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THE JOURNAL OF SYMBOLIC LoGIiC
Volume 55, Number 3, Sept. 1990

THE KUNEN-MILLER CHART
(LEBESGUE MEASURE, THE BAIRE PROPERTY, LAVER REALS
AND PRESERVATION THEOREMS FOR FORCING)

HAIM JUDAH* AND SAHARON SHELAH

Abstract. In this work we give a complete answer as to the possible implications between
some natural properties of Lebesgue measure and the Baire property. For this we prove
general preservation theorems for forcing notions. Thus we answer a decade-old problem of
J. Baumgartner and answer the last three open questions of the Kunen-Miller chart about
measure and category. Explicitly, in §1: (i) We prove that if we add a Laver real, then the old
reals have outer measure one. (ii) We prove a preservation theorem for countable-support
forcing notions, and using this theorem we prove (iii) If we add w, Laver reals, then the old
reals have outer measure one. From this we obtain (iv) Cons(ZF) = Cons(ZFC +—1B(m) +
—=1U(m) + U(c)). In §2: (i) We prove a preservation theorem, for the finite support forcing
notion, of the property “F < “w is an unbounded family.” (ii) We introduce a new forcing
notion making the old reals a meager set but the old members of “w remain an unbounded
family. Using this we prove (iii) Cons(ZF) = Cons(ZFC + U(m) + 71 B(c) + 71U(c) + C(¢)).
In §3: (i) We prove a preservation theorem, for the finite support forcing notion, of a
property which implies “the union of the old measure zero sets is not a measure zero set,” and
using this theorem we prove (ii) Cons(ZF) = Cons(ZFC + 11U(m) + C(m) + 71 C(c)).

§0. Introduction. First we give some easy definitions:

A(m) = The union of less than continuum many measure zero sets has measure
Zero.

B(m) = The real line is not the union of less than continuum many measure zero
sets.

U(m) = Every set of reals of cardinality less than the continuum has measure
Zero.

C(m) = There does not exist a family F of measure zero sets, of cardinality less
than the continuum, and such that every measure zero set is covered by some
member of F.

A(c), B(c), U(c) and C(c) are defined similarly with “first category” (meager)
replacing measure zero. These properties are studied by Rothberger [R], Martin
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910 HAIM JUDAH AND SAHARON SHELAH

and Solovay [MS], Kunen [K2], Miller [M1], [M2], Bartoszynski [B], and
Raisonnier and Stern [RS]. The following facts are known (references can be found
in [M2]):

A(m)

l

v 4 (C)\

B(m) — U(c) B(c) — U(m)
N/
C(o)

l

C(m)

(these implications are proved in ZFC). In [M1] a chart was given involving the
possible relationships between these properties, and only three questions remained
open. These questions will be answered in §§1, 2 and 3, respectively.

In §1 we will prove the following fact:

0.1. THEOREM. Cons(ZF) = Cons(ZFC + —B(m) + —1U(m) + U(c)).

In order to prove this theorem, we first answer a well-known question of
Baumgartner by proving

0.2. THEOREM. If ris a Laver real over V, then V[r] = “2° N V has outer measure
one”.

The natural approach, in order to build a model for Theorem 0.1, is to iterate with
countable support w, Laver reals, and to show that in the generic extension the old
reals have outer measure one. For this we define when a forcing notion satisfies the
property *1, and we prove that: (i) If a forcing notion satisfies *1, then in the generic
extensions the old reals have outer measure one. (ii) The property *1 is preserved
under countable-support iterated forcing. (iii) The Laver-real forcing satisfies *1. We
conclude the section by showing that if the ground model is the constructible
universe (or satisfies CH) then by adding w, Laver reals we obtain a model for
—1B(m) + 2 U(m) + 1 B(c) + U(c).

In the second section we will prove the following fact.

0.3. THEOREM. Cons(ZF) = Cons(ZFC + U(m) + —1B(c) + 1 U(c) + C(c)).

In order to give a model for this theorem, we begin with a model satisfying
A(m) + —1CH. The final model is obtained by an w,-iterated forcing notion with
finite support of o-centered partially ordered sets as components. As every finite-
support iterated forcing adds Cohen reals, it is not hard to see that in such a ge-
neric extension U(c) fails. In order to show that U(m) holds in the generic ex-
tension, we prove

0.4. THEOREM. If P is o-centered and V= A(m), then O |-p*“(VA € [R]*")
(A has measure zero).”

So our problem was to show that —1 B(c) and C(c) hold in such a generic extension.
In general this is not true, as one can verify by iterating Hechler reals. So the problem
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THE KUNEN-MILLER CHART 911

was to find a o-centered partially ordered set P satisfying

(i) |Fp“2® N V is meager” and

(ii) |Fp ““w n V is an unbounded family.”

So we complete the proof of the theorem by showing

0.5. THEOREM. There exists a o-centered partially ordered set M (called the meager
tree forcing) satisfying (i) and (ii).

0.6. THEOREM. The property “F < “w is an unbounded family” is preserved under
finite-support iterated forcing.

In fact we prove a more general preservation theorem which can be used in other
contexts. The parallel of this theorem for countable-support iterated forcing was
proved by Shelah [SH2].

In §3 we prove the following statement:

0.7. THEOREM. Cons(ZF) = Cons(ZFC + U (m) + C(m) + —1C(c)).

Once more we begin with a model satisfying 4(m) + —7 CH, and we add with finite
support w,-many random and Hechler reals alternately. Clearly in the generic
extension 1 U(m) + —1C(c) holds and, in order to show that C(m) holds, we prove
the following theorem:

0.8. THEOREM. If M = N are models of ZFC* (see [M2]) and there exists
he N n {®([w]=®)} and f € M N “w such that, for every m € w, |h(m)| < f(m) and

for every g € M N “w there exists n € o
such that for every m > n, g(m) € h(m),

(*)
then there exists h' € N n “([w]=®) such that for every m € w, |h'(m)| < m and k'
satisfies ().

Then, using a remark of [RS] and the proof of Lemma 1.1 of [RS], we obtain

0.9. THEOREM. If M < N thenin N the union of all measure zero sets that belong to
M is a measure zero set iff in N there exists h € “([w]~®) such that, for every n € w,
|h(n)| < n and h satisfies (x) of Theorem 0.8.

