The Kunen-Miller Chart (Lebesgue Measure, The Baire Property, Laver Reals and Preservation Theorems for Forcing)
Author(s): Haim Judah and Saharon Shelah
Source: The Journal of Symbolic Logic, Vol. 55, No. 3 (Sep., 1990), pp. 909-927
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2274464
Accessed: 01-03-2015 04:18 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
http://www.jstor.org

THE KUNEN-MILLER CHART
 (LEBESGUE MEASURE, THE BAIRE PROPERTY, LAVER REALS AND PRESERVATION THEOREMS FOR FORCING)

HAIM JUDAH* AND SAHARON SHELAH

Abstract

In this work we give a complete answer as to the possible implications between some natural properties of Lebesgue measure and the Baire property. For this we prove general preservation theorems for forcing notions. Thus we answer a decade-old problem of J. Baumgartner and answer the last three open questions of the Kunen-Miller chart about measure and category. Explicitly, in §1: (i) We prove that if we add a Laver real, then the old reals have outer measure one. (ii) We prove a preservation theorem for countable-support forcing notions, and using this theorem we prove (iii) If we add ω_{2} Laver reals, then the old reals have outer measure one. From this we obtain (iv) $\operatorname{Cons(ZF)} \Rightarrow \operatorname{Cons}(\mathrm{ZFC}+\neg B(m)+$ $\neg U(m)+U(c)$). In §2: (i) We prove a preservation theorem, for the finite support forcing notion, of the property " $F \subseteq{ }^{\omega} \omega$ is an unbounded family." (ii) We introduce a new forcing notion making the old reals a meager set but the old members of ${ }^{\omega} \omega$ remain an unbounded family. Using this we prove (iii) $\operatorname{Cons}(\mathrm{ZF}) \Rightarrow \operatorname{Cons}(\mathrm{ZFC}+U(m)+\neg B(c)+\neg U(c)+C(c))$. In §3: (i) We prove a preservation theorem, for the finite support forcing notion, of a property which implies "the union of the old measure zero sets is not a measure zero set," and using this theorem we prove (ii) $\operatorname{Cons}(\mathrm{ZF}) \Rightarrow \operatorname{Cons}(\mathrm{ZFC}+\neg U(m)+C(m)+\neg C(c))$.

§0. Introduction. First we give some easy definitions:
$A(m) \equiv$ The union of less than continuum many measure zero sets has measure zero.
$B(m) \equiv$ The real line is not the union of less than continuum many measure zero sets.
$U(m) \equiv$ Every set of reals of cardinality less than the continuum has measure zero.
$C(m) \equiv$ There does not exist a family F of measure zero sets, of cardinality less than the continuum, and such that every measure zero set is covered by some member of F.
$A(c), B(c), U(c)$ and $C(c)$ are defined similarly with "first category" (meager) replacing measure zero. These properties are studied by Rothberger [R], Martin

[^0]and Solovay [MS], Kunen [K2], Miller [M1], [M2], Bartoszyński [B], and Raisonnier and Stern [RS]. The following facts are known (references can be found in [M2]):

(these implications are proved in ZFC). In [M1] a chart was given involving the possible relationships between these properties, and only three questions remained open. These questions will be answered in $\S \S 1,2$ and 3, respectively.

In §1 we will prove the following fact:
0.1. Theorem. Cons(ZF) \Rightarrow Cons(ZFC $+\neg B(m)+\neg U(m)+U(c))$.

In order to prove this theorem, we first answer a well-known question of Baumgartner by proving
0.2. Theorem. If r is a Laver real over V, then $V[r] \vDash$ " $2^{\omega} \cap V$ has outer measure one".

The natural approach, in order to build a model for Theorem 0.1 , is to iterate with countable support ω_{2} Laver reals, and to show that in the generic extension the old reals have outer measure one. For this we define when a forcing notion satisfies the property $* 1$, and we prove that: (i) If a forcing notion satisfies $* 1$, then in the generic extensions the old reals have outer measure one. (ii) The property $* 1$ is preserved under countable-support iterated forcing. (iii) The Laver-real forcing satisfies $* 1$. We conclude the section by showing that if the ground model is the constructible universe (or satisfies CH) then by adding ω_{2} Laver reals we obtain a model for $\neg B(m)+\neg U(m)+\neg B(c)+U(c)$.

In the second section we will prove the following fact.
0.3. Theorem. $\operatorname{Cons}(\mathrm{ZF}) \Rightarrow \operatorname{Cons}(\mathrm{ZFC}+U(m)+\neg B(c)+\neg U(c)+C(c))$.

In order to give a model for this theorem, we begin with a model satisfying $A(m)+\neg \mathrm{CH}$. The final model is obtained by an ω_{1}-iterated forcing notion with finite support of σ-centered partially ordered sets as components. As every finitesupport iterated forcing adds Cohen reals, it is not hard to see that in such a generic extension $U(c)$ fails. In order to show that $U(m)$ holds in the generic extension, we prove
0.4. Theorem. If P is σ-centered and $V \vDash A(m)$, then $0 \Vdash_{P}{ }^{"}\left(\forall A \in[\mathbf{R}]^{<c^{V}}\right)$ (A has measure zero)."

So our problem was to show that $\neg B(c)$ and $C(c)$ hold in such a generic extension. In general this is not true, as one can verify by iterating Hechler reals. So the problem
was to find a σ-centered partially ordered set P satisfying
(i) \Vdash_{P} " $2^{\omega} \cap V$ is meager" and
(ii) $\Vdash_{P}{ }^{" " \omega} \omega \cap V$ is an unbounded family."

So we complete the proof of the theorem by showing
0.5. Theorem. There exists a σ-centered partially ordered set M (called the meager tree forcing) satisfying (i) and (ii).
0.6. ThEOREM. The property " $F \subseteq{ }^{\omega} \omega$ is an unbounded family" is preserved under finite-support iterated forcing.

In fact we prove a more general preservation theorem which can be used in other contexts. The parallel of this theorem for countable-support iterated forcing was proved by Shelah [SH2].

In §3 we prove the following statement:
0.7. Theorem. Cons(ZF) $\Rightarrow \operatorname{Cons}(\mathrm{ZFC}+\neg U(m)+C(m)+\neg C(c))$.

Once more we begin with a model satisfying $A(m)+\neg \mathrm{CH}$, and we add with finite support ω_{1}-many random and Hechler reals alternately. Clearly in the generic extension $\neg U(m)+\neg C(c)$ holds and, in order to show that $C(m)$ holds, we prove the following theorem:
0.8. Theorem. If $M \subseteq N$ are models of ZFC* (see [M2]) and there exists $h \in N \cap\left\{{ }^{\omega}\left([\omega]^{<\omega}\right)\right\}$ and $f \in M \cap{ }^{\omega} \omega$ such that, for every $m \in \omega,|h(m)|<f(m)$ and

$$
\begin{align*}
& \text { for every } g \in M \cap{ }^{\omega} \omega \text { there exists } n \in \omega \\
& \text { such that for every } m \geq n, g(m) \in h(m), \tag{*}
\end{align*}
$$

then there exists $h^{\prime} \in N \cap{ }^{\omega}\left([\omega]^{<\omega}\right)$ such that for every $m \in \omega,\left|h^{\prime}(m)\right| \leq m$ and h^{\prime} satisfies (*).

Then, using a remark of [RS] and the proof of Lemma 1.1 of [RS], we obtain
0.9. Theorem. If $M \subseteq N$ then in N the union of all measure zero sets that belong to M is a measure zero set iff in N there exists $h \in{ }^{\omega}\left([\omega]^{<\omega}\right)$ such that, for every $n \in \omega$, $|h(n)| \leq n$ and h satisfies (*) of Theorem 0.8.

Next we introduce the property of being "good" for partially ordered sets, and we prove that if P is good, then in the generic extension the union of all measure zero sets coded in the ground model is not a measure zero set. We prove that this property is preserved under finite-support iterated forcing notions and, finally, we prove that random-reals forcing is good and also that σ-centered partially ordered sets are good.

A general theorem about preservation under countable-support iterated forcing can be found in [SH3]. This theorem generalized the previous theorem, which appears in [SH1].

All our notation is standard, and can be found in [K1], [M2], and [SH1]. For $A \subseteq \mathbf{R}$ we denote
(1) by $\mu(A)$ the Lebesgue measure of A,
(2) by $\mu^{*}(A)$ the outer Lebesgue measure of A, and
(3) by $\mu_{*}(A)$ the inner Lebesgue measure of A.

We confuse \mathbf{R} with the unit interval and with ${ }^{\omega} 2$, in all our arguments. Theorems 0.7 and 0.3 were proved, independently, by Cichon and Kamburelis, but they never published those results.

§1. Preserving "the old reals have outer measure 1".

1.1. Definition. Let $\langle P, \leq\rangle$ be a partially ordered set. We define the following properties:
(a) $\star_{1}[P]$ iff for every sufficiently large cardinal χ, and for every countable $N<\left(H(\chi), \varepsilon, \leq_{\chi}\right)$, if $P \in N$ and $\left\langle\boldsymbol{I}_{n}: n<\omega\right\rangle \in N$ is a P-name of a sequence of rational intervals, and $\left\langle p_{n}: n<\omega\right\rangle \in N$, each $p_{n} \in P$, and $p_{0} \vDash " \Sigma\left|I_{n}\right|=b \in \mathbf{Q}^{+}$" and for every $n \in \omega, p_{n} \Vdash^{"} I_{n}=I_{n}$ ", then for every random real x over N, if $x \notin \bigcup_{n} I_{n}$ then there exists $p_{0} \leq q \in P, q$ is (N, P)-generic and

$$
q \Vdash " x \text { is random over } N\left[G_{P}\right] " \text { and } q \Vdash " x \notin \bigcup_{n} I_{n} " .
$$

(b) $\star_{2}[P]$ iff for every P-name A of a subset of \mathbf{R} and for every $p \in P$, if $p \Vdash$ $" \mu(\boldsymbol{A}) \leq c$ ", then

$$
\mu_{*}\{x \in \mathbf{R}:(\exists q \in P)(p \leq q \wedge q \Vdash " x \notin A ")\} \geq 1-c .
$$

(c) $\star_{3}[P]$ iff for every $A \in V \cap \mathscr{P}\left({ }^{\omega} 2\right)$ if $V \models " \mu(A)>0$ " then $V^{P} \models$ " $\mu^{*}(\dot{A})>0$ ".
(d) $\star_{4}[P]$ iff for every sufficiently large cardinal χ, and for every countable $N<\left(H(\chi), \in, \leq_{\chi}\right)$, if $P \in N$ and $\left\langle p_{n}, n<\omega\right\rangle \in N$, each $p_{n} \in P$, and $\left\langle A_{n}\langle\omega\rangle \in N\right.$, each \boldsymbol{A}_{n} a P-name, and for every $n, p_{n} \Vdash$ " $\boldsymbol{A}_{n} \subseteq{ }^{\omega} 2$ is a Borel set and $\mu\left(\boldsymbol{A}_{n}\right)<\varepsilon_{n} "$ and $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $x \in{ }^{\omega} 2$ is random over N, then there exists $q \in P$ such that
(i) q is (N, P)-generic,
(ii) $q \Vdash$ " x is random over $N\left[\boldsymbol{G}_{P}\right]$ ", and
(iii) there exists n such that $q \geq p_{n}$ and $q \Vdash$ " $x \notin A_{n}$ ".
1.2. Definition. P is weakly homogeneous iff \Vdash_{P} " $(\forall p \in P)\left(\exists G_{p} \in V^{P}\right)\left(p \in G_{p} \subseteq P\right.$ and G_{P} is a generic filter over V)".
1.3. Fact. If P is weakly homogeneous, then $\star_{2}[P]$ iff $\star_{3}[P]$.

