
(M	) = ThL1

κ
(N	) for � = 1, 2, then ThL1

κ
(M1 ×M2) = ThL1

κ
(N1 ×

N2),

(c) moreover, we can replace ThL1
κ
(N) by N/E 1

qf(τ),θ,α when θ < κ, α < θ+.

Proof. It suffices to prove clause (c). We prove it for products. For the sums this
is easier.

Clause (c) for products:
Clearly it suffices to prove:

� Assume Mι = M ι
1 ×M ι

2 for ι = 1, 2 are τ -models and M1
	 E 1

qf(τ),θ,αM
2
	 for

� = 1, 2. Then M1E
1
qf(τ),θ,αM2.

So let 〈M	,k : k ≤ k(�, ι)〉 be such that M1,0 = M1
	 ,M2,k = M2

	 and
M	,kE 0

qf(τ),θ,αM	,k+1 for k < k(�). Let k(∗) = max{k(1), k(2)} and let M	,k =

M	,k(	) if k(�) < k ≤ k(∗). As E 0
qf(τ),θ,α is reflexive, we still have M	,kE

0
qf(τ),αM	,k+1

for � = 1, 2 and k < k(∗).
Letting Mk = M1,k ×M2,k for k ≤ k(∗) we have to prove M0E 1

qf(τ),θ,αMk(∗); by

the definition of E 1
qf(τ),θ,α it suffices to prove for each k < k(∗) that

⊕k MkE 0
qf(τ),θ,αMk+1.
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So we have to find a winning strategy for the ISO player for the game
�qf(τ),θ,α[Mk,Mk+1].

The ISO player restricts itself in the n-th move to (θ, n)-states sn for a play of
�qf(τ),θ,α[Mk,Mk+1] satisfying, for some pair (sn,1, sn,2), that for � = 1, 2,

(a) sn,	 is a winning n-state for the game �qf(τ),θ,α[M	,k,M	,k+1],

(b) A	
sn = A	

sn,1
× A	

sn,2
,

(c) hsn((b, c)) = max{h1
sn,1

(b), h2
sn,�

(c)}.

The rest should be clear. �3.14

Remark 3.15. 1) Theorem 3.14(a) applies to the monadic version, too.
2) Why κ = �κ? As for any θ and α < θ+ there is a sentence ψ ∈ Lθ+ and model

Mψ of ψ of cardinality �α such that any other model N of ψ can be embedded into
Mψ.

3) For infinite addition, i.e.
∑

s∈I M
	
s , we have a problem: passing to E 0

qf(τ),θ,α

we do not know how to uniformize k(s), of course: if k(s) is constant or bounded
there, then a parallel claim holds; still see Theorem 3.16 below.

4) Even overcoming this obstacle, for infinite products we have a problem during
a play of �qf(τ),θ,α[M,N ]. The point is about translating the h’s from here to there
and back. There may well be a difference between products (or reduced products)
and generalized products. Anyhow unlike part (2) this cannot be remedied using
E 0
qf(τ),θ,α and we know that; see Theorem 4.10.

Theorem 3.16. 1) Assume, for simplicity, that τ is a relational vocabulary and
〈M 	

s : s ∈ I〉 is a sequence of τ -models with pairwise disjoint universes, for � = 1, 2
and M1 =

∑
{M1

s : s ∈ S},M2 =
∑

{M2
s : s ∈ S}. If κ = �κ and M1

s ,M
2
s are

L1
κ-equivalent for s ∈ S, then M1,M2 are L1

κ-equivalent.
2) Moreover for every θ, α < κ there are ∂, β < κ such that for any set S and

sequence 〈M 	
s : s ∈ S〉 for � ∈ {1, 2} of pairwise disjoint τ -models we have: if

M1
s ,M

2
s are Eqf(τ),∂,β-equivalent for s ∈ S, then the models M1 =

∑
{M1

s : s ∈
S},M2 =

∑
{M2

s : s ∈ S} are Eqf(τ),θ,α-equivalent.

3) In part 2) above if M b
sE 0

qf(τ),θ,αM
2
j for every s ∈ S, then M1E

0
qf(τ),θ,αM2.