Next we introduce the property of being “good” for partially ordered sets, and we
prove that if P is good, then in the generic extension the union of all measure zero
sets coded in the ground model is not a measure zero set. We prove that this property
is preserved under finite-support iterated forcing notions and, finally, we prove that
random-reals forcing is good and also that o-centered partially ordered sets are
good. -

A general theorem about preservation under countable-support iterated forcing
can be found in [SH3]. This theorem generalized the previous theorem, which
appears in [SH1].

All our notation is standard, and can be found in [K1], [M2], and [SH1]. For
A < R we denote

(1) by u(A) the Lebesgue measure of A4,

(2) by u*(A) the outer Lebesgue measure of 4, and

(3) by u,(A) the inner Lebesgue measure of A.

We confuse R with the unit interval and with “2, in all our arguments. Theo-
rems 0.7 and 0.3 were proved, independently, by Cichon and Kamburelis, but they
never published those results.
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912 HAIM JUDAH AND SAHARON SHELAH

§1. Preserving ‘““the old reals have outer measure 1”.

1.1. DerFINITION. Let {P, <) be a partially ordered set. We define the following
properties:

(a) *,[P] iff for every sufficiently large cardinal y, and for every countable
N < (H(y),e,<,), if PeN and {I,:n<w) e N is a P-name of a sequence of
rational intervals, and {p,: n < w) € N, each p, € P,and p, & “X|I,| = b € Q*” and
forevery n € w, p, |- “I, = 1,”, then for every random real x over N, if x ¢ ( I, then
there exists py, < g € P, q is (N, P)-generic and

q |-“x is random over N[Gp]” and gql|-“x¢ (]I,

(b) *,[P] iff for every P-name A of a subset of R and for every pe P, if p |-
“u(Ad) < ¢”, then

Ue{xeR:(AgeP)p<gnrqlF“x¢A”)} =1 —c.

(c) *3[P]iff for every A € V n 2(°2)if V= “u(A) > 0” then V2 = “u*(4) > 0”.

(d) *,[P] iff for every sufficiently large cardinal ¥, and for every countable
N <(H(x), &, <,),if Pe N and {p,,n <) € N, each p,e P, and {4, < w) € N,
each A, a P-name, and for every n, p, |- “A4, < “2is a Borel set and p(4,) < ¢,” and
lim,, ¢, =0and x € 2 is random over N, then there exists g € P such that

(i) g is (N, P)-generic,

(ii) g |- “x is random over N[G,]”, and

(iii) there exists n such that g > p,and g | “x ¢ 4,”.

1.2. DEFINITION. P is weakly homogeneous iff |- “(Vp € P)(3G, e VF)(pe G, = P
and Gp is a generic filter over V)”.

1.3. Fact. If P is weakly homogeneous, then %,[ P] iff %;[P].

Proof. (i) Suppose *,[P], and let A € V n 2(“2) be such that there exists p € P,
p I-“u(A) = 0”. Therefore

p*{xe®2plxed} =0,

and this implies that x(A4) = 0. So we have proved that *,[ P] = %,[P].

(ii) Suppose * ;[ P]; without loss of generality, A = U,,I,,, each I, a P-name
of a rational interval. Let ¢ > 0 be sufficiently small, and define X = {x e “2: p |-
GGx e A,’}‘

In order to get a contradiction, suppose that u*(X) > ¢; we pick {p,: m < w),
Pm < Pm+1,and {I,: n < w) rational intervals and h €® w increasing such that

P (I < h(m)(L, = L) A Y, |L,| < /4™

n>h(m)

Therefore ¥.,, < ym | I,| < c. Now we have that
#*<X - UI,,) > 0.

Let Y = X — (J.1,. Also, from the choice of p,,, p,, forces that Y is covered by
U,> wm Ii- As P is weakly homogeneous, it is easy to prove that above p there
exists a P-name {I}':h(m) <l < o) satisfying the above conclusion with p,,
replaced by p and <I,: h, <n < w) by {I}*: h(m) <l < w). From this we have
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Pl T I <e/4™ and pltYs U I

> T(m) 1> h(m)

therefore

pl-Yys() U I,

m [> h(m)

which implies that p |- “u*(Y) = 07, a contradiction. [J

1.4. Fact. %, [P] iff *,[P].

Proof. (i) %;[P] = *,[P]. Without loss of generality, working in N, we have
A, = U{I,,,,: I <w}, I, a P-name of a rational interval. For every n we choose
<pn,l: l < CU> and <In,l: l < CU> SUCh that pn,l ”_“II,n = n,l”’ pn = pn,09 and pn,l <
Pu1+1- Therefore pu(( ), 1) < ¢,, and this implies that

()0

Also (), U L,,; € N; therefore, as x is random over N, there exists n € o, x ¢ (), L,1-
Now using %, [P] there exists ¢ > p,, q is (N, P)-generic, and

q|-“x is random-over N[Gp]” and gq|-“x¢(J1I,,=4,".
1

This concludes the proof of (i).

(i) *,[P] = *,[P]isclear. [

1.5. THEOREM. If Lv denotes the Laver real forcing, then %;[Lv].

1.6. REMARK. J. Baumgartner gives the following problem (see [M1, p. 113]):
Show that if one adds a Laver real the ground reals have measure zero. Clearly,
Theorem 1.5 gives a negative answer to this problem.

We will break the proof of Theorem 1.5 into a series of lemmas and definitions.

1.7. DEFINITION. (i) Lv is the set of trees T < w™® with the property that there
exists s € T (called the stem of T)so thatVie T,t = sorsct,andif t 2 sandte T
then there are infinitely many n € w such that t*{(n) € T.

i) T <, LIt T, 2 T,.

(iii) p, = {vep:n S vorv <y}, where peLv.

(iv) Ty <9, T, iff T; <., T, and they have the same stem.

(v) For p € Lv, let s(p) be the stem of p.

This forcing notion was introduced in [L]. Without loss of generality, we write <
instead of <.