Proof. (i) Suppose $\star_{2}[P]$, and let $A \in V \cap \mathscr{P}\left({ }^{\omega} 2\right)$ be such that there exists $p \in P$, $p \Vdash$ " $\mu(\dot{A})=0 "$. Therefore

$$
\mu^{*}\left\{x \in{ }^{\omega} 2 ; p \Vdash x \in \dot{A}\right\}=0,
$$

and this implies that $\mu(A)=0$. So we have proved that $\star_{2}[P] \Rightarrow \star_{3}[P]$.
(ii) Suppose $\star_{3}[P]$; without loss of generality, $A=\bigcup_{n} \boldsymbol{I}_{n}$, each \boldsymbol{I}_{n} a P-name of a rational interval. Let $\varepsilon>0$ be sufficiently small, and define $X=\left\{x \in{ }^{\omega} 2: p \Vdash\right.$ " $x \in \boldsymbol{A}$ " $\}$.

In order to get a contradiction, suppose that $\mu^{*}(X)>c$; we pick $\left\langle p_{m}: m<\omega\right\rangle$, $p_{m} \leq p_{m+1}$, and $\left\langle I_{n}: n<\omega\right\rangle$ rational intervals and $h \in^{\omega} \omega$ increasing such that

$$
p_{m} \Vdash "(\forall n \leq h(m))\left(\boldsymbol{I}_{n}=\dot{I}_{n}\right) \wedge \sum_{n>h(m)}\left|\boldsymbol{I}_{n}\right|<\varepsilon / 4^{m} " .
$$

Therefore $\sum_{n \leq h(m)}\left|I_{n}\right| \leq c$. Now we have that

$$
\mu^{*}\left(X-\bigcup_{n} I_{n}\right)>0
$$

Let $Y=X-\bigcup_{n} I_{n}$. Also, from the choice of p_{m}, p_{m} forces that Y is covered by $\bigcup_{l>h(m)} I_{l}$. As P is weakly homogeneous, it is easy to prove that above p there exists a P-name $\left\langle\boldsymbol{I}_{l}^{m}: h(m)<l<\omega\right\rangle$ satisfying the above conclusion with p_{m} replaced by p and $\left\langle\boldsymbol{I}_{n}: h_{m}<n<\omega\right\rangle$ by $\left\langle\boldsymbol{I}_{l}^{m}: h(m)<l<\omega\right\rangle$. From this we have

$$
p \Vdash " \sum_{l>h(m)}\left|I_{l}^{m}\right|<\varepsilon / 4^{m} " \quad \text { and } \quad p \Vdash^{" Y} \subseteq \bigcup_{l>h(m)} I_{l}^{m "} ;
$$

therefore

$$
p \Vdash " Y \subseteq \bigcap_{m} \bigcup_{l>h(m)} I_{l}^{m} "
$$

which implies that $p \Vdash^{*} \mu^{*}(Y)=0$ ", a contradiction.
1.4. Fact. $\star_{1}[P]$ iff $\star_{4}[P]$.

Proof. (i) $\star_{1}[P] \Rightarrow \star_{4}[P]$. Without loss of generality, working in N, we have $\boldsymbol{A}_{n}=\bigcup\left\{\boldsymbol{I}_{n, l}: l<\omega\right\}, \boldsymbol{I}_{n, l}$ a P-name of a rational interval. For every n we choose $\left\langle p_{n, l}: l<\omega\right\rangle$ and $\left\langle I_{n, l}: l<\omega\right\rangle$ such that $p_{n, l} \| " I_{l, n}=I_{n, l} ", p_{n}=p_{n, 0}$, and $p_{n, l} \leq$ $p_{n, l+1}$. Therefore $\mu\left(\bigcup_{l} I_{l, n}\right) \leq \varepsilon_{n}$, and this implies that

$$
\mu\left(\bigcap_{n} \bigcup_{l} I_{n, l}\right)=0
$$

Also $\bigcap_{n} \bigcup_{l} I_{n, l} \in N$; therefore, as x is random over N, there exists $n \in \omega, x \notin \bigcup_{l} I_{n, l}$. Now using $\star_{1}[P]$ there exists $q \geq p_{n}, q$ is (N, P)-generic, and

$$
q \Vdash " x \text { is random over } N\left[\boldsymbol{G}_{P}\right] " \text { and } q \Vdash " x \notin \bigcup_{l} \boldsymbol{I}_{n, l}=\boldsymbol{A}_{n} " .
$$

This concludes the proof of (i).
(ii) $\star_{4}[P] \Rightarrow \star_{1}[P]$ is clear.
1.5. Theorem. If Lv denotes the Laver real forcing, then $\star_{3}[\mathrm{Lv}]$.
1.6. Remark. J. Baumgartner gives the following problem (see [M1, p. 113]): Show that if one adds a Laver real the ground reals have measure zero. Clearly, Theorem 1.5 gives a negative answer to this problem.

We will break the proof of Theorem 1.5 into a series of lemmas and definitions.
1.7. Definition. (i) Lv is the set of trees $T \subseteq \omega^{<\omega}$ with the property that there exists $s \in T$ (called the stem of T) so that $\forall t \in T, t \subseteq s$ or $s \subseteq t$, and if $t \supseteq s$ and $t \in T$ then there are infinitely many $n \in \omega$ such that $t^{\wedge}\langle n\rangle \in T$.
(ii) $T_{1} \leq_{\mathrm{Lv}} T_{2}$ iff $T_{1} \supseteq T_{2}$.
(iii) $p_{\eta}=\{v \in p: \eta \subseteq v$ or $v \subseteq \eta\}$, where $p \in \mathrm{Lv}$.
(iv) $T_{1} \leq_{\mathrm{Lv}}^{0} T_{2}$ iff $T_{1} \leq_{\mathrm{Lv}} T_{2}$ and they have the same stem.
(v) For $p \in \mathrm{Lv}$, let $s(p)$ be the stem of p.

This forcing notion was introduced in [L]. Without loss of generality, we write \leq instead of \leq_{Lv}.
1.8. Lemma. Let $\left\langle\boldsymbol{I}_{n}: n<\omega\right\rangle$ be a sequence of Lv-names of rational intervals such that $\Vdash_{\text {Lv }}$ " $\sum\left|\boldsymbol{I}_{n}\right|=q<1$ ", $q \in \mathbf{Q}^{+}$, and let $p \in \operatorname{Lv}$. Then there exists $p^{\prime 0} \geq p$ and there exists $f: p^{\prime} \rightarrow\{$ finite sequences of rational intervals $\}$ such that
(i) $\eta \subseteq v \in p^{\prime}$ implies $f(\eta)$ is an initial segment of $f(v)$,
(ii) $\eta \in p^{\prime}$ implies $p^{\prime} \models$ " $f(\eta)$ is an initial segment of $\left\langle\boldsymbol{I}_{n}: n<\omega\right\rangle$ ", and
(iii) for every $\varepsilon \in \mathbf{Q}^{+}$and for every branch x of p^{\prime} there exists $n \in \omega$ such that for every $m \geq n, \mu(\bigcup f(x \mid m)) \geq q-\varepsilon$.

Proof. We apply the following fact:
1.9. Fact. If $p_{0} \in \operatorname{Lv}$ and $D \subseteq \operatorname{Lv}$ is open dense, then there exists $p_{1}{ }^{0} \geq p_{0}$ such that $p_{1} \in D^{\mathrm{cl}}$, where $D^{\mathrm{cl}}=\left\{p \in \mathrm{Lv}:\left\{\eta \in p: p_{\eta} \in D\right\}\right.$ contains a front $\}$ and $A \subseteq p$ is a
front if
(i) $\eta \neq v \in A \rightarrow \eta \neq v$, and
(ii) for every $x \in \omega^{\omega}$ if $(\forall k)(x \mid k \in p)$ then $(\exists k)(x \mid k \in A)$.

Proof. By induction on the ordinal α, for each $v \in p_{0}$, when $\operatorname{rk}(v)=\alpha$ we define
(i) $\operatorname{rk}(v)=0$ iff there exists $p_{1} \in D, p_{0 v} \leq^{0} p_{1}$,
(ii) $\operatorname{rk}(v)=\alpha>0$ iff there exists n such that for every $m \geq n$ we have that if $v^{\wedge}\langle m\rangle$ $\in p_{0}$ then $\operatorname{rk}\left(v^{\wedge}\langle m\rangle\right)$ is well defined and less than α, and
(iii) $\operatorname{rk}(v)=\infty$ if there is no α such that $\operatorname{rk}(v)=\alpha$.

Claim 1. For every $s\left(p_{0}\right) \subseteq v \in p_{0}$ we have that $\mathrm{rk}(v)<\infty$.
Proof of Claim 1. Let $v \in p_{0}$ be such that $\operatorname{rk}(v)=\infty$ and $s\left(p_{0}\right) \subseteq v$. We define p_{v}^{*} $=\left\{\rho \in p_{0}: \rho \subseteq v\right.$ or $v \subseteq \rho$ and, for every $\left.k \in[\lg (v), \lg (\rho)), \operatorname{rk}(\rho \upharpoonright k)=\infty\right\}$. Clearly p_{v}^{*}
$\subseteq p_{0 v}$, and by the definition of rk, $v \leq \rho \in p_{v}^{*}$. Then $\left(\exists^{\infty} n\right)\left(\rho^{\wedge}\langle n\rangle \in p_{v}^{*}\right)$. Therefore $p_{v}^{*} \in \mathrm{Lv}$, and as D is dense there exists $p^{* *}$ such that $p_{v}^{*} \leq^{0} p^{* *} \in D$. By hypothesis $s\left(p^{* *}\right) \in p_{v}^{*}$, and this implies that $\operatorname{rk}\left(s\left(p^{* *}\right)\right)=\infty$; but clearly $\operatorname{rk}\left(s\left(p^{* *}\right)\right)=0$.

Claim 2. For every $v \in p_{0}$ there exists p_{v}^{1} such that $p_{0 v} \leq^{0} p_{v}^{1} \in D^{\mathrm{cl}}$.
Proof of Claim 2. By induction on $\operatorname{rk}(v)$. If $\operatorname{rk}(v)=0$, the proof is easy. If $\mathrm{rk}(v)=$ $\alpha>0$, it follows by the induction hypothesis.

This concludes the proof of Fact 1.9 and the proof of Lemma 1.8.
1.10. Lemma. If $A \subseteq[0,1]$ and $\mu^{*}(A)=1$, then \Vdash_{Lv} " $\mu^{*}(A)=1$ ".

Proof. Suppose that there exist $\left\langle\boldsymbol{I}_{n}: n<\omega\right\rangle$, an Lv-name of a sequence of rational intervals, and $p \in \operatorname{Lv}$ such that
(i) $p \Vdash_{\text {Lv }}$ " $\sum\left|\boldsymbol{I}_{n}\right|=q<1$ ",
(ii) $p \Vdash$ " $(\forall x \in A)\left(\exists^{\infty} n\right)\left(x \in I_{n}\right)$ ".