Proof. 1), 2) By the proof of Theorem 3.4.
3) As in the proof of Theorem 3.14. �3.16

Remark 3.17. This proof indicates that there are better versions of the game for
which we can choose (∂, β) = (θ, α). However, it is not clear whether a more
complicated definition is worth the gain.

4. L1
κ is strong

Our first aim is:

Question 4.1. How strong is L1
κ? Is it more like L−1

κ or L0
κ? E.g. upward LST?

Downward LST to which cardinals?
So far we have given an indication to its being similar to L−1

κ ; however we shall
show below that for the LST, L1

κ is closer to L0
κ (see Claim 4.8) and fails the theorem

on the theory of an infinite product (which both L0
κ,L

−1
κ satisfy). But restricting

ourselves to cardinals λ = λℵ0 ≥ κ, the situation for the downward LST is similar
to the one for L0

κ: see below.
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Definition 4.2. For a relational vocabulary τ and cardinal θ of cofinality > ℵ0 we
say that K is a (τ, θ, ω)-class of structures when :

(a) K is a class of τ -models each of cardinality θ,

(b) K is closed under submodels of cardinality θ,

(c) K is closed under isomorphism,

(d) K is closed under increasing union of ω-chains.

2) For τ, θ,K as above let ψK ∈ L0
(2θ)+,θ+(τ ) be a sentence such that for τ -models

M we have: M |= ψK iff for any A ⊆ M of cardinality θ there is h : A → ω such
that for every large enough n,M�h−1{n} ∈ K.

Example 4.3. LetKwo
θ = {(A,<∗) :<∗ is a linear order of A and for some sequence

〈Un : n < ω〉 we have (Un, <∗ �Un) ∼= (θ,<) and Un ⊆ Un+1 and A =
⋃
{Un :

n < ω}.
Claim 4.4. For τ,K as in Definition 4.2.

1) The sentence ψK belongs to L(2θ)+,θ+(τ ) indeed.

2) If θ + |K/ ∼= | = μ, then moreover ψK ∈ L0
μ+,θ+ .

3) Moreover ψK ∈ L1
≤θ.

Proof. 1), 2) Obvious.
3) Easy. �4.4

Claim 4.5. 1) If λ ≥ 2θ, then Θθ,R has a model of cardinality λ iff cov(λ, θ+, θ+,ℵ0)
= λ; see Remark 4.7 below (or [Sh:g, II]).

2) If λ = λℵ0 ≥ 2ℵ0 , then Θθ,R has a model of cardinality λ iff λ = λθ.

Proof. 1) Read the definitions.
2) Check. �4.5

Complementary is

Claim 4.6. Assume (κ = �κ and) λ = cov(λ, κ, κ,ℵ1) and τ is a vocabulary of
cardinality < λ. For every τ -model M of cardinality > λ there is N ⊆ M of
cardinality λ such that N ≡L1

κ
M .

2) Assume λ = cov(λ,�γ ,�γ ,ℵ1) for every γ < θ+. If M is a τ -model, |τ | ≤ �θ+

and ‖M‖ > λ, then there is N ⊆ M of cardinality λ such that N ≡L1
≤θ

M .

Proof. Similar to Conclusion 2.15(4)(c), but in ω stages deal simultaneously with
λ submodels in each stage. �4.6

Remark 4.7. Recall that cov(λ, μ, θ, σ) = Min{|P| : P ⊆ [λ]<μ and for every
u ∈ [λ]<θ there are α < σ and ui ∈ P for i < α such that u ⊆

⋃
{ui : i < α}} for

λ ≥ μ ≥ θ ≥ σ.

Concerning the upward LST theorem, the logic L1
κ fails it badly.

Claim 4.8. There is a sentence ψ from L1
≤ℵ1

such that: ψ has a model of cardinality

λ iff λ � (ℵ1)
<ω
2 .

Proof. Easy, recalling Claim 4.4(3). �4.8

Discussion 4.9. We can phrase other relatives. Also it points to the restrictions
when we are looking for such logics with upward LST.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:797



NICE INFINITARY LOGICS 425

Theorem 4.10. 1) For every θ there are models 〈Mn, Nn : n < ω〉 with a fixed
countable vocabulary such that Mn, Nn are L1

≤θ-equivalent for n < ω but
∏

n<ω
Mn,

∏

n<ω
Nn are not L1

≤2ℵ0
-equivalent.