1.8. LEMMA. Let {I,: n < w) be a sequence of Lv-names of rational intervals such
that |, “YIL| = g < 17,q € Q*, and let p € Lv. Then there exists p'® > p and there
exists f: p' — { finite sequences of rational intervals} such that

(i) 1 < v e p' implies f(n) is an initial segment of f(v),

(ii) n € p’ implies p' = “f(n) is an initial segment of {I,: n < w)”, and

(iii) for every e € QT and for every branch x of p’ there exists n € w such that for
everym > n, p({Jf(x|m)) > q —e.

Proor. We apply the following fact:

1.9. Fact. If p, € Lv and D < Lv is open dense, then there exists p; °> p, such
that p, € D', where D" = {p € Lv: { € p: p, € D} contains a front} and A< pis a
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front if

)n#vedA->n&v,and

(ii) for every x € ® if (Vk)(x|k € p) then (3k)(x | k € A).

Proof. By induction on the ordinal «, for each v € py, when rk(v) = o we define

(i) rk(v) = 0 iff there exists p; € D, po, <°p;, '

(ii) rk(v) = a > Oiff there exists n such that for every m > nwe have that if v* (m)
€ p, then rk(v” {m}) is well defined and less than a, and

(iii) rk(v) = oo if there is no a such that rk(v) = a.

Claim 1. For every s(poy) S v € p, we have that rk(v) < co.

Proof of Claim 1. Let v € p, be such that rk(v) = oo and s(p,) < v. We define p¥
={pepo: p = vorv < pand,forevery k € [1g(v), Ig(p)), rk(p | k) = c0}. Clearly p¥
< poy»> and by the definition of rk, v < p € p¥. Then (3%n)(p " {(n) € p¥). Therefore
p¥ e Lv, and as D is dense there exists p** such that p* <°p** e D. By hypothesis
s(p**) € p¥, and this implies that rk(s(p**)) = co; but clearly rk(s(p**))=0. O

Claim 2. For every v € p, there exists p! such that pov <°ple D

Proof of Claim 2. By induction on rk(v). If rk(v) = 0, the proof is easy. If rk(v) =
o > 0, it follows by the induction hypothesis. []

This concludes the proof of Fact 1.9 and the proof of Lemma 1.8. []

1.10. LemmA. If A = [0,1] and u*(A) = 1, then |-, “p*(4) = 1”.

PRrROOF. Suppose that there exist {I,:n < ®), an Lv-name of a sequence of
rational intervals, and p € Lv such that

() p Tl =q <17,

(i) p |- “(Vx € A)(3*n)(x € L,)".

Therefore there exist f and p’ satisfying the requirements of Lemma 1.8, and,
without loss of generality, p’ = p. Now let y be a large enough regular cardinal, and
let N be countable such that N < {H(x),€, <, and f, p belong to N. Let x € 4
be such that x is random over N. N[x] is a generic extension of N; therefore
N[x]E ZFC*. Working in N[x], for every ¢ € Q" we define

(i) h*(n) = min{L: X1 /() [ 1| > g — ¢} U {lg(/(n)}, and

(i) f(n) = f(n) [ [h*(n), 1g(S (m))).

We need to find p’ > p and ¢ € Q* such that

Pl x ¢ Ll) U fns 1),

where 1 is the generic branch. Clearly this is sufficient. Suppose that it is impossible.
Then the following fact holds in N{x].

1.11. Fact. For every e € Q™ there exists T, < p satisfying

@ncve,=neT,

(b T, # &,

(c) for every branch n € p there exists m < w such that n | m ¢ T,, and

(d) for every n e T,, either x € | ) f,(n) or [{n"<{n) e p:n"<(n) ¢ T,}| < N,.

Proof. We define when D() > o, by induction on a:

(i) D(n) > O iff x ¢ f,(n), and

(ii) D(y7) > o (>0) iff for every B < « there exist infinitely many k € @ such that
D(n"<k)) = B.

Then we define D(y) = a iff D() = o but D(5) 2 « + 1. Otherwise D(y) =
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Claim. D(s(p)) = oo iff Ip* = p such that (Vn € p*)(x ¢ | £.(n).

Proof. (<) By induction on « it is easy to prove that, for every 5 € p, if s(p) = 7
then D(n) > a.

(=) We define a(%) = sup{D(n): 7€ p and D(7) < oo} and p’ = {n e p:n < s(p)
or s(p) < n and D(n | k) > a(*) + 8 or oo for every k € [1g(s(p)), 1g(n))}. Clearly if
vSnep then vep'. Suppose that s(p) =vep’; then D(v) > a(k) + 8 or oo,
and therefore A, = {k: D(v"<k)) > a(%) + 7 or oo} is infinite, and by the choice
of a(%), we have

ke A, = D(v"<{k)) = a(¥) + 8 or oo,

which says that p’ e Lv. [

So we have proved that D(s(p)) < oo, and we define T, = {n € p: n < s(p) or
{D(n 1 k): 1g(s(p)) < k < lg(n)) is a decreasing sequence of ordinals}. Clearly if
ncveT, then neT, If s(p) =neT, then D() < oo, and if x ¢ (Jf,(n) then
{k:n~<k) e p and D(n"<k)) > D(n)} is finite, and this implies that there exists
ne wsuch thatforkew — n,if n" (k> e ptheny”<k)>e T,. O

Therefore, still working in N[x], there exists h,: T, - w; such that for every
n*<{n) e T, h(n"<{n)) < h(n). As x is random over N, there exists a Borel set B € N,
u(B) > 0, such that in N

(*) B || “for'every ¢ > O there exist h, and T, as above”.
random

Set & = u(B) - 1071, and let h, and T, be random names witnessing (x) for this ¢; h,
and T, belong to N. Using the w®-bounding property of random forcing (see [SH1,
p. 169]), we can find B’ < B with u(B’) > $x(B) and such that for each n e p

(i) {n:(3B" = B)B" |F“ne T, A n"<ny ¢ T,” A p(B" 0 J£,(n) = 0)} is finite,
and

(ii) {¢ € w;: (3B = B')(B" | hy(n) = )} is finite.