Therefore there exist f and p^{\prime} satisfying the requirements of Lemma 1.8, and, without loss of generality, $p^{\prime}=p$. Now let χ be a large enough regular cardinal, and let N be countable such that $N \prec\left\langle H(\chi), \in, \leq_{\chi}\right\rangle$ and f, p belong to N. Let $x \in A$ be such that x is random over $N . N[x]$ is a generic extension of N; therefore $N[x] \vDash$ ZFC* ${ }^{*}$. Working in $N[x]$, for every $\varepsilon \in \mathbf{Q}^{+}$we define
(i) $h^{\varepsilon}(\eta)=\min \left\{l: \sum|f(\eta) \upharpoonright l| \geq q-\varepsilon\right\} \cup\{\lg (f(\eta))\}$, and
(ii) $f_{\varepsilon}(\eta)=f(\eta) \upharpoonright\left[h^{\varepsilon}(\eta), \lg (f(\eta))\right)$.

We need to find $p^{\prime} \geq p$ and $\varepsilon \in \mathbf{Q}^{+}$such that

$$
p^{\prime} \Vdash_{L v} " x \notin \bigcup_{l} \bigcup f_{\varepsilon}\left(\boldsymbol{\eta}_{G} \upharpoonright l\right) ",
$$

where $\boldsymbol{\eta}_{G}$ is the generic branch. Clearly this is sufficient. Suppose that it is impossible. Then the following fact holds in $N[x]$.
1.11. Fact. For every $\varepsilon \in \mathbf{Q}^{+}$there exists $T_{\varepsilon} \subseteq p$ satisfying
(a) $\eta \subseteq v \in T_{\varepsilon} \Rightarrow \eta \in T_{\varepsilon}$,
(b) $T_{\varepsilon} \neq \varnothing$,
(c) for every branch $\eta \in p$ there exists $m<\omega$ such that $\eta \upharpoonright m \notin T_{\varepsilon}$, and
(d) for every $\eta \in T_{\varepsilon}$, either $x \in \bigcup f_{\varepsilon}(\eta)$ or $\left|\left\{\eta^{\wedge}\langle n\rangle \in p: \eta^{\wedge}\langle n\rangle \notin T_{\varepsilon}\right\}\right|<\aleph_{0}$.

Proof. We define when $D(\eta) \geq \alpha$, by induction on α :
(i) $D(\eta) \geq 0$ iff $x \notin f_{\varepsilon}(\eta)$, and
(ii) $D(\eta) \geq \alpha(>0)$ iff for every $\beta<\alpha$ there exist infinitely many $k \in \omega$ such that $D\left(\eta^{\wedge}\langle k\rangle\right) \geq \beta$.

Then we define $D(\eta)=\alpha$ iff $D(\eta) \geq \alpha$ but $D(\eta) \nsupseteq \alpha+1$. Otherwise $D(\eta)=\infty$.

Claim. $D(s(p))=\infty$ iff $\exists p^{1} \geq p$ such that $\left(\forall \eta \in p^{1}\right)\left(x \notin \bigcup f_{\varepsilon}(\eta)\right)$.
Proof. (\Leftrightarrow) By induction on α it is easy to prove that, for every $\eta \in p^{1}$, if $s(p) \subseteq \eta$ then $D(\eta) \geq \alpha$.
(\Rightarrow) We define $\alpha(\star)=\sup \{D(\eta): \eta \in p$ and $D(\eta)<\infty\}$ and $p^{\prime}=\{\eta \in p: \eta \subseteq s(p)$ or $s(p) \subseteq \eta$ and $D(\eta \upharpoonright k) \geq \alpha(\star)+8$ or ∞ for every $k \in[\lg (s(p)), \lg (\eta))\}$. Clearly if $v \subseteq \eta \in p^{\prime}$ then $v \in p^{\prime}$. Suppose that $s(p) \subseteq v \in p^{\prime} ;$ then $D(v) \geq \alpha(\star)+8$ or ∞, and therefore $A_{v}=\left\{k: D\left(v^{\wedge}\langle k\rangle\right) \geq \alpha(\star)+7\right.$ or $\left.\infty\right\}$ is infinite, and by the choice of $\alpha(\star)$, we have

$$
k \in A_{v} \Rightarrow D\left(v^{\wedge}\langle k\rangle\right) \geq \alpha(\star)+8 \text { or } \infty,
$$

which says that $p^{\prime} \in \operatorname{Lv}$.
So we have proved that $D(s(p))<\infty$, and we define $T_{\varepsilon}=\{\eta \in p: \eta \subseteq s(p)$ or $\langle D(\eta \upharpoonright k): \lg (s(p)) \leq k<\lg (\eta)\rangle$ is a decreasing sequence of ordinals $\}$. Clearly if $\eta \subseteq v \in T_{\varepsilon}$ then $\eta \in T_{\varepsilon}$. If $s(p) \subseteq \eta \in T_{\varepsilon}$ then $D(\eta)<\infty$, and if $x \notin \bigcup f_{\varepsilon}(\eta)$ then $\left\{k: \eta^{\wedge}\langle k\rangle \in p\right.$ and $\left.D\left(\eta^{\wedge}\langle k\rangle\right) \geq D(\eta)\right\}$ is finite, and this implies that there exists $n \in \omega$ such that for $k \in \omega-n$, if $\eta^{\wedge}\langle k\rangle \in p$ then $\eta^{\wedge}\langle k\rangle \in T_{\varepsilon}$.

Therefore, still working in $N[x]$, there exists $h_{\varepsilon}: T_{\varepsilon} \rightarrow \omega_{1}$ such that for every $\eta^{\wedge}\langle n\rangle \in T_{\varepsilon}, h\left(\eta^{\wedge}\langle n\rangle\right)<h(\eta)$. As x is random over N, there exists a Borel set $B \in N$, $\mu(B)>0$, such that in N

$$
\begin{equation*}
B \underset{\text { random }}{\Vdash} \text { "for every } \varepsilon>0 \text { there exist } h_{\varepsilon} \text { and } T_{\varepsilon} \text { as above". } \tag{*}
\end{equation*}
$$

Set $\varepsilon=\mu(B) \cdot 10^{-10}$, and let $\boldsymbol{h}_{\varepsilon}$ and $\boldsymbol{T}_{\varepsilon}$ be random names witnessing (*) for this $\varepsilon ; \boldsymbol{h}_{\varepsilon}$ and T_{ε} belong to N. Using the ω^{ω}-bounding property of random forcing (see [SH1, p. 169]), we can find $B^{\prime} \subseteq B$ with $\mu\left(B^{\prime}\right) \geq \frac{1}{2} \mu(B)$ and such that for each $\eta \in p$
(i) $\left\{n:\left(\exists B^{\prime \prime} \subseteq B^{\prime}\right)\left(B^{\prime \prime} \Vdash " \eta \in \boldsymbol{T}_{\varepsilon} \wedge \eta^{\wedge}\langle n\rangle \notin \boldsymbol{T}_{\varepsilon}^{\prime \prime} \wedge \mu\left(B^{\prime \prime} \cap \bigcup f_{\varepsilon}(\eta)=0\right)\right\}\right.$ is finite, and
(ii) $\left\{\alpha \in \omega_{1}:\left(\exists B^{\prime \prime} \subseteq B^{\prime}\right)\left(B^{\prime \prime} \Vdash h_{\varepsilon}(\eta)=\alpha\right)\right\}$ is finite.

Now we define

$$
\begin{gathered}
T_{\varepsilon}^{*}=\left\{\eta \in p:\left(\exists B^{\prime \prime} \subseteq B^{\prime}\right)\left(B^{\prime \prime} \underset{\text { random }}{\Vdash} " \eta \in \boldsymbol{T}_{\varepsilon}^{\prime \prime}\right)\right\}, \\
H_{\varepsilon}(\eta)=\left\{\alpha \in \omega_{1}:\left(\exists B^{\prime \prime} \subseteq B^{\prime}\right)\left(B^{\prime \prime} \underset{\text { random }}{\Vdash-} \text { " } \eta \in \boldsymbol{T}_{\varepsilon} \wedge \boldsymbol{h}_{\varepsilon}(\eta)=\alpha^{\prime \prime}\right)\right\} .
\end{gathered}
$$

1.12. Fact. (a) $T_{\varepsilon}^{*} \subseteq p, T_{\varepsilon}^{*} \neq \varnothing$ and, if $\eta \subseteq v \in T_{\varepsilon}^{*}$, then $\eta \in T_{\varepsilon}^{*}$.
(b) If $\eta \in T_{\varepsilon}^{*}$ and $x \in B^{\prime}$ is random over N, and $x \notin \bigcup f_{\varepsilon}(\eta)$ and $\eta \in \boldsymbol{T}_{\varepsilon}[x]$, then $\left\{n: \eta^{\wedge}\langle n\rangle \in T_{\varepsilon}[x] \wedge \eta^{\wedge}\langle n\rangle \notin T_{\varepsilon}^{*}\right\}$ is finite.

Proof. By the definition of T_{ε}^{*} and the choice of B^{\prime}.
1.13. Fact. If $v=\eta^{\wedge}\langle n\rangle \in T_{\varepsilon}^{*}$, then $\max H_{\varepsilon}(v)<\max H_{\varepsilon}(\eta)$.

Proof. Let $\alpha=\max (v)$ and $B^{\prime \prime} \subseteq B^{\prime}$ be such that

$$
\underset{\text { random }}{\|} \text { " } \boldsymbol{h}_{\boldsymbol{\varepsilon}}(v)=\alpha " .
$$

Therefore

$$
B_{\substack{\prime \prime}}^{\Vdash} \text { random } h_{\varepsilon}(\eta) \text { is well defined and larger than } \alpha " .
$$

This implies that $\alpha<\max H_{\varepsilon}(\eta)$.
1.14. Corollary. For every $\eta \in{ }^{\omega} \omega$ there exists $n \in \omega$ such that $\eta \upharpoonright n \notin T_{\varepsilon}^{*} . \quad \square$

So there exists $h: T_{\varepsilon}^{*} \rightarrow \omega_{1}$ such that

$$
\eta \subseteq v \in T_{\varepsilon}^{*} \Rightarrow h(\eta)>h(v) .
$$

Now, by induction on $h(\eta)$, for each $\eta \in T_{\varepsilon}^{*}$ we define a set $Y_{\eta} \subseteq[0,1]$ with $\mu\left(Y_{\eta}\right) \leq \varepsilon$ as follows:
(i) If η does not have an extension in T_{ε}^{*}, then $Y_{\eta}=\bigcup f_{\varepsilon}(\eta)$.
(ii) If η has extensions in T_{ε}^{*} then

$$
Y_{\eta}=\bigcup_{n} \cap\left\{Y_{\eta^{\wedge}\langle l\rangle}: l \geq n \text { and } \eta^{\wedge}\langle l\rangle \in T_{\varepsilon}^{*}\right\} .
$$

Thus $Y_{s(p)}$ is well defined, $\mu\left(Y_{s(p)}\right) \leq \varepsilon$ and $Y_{s(p)} \in N$. Therefore there exists $x \in A \cap$ ($B^{\prime}-Y_{s(p)}$), x random over N. As $x \notin Y_{s(p)}$ it is not hard, using 1.12(b), to see that $\boldsymbol{T}_{\varepsilon}[x]$ has a branch. But this is a contradiction to the construction of the tree $\boldsymbol{T}_{\varepsilon}[x]$. This finishes the proof of Lemma 1.10.

Clearly Lemma 1.10 implies Theorem 1.5.
1.15. Corollary. $\star_{2}[\mathrm{Lv}]$.

Proof. Clearly Lv is weakly homogeneous; then Fact 1.3 gives the conclusion of this corollary.