2) Moreover in �qf(τ),2ℵ0 ,ω+1[
∏

n<ω
Mn,

∏

n<ω
Nn] the AIS player has a winning

strategy.

Proof. Let τ = {c,<} ∪ {Fn : n < ω}, where Fn is a unary function, c is an
individual constant and < is a binary relation.

For every α let Mn
α be the τ -model with universe 1+α, cM

n
α = 0, <Mn

α= {(i, j) :
i = 0 = j or i < j < 1 + α} and F

Mn
α

k is the identity when k = n and is constantly
0 otherwise.

Fixing θ ≥ 2ℵ0 , by Claim 3.1 for some α = α(θ) large enough for each n there
is a model Nn which is L1

≤θ-equivalent to Mn
α , but <

Nn �(|Nn|\{cNn}) is not well

ordered; let Mn = Mn
α and 〈dn,k : k < ω〉 be a <Nn -decreasing sequence of members

of Nn which are �= cNn .
Let M =

∏

n<ω
Mn and N =

∏

n<ω
Nn. For η ∈ ωω let dη = 〈dn,η(n) : n < ω〉 ∈

∏

n<ω
Nn = N .

Now

� if Λ ⊆ ωω is non-meagre or just not bounded in (ωω,<Jbd
ω
), then there is

no partial isomorphism f from N into M with domain {dη : η ∈ Λ}; i.e. f
should preserve all quantifier-free formulas.

This clearly suffices as if Λ =
⋃
{Λn : n < ω}, then at least for one n, the set Λ is

non-meagre (or just unbounded in (ωω,<Jbd
ω
)).

Why is � true? Toward a contradiction assume that f is such a partial isomor-
phism. By the assumption for some n(∗) < ω the set {η(n(∗)) : η ∈ Λ} is infinite,
so choose η̄ = 〈ηk : k < ω〉 such that

(∗)0 〈ηk(n(∗)) : k < ω〉 is strictly decreasing in Nn(∗).

Now:

(∗)1 ifm(1)<m(2)<ω, then for every n < ω we haveNn |= “Fn(∗)(dn,ηm(2)(n(∗)))

< Fn(∗)(dn,ηm(1)(n(∗)))”.

[Why? If n = n(∗), then FNn

n(∗) is the identity and this means Nn |= “dn,m(2) <

dn,m(1)” which holds by the choice of 〈dn,k : k < ω〉 recalling (∗)0. If n < ω ∧ n �=
n(∗), then FNn

n(∗) is constantly 0, so this means that Nn |= “0 < 0”, which holds by

the choice of Nn (and <Mn
α ), so we are done.]

(∗)2 N |= “Fn(∗)(dηm(2)
) < Fn(∗)(dηm(1)

)” for m(1) < m(2) < ω.

[Why? By (∗)1 and the definition of products.]
Also:

(∗)3 If m < ω, then Nn(∗) |= “c �= Fn(∗)(dn(∗),ηm(n(∗)))”; hence N |= “c �=
Fn(∗)(dηn

)”.

(∗)4 Let νk = f(dηk
). Then νk = 〈ak,n : n < ω〉 ∈

∏

n<ω
Mn.
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But f is a partial isomorphism, so by (∗)2 + (∗)3 + (∗)4 we have

(∗)5 M |= “Fn(∗)(νm(2)) < Fn(∗)(νm(1)) �= c” for m(1) < m(2) < ω.

Hence for every n,Mn |= “Fn(∗)(νm(2)(n)) < Fn(∗)(νm(1)(n))” for m(1) < m(2) <

ω. Also by the choice of FMn

n(∗) we have n �= n(∗) ⇒ Mn |= “c = Fn(∗)(νm(1)(n))” but

M |= “c �= Fn(∗)(νm(1))”; hence Mn(∗) |= “c �= Fn(∗)(νm(1)(n(∗)))”, i.e. νm(1)(n(∗))
�= 0. Together 〈νm(n(∗)) : m < ω〉 is <Mn-decreasing inMn(∗)\{0}, a contradiction.

�4.10
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