Now we define

T:‘={nep:(33”93')<3“ - nc—:T)}

random

H,(n) = {06 €w;:(IB” < B’)<B” - “neT, A h(n) = 06”)}
random
1.12. Fact. @Q) T¥*<p, T¥ # Jand,if n=ve T¥ thenne Tk
(b) If ne T* and x € B’ is random over N, and x ¢ \ ) f.(n) and n € T,[x], then
{n:n"<n) e T,[x] A n"{n) ¢ T¥}is finite.
Proof. By the definition of T and the choice of B’. [
1.13. Fact. If v = n"{n) € T}, then max H,(v) < max H,(n).
Proof. Let o = max(v) and B” < B’ be such that
B// “_ GGhs(v) — a”‘
random
Therefore
B” | “h,(n)is well defined and larger than o”.

random

This implies that « < max H (). U
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1.14. COROLLARY. For every n € “w there exists n € o such thatnn¢ T*. O
So there exists h: T¥ — w,; such that

n<ve T¥ = h(n) > h®).

Now, by induction on h(r), for each # € TF we define aset ¥, = [0,1] with u(Y,) < e
as follows:

(i) If # does not have an extension in T}, then Y, = ) f,(n).

(ii) If # has extensions in T¥ then

Y, = {Yray:l=nand n" ) e T}

Thus Y, is well defined, u(Y,,) < ¢ and Y, € N. Therefore there exists x € 4 N
(B" — Yy,), x random over N. As x ¢ Y|, it is not hard, using 1.12(b), to see that
T.[x] has a branch. But this is a contradiction to the construction of the tree T,[x].
This finishes the proof of Lemma 1.10. [

Clearly Lemma 1.10 implies Theorem 1.5. [

1.15. COROLLARY. %,[Lv].

Proor. Clearly Lv is weakly homogeneous; then Fact 1.3 gives the conclusion of
this corollary. [

1.16. THEOREM. %, [Lv].

We will break the proof into a series of lemmas and definitions.

1.17. DEFINITION. (a) Let 4 be an Lv-name of a Borel subset of R such that
FL, <4 = U,,I,, and Y|I,| = ¢”. For p € Lv, we say that {I,: n < w) is interpreted
over p, if for every n there exists a front A, < p, and (i) (Vve 4,)(p, -1, = I});
(i) (Vv € 4,4 1)3Fp € A,)(p S V).

(b) Let x be a regular cardinal, large enough, and let N <<{H(x,€, <,)),
[IN|| = Ng, po€ N nLv and A € N an Lv-name satisfying the condition of (a),
interpreted over p,. We define Y < R by putting x into Y iff there exists g € Lv such
that the following four conditions hold:

(i) pp < gqeLv.

(ii) For every open dense set D < Lv, if D € N then there exists r € D n N such
that r < q.

(iii) g |F“x ¢ A”. _

(iv) If = “{J,: n < w) is a sequence of rational intervals and Y |J,| < c0” and J =
{J,;n<w) e N,and Dy = {r € Lv: J is interpretable over r with front {A}: | < w}},
then there exists r € Dy n N and k € w such that

(Vm=kVneqn A,)x ¢J7m).

1.18. LEMMA. Y is a X1 set of reals.

PROOF. x € Y iff there exists ¢ < p, such that the following four conditions hold:

(i) g € Lv (45).

(ii) If <E;: | < w) is an enumeration of {D": D € N and D < Lv is an open dense
set}, E, = {r,,,: m < ), then for every [ there exists m such that ¢ =r,,, (4}).

(iii) We know that A is interpreted over p,. Therefore we can find {A4,,I}: n, v)
witnessing this and then, for every n, for every ve g N A,, x ¢ 17 (43).

(iv) We have an enumeration of {{r,{A4},J:":n,v)):r e Dj}.
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Clearly DY = Dj and then, for every J € N, there exist r € D; n N and k € w such
that (Ym > k)(Yn e g n Ap)(x ¢ J;™)(45). O

1.19. LEMMA. p (Y)>1—c.

ProoF. By Laver [L], there exists q € Lv satisfying (i) and (ii) of Lemma 1.8. Also
every q¢' > q satisfies (i) and (ii) of Lemma 1.18. Now we define

Y, = {x € R: there exists g, € Lv, g, > q and
dxl-“x ¢ A U {B: Be N and u(B) = 0}"}.

By %,[Lv] we know that u (Y,) > 1 — c. For every x € ¥, it is not hard to find
q = q, witnessing xe Y (remember that [|[N||=¥, and that if q.|F“x¢
(Un NmznJm" then there exists g"° > g, satisfying that there exists n such that for
every y € [q"] and for every m > n,if n € Aj and n < y thenx ¢ J7). O

Now workingin N (asin 1.17(b)), we define Q, = Levy(¥,,2%°),and Q, is random
real forcing over N, Let y < Q, be generic over N, and x random over N[y].
Clearly the parameters of the definition of Y arein N[ y], and we can ask,in N[y, x],
if “x € Y”. In N[ y] thereexist By, B, € Q, such that u(B, U B,) =1,By n B, = &,
and in N[y] we have that By |-“xe Y” and B, |“x ¢ Y”. Also we know that
u(Bo) = 1 — c.Itis well known that x is random over N; therefore, working in N, we
have

(*) Qo* Q1 =Ry * R,

where R, is random real forcing. In N®° we can ask: “After R, does x € B,?”, and we
obtain B§ € R, such that

NE B |-“(3r € Ry)(r |- x € By)”
Ro

and
NE ~B§ |F“¢ l-x € B,”.
Ro

Working in N2, it is not hard to prove that B, < B% (a.c.); therefore u(B¥) > 1 — c.

From this, if x is random real over N and x € B, we can find y < Q, generic over
N such that (y, x) € Q, * @, is generic over N and N[y, x] &= “x € Y”; furthermore,
Yisa X} set.

We can conclude that VFE “x e Y”. In other words, there exists a Borel set
B} € N, u(B¥) = 1 — ¢, such that for every x € V n Bf, if x is random over N then
x € Y. In this case we denote Y = Y(N, py, 4).