1.16. Theorem. $\star_{1}[\mathrm{Lv}]$.

We will break the proof into a series of lemmas and definitions.
1.17. Definition. (a) Let \boldsymbol{A} be an Lv-name of a Borel subset of \mathbf{R} such that $\Vdash_{\mathrm{Lv}} " A=\bigcup_{n} \boldsymbol{I}_{n}$ and $\sum\left|\boldsymbol{I}_{n}\right|=c$ ". For $p \in \operatorname{Lv}$, we say that $\left\langle\boldsymbol{I}_{n}: n\langle\omega\rangle\right.$ is interpreted over p, if for every n there exists a front $A_{n} \subseteq p$, and (i) $\left(\forall v \in A_{n}\right)\left(p_{v} \Vdash \boldsymbol{I}_{n}=I_{v}^{n}\right)$; (ii) $\left(\forall v \in A_{n+1}\right)\left(\exists \rho \in A_{n}\right)(\rho \subseteq v)$.
(b) Let χ be a regular cardinal, large enough, and let $N<\left\langle H\left(\chi, \epsilon, \leq_{\chi}\right)\right\rangle$, $\|N\|=\aleph_{0}, p_{0} \in N \cap \mathrm{Lv}$ and $\boldsymbol{A} \in N$ an Lv-name satisfying the condition of (a), interpreted over p_{0}. We define $Y \subseteq \mathbf{R}$ by putting x into Y iff there exists $q \in \operatorname{Lv}$ such that the following four conditions hold:
(i) $p_{0} \leq q \in \mathrm{Lv}$.
(ii) For every open dense set $D \subseteq \operatorname{Lv}$, if $D \in N$ then there exists $r \in D^{\text {cl }} \cap N$ such that $r \leq q$.
(iii) $q \Vdash$ " $x \notin A$ ".
(iv) If \vDash " $\left\langle\boldsymbol{J}_{n}: n<\omega\right\rangle$ is a sequence of rational intervals and $\sum\left|J_{n}\right|<\infty$ " and $\bar{J}=$ $\left\langle\boldsymbol{J}_{n}: n\langle\omega\rangle \in N\right.$, and $D_{\bar{J}}=\left\{r \in \operatorname{Lv}: \bar{J}\right.$ is interpretable over r with front $\left.\left\langle A_{l}^{r}: l<\omega\right\rangle\right\}$, then there exists $r \in D_{\bar{J}} \cap N$ and $k \in \omega$ such that

$$
\left(\forall m \geq k \forall \eta \in q \cap A_{m}^{r}\right)\left(x \notin J_{\eta}^{r, m}\right) .
$$

1.18. Lemma. Y is a Σ_{1}^{1} set of reals.

Proof. $x \in Y$ iff there exists $q \subseteq p_{0}$ such that the following four conditions hold:
(i) $q \in \operatorname{Lv}\left(\Delta_{0}^{1}\right)$.
(ii) If $\left\langle E_{l}: l<\omega\right\rangle$ is an enumeration of $\left\{D^{\mathrm{cl}}: D \in N\right.$ and $D \subseteq \mathrm{Lv}$ is an open dense set $\}, E_{l}=\left\langle r_{l, m}: m<\omega\right\rangle$, then for every l there exists m such that $q \subseteq r_{l, m}\left(\Delta_{0}^{1}\right)$.
(iii) We know that A is interpreted over p_{0}. Therefore we can find $\left\langle A_{n}, I_{v}^{n}: n, v\right\rangle$ witnessing this and then, for every n, for every $v \in q \cap A_{n}, x \notin I_{v}^{n}\left(\Delta_{0}^{1}\right)$.
(iv) We have an enumeration of $\left\{\left\langle r,\left\langle A_{n}^{r}, J_{v}^{r, n}: n, v\right\rangle\right\rangle: r \in D_{\bar{J}}\right\}$.

Clearly $D_{\bar{J}}^{\mathrm{cl}}=D_{\bar{J}}$ and then, for every $\bar{J} \in N$, there exist $r \in D_{\bar{J}} \cap N$ and $k \in \omega$ such that $(\forall m \geq k)\left(\forall \eta \in q \cap A_{m}^{r}\right)\left(x \notin J_{\eta}^{r, m}\right)\left(\Delta_{0}^{1}\right)$.
1.19. Lemma. $\mu_{*}(Y) \geq 1-c$.

Proof. By Laver [L], there exists $q \in \operatorname{Lv}$ satisfying (i) and (ii) of Lemma 1.8. Also every $q^{\prime} \geq q$ satisfies (i) and (ii) of Lemma 1.18. Now we define

$$
\begin{aligned}
& Y_{q}=\left\{x \in \mathbf{R}: \text { there exists } q_{x} \in \mathbf{L v}, q_{x} \geq q\right. \text { and } \\
& \left.\qquad q_{x} \Vdash " x \notin \boldsymbol{A} \cup\{\boldsymbol{B}: \boldsymbol{B} \in N \text { and } \mu(\boldsymbol{B})=0\} "\right\} .
\end{aligned}
$$

By $\star_{2}[\mathrm{Lv}]$ we know that $\mu_{*}\left(Y_{q}\right) \geq 1-c$. For every $x \in Y_{q}$, it is not hard to find $q^{\prime} \geq q_{x}$ witnessing $x \in Y$ (remember that $\|N\|=\aleph_{0}$ and that if $q_{x} \Vdash^{\prime \prime} x \notin$ $\bigcup_{n} \bigcap_{m \geq n} J_{m} "$ then there exists $q^{\prime \prime 0} \geq q_{x}$ satisfying that there exists n such that for every $y \in\left[q^{\prime \prime}\right]$ and for every $m \geq n$, if $\eta \in A_{m}^{\bar{J}}$ and $\eta \subseteq y$ then $\left.x \notin J_{\eta}^{m}\right)$.

Now working in $N($ as in $1.17(\mathrm{~b}))$, we define $Q_{0}=\operatorname{Levy}\left(\aleph_{0}, 2^{\aleph_{0}}\right)$, and Q_{1} is random real forcing over $N^{Q_{0}}$. Let $y \subseteq Q_{0}$ be generic over N, and x random over $N[y]$. Clearly the parameters of the definition of Y are in $N[y]$, and we can ask, in $N[y, x]$, if " $x \in Y$ ". In $N[y]$ there exist $B_{0}, B_{1} \in Q_{1}$ such that $\mu\left(B_{0} \cup B_{1}\right)=1, B_{0} \cap B_{1}=\varnothing$, and in $N[y]$ we have that $B_{0} \Vdash$ " $x \in Y$ " and $B_{1} \Vdash$ " $x \notin Y$ ". Also we know that $\mu\left(B_{0}\right) \geq 1-c$. It is well known that x is random over N; therefore, working in N, we have

$$
\begin{equation*}
Q_{0} * Q_{1} \cong R_{0} * R_{1} \tag{*}
\end{equation*}
$$

where R_{0} is random real forcing. In $N^{R_{0}}$ we can ask: "After R_{1} does $x \in B_{0}$?", and we obtain $B_{0}^{*} \in R_{0}$ such that

$$
N \vDash B_{0}^{*} \Vdash_{R_{0}}^{*} "\left(\exists r \in R_{1}\right)\left(r \Vdash x \in B_{0}\right) "
$$

and

$$
N \vDash \sim B_{0}^{*} \Vdash_{R_{0}}^{*} " \phi \Vdash x \in B_{1} " .
$$

Working in $N^{Q_{0}}$, it is not hard to prove that $B_{0} \subseteq B_{0}^{*}$ (a.e.); therefore $\mu\left(B_{0}^{*}\right) \geq 1-c$.
From this, if x is random real over N and $x \in B_{0}^{*}$, we can find $y \subseteq Q_{0}$ generic over N such that $(y, x) \subseteq Q_{0} * Q_{1}$ is generic over N and $N[y, x] \vDash$ " $x \in Y$ "; furthermore, Y is a Σ_{1}^{1} set.

We can conclude that $V \vDash$ " $x \in Y$ ". In other words, there exists a Borel set $B_{0}^{*} \in N, \mu\left(B_{0}^{*}\right) \geq 1-c$, such that for every $x \in V \cap B_{0}^{*}$, if x is random over N then $x \in Y$. In this case we denote $Y=Y\left(N, p_{0}, A\right)$.

Proof of Theorem 1.16. Given $N,\left\langle p_{n}: n<\omega\right\rangle,\left\langle I_{n}: n<\omega\right\rangle, p_{n} \Vdash-I_{n}=I_{n},\left\langle p_{n}\right.$: $n<\omega\rangle \in N, p_{n} \leq p_{n+1}, x \notin \bigcup_{n} I_{n}$, and $\|-\sum\left|I_{n}\right|=c$, we define, for every $k \in \omega$,

$$
Y\left(N, p_{n},\left\langle I_{k+n}: k<\omega\right\rangle\right)=Y_{n}
$$

and, by the above work, we can find a Borel set $B_{n}^{*} \in N, \mu\left(B_{n}^{*}\right) \geq 1-\left(c-\sum_{l \leq n}\left|I_{n}\right|\right)$, such that for every $x \in V \cap B_{n}^{*}$, if x is random over N, then $x \in Y_{n}$. Without loss of generality $\left\langle B_{n}^{*}: n\langle\omega\rangle \in N\right.$, and $\mu\left(\bigcup B_{n}^{*}\right)=1$. Therefore if x is random real over N, then there exists $n \in \omega$ such that $x \in B_{n}^{*}$; and this implies that $x \in Y_{n}$. This concludes the proof of the theorem.
1.20. Theorem. If P is a forcing notion and Q is a P-name of a forcing notion and $\star_{1}[P]$ and \vdash_{P} " $\star_{1}[Q]$ ", then $\star_{1}[P * Q]$.

Proof. Let $N, P * \boldsymbol{Q} \in N,\left\langle\boldsymbol{I}_{n}: n \in \omega\right\rangle \in N,\left\langle\left(p_{n}, \boldsymbol{q}_{n}\right): n\langle\omega\rangle \in N,\left\langle I_{n}: n<\omega\right\rangle\right.$ $\in N$ and x random over N all satisfy the requirements of 1.1(a). For each n we define $\left\langle\left(p_{n}, \boldsymbol{q}_{n, l}\right): l<\omega\right\rangle \in N$ and $\left\langle\boldsymbol{I}_{n, l}: l<\omega\right\rangle \in N$, each $\boldsymbol{I}_{n, l}$ a P-name of a rational interval, as follows: for $0 \leq l \leq n$ let $I_{n, l}=\dot{I}_{l}$ and $\left(p_{n}, \boldsymbol{q}_{n, l}\right)=\left(p_{n}, \boldsymbol{q}_{n}\right)$; for $l=n+$ $m+1$ let $\boldsymbol{q}_{n, l}$ be a P-name of a member of \boldsymbol{Q} and $\boldsymbol{I}_{n, l}$ a P-name of a rational interval such that

$$
p_{n} \Vdash_{P} " q_{n, n+m} \leq \leq_{Q} \boldsymbol{q}_{n, l} \quad \text { and } \quad \boldsymbol{q}_{n, l} \Vdash_{Q} " \boldsymbol{I}_{n, l}\left[\boldsymbol{G}_{P}\right]=I_{l} "
$$

Now we define $A_{n}=\bigcup_{l \geq n} I_{n, l}$. Clearly for every $n \in \omega, A_{n} \in N$ and A_{n} is such that $p_{n} \Vdash_{P} " A_{n} \subseteq 2^{\omega "}$, and there exists $\left\langle\varepsilon_{n}: n<\omega\right\rangle$ such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $p_{n} \Vdash_{P}$ " $\mu\left(A_{n}\right) \leq \varepsilon_{n} "$.