ProOOF OF THEOREM 1.16. Given N, {p,:n < w),{I,:n < w), p,I+1, = L,, {p,:
n<w)eN,p,<pp+1,x ¢ .1, and |FX|L| = c, we define, for every k € w,

Y(N, pp, sk <wd) =Y,

and, by the above work, we can find a Borel set B¥ € N, u(B¥) > 1 — (¢ — ¥, . |L|),
such that for every x € V n B}, if x is random over N, then x € Y,. Without loss of
generality (B¥: n < o) € N, and p(| JB¥) = 1. Therefore if x is random real over N,
then there exists n € w such that x € B¥; and this implies that x € Y,. This concludes
the proof of the theorem. [
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1.20. THEOREM. If P is a forcing notion and Q is a P-name of a forcing notion and
%, [P] and |l-p “%,[Q]”, then *,[P * Q].

ProoF. Let N, P*QeN, {I;:new)e N,{(p,, q,):n <w)eN,<{:n<w)
€ N and x random over N all satisfy the requirements of 1.1(a). For each n we define
APn>qn):l<w)eN and {I,;:l<w)eN, each I,;, a P-name of a rational
interval, as follows: for 0 <! <nlet I,, = I, and (Pn>4n1) = (Pn>qy); for I =n +
m + 1 let q,, be a P-name of a member of Q and I, , a P-name of a rational in-
terval such that

Dn ”—P “qn.n+m SQ qn.l and qn,l ”—Q “ n.l[GP] = Il”'

Now we define 4, = U 1>n1,.;. Clearly for every n € w, A4, € N and A, is such that
PulFp“A, € 297, and there exists {(¢,: n < w) such that lim,_ ¢, = 0 and p, |F»
“ul4,) <e,”.

As x is random real over N and %,[ P], we can find n, p € P such that p is (N, P)-
genericand p, <ppandp|-“x ¢ A,”. Fixing such nand p, let G = P be generic over
V containing p. Therefore we know the following:

(i) x is random real over N[G] < <H(x)"'%,¢, <,>.

(i) x ¢ (i1, [G], and thus x ¢ | ;50 1, ,[G].

(iii) For each l € w, q,,,[ G] g6, “l = 1,,,[G]”.

Applying *,[Q[G]], we find g € Q[G] such that g is (N[G], Q[ G])-generic,
4= q,[G],

q i “x is random over N[G][Gg1]”, and  qllgie“x ¢ (J 1,

As Gis arbitrary, we can find ¢, a P-name of a member of Q, satisfying all this. Now
it is not hard to see that (p, q) witnesses %, [P * Q]. This finishes the proof of the
theorem. [J

1.21. THEOREM. Let (P;; Q;:i < 6,6 = )6 # 0, be a countable-support iterated
forcing system satisfying

(i) foreveryi< j<d,i# Ui, P./P; is a proper forcing notion, and

(ii) for every i < 6, %,[P].
Then ¥, [F;].

PrOOF. Let N <<{H(x),€, <>, INl| =Ny, po<p, <---€ B, {p: | <w)eN,
i:l<w)eN,p,|p,“I, =1, I, a P-name of a rational interval, and

Po l-p, Z 1| =be Q™

without loss of generality b = 3, x € R is a random real over N, and x ¢  J, ];.

Let {D,: n < w) be an enumeration of the open dense subsets of P, that belong to
N. Let {{I,;: | < w): n < ) be an enumeration of the sequences {J;: | < w)> e N
such that J;is a P-name of a rational interval and |5, “Y, || = 3”and I, , = I,. We
fix «(0) < «(1) < ---such that a(n) € N, 2(0) = 0, { J(«(n)) = § and a(n) # (Je(n).

By induction on k < , we will choose g, € P, and P,,,-names

(piil< o), If; v(k)
such that if ¢, € G, = B, G, generic over V, then

(@) pi[G ] (k) € Gy,
(b) By/Byy I-Pi[G] < pi+ 1[G,
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(c) If , is a P,,-name of a rational interval,
(d) PILG] Irpypy “(VC <k, ¥V < k + 1)Ly, = 1%, [G])

(€) g« -y “pi e N[G] n B/G”,
(f) x is random over N[G, ],

(®) (V¢ < R)(x ¢ (J{IE[G: v() < v < w)),

(h) p§ Epyjp,,, “if { < kand v < o then I, has a P,,-name”,

(©) gi I-*v(k) < @, v(0) = 0,

(J) Ps < p6* ' € Dy,

(k) <If,[G]: 1 < k,v < w) e N[G,] and {p}[G,]: | < ®) € N[G,], and

(1) pol alk) < Gy, Gu+1 [ (k) = gy.

The induction. For k =0 we set p{ = p,, qo = & € P, = {J}, v(0) =0, and
Ig,v =1,

For k + 1 we will work in N[G,], g, € G,. We fix] € w, and by inductiononm e w
we define pf,, such that

PilGI<pio€B/G,  Plo€Dis  Plm < Pimiss
for every { < k + 1, pfo | [v, ) forces that I, has a P,,,-name, and for every { <
k+landv<k+1l+m
Phm Ik = 1[Gy, 17,

Therefore the sequences {p;,,:l,m < w) and (I¥L:{ <k + 1,1,v < w) belong to
N[G.].
Now we define {my(l): | < w) such that m,(l) < w and

P{m,‘(z) ||—“Z{|Ik+1,v|3 m(l) <v < w} <27

and we define

Af =<t <ki<v<o} U ({Ly, md) <v <o}
It is not hard to find {¢;: | < w) such that

Pimay [ ok + 1) |- “w(d}) <e”

Py +1)
and lim,_ & = 0.
Applying %, [P, +1)], we can find gy, ; € P +1)/Gy and I(k) such that

k
Dy, m(i(ky) Faky) < ey, Gr1 B x¢ Ay,

Pokc+1)
di+1 F “x is random over N[Gp,, , 1.
Now we define

Pit = Pl.masyrs e, =TEW, vk + 1) = m(1(k).

It is easy to check that this works. Now we define g € P; by setting g | a(k) = g,.
Then:

(i) g is (N, Py)-generic [use (j) and (1)],

(ii) po < g, and

(iii) g = “x is random over N[Gjp,] and x ¢ U,, I,
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[Itis sufficient to show that for every n € , q |-“x ¢ { ),4y<:7,.,”; and this follows
from (g) and (h).]

This concludes the proof of the theorem. []

1.22. THEOREM. con(ZF) = cons(ZFC + —1B(m) + 1 U(m) + 71 B(c) + U(c)).

PROOF. Let V = L be the sonstructible universe, let P € L be the w,-iteration
of Laver reals with countable support, and let G = P be generic over ¥ Then
V(G)E “T1B(m) + 7 U(m) + —1B(C) + U(C)”".

(i) 1 B(m) + T B(C). By [SH1, pp. 206—207], P has the Laver property; and this
implies that in V[G] the real numbers are included in the union of the meager
measure zero sets coded in ¥

(ii) 1 U(m). By %, [P ] we have that u*(2° n V) = 1.

(iii) U(c). For every f € “w,

A, = {g & °: (v*n)(gln) < f(n)}

is a meager set. And in V[G] for every 4 € [“w]~° there exists f € “w such that
Ac4,. O

§2. Preserving “the old reals are unbounded”.

2.1 DeriNITION: We say @ ( £, R, S) iff the following seven conditions hold:

@) f=Lfarael).

(b) I is a directed set of indices.

(c) For every J < I, if |J| < N, then there exists a € I such that, for every b € J,
b SI a.

(d) Foreveryae I, f, € “H(w).

() S € H(w) x H(w) and R = H(w) X H(w) and xSy A yRz = xSz.

(f) For every a, b € I, a <;b = (V°n)(f,(n)Rfy(n)).

(g) For every f € “H(w) there exists a € I such that (3®°n)( f(n)Sf,(n)).

2.2. THEOREM. Let f, R, S, Q = {P; Q;: i < 8 be in V, satisfying

(i) Q is a finite-support iterated forcing system such that, Jor every i <9, |Fp,
“Q,E= c.c.c.”, _

(i) for every i <9, |-p,“®(f, R, S), and

(i) if 6 =y + 1 then |lp,.o, “®(f,R,S)".

Then, if P;=1limQ, then ||-p,“@(f, R, S)”.

ProoF. If § =y + 1, then the conclusion follows from (iii). If § = 0, it is clear.
Therefore we will prove the theorem when § = UcS # 0. Conditions (a), (b), (d), (¢)
and (f) of Definition 2.1 are clear. As P, = “c.c.c.”, we know that

Fp, (VBS V)(B| =Ny = (FA e V)(BS A A |A]| = NKy)).

This implies that (c) of Definition 2.1 holds after forcing with P;.

So we need to check 2.1(g). Let g € V™ be such that e, “9: @ - H(w)”,

(1) If cof (8) > N, then 2.1(g) follows from the c.c.c. of P;.

(ii) If cof (§) = ¥,, then we fix a well-order <, of H(w) and a sequence {a,:
n < w) of ordinals such that «, < «,,; and «, — 8.

For each n we define g" € V= as follows:

9"(i) = min__ {a € H(w): (3p € /Gy, )(p |- 9(i) = a)}.
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Clearly |lp,_“g" € “H(w)”. For each n there exists a, € I such that

e, “(3%)(g"()Sfa, ()
Using the c.c.c. of B, we can find b € I such that, for every n € w, a, <, b. Therefore,
for every n € w, |Fp, “(3%i)(g"(0)Sf,(i))".

2.3. Claim. |-, “(3%i)(g(i)Sf,(i))".
Proof. If this does not hold, then there exist p € P; and k € w with

P lFe, “(Vi > k) (1 9()Sf,(0)".
There exists n € w such that p € P, , and this implies that there exist m € w — (k + 1)
and p < g € B, such that

q I-p.,, “9"(m)Sfy(m)".

Then, by the definition of g”, there exists r € F;,q < r, withr ||-p, “g"(m) = g(m)”; and
this implies

e, “g(m)Sfy(m)”.

As p < rand k < m, we have found a contradiction. This concludes the proof of the
claim. [

Clearly the claim implies Definition 2.1(g), and this finishes the proof of the
theorem. []

2.4. DerINITION. The meager forcing M is the partially ordered set defined by
setting (¢, w) € M iff there exists n(t) € w such that

(a)if te™=2andy S vetthennet;

(b) if n € tand 1g(n) < n(t) then n* 0> etorn*{1> et,w < ®2and |w| < ¥,;and

(c) if x e wthen x | n(t) e t.

The order for M is given by setting (t;,w;) < (t,,w,) iff t;, = t, n "2 and
Wy S w,.

2.5. Fact. (i) M is o-centered.

(ii) |Fa “V N 2% is a meager set”.

Proof. (i) Clearly M = | J,cw>, M,, where M, = {(t,w) € M }.

(ii) Let T = (J{z: 3(t, w) € Gy }; then =y, “T is a meager perfect tree” and |F
“Wxe2?n V)3new)3te"2)(Vk = n)(t x| [nk) e T)”. O

If pe M, then t(p), w(p) and n(p) are defined satisfying p = (¢t(p), w(p)) and
n(p) = n(t(p))-

REMARK. M adds Cohen reals.

2.6. LEMMA. If pe M, k € w and t is an M-name of an ordinal, then there exists
m(k,p,7) = m < wsuchthatif g € M and p < q and t(p) = t(q) and |w(q) — w(p)| < k,
then there exists ¥ € M such that q¢ < r and n(r) < m and r decides the value of .

Proor. If this does not hold, then for every m there exists g,, € M such that
p < q,, and t(p) = t(g,,) and |w(q,,) — w(p)| < k and for every r > q,, if r decides
the value of t then n(r) > m.

Set w(g,,) — w(p) = {x7,..., Xim}> k(m) < k. Thinning {g,,: m < ) if necessary,
we can assume that k(m) = k(%). If le[1,k(*)] then x"[m=x""!|m. Let
{Y1s-+> Yuwy besuch that for every m e w and [ € [1, k(*)] we have y,[ m = x| m.
Therefore p < (t(p), w(p) U {¥1,--» Vi })> and (let r € M and o € ord)

rH—“T = G'”, (t(p)a W(p) v {yla'“’yk(*)}) =r
Let n(*) = n(r) + 8 and r* = (t(r), W(qnw) Y W(r))-
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2.7. Claim. (i) r* € M.

(ii) r < r* and g, < 1r*.

(iii) r* = 7 = 0 and n(r*) = n(r) < n(*).

PrOOF. Remember that {y,..., Yy} S w(r). O

Now 3.7(iii) contradicts the choice of g,), and this finishes the proof of the
lemma. [

2.8. DEFINITION. We say that F < w® is unbounded if

(Vg € 0°)3f € F)(3*n)(g(n) < f(n)).