As x is random real over N and $\star_{4}[P]$, we can find $n, p \in P$ such that p is (N, P) generic and $p_{n} \leq_{P} p$ and $p \Vdash-$ " $x \notin A_{n}$ ". Fixing such n and p, let $G \subseteq P$ be generic over V containing p. Therefore we know the following:
(i) x is random real over $N[G] \prec\left\langle H(\chi)^{V[G]}, \varepsilon, \leq_{\chi}\right\rangle$.
(ii) $x \notin \bigcup_{l \geq n} I_{n, l}[G]$, and thus $x \notin \bigcup_{l \geq 0} I_{n, l}[G]$.
(iii) For each $l \in \omega, \boldsymbol{q}_{n, l}[G] \Vdash_{\boldsymbol{Q}[G]}$ " $I_{l}=I_{n, l}[G]$ ".

Applying $\star_{1}[Q[G]]$, we find $q \in Q[G]$ such that q is ($N[G], Q[G]$)-generic, $q \geq \boldsymbol{q}_{n}[G]$,

$$
q \Vdash_{Q[G]} " x \text { is random over } N[G]\left[\boldsymbol{G}_{Q[G]}\right] ", \quad \text { and } \quad q \Vdash_{Q[G]} " x \notin \bigcup_{n} \boldsymbol{I}_{n} "
$$

As G is arbitrary, we can find \boldsymbol{q}, a P-name of a member of \boldsymbol{Q}, satisfying all this. Now it is not hard to see that (p, \boldsymbol{q}) witnesses $\star_{1}[P * Q]$. This finishes the proof of the theorem.
1.21. Theorem. Let $\left\langle P_{i} ; \boldsymbol{Q}_{i}: i<\delta\right\rangle, \delta=\bigcup \delta \neq 0$, be a countable-support iterated forcing system satisfying
(i) for every $i<j<\delta, i \neq \bigcup i, P_{j} / P_{i}$ is a proper forcing notion, and
(ii) for every $i<\delta, \star_{1}\left[P_{i}\right]$.

Then $\star_{1}\left[P_{\delta}\right]$.
Proof. Let $N \prec\left\langle H(\chi), \in, \leq_{\chi}\right\rangle,\|N\|=\aleph_{0}, p_{0} \leq p_{1} \leq \cdots \in P_{\delta},\left\langle p_{l}: l<\omega\right\rangle \in N$, $\left\langle\boldsymbol{I}_{l}: l<\omega\right\rangle \in N, p_{n} \Vdash_{P_{\delta}} " I_{l}=I_{l} ", \boldsymbol{I}_{l}$ a P_{δ}-name of a rational interval, and

$$
p_{0} \Vdash_{P_{\delta}} " \sum_{l}\left|\boldsymbol{I}_{l}\right|=b \in \mathbf{Q}^{+} " ;
$$

without loss of generality $b=\frac{1}{2}, x \in \mathbf{R}$ is a random real over N, and $x \notin \bigcup_{l} I_{l}$.
Let $\left\langle D_{n}: n\langle\omega\rangle\right.$ be an enumeration of the open dense subsets of P_{δ} that belong to N. Let $\left\langle\left\langle\boldsymbol{I}_{n, l}: l\langle\omega\rangle: n\langle\omega\rangle\right.\right.$ be an enumeration of the sequences $\left\langle\boldsymbol{J}_{l}: l<\omega\right\rangle \in N$ such that \boldsymbol{J}_{l} is a P_{δ}-name of a rational interval and $\Vdash_{-}{ }_{P_{\delta}}$ " $\sum_{l}\left|\boldsymbol{I}_{l}\right|=\frac{1}{2}$ " and $\boldsymbol{I}_{0, l}=I_{l}$. We fix $\alpha(0)<\alpha(1)<\cdots$ such that $\alpha(n) \in N, \alpha(0)=0, \bigcup(\alpha(n))=\delta$ and $\alpha(n) \neq \bigcup \alpha(n)$.

By induction on $k<\omega$, we will choose $q_{k} \in P_{\alpha(k)}$ and $P_{\alpha(k)}$-names

$$
\left\langle\boldsymbol{p}_{l}^{k}: l<\omega\right\rangle ; \quad \boldsymbol{I}_{\zeta, v}^{k} ; \quad \boldsymbol{v}(k)
$$

such that if $q_{k} \in G_{k} \subseteq P_{\alpha(k)}, G_{k}$ generic over V, then
(a) $\boldsymbol{p}_{l}^{k}\left[G_{k}\right] \upharpoonright \alpha(k) \in G_{k}$,
(b) $P_{\delta} / P_{\alpha(k)} \Vdash-" p_{l}^{k}\left[G_{k}\right] \leq \boldsymbol{p}_{l+1}^{k}\left[G_{k}\right] "$,
(c) $\boldsymbol{I}_{\zeta, v}^{k}$ is a $P_{\alpha(k)}$-name of a rational interval,
(d) $\boldsymbol{p}_{l}^{k}\left[G_{k}\right] \Vdash_{P_{o} / \boldsymbol{P}_{\alpha(k)}} "(\forall \zeta \leq k, \forall v \leq k+l)\left(\boldsymbol{I}_{\zeta, v}=\boldsymbol{I}_{\zeta, v}^{k}\left[G_{k}\right]\right)$ ",
(e) $q_{k} \Vdash_{P_{\alpha(k)}} " \boldsymbol{p}_{l}^{k} \in N\left[\boldsymbol{G}_{k}\right] \cap P_{\delta} / \boldsymbol{G}_{k} "$,
(f) x is random over $N\left[\boldsymbol{G}_{k}\right]$,
(g) $(\forall \zeta \leq k)\left(x \notin \bigcup\left\{\boldsymbol{I}_{\zeta, v}^{k}\left[\boldsymbol{G}_{k}\right]: v(\zeta) \leq v<\omega\right\}\right)$,
(h) $p_{0}^{k} \models_{P_{\delta /} P_{\alpha(k)}}$ "if $\zeta<k$ and $v<\omega$ then $\boldsymbol{I}_{\zeta, v}$ has a $P_{\alpha(v)}$-name",
(i) $q_{k} \Vdash$ " $v(k)<\omega ", v(0)=0$,
(j) $p_{0}^{k} \leq p_{0}^{k+1} \in D_{k}$,
(k) $\left\langle\boldsymbol{I}_{\zeta, v}^{k}\left[G_{k}\right]: l \leq k, v<\omega\right\rangle \in N\left[G_{k}\right]$ and $\left\langle\boldsymbol{p}_{l}^{k}\left[G_{k}\right]: l<\omega\right\rangle \in N\left[G_{k}\right]$, and
(l) $p_{0} \upharpoonright \alpha(k) \leq q_{k}, q_{k+1} \upharpoonright \alpha(k)=q_{k}$.

The induction. For $k=0$ we set $p_{l}^{0}=p_{0}, q_{0}=\varnothing \in P_{0}=\{\varnothing\}, v(0)=0$, and $I_{0, v}^{0}=I_{v}$.

For $k+1$ we will work in $N\left[G_{k}\right], q_{k} \in G_{k}$. We fix $l \in \omega$, and by induction on $m \in \omega$ we define $p_{l, m}^{k}$ such that

$$
\boldsymbol{p}_{l}^{k}\left[G_{k}\right] \leq p_{l, 0}^{k} \in P_{\delta} / G_{k}, \quad p_{l, 0}^{k} \in D_{k}, \quad p_{l, m}^{k} \leq p_{l, m+1}^{k}
$$

for every $\zeta \leq k+1, p_{l, 0}^{k} \upharpoonright[v, \delta)$ forces that $\boldsymbol{I}_{\zeta, v}$ has a $P_{\alpha(v)}$-name, and for every $\zeta \leq$ $k+1$ and $v<k+l+m$

$$
p_{l, m}^{k} \Vdash " \boldsymbol{I}_{\zeta, v}=\boldsymbol{I}_{\zeta, v}^{k, l}\left[G_{k+1}\right] " .
$$

Therefore the sequences $\left\langle p_{l, m}^{k}: l, m\langle\omega\rangle\right.$ and $\left\langle\boldsymbol{I}_{\zeta, v}^{k, l}: \zeta \leq k+1, l, v \leq \omega\right\rangle$ belong to $N\left[G_{k}\right]$.

Now we define $\left\langle m_{k}(l): l<\omega\right\rangle$ such that $m_{k}(l)<\omega$ and

$$
p_{l, m_{k}(l)}^{k} \Vdash^{"} \sum\left\{\left|\boldsymbol{I}_{k+1, v}\right|: m_{k}(l) \leq v<\omega\right\}<2^{-l "}
$$

and we define

$$
A_{l}^{k}=" \bigcup\left\{I_{\zeta, v}^{k, l}: \zeta \leq k, l \leq v<\omega\right\} \cup \bigcup\left\{\boldsymbol{I}_{k+1, v}: m_{k}(l)<v<\omega\right\} "
$$

It is not hard to find $\left\langle\varepsilon_{l}: l\langle\omega\rangle\right.$ such that

$$
p_{l, m_{k}(l)}^{k} \upharpoonright \alpha(k+1) \underset{P_{\alpha(k+1)}}{\Vdash} " \mu\left(\boldsymbol{A}_{l}^{k}\right) \leq \varepsilon_{l} "
$$

and $\lim _{l \rightarrow \infty} \varepsilon_{l}=0$.
Applying $\star_{4}\left[P_{\alpha(k+1)}\right]$, we can find $q_{k+1} \in P_{\alpha(k+1)} / G_{k}$ and $l(k)$ such that

$$
\begin{gathered}
p_{\left.l(k), m_{k}(l(k))\right)}^{k} \upharpoonright \alpha\left(k_{1}\right) \leq q_{k+1}, \quad q_{k+1} \underset{P_{\alpha(k+1)}}{\Vdash} x \notin \boldsymbol{A}_{l(k),}, \\
q_{k+1} \models \text { " } x \text { is random over } N\left[\boldsymbol{G}_{P_{\alpha(k+1)}}\right] .
\end{gathered}
$$

Now we define

$$
p_{l}^{k+1}=p_{l(k), m_{k}(l(k))+l,}^{k}, \quad \boldsymbol{I}_{\zeta, v}^{k}=\boldsymbol{I}_{\zeta, v}^{k, l(k)}, \quad v(k+1)=m_{k}(l(k))
$$

It is easy to check that this works. Now we define $q \in P_{\delta}$ by setting $q \upharpoonright \alpha(k)=q_{k}$. Then:
(i) q is $\left(N, P_{\delta}\right)$-generic [use (j) and (1)],
(ii) $p_{0} \leq q$, and
(iii) $q \models$ " x is random over $N\left[\boldsymbol{G}_{P_{\delta}}\right]$ and $x \notin \bigcup_{n} \boldsymbol{I}_{n}$.
[It is sufficient to show that for every $n \in \omega, q \Vdash$ " $x \notin \bigcup_{v(l) \leq l} \boldsymbol{I}_{n, l} "$; and this follows from (g) and (h).]

This concludes the proof of the theorem.
1.22. THEOREM. $\operatorname{con}(\mathrm{ZF}) \Rightarrow \operatorname{cons}(\mathrm{ZFC}+\neg B(m)+\neg U(m)+\neg B(c)+U(c))$.