2.9. THEOREM. If F € V is unbounded, then |-, “F is unbounded”.
PROOF. Suppose that there exists an M-name g of a member of w® and pe M
such that
P lba “(Yf € F)(V*n)(f(n) < g(n).
Let N < {H(x),€, <, be such that ||[N|| = ¥,,and P, p, g are in N. Pick f € F such
that, for every he N n w®, (3°n)(h(n) < f(n)). Working in N, for each p°® € M, for
every k € w we define

hyo(k) = max{i € w: (3¢, r € M)(t(g) = t(po) and |w(po) — w(g)| <k,
n(r) < m(k, po,g(k)) and r |-“g(h) = i")}.

Using the above lemma, it is not hard to show that for every k € w, ho(k) € .

By assumption there exist ¢ > p and k, € w such that g |- (Vk > k,)(f(k) < g(k)).
Set po = (t(g), w(g) » N). Clearly p, € N. Choose k; = |w(g) — w(p,)| and k, such
that h,o(k;) < f(k,) and k; <k,.

By Lemma 2.6, there exist ¥ > g, p, such that n(r) < m(k,, po,g(k,)), and i such
that r |- “g(k,) = i”; and this implies that

r-g(kz) < hyolks) < f (k)7

which is a contradiction to the choice of g. This concludes the proof of the

theorem. [
2.10. THEOREM. cons(ZF)=>cons(ZFC + —1B(m) + U(m) + "1B(c) + 1 U(c) +

C(0)).

PROOF. Let V= “A(m) + 2% > X,”, and let Q = (P; Q;:i < w,) be a finite-
support iterated forcing system satisfying, for every i < w;, |-p, “Q; is the meager
forcing M™ and if i is a limit ordinal, then P, =1imQ [ i. Let P,, = lim Q. Then

I-p,, “T1B(m) + U(m) + 71 B(c) + 1U(c) + C(c)”.

(a) 71 B(m). As Cohen reals are added in every limit stage of cofinality w, it is well
known that

IFp,. ., “2° n V[G | i] has measure zero”
and, by c.c.c.,

(%) ”"Pw. “0 = U 2N V[Glw-i]”.
i<wi
(b) U(m). It is not hard to show that for every i < w,, P, is o-centered. Therefore,
for every P-name 7 for a real number, there exists 4, € V such that u(4,) = 0 and
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I-p,“c € A,”. Now using () and A(m), we can prove that for every X e VP if
e, “X € [2°]¢”, then there exist AX € V with u(AX) =0 and ||, “X < AX".
(c) 1 B(c). The w,-meager trees of the generic sequence witness this.
(d) 71 U(c). The w,-Cohen reals given by the support of the iteration witness this.
() C(o). If |p, “T1C(c)”, then

I-e.,, “U{B: B € V and B meager} is meager”.
(Remember that V = A(m). Therefore V = A(c).) And this implies that

g, “@® N V is bounded™.
But using Theorems 2.9 and 2.2, we can prove
l-p,,, “@® N V is unbounded™.

(In order to see this, in ¥V we define {f;:i<c¢) such that i < j < c implies
(V°n)(fi(n) < f;(n)), and we define aRb iff |a| < |b| iff aSh.) This concludes the
proof of the theorem. [

§3. Preserving “the union of the old measure zero sets is not a measure zero set”.

3.1. THEOREM. Let M = N be models of ZFC*. Then the following statements are
equivalent: g

(i) There exists h e ®([w]~®) N N such that, for every ne w, |h(n)] < n and for
every [ € “o N M there exists n € w such that, for every m > n, f(m) € h(m).

(i1) There exist he °([w]~®) N N and g € “w n M such that, for every ne€ w,
|h(n)| < g(n) and for every f € w® N M there exists n € w such that, for every m > n,
f(m) € h(m).

PROOF. (i) = (ii) is clear.

(ii) = (i). Suppose we have h and g satisfying the requirements of (ii). Then we set
G,: o' — o, the canonical one-to-one and onto function from o' to w, and for each
i < | we define G, ;:  — w by setting G, ;(k) = =;(G; '(k)), where m; is the projection
function over the ith coordinate.

In M we pick {(n;: i < ) suchthatn; < n;,; and g(n;) < n;,andin N we define the
function h': w - w. If i € [n;, n;, ), then

W)= Gy, . —,hQ),
where j + [ = i. Clearly h’ is well defined and satisfies |h'(i)| < |h(l)| for n, < i <
n,+ 1, and in this case |h(l)| < g(I) < n, < i. Therefore |h'(i)| < i.

Now we will show that for every f € “w n M there exists n € w such that, for
every m > n, f(m) € h'(m). We define

fl(l) = an+1—n1(f(nl)5'-'af(nl+1 - 1))

Then clearly f' € “w n M, and thus there exists k € @ such that, for every [ > k,
f'(1)  h(l). Therefore,

Gor =, (S (D) = [ + ),

where j € n,,; — n,, and this implies that f(n, + j) € h'(i), where i = n, + j. Hence,
for every i > n,, f(i)e h'(i). O
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3.2. COROLLARY. Let M = N be models of ZFC*. Then the following are
equivalent:

(i) In N the union of all measure zero sets coded in M is a measure zero set.

(ii) Theorem 3.1(ii).

(iii) Theorem 3.1(i).

PROOF. (i) = (ii). Some little changes in the proof of [RS, 1.1] give that by (i) there
exists h € °([w] “*) such that, for every n € w, |h(n)| < n? and for every f € “wo N M
there exists n € w such that, for every m > n, f(m) € h(m).

(ii) = (iii) is proved in 3.1.

(iii) = (i) was proved by Bartoszynski; see [RS]. [

3.3 DerINITION. Let P be a forcing notion satisfying the countable chain
condition.

(a) We say that x € “w is N-big iff, for every h € ®([w]=?), if there exists k € ®
such that |h(n)| < n* for every n € w, then there exist infinitely many n € w such
that x(n) ¢ h(n).

(b) We say that P is good iff, for every N-big x € “w, if P € N then

IFp“x is N[Gp]-big”.