Proof. Let $V=L$ be the constructible universe, let $P \in L$ be the ω_{2}-iteration of Laver reals with countable support, and let $G \subseteq P$ be generic over V. Then $V(G) \models$ " $\neg B(m)+\neg U(m)+\neg B(C)+U(C)$ ".
(i) $\neg B(m)+\neg B(C)$. By [SH1, pp. 206-207], P has the Laver property; and this implies that in $V[G]$ the real numbers are included in the union of the meager measure zero sets coded in V.
(ii) $\neg U(m)$. By $\star_{1}[P]$ we have that $\mu^{*}\left(2^{\omega} \cap V\right)=1$.
(iii) $U(c)$. For every $f \in{ }^{\omega} \omega$,

$$
A_{f}=\left\{g \in{ }^{\omega} \omega:\left(\forall^{\infty} n\right)(g(n)<f(n))\right\}
$$

is a meager set. And in $V[G]$ for every $A \in\left[{ }^{\omega} \omega\right]^{<c}$ there exists $f \in{ }^{\omega} \omega$ such that $A \subseteq A_{f}$.

§2. Preserving "the old reals are unbounded".

2.1 Definition: We say $\oplus_{-}(\bar{f}, R, S)$ iff the following seven conditions hold:
(a) $\bar{f}=\left\langle f_{a}: a \in I\right\rangle$.
(b) I is a directed set of indices.
(c) For every $J \subseteq I$, if $|J| \leq \aleph_{0}$ then there exists $a \in I$ such that, for every $b \in J$, $b \leq_{I} a$.
(d) For every $a \in I, f_{a} \in{ }^{\omega} H(\omega)$.
(e) $S \subseteq H(\omega) \times H(\omega)$ and $R \subseteq H(\omega) \times H(\omega)$ and $x S y \wedge y R z \Rightarrow x S z$.
(f) For every $a, b \in I, a \leq_{I} b \Rightarrow\left(\forall^{\infty} n\right)\left(f_{a}(n) R f_{b}(n)\right)$.
(g) For every $f \in{ }^{\omega} H(\omega)$ there exists $a \in I$ such that $\left(\exists^{\infty} n\right)\left(f(n) S f_{a}(n)\right)$.
2.2. Theorem. Let $\bar{f}, R, S, \bar{Q}=\left\langle P_{i} ; \boldsymbol{Q}_{i}: i<\delta\right\rangle$ be in V, satisfying
(i) \bar{Q} is a finite-support iterated forcing system such that, for every $i<\delta, \Vdash_{P_{i}}$ " $Q_{i} \vDash$ c.c.c.",
(ii) for every $i<\delta, \Vdash_{P_{i}}$ " $\oplus(\bar{f}, R, S)$, and
(iii) if $\delta=\gamma+1$ then $\Vdash_{P_{\gamma} * Q_{\gamma}}$ " $\oplus(\bar{f}, R, S)$ ".

Then, if $P_{\delta}=\underline{\lim } \bar{Q}$, then $\Vdash_{P_{\delta}}$ " $\oplus(f, R, S)$ ".
Proof. If $\delta=\gamma+1$, then the conclusion follows from (iii). If $\delta=0$, it is clear. Therefore we will prove the theorem when $\delta=\bigcup \delta \neq 0$. Conditions (a), (b), (d), (e) and (f) of Definition 2.1 are clear. As $P_{\delta} \models$ "c.c.c.", we know that

$$
\models_{P_{\delta}} "(\forall B \subseteq V)\left(|B|=\aleph_{0} \Rightarrow(\exists A \in V)\left(B \subseteq A \wedge|A|=\aleph_{0}\right)\right) .
$$

This implies that (c) of Definition 2.1 holds after forcing with P_{δ}.
So we need to check $2.1(\mathrm{~g})$. Let $g \in V^{P_{\delta}}$ be such that $\Vdash_{P_{o}} " g: \omega \rightarrow H(\omega)$ ",
(i) If $\operatorname{cof}(\delta)>\aleph_{0}$ then $2.1(\mathrm{~g})$ follows from the c.c.c. of P_{δ}.
(ii) If $\operatorname{cof}(\delta)=\aleph_{0}$, then we fix a well-order \leq_{ω} of $H(\omega)$ and a sequence $\left\langle\alpha_{n}\right.$: $n<\omega\rangle$ of ordinals such that $\alpha_{n}<\alpha_{n+1}$ and $\alpha_{n} \rightarrow \delta$.

For each n we define $\boldsymbol{g}^{n} \in V^{P_{\alpha_{n}}}$ as follows:

$$
\boldsymbol{g}^{n}(i)=\min _{\leq \omega}\left\{a \in H(\omega):\left(\exists p \in P_{\delta} / \boldsymbol{G}_{P_{\alpha_{n}}}\right)(p \Vdash \boldsymbol{g}(i)=a)\right\} .
$$

Clearly $\Vdash_{P_{\alpha_{n}}} g^{n} \in{ }^{\omega} H(\omega)$ ". For each n there exists $a_{n} \in I$ such that

$$
\Vdash_{P_{\alpha_{n}}} "\left(\exists^{\infty} i\right)\left(g^{n}(i) S f_{a_{n}}(i)\right) " .
$$

Using the c.c.c. of P_{δ}, we can find $b \in I$ such that, for every $n \in \omega, a_{n} \leq_{I} b$. Therefore, for every $n \in \omega, \Vdash_{P_{\alpha_{n}}} "\left(\exists^{\infty} i\right)\left(\boldsymbol{g}^{n}(i) S f_{b}(i)\right)$ ".
2.3. Claim. $\Vdash_{P_{\delta} "}{ }^{\prime \prime}\left(\exists^{\infty} i\right)\left(\boldsymbol{g}(i) S f_{b}(i)\right) "$.

Proof. If this does not hold, then there exist $p \in P_{\delta}$ and $k \in \omega$ with

$$
p \Vdash_{P_{\delta}} "(\forall i>k)\left(\neg \boldsymbol{g}(i) S f_{b}(i)\right) " \text {. }
$$

There exists $n \in \omega$ such that $p \in P_{\alpha_{n}}$, and this implies that there exist $m \in \omega-(k+1)$ and $p \leq q \in P_{\alpha_{n}}$ such that

$$
q \Vdash_{P_{\alpha_{n}}} " g^{n}(m) S f_{b}(m) " .
$$

Then, by the definition of \boldsymbol{g}^{n}, there exists $r \in P_{\delta}, q \leq r$, with $r \Vdash_{\boldsymbol{P}_{\boldsymbol{o}}}{ }^{\prime \prime} \boldsymbol{g}^{n}(m)=\boldsymbol{g}(m)$ "; and this implies

$$
r \Vdash_{P_{\delta}} " g(m) S f_{b}(m) " .
$$

As $p \leq r$ and $k<m$, we have found a contradiction. This concludes the proof of the claim.

Clearly the claim implies Definition $2.1(\mathrm{~g})$, and this finishes the proof of the theorem.
2.4. Definition. The meager forcing M is the partially ordered set defined by setting $(t, w) \in M$ iff there exists $n(t) \in \omega$ such that
(a) if $t \in^{n(t) \geq 2}$ and $\eta \subseteq v \in t$ then $\eta \in t$;
(b) if $\eta \in t$ and $\lg (\eta)<n(t)$ then $n^{\wedge}\langle 0\rangle \in t$ or $\eta^{\wedge}\langle 1\rangle \in t, w \subseteq{ }^{\omega} 2$ and $|w|<\aleph_{0}$; and (c) if $x \in w$ then $x \upharpoonright n(t) \in t$.

The order for M is given by setting $\left(t_{1}, w_{1}\right) \leq\left(t_{2}, w_{2}\right)$ iff $t_{1}=t_{2} \cap{ }^{n\left(t_{1}\right)} 2$ and $w_{1} \subseteq w_{2}$.
2.5. Fact. (i) M is σ-centered.
(ii) \Vdash_{M} " $V \cap 2^{\omega}$ is a meager set".

Proof. (i) Clearly $M=\bigcup_{t \in \omega>2} M_{t}$, where $M_{t}=\{(t, w) \in M\}$.
(ii) Let $\boldsymbol{T}=\bigcup\left\{t: \exists(t, w) \in \boldsymbol{G}_{M}\right\}$; then \vDash_{M} " \boldsymbol{T} is a meager perfect tree" and \Vdash_{M} " $\left(\forall x \in 2^{\omega} \cap V\right)(\exists n \in \omega)\left(\exists t \in{ }^{n} 2\right)(\forall k \geq n)\left(t^{\wedge} x \upharpoonright[n, k) \in T\right)$ ".

If $p \in M$, then $t(p), w(p)$ and $n(p)$ are defined satisfying $p=(t(p), w(p))$ and $n(p)=n(t(p))$.

Remark. M adds Cohen reals.
2.6. Lemma. If $p \in M, k \in \omega$ and τ is an M-name of an ordinal, then there exists $m(k, p, \tau)=m<\omega$ such that if $q \in M$ and $p \leq q$ and $t(p)=t(q)$ and $|w(q)-w(p)| \leq k$, then there exists $r \in M$ such that $q \leq r$ and $n(r) \leq m$ and r decides the value of τ.

Proof. If this does not hold, then for every m there exists $q_{m} \in M$ such that $p \leq q_{m}$ and $t(p)=t\left(q_{m}\right)$ and $\left|w\left(q_{m}\right)-w(p)\right| \leq k$ and for every $r \geq q_{m}$ if r decides the value of τ then $n(r)>m$.

Set $w\left(q_{m}\right)-w(p)=\left\{x_{1}^{m}, \ldots, x_{k(m)}^{m}\right\}, k(m) \leq k$. Thinning $\left\langle q_{m}: m<\omega\right\rangle$ if necessary, we can assume that $k(m)=k(\star)$. If $l \in[1, k(\star)]$ then $x_{l}^{m} \upharpoonright m=x_{l}^{m+1} \upharpoonright m$. Let $\left\langle y_{1}, \ldots, y_{k(\star)}\right\rangle$ be such that for every $m \in \omega$ and $l \in[1, k(\star)]$ we have $y_{l} \upharpoonright m=x_{l}^{m} \upharpoonright m$. Therefore $p \leq\left(t(p), w(p) \cup\left\{y_{1}, \ldots, y_{k(\star)}\right\}\right)$, and (let $r \in M$ and $\sigma \in$ ord)

$$
r \Vdash " \tau=\sigma ", \quad\left(t(p), w(p) \cup\left\{y_{1}, \ldots, y_{k(\star)}\right\}\right) \leq r
$$

Let $n(*)=n(r)+8$ and $r^{*}=\left(t(r), w\left(q_{n(*)}\right) \cup w(r)\right)$.
2.7. Claim. (i) $r^{*} \in M$.
(ii) $r \leq r^{*}$ and $q_{n(\star)} \leq r^{*}$.
(iii) $r^{*} \vDash \tau=\sigma$ and $n\left(r^{*}\right)=n(r)<n(*)$.

Proof. Remember that $\left\{y_{1}, \ldots, y_{k(\star)}\right\} \subseteq w(r)$.
Now 3.7(iii) contradicts the choice of $q_{n(*)}$, and this finishes the proof of the lemma.
2.8. Definition. We say that $F \subseteq \omega^{\omega}$ is unbounded if

$$
\left(\forall g \in \omega^{\omega}\right)(\exists f \in F)\left(\exists^{\infty} n\right)(g(n) \leq f(n))
$$

2.9. Theorem. If $F \in V$ is unbounded, then \Vdash_{M} " F is unbounded".

Proof. Suppose that there exists an M-name \boldsymbol{g} of a member of ω^{ω} and $p \in M$ such that

$$
p \Vdash_{M} "(\forall f \in F)\left(\forall^{\infty} n\right)(f(n)<\boldsymbol{g}(n)) .
$$

Let $N \prec\left\langle H(\chi), \in, \leq_{\chi}\right\rangle$ be such that $\|N\|=\aleph_{0}$, and P, p, g are in N. Pick $f \in F$ such that, for every $h \in N \cap \omega^{\omega},\left(\exists^{\infty} n\right)(h(n) \leq f(n))$. Working in N, for each $p^{0} \in M$, for every $k \in \omega$ we define

$$
\begin{aligned}
& h_{p^{0}}(k)=\max \left\{i \in \omega:(\exists q, r \in M)\left(t(q)=t\left(p_{0}\right) \text { and }\left|w\left(p_{0}\right)-w(q)\right| \leq k,\right.\right. \\
& n(r) \leq m\left(k, p_{0}, \boldsymbol{g}(k)\right) \text { and } r \Vdash " g(h)=i ")\} .
\end{aligned}
$$

Using the above lemma, it is not hard to show that for every $k \in \omega, h_{p^{0}}(k) \in \omega$.
By assumption there exist $q \geq p$ and $k_{0} \in \omega$ such that $q \Vdash\left(\forall k \geq k_{0}\right)(f(k)<\boldsymbol{g}(k))$. Set $p_{0}=(t(q), w(q) \cap N)$. Clearly $p_{0} \in N$. Choose $k_{1}=\left|w(q)-w\left(p_{0}\right)\right|$ and k_{2} such that $h_{p^{0}}\left(k_{2}\right)<f\left(k_{2}\right)$ and $k_{1}<k_{2}$.

By Lemma 2.6, there exist $r \geq q, p_{0}$ such that $n(r) \leq m\left(k_{2}, p_{0}, g\left(k_{2}\right)\right)$, and i such that $r \Vdash \Vdash^{\prime g}\left(k_{2}\right)=i "$; and this implies that

$$
r \Vdash^{" g}\left(k_{2}\right) \leq h_{p^{0}}\left(k_{2}\right)<f\left(k_{2}\right) ",
$$

which is a contradiction to the choice of q. This concludes the proof of the theorem.
2.10. THEOREM. $\operatorname{cons}(\mathrm{ZF}) \Rightarrow \operatorname{cons}(\mathrm{ZFC}+\neg B(m)+U(m)+\neg B(c)+\neg U(c)+$ $C(c)$).

Proof. Let $V \vDash$ " $A(m)+2^{\aleph_{o}}>\aleph_{1}$ ", and let $\bar{Q}=\left\langle P_{i} ; \boldsymbol{Q}_{i}: i<\omega_{1}\right\rangle$ be a finitesupport iterated forcing system satisfying, for every $i<\omega_{i}, \Vdash_{P_{i}}$ " Q_{i} is the meager forcing M " and if i is a limit ordinal, then $P_{i}=\underline{\lim } \bar{Q} \upharpoonright i$. Let $P_{\omega_{1}}=\underline{\lim } \bar{Q}$. Then

$$
\Vdash_{P_{\omega_{1}}} " \neg B(m)+U(m)+\neg B(c)+\neg U(c)+C(c) " .
$$

(a) $\neg B(m)$. As Cohen reals are added in every limit stage of cofinality ω, it is well known that

$$
\Vdash_{P_{i+\omega}} " 2^{\omega} \cap V[\boldsymbol{G} \upharpoonright i] \text { has measure zero" }
$$

and, by c.c.c.,

$$
\begin{equation*}
\Vdash_{P_{\omega_{1}}} " 2^{\omega}=\bigcup_{i<\omega_{1}} 2^{\omega} \cap V[\boldsymbol{G} \upharpoonright \omega \cdot i] " \tag{*}
\end{equation*}
$$

(b) $U(m)$. It is not hard to show that for every $i<\omega_{1}, P_{i}$ is σ-centered. Therefore, for every P_{i}-name τ for a real number, there exists $A_{\tau} \in V$ such that $\mu\left(A_{\tau}\right)=0$ and
$\Vdash_{\boldsymbol{P}_{1}}$ " $\tau \in A_{\tau}$ ". Now using (*) and $A(m)$, we can prove that for every $\boldsymbol{X} \in V^{\boldsymbol{P}_{\omega_{1}}}$, if $\Vdash_{P_{\omega_{1}}} " \boldsymbol{X} \in\left[2^{\omega}\right]^{<c "}$, then there exist $A \boldsymbol{X} \in V$ with $\mu(A \boldsymbol{X})=0$ and $\Vdash_{\boldsymbol{P}_{\omega_{1}}}$ " $\boldsymbol{X} \subseteq A \boldsymbol{X}$ ".
(c) $\neg B(c)$. The ω_{1}-meager trees of the generic sequence witness this.
(d) $\neg U(c)$. The ω_{1}-Cohen reals given by the support of the iteration witness this.
(e) $C(c)$. If $\Vdash_{\boldsymbol{P}_{\omega_{1}}} " \neg C(c) "$, then

$$
\Vdash_{P_{\omega_{1}}} " \bigcup\{B: B \in V \text { and } B \text { meager }\} \text { is meager". }
$$

(Remember that $V \models A(m)$. Therefore $V \models A(c)$.) And this implies that

$$
\Vdash_{\boldsymbol{P}_{\omega_{1}}} " \omega^{\omega} \cap V \text { is bounded". }
$$

But using Theorems 2.9 and 2.2, we can prove

$$
\Vdash_{\boldsymbol{P}_{\omega_{1}}} " \omega^{\omega} \cap V \text { is unbounded". }
$$

(In order to see this, in V we define $\left\langle f_{i}: i\langle c\rangle\right.$ such that $i<j<c$ implies $\left(\forall^{\infty} n\right)\left(f_{i}(n)<f_{j}(n)\right)$, and we define $a R b$ iff $|a|<|b|$ iff $a S b$.) This concludes the proof of the theorem.
§3. Preserving "the union of the old measure zero sets is not a measure zero set".
3.1. Theorem. Let $M \subseteq N$ be models of ZFC . Then the following statements are equivalent:
(i) There exists $h \in^{\omega}\left([\omega]^{<\omega}\right) \cap N$ such that, for every $n \in \omega,|h(n)| \leq n$ and for every $f \in{ }^{\omega} \omega \cap M$ there exists $n \in \omega$ such that, for every $m \geq n, f(m) \in h(m)$.
(ii) There exist $h \in{ }^{\omega}\left([\omega]^{<\omega}\right) \cap N$ and $g \in{ }^{\omega} \omega \cap M$ such that, for every $n \in \omega$, $|h(n)| \leq g(n)$ and for every $f \in \omega^{\omega} \cap M$ there exists $n \in \omega$ such that, for every $m \geq n$, $f(m) \in h(m)$.

Proof. (i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (i). Suppose we have h and g satisfying the requirements of (ii). Then we set $G_{l}: \omega^{l} \rightarrow \omega$, the canonical one-to-one and onto function from ω^{l} to ω, and for each $i<l$ we define $G_{l, i}: \omega \rightarrow \omega$ by setting $G_{l, i}(k)=\pi_{i}\left(G_{l}^{-1}(k)\right)$, where π_{i} is the projection function over the i th coordinate.

In M we pick $\left\langle n_{i}: i<\omega\right\rangle$ such that $n_{i}<n_{i+1}$ and $g\left(n_{i}\right)<n_{i}$, and in N we define the function $h^{\prime}: \omega \rightarrow \omega$. If $i \in\left[n_{l}, n_{l+1}\right)$, then

$$
h^{\prime}(i)=G_{n_{l+1}-n_{l}}^{\prime \prime} h(l),
$$

where $j+l=i$. Clearly h^{\prime} is well defined and satisfies $\left|h^{\prime}(i)\right| \leq|h(l)|$ for $n_{l} \leq i<$ n_{l+1}, and in this case $|h(l)| \leq g(l)<n_{l} \leq i$. Therefore $\left|h^{\prime}(i)\right| \leq i$.

Now we will show that for every $f \in{ }^{\omega} \omega \cap M$ there exists $n \in \omega$ such that, for every $m \geq n, f(m) \in h^{\prime}(m)$. We define

$$
f^{\prime}(l)=G_{n_{l+1}-n_{l}}\left(f\left(n_{l}\right), \ldots, f\left(n_{l+1}-1\right)\right)
$$

Then clearly $f^{\prime} \in{ }^{\omega} \omega \cap M$, and thus there exists $k \in \omega$ such that, for every $l \geq k$, $f^{\prime}(l) \subseteq h(l)$. Therefore,

$$
G_{n_{l+1}-n_{l}, j}\left(f^{\prime}(l)\right)=f\left(n_{l}+j\right)
$$

where $j \in n_{l+1}-n_{l}$, and this implies that $f\left(n_{l}+j\right) \in h^{\prime}(i)$, where $i=n_{l}+j$. Hence, for every $i \geq n_{k}, f(i) \in h^{\prime}(i)$.
3.2. Corollary. Let $M \subseteq N$ be models of ZFC*. Then the following are equivalent:
(i) In N the union of all measure zero sets coded in M is a measure zero set.
(ii) Theorem 3.1(ii).
(iii) Theorem 3.1(i).

Proof. (i) \Rightarrow (ii). Some little changes in the proof of [RS, 1.1] give that by (i) there exists $h \in{ }^{\omega}\left([\omega]^{<\omega}\right)$ such that, for every $n \in \omega,|h(n)| \leq n^{2}$ and for every $f \in{ }^{\omega} \omega \cap M$ there exists $n \in \omega$ such that, for every $m \geq n, f(m) \in h(m)$.
(ii) \Rightarrow (iii) is proved in 3.1.
(iii) \Rightarrow (i) was proved by Bartoszyński; see [RS].
3.3 Definition. Let P be a forcing notion satisfying the countable chain condition.
(a) We say that $x \in{ }^{\omega} \omega$ is N-big iff, for every $h \in{ }^{\omega}\left([\omega]^{<\omega}\right)$, if there exists $k \in \omega$ such that $|h(n)| \leq n^{k}$ for every $n \in \omega$, then there exist infinitely many $n \in \omega$ such that $x(n) \notin h(n)$.
(b) We say that P is good iff, for every N-big $x \in{ }^{\omega} \omega$, if $P \in N$ then

$$
\Vdash_{P} " x \text { is } N\left[G_{P}\right] \text {-big". }
$$

3.4. Lemma. If P is good and \Vdash_{P} " Q is good", then $P * Q$ is good.

Proof. Easy. \square
3.5. Lemma. If $\bar{Q}=\left\langle P_{i} ; \boldsymbol{Q}_{i}: i<\delta\right\rangle$ is a finite-support iterated forcing system and, for every $i, \Vdash_{P_{i}}$ " Q_{i} is good", then $P_{\delta}=\underline{\lim } \bar{Q}$ is good.