3.4. LeMMA. If P is good and |-p “Q is good”, then P * Q is good.

Proor. Easy. [

3.5. LemMA. If Q = {P; Q;:i < §) isa finite-support iterated forcing system and,
for every i, |p,“Q; is good”, then P, = lim Q is good.

PRrOOF (induction on §). If 6 =y + 1, then use the induction hypothesis and
Lemma 34.If 6 = ()6 # &, then let N < (H(x),€, <, be such that P,e N and
[IN]| = R, and let x € ®® be N-big. Let pe P, h € N*, and k € » be such that

e, “h € “([w] =) and (Yn)(Ih(n)| < n*Y,
p = “(Yn 2 1)(x(n) € h(n))”.

Let 6(*) = sup(d n N) and p, = p! d(*), and let « < d(*) be such that p, € P,. Let
G, € P, be generic over V, p; € G,. By the induction hypothesis, x is N[G,]-big.
Working in N[G,], we can find <{r,: n < o) withr, € B/G,,r, <r,,, and

ral=-“h(n) =a,”,  py<r,

when <a,: n < o) € N[G,]. The function n — a, belongs to N[G,] and, for every n,
|a,| < n*. Therefore there exist infinitely many n € o such that x(n) ¢ a,. Soletn > |
satisfy this, and thus r, |- “x(n) ¢ k(n)”. But r, and p are compatible, and this is a
contradiction to the choice of pand . [0

3.6. THEOREM. If P is a o-centered partially ordered set, then P is good.

PROOF. (a) P = “c.c.c.” clearly.

(b) Suppose N < (H(x),€,<,>, Pe N, |IN|| = X,, and let x € “w be N-big. Let
k € N? be such that, for some fixed k € o,

IFp “h € “([@]*) and (Yn)(|h(n)| < n*)”.
By hypothesis there exists (D,: n < w) such that P = { J, D, and each D, is directed.
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Now we define t"(r) and T"(r) by
t"(r) = {ae[w]™*:(3g 2@ -k =a)},  T"(r) = (t"().
Therefore |T"(r)| < n*. Also,
ry <r,=t"t,)2t"(ry) A T"(ry) < T"(ry).
We know that D, is directed. Therefore there exists r™' € D, satisfying
(Yre D)™ <r= T"(r) = T"(r"").

Now we define h'(n) = T"(r™"). Clearly h'e N n “([w]~®) and, for every n € w,
|h!(n)] < n*. Therefore there -exist infinitely many n € @ such that x(n) ¢ h'(n). Let
G < P be generic over V. In V[G] we need to prove that there exist infinitely many
n € w such that x(n) ¢ h[ G](n). If this fails, there exists r € P such that

r -“C3%n)(x(n) ¢ h(n))”.
There exists m € w such that
r |F“(Vn > m)(x(n) € h(n))”.

There exists | € w such that r € D,. Let n > m be such that x(n) ¢ h'(n). This implies
that thereexist#”” € P,r” > r’,sich thatr” |- “x(n) ¢ h(n)”; and this is a contradiction
to the choice of r. [

3.7. THEOREM. If P is random real forcing, then P is good.

PROOF. Suppose h, N, x € o are as in the definition of good. We define

B, ;= |lie h(n)|.
Clearly B, ; € P, and (;,, = {i: (B, ;) = 1/n}. Clearly

0T
1/n

The function n — a, belongs to N, and therefore (3*°n)(x(n) ¢ a,). Let G = P be
generic over V, and let p € P and | € w be such that

P I-(Vn > 1)(x(n) € h(n))”.

There exists me w, I <m, such that u(p)> 1/m and x(m)¢a,. Therefore
U(B,, xom) < 1/m, and this implies that

la,| <

p*=p—B,.m€P and p < p*|-“x(m)¢ h(m)”.

This is a contradiction. This finishes the proof of the theorem. [

3.8. THEOREM. Let P be a good forcing notion, and let G < P be generic over V.
Then V[G]E “the union of all measure zero sets added in V is not a measure
zero set”.

Proor. Suppose the conclusion of the theorem does not hold. Then by
Corollary 3.2 there exists h: @ — [w]=® such that

(%) |h(n)| < n for every n € w,
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(x%) for every x € @® n V there exists k € w
such that x(n) € h(n) for every n > k.

Let h € V? be a name for such an h, and p € G forcing this. Let N < {(H(x),€, <,
be such that P e N, ||N|| = Ny, he N, p € N, and x an N-big member of w®. There-
fore x is N[G]-big, and this implies that (xx) fails for this x. [

3.9. THEOREM. cons(ZF) = cons(ZFC + —1B(m) + —1U(m) + C(m) + —1C(c)).

ProoF. Let Vi “A(m) + 71CH”, and let Q = <(P,;Q,:« <w;) be a finite-
support iterated forcing such that

(i) if « is odd, then =, “Q, is random real forcing”, and

(ii) if o is even, then k=, “Q, is Hechler real forcing”.

Let P,, = lim Q. Then P,, is good and if G < P,, is generic over V, then

(%) V[G] & “the union of every measure zero set
coded in V is not a measure zero set”.
3.10. Claim. V[G]E —1B(m) + 1U(m) + C(m) + 1C(c).
Proof. (a) = U(m). The w,-random reals of the generic sequence witness this fact.
(b) —1 B(m). As Cohen reals are added in every even stage, it is possible to show
that u(2° n V[G | «]) = 0 for every o < w,; and by c.c.c. of P, we can prove that

3o = (J 22 V[G 4]

AEW]

(c) 1 C(c). Each pair of Hechler reals add a meager set which contains the union
of all meager sets coded in the ground model. We use the c.c.c. and the fact that
every meager set is contained in a Borel meager set in order to show that the w;-
sequence of meager sets obtained from the Hechler reals witnesses —1C(c).

(d) C(m). As in V= A(m), we can build {(A4;:i <2%) e V such that for every
i < 2% we have pu(4;) = 0, and for every measure zero set A € V there exists i < 2™°
with A S 4;, and if i < j < 2%° then A4; < 4;. As P, Fccc, if V[G]F 1C(m)
then there exists a measure zero set A € V[G] such that, for every i < 2™, 4; < A.
But this implies that P, is not good, a contradiction. []
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