Proof (induction on δ). If $\delta=\gamma+1$, then use the induction hypothesis and Lemma 3.4. If $\delta=\bigcup \delta \neq \varnothing$, then let $N \prec\left\langle H(\chi), \in, \leq_{\chi}\right\rangle$ be such that $P_{\delta} \in N$ and $\|N\|=\aleph_{0}$, and let $x \in \omega^{\omega}$ be N-big. Let $p \in P_{\delta}, \boldsymbol{h} \in N^{P_{\delta}}$, and $k \in \omega$ be such that

$$
\begin{gathered}
\Vdash_{P_{\delta}} " h \in{ }^{\omega}\left([\omega]^{<\omega}\right) \text { and }(\forall n)\left(|\boldsymbol{h}(n)| \leq n^{k}\right) ", \\
p \Vdash_{P} "(\forall n \geq l)(x(n) \in \boldsymbol{h}(n)) " .
\end{gathered}
$$

Let $\delta(*)=\sup (\delta \cap N)$ and $p_{1}=p \upharpoonright \delta(*)$, and let $\alpha<\delta(*)$ be such that $p_{1} \in P_{\alpha}$. Let $G_{\alpha} \subseteq P_{\alpha}$ be generic over $V, p_{1} \in G_{\alpha}$. By the induction hypothesis, x is $N\left[G_{\alpha}\right]$-big. Working in $N\left[G_{\alpha}\right]$, we can find $\left\langle r_{n}: n<\omega\right\rangle$ with $r_{n} \in P_{\delta} / G_{\alpha}, r_{n} \leq r_{n+1}$ and

$$
r_{n} \Vdash " h(n)=a_{n} ", \quad p_{1} \leq r_{0}
$$

when $\left\langle a_{n}: n\langle\omega\rangle \in N\left[G_{\alpha}\right]\right.$. The function $n \rightarrow a_{n}$ belongs to $N\left[G_{\alpha}\right]$ and, for every n, $\left|a_{n}\right| \leq n^{k}$. Therefore there exist infinitely many $n \in \omega$ such that $x(n) \notin a_{n}$. So let $n>l$ satisfy this, and thus $r_{n} \Vdash^{*} x(n) \notin \boldsymbol{h}(n) "$. But r_{n} and p are compatible, and this is a contradiction to the choice of p and l.
3.6. Theorem. If P is a σ-centered partially ordered set, then P is good.

Proof. (a) $P \vDash$ "c.c.c." clearly.
(b) Suppose $N<\left\langle H(\chi), \in, \leq_{\chi}\right\rangle, P \in N,\|N\|=\aleph_{0}$, and let $x \in{ }^{\omega} \omega$ be N-big. Let $\boldsymbol{h} \in N^{P}$ be such that, for some fixed $k \in \omega$,

$$
\Vdash_{\boldsymbol{P}} " \boldsymbol{h} \in^{\omega}\left([\omega]^{<\omega}\right) \text { and }(\forall n)\left(|\boldsymbol{h}(n)| \leq n^{k}\right)^{\prime} \text {. }
$$

By hypothesis there exists $\left\langle D_{n}: n\langle\omega\rangle\right.$ such that $P=\bigcup_{n} D_{n}$ and each D_{n} is directed.

Now we define $t^{n}(r)$ and $T^{n}(r)$ by

$$
t^{n}(r)=\left\{a \in[\omega]^{<\omega}:(\exists q \geq r)(q \Vdash \boldsymbol{h}(n)=a)\right\}, \quad T^{n}(r)=\bigcap t^{n}(r)
$$

Therefore $\left|T^{n}(r)\right| \leq n^{k}$. Also,

$$
r_{1} \leq r_{2} \Rightarrow t^{n}\left(t_{1}\right) \supseteq t^{n}\left(r_{2}\right) \wedge T^{n}\left(r_{1}\right) \subseteq T^{n}\left(r_{2}\right)
$$

We know that D_{l} is directed. Therefore there exists $r^{n, l} \in D_{l}$ satisfying

$$
\left(\forall r \in D_{l}\right)\left(r^{n, l} \leq r \Rightarrow T^{n}(r)=T^{m}\left(r^{n, l}\right)\right) .
$$

Now we define $h^{l}(n)=T^{n}\left(r^{n, l}\right)$. Clearly $h^{l} \in N \cap{ }^{\omega}\left([\omega]^{<\omega}\right)$ and, for every $n \in \omega$, $\left|h^{l}(n)\right| \leq n^{k}$. Therefore there exist infinitely many $n \in \omega$ such that $x(n) \notin h^{l}(n)$. Let $G \subseteq P$ be generic over V. In $V[G]$ we need to prove that there exist infinitely many $n \in \omega$ such that $x(n) \notin \boldsymbol{h}[G](n)$. If this fails, there exists $r \in P$ such that

$$
r \Vdash \Vdash^{"}\left(\neg \exists^{\infty} n\right)(x(n) \notin \boldsymbol{h}(n)) " .
$$

There exists $m \in \omega$ such that

$$
r \Vdash "(\forall n>m)(x(n) \in \boldsymbol{h}(n)) " .
$$

There exists $l \in \omega$ such that $r \in D_{l}$. Let $n>m$ be such that $x(n) \notin h^{l}(n)$. This implies that there exist $r^{\prime \prime} \in P, r^{\prime \prime} \geq r^{\prime}$, súch that $r^{\prime \prime} \Vdash{ }^{\prime \prime} x(n) \notin \boldsymbol{h}(n)$ "; and this is a contradiction to the choice of r.
3.7. Theorem. If P is random real forcing, then P is good.

Proof. Suppose $\boldsymbol{h}, N, x \in \omega^{\omega}$ are as in the definition of good. We define

$$
B_{n, i}=\|i \in \boldsymbol{h}(n)\| .
$$

Clearly $B_{n, i} \in P$, and $\hat{a}_{n}=\left\{i: \mu\left(B_{n, i}\right) \geq 1 / n\right\}$. Clearly

$$
\left|a_{n}\right| \leq \frac{|\boldsymbol{h}(n)|^{2}}{1 / n}=n^{2 k+1}
$$

The function $n \rightarrow a_{n}$ belongs to N, and therefore $\left(\exists^{\infty} n\right)\left(x(n) \notin a_{n}\right)$. Let $G \subseteq P$ be generic over V, and let $p \in P$ and $l \in \omega$ be such that

$$
p \Vdash "(\forall n>l)(x(n) \in \boldsymbol{h}(n)) " .
$$

There exists $m \in \omega, l<m$, such that $\mu(p)>1 / m$ and $x(m) \notin a_{m}$. Therefore $\mu\left(B_{m, x(m)}\right)<1 / m$, and this implies that

$$
p^{*}=p-B_{m, x(m)} \in P \quad \text { and } \quad p \leq p^{*} \Vdash " x(m) \notin \boldsymbol{h}(m) " .
$$

This is a contradiction. This finishes the proof of the theorem.
3.8. Theorem. Let P be a good forcing notion, and let $G \subseteq P$ be generic over V. Then $V[G] \vDash$ "the union of all measure zero sets added in V is not a measure zero set".

Proof. Suppose the conclusion of the theorem does not hold. Then by Corollary 3.2 there exists $h: \omega \rightarrow[\omega]^{<\omega}$ such that

$$
\begin{equation*}
|h(n)| \leq n \quad \text { for every } n \in \omega \tag{*}
\end{equation*}
$$

for every $x \in \omega^{\omega} \cap V$ there exists $k \in \omega$ such that $x(n) \in h(n)$ for every $n \geq k$.
Let $\boldsymbol{h} \in V^{P}$ be a name for such an h, and $p \in G$ forcing this. Let $N<\left\langle\left(H(\chi), \in, \leq_{\chi}\right\rangle\right.$ be such that $P \in N,\|N\|=\aleph_{0}, \boldsymbol{h} \in N, p \in N$, and x an N-big member of ω^{ω}. Therefore x is $N[G]$-big, and this implies that ($* *$) fails for this x.
3.9. THEOREM. cons $(\mathrm{ZF}) \Rightarrow \operatorname{cons}(\mathrm{ZFC}+\neg B(m)+\neg U(m)+C(m)+\neg C(c))$.

Proof. Let $V \vDash$ " $A(m)+\neg \mathrm{CH} "$, and let $\bar{Q}=\left\langle P_{\alpha} ; \boldsymbol{Q}_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a finitesupport iterated forcing such that
(i) if α is odd, then $\models_{P_{\alpha}}$ " Q_{α} is random real forcing", and
(ii) if α is even, then $\vDash_{P_{\alpha}}$ " Q_{α} is Hechler real forcing".

Let $P_{\omega_{1}}=\underline{\lim } \bar{Q}$. Then $P_{\omega_{1}}$ is good and if $G \subseteq P_{\omega_{1}}$ is generic over V, then

$$
\begin{align*}
V[G] \vDash & \text { "the union of every measure zero set } \\
& \text { coded in } V \text { is not a measure zero set". } \tag{*}
\end{align*}
$$

3.10. Claim. $V[G] \vDash \neg B(m)+\neg U(m)+C(m)+\neg C(c)$.

Proof. (a) $\neg U(m)$. The ω_{1}-random reals of the generic sequence witness this fact.
(b) $\neg B(m)$. As Cohen reals are added in every even stage, it is possible to show that $\mu\left(2^{\omega} \cap V[G \upharpoonright \alpha]\right)=0$ for every $\alpha<\omega_{1}$; and by c.c.c. of $P_{\omega_{1}}$ we can prove that

$$
2^{\omega}=\bigcup_{\alpha \in \omega_{1}} 2^{\omega} \cap V[G \upharpoonright \alpha] .
$$

(c) $\neg C(c)$. Each pair of Hechler reals add a meager set which contains the union of all meager sets coded in the ground model. We use the c.c.c. and the fact that every meager set is contained in a Borel meager set in order to show that the ω_{1} sequence of meager sets obtained from the Hechler reals witnesses $\neg C(c)$.
(d) $C(m)$. As in $V \vDash A(m)$, we can build $\left\langle A_{i}: i\left\langle 2^{N_{0}}\right\rangle \in V\right.$ such that for every $i<2^{\aleph_{0}}$ we have $\mu\left(A_{i}\right)=0$, and for every measure zero set $A \in V$ there exists $i<2^{\aleph_{0}}$ with $A \subseteq A_{i}$, and if $i<j<2^{\aleph_{0}}$ then $A_{i} \subseteq A_{j}$. As $P_{\omega_{1}} \vDash$ c.c.c., if $V[G] \vDash \neg C(m)$ then there exists a measure zero set $A \in V[G]$ such that, for every $i<2^{\aleph_{o}}, A_{i} \subseteq A$. But this implies that $P_{\omega_{1}}$ is not good, a contradiction.

REFERENCES

[B] T. Bartoszyński, Additivity of measure implies additivity of category, Transactions of the American Mathematical Society, vol. 281 (1984), pp. 209-213.
[K1] K. Kunen, Set theory, North-Holland, Amsterdam, 1980.
[K2] , Random and Cohen reals, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 887-911.
[L] R. Laver, On the consistency of Borel's conjecture, Acta Mathematica, vol. 131 (1976), pp. 151-169.
[MS] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Annals of Mathematical Logic, vol. 2 (1970), pp. 143-178.
[M1] A. W. Miller, Some properties of measure and category, Transactions of the American Mathematical Society, vol. 266 (1981), pp. 93-114.
[M2] ___, Additivity of measure implies dominating reals, Proceedings of the American Mathematical Society, vol. 91 (1984), pp. 111-117.
[RS] J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel Journal of Mathematics, vol. 50 (1985), pp. 337-349.
[R] F. Rothberger, Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen and Sierpińskischen Mengen, Fundamenta Mathematicae, vol. 30 (1938), pp. 215-217.
[SH1] S. Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1984.
[SH2] ——, On cardinal invariants of the continuum, Axiomatic set theory, Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, Rhode Island, 1984, pp. 183-207. [SH3] - , Proper and improper forcing (in preparation).
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720
MATHEMATICAL SCIENCES RESEARCH INSTITUTE
BERKELEY, CALIFORNIA 94720
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
BAR-ILAN UNIVERSITY
RAMAT-GAN, ISRAEL
INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY
JERUSALEM, ISRAEL
DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY
NEW BRUNSWICK, NEW JERSEY 08903

[^0]: Received March 11, 1989.
 *Note change in spelling (formerly Jaime Ihoda).
 The first author would like to thank the National Science Foundation for its partial support under grant DMS 85-05550, and also the Mathematical Sciences Research Institute. Both authors would like to thank the United States-Israel Binational Science Foundation for partially supporting this research.

