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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 55, Number 3, Sept. 1990 

THE KUNEN-MILLER CHART 
(LEBESGUE MEASURE, THE BAIRE PROPERTY, LAVER REALS 

AND PRESERVATION THEOREMS FOR FORCING) 

HAIM JUDAH* AND SAHARON SHELAH 

Abstract. In this work we give a complete answer as to the possible implications between 

some natural properties of Lebesgue measure and the Baire property. For this we prove 

general preservation theorems for forcing notions. Thus we answer a decade-old problem of 

J. Baumgartner and answer the last three open questions of the Kunen-Miller chart about 

measure and category. Explicitly, in ?1: (i) We prove that if we add a Laver real, then the old 

reals have outer measure one. (ii) We prove a preservation theorem for countable-support 

forcing notions, and using this theorem we prove (iii) If we add w)2 Laver reals, then the old 

reals have outer measure one. From this we obtain (iv) Cons(ZF) => Cons(ZFC + 
- 

B(m) + 

m U(m) + U(c)). In ?2: (i) We prove a preservation theorem, for the finite support forcing 

notion, of the property "F c Cc is an unbounded family." (ii) We introduce a new forcing 

notion making the old reals a meager set but the old members of CWco remain an unbounded 

family. Using this we prove (iii) Cons(ZF) => Cons(ZFC + U(m) + 
- 

B(c) + 
- 

U(c) + C(c)). 

In ?3: (i) We prove a preservation theorem, for the finite support forcing notion, of a 

property which implies "the union of the old measure zero sets is not a measure zero set," and 

using this theorem we prove (ii) Cons(ZF) => Cons(ZFC + 
- 

U(m) + C(m) + 
- 

C(c)). 

?0. Introduction. First we give some easy definitions: 
A(m) The union of less than continuum many measure zero sets has measure 

zero. 
B(m) The real line is not the union of less than continuum many measure zero 

sets. 
U(m) Every set of reals of cardinality less than the continuum has measure 

zero. 
C(m) There does not exist a family F of measure zero sets, of cardinality less 

than the continuum, and such that every measure zero set is covered by some 
member of F. 

A(c), B(c), U(c) and C(c) are defined similarly with "first category" (meager) 
replacing measure zero. These properties are studied by Rothberger [R], Martin 
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910 HAIM JUDAH AND SAHARON SHELAH 

and Solovay [MS], Kunen [K2], Miller [Ml], [M2], Bartoszynfski [B], and 
Raisonnier and Stern [RS]. The following facts are known (references can be found 
in [M2]): 

A(m) 

, A(c) 

B(m) ' U(c) B(c) U U(m) 

C(c) 

C(m) 

(these implications are proved in ZFC). In [Ml] a chart was given involving the 
possible relationships between these properties, and only three questions remained 
open. These questions will be answered in ??1, 2 and 3, respectively. 

In ?1 we will prove the following fact: 
0.1. THEOREM. Cons(ZF) => Cons(ZFC + -nB(m) + m U(m) + U(c)). 
In order to prove this theorem, we first answer a well-known question of 

Baumgartner by proving 
0.2. THEOREM. If r is a Laver real over V, then V[r] # "2w n V has outer measure 

one 
The natural approach, in order to build a model for Theorem 0.1, is to iterate with 

countable support )2 Laver reals, and to show that in the generic extension the old 
reals have outer measure one. For this we define when a forcing notion satisfies the 
property * 1, and we prove that: (i) If a forcing notion satisfies * 1, then in the generic 
extensions the old reals have outer measure one. (ii) The property *1 is preserved 
under countable-support iterated forcing. (iii) The Laver-real forcing satisfies * 1. We 
conclude the section by showing that if the ground model is the constructible 
universe (or satisfies CH) then by adding w)2 Laver reals we obtain a model for 
m B(m) + - U(m) + - B(c) + U(c). 

In the second section we will prove the following fact. 
0.3. THEOREM. Cons(ZF) => Cons(ZFC + U(m) + - B(c) + - U(c) + C(c)). 
In order to give a model for this theorem, we begin with a model satisfying 

A(m) + - CH. The final model is obtained by an w1l-iterated forcing notion with 
finite support of a-centered partially ordered sets as components. As every finite- 
support iterated forcing adds Cohen reals, it is not hard to see that in such a ge- 
neric extension U(c) fails. In order to show that U(m) holds in the generic ex- 
tension, we prove 

0.4. THEOREM. If P is a-centered and V # A(m), then 0 Fkp "(VA E [R] <cv) 

(A has measure zero)." 
So our problem was to show that - B(c) and C(c) hold in such a generic extension. 

In general this is not true, as one can verify by iterating Hechler reals. So the problem 
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THE KUNEN-MILLER CHART 911 

was to find a a-centered partially ordered set P satisfying 
(i) VF "2' n V is meager" and 
(ii) VFP "o- n V is an unbounded family." 
So we complete the proof of the theorem by showing 
0.5. THEOREM. There exists a a-centered partially ordered set M (called the meager 

tree forcing) satisfying (i) and (ii). 
0.6. THEOREM. The property "F c %w is an unbounded family" is preserved under 

finite-support iterated forcing. 
In fact we prove a more general preservation theorem which can be used in other 

contexts. The parallel of this theorem for countable-support iterated forcing was 
proved by Shelah [SH2]. 

In ?3 we prove the following statement: 
0.7. THEOREM. Cons(ZF) => Cons(ZFC + m U(m) + C(m) + m C(c)). 
Once more we begin with a model satisfying A(m) + m CH, and we add with finite 

support w1-many random and Hechler reals alternately. Clearly in the generic 
extension m U(m) + m C(c) holds and, in order to show that C(m) holds, we prove 
the following theorem: 

0.8. THEOREM. If M c N are models of ZFC* (see [M2]) and there exists 
h E N n {J([o]<")} and f e M n %w such that, for every m e co, Ih(m)I < f(m) and 

(*) 
for every g e M n 

%w 
there exists n e co 

such that for every m ? n, g(m) e h(m), 

then there exists h' e N n '([oj]<') such that for every m e co, Ih'(m)I < m and h' 
satisfies (*). 

Then, using a remark of [RS] and the proof of Lemma 1.1 of [RS], we obtain 
0.9. THEOREM. If M c N then in N the union of all measure zero sets that belong to 

M is a measure zero set iff in N there exists h e 0(Ic]<') such that, for every n e co, 
Ih(n)l < n and h satisfies (*) of Theorem 0.8. 

Next we introduce the property of being "good" for partially ordered sets, and we 
prove that if P is good, then in the generic extension the union of all measure zero 
sets coded in the ground model is not a measure zero set. We prove that this property 
is preserved under finite-support iterated forcing notions and, finally, we prove that 
random-reals forcing is good and also that a-centered partially ordered sets are 
good. 

A general theorem about preservation under countable-support iterated forcing 
can be found in [SH3]. This theorem generalized the previous theorem, which 
appears in [SHi]. 

All our notation is standard, and can be found in [Ki], [M2], and [SHi]. For 
A c R we denote 

(1) by yu(A) the Lebesgue measure of A, 
(2) by yu*(A) the outer Lebesgue measure of A, and 
(3) by yu*(A) the inner Lebesgue measure of A. 
We confuse R with the unit interval and with `2, in all our arguments. Theo- 

rems 0.7 and 0.3 were proved, independently, by Cichon and Kamburelis, but they 
never published those results. 
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912 HAIM JUDAH AND SAHARON SHELAH 

?1. Preserving "the old reals have outer measure 1". 
1.1. DEFINITION. Let <PK < > be a partially ordered set. We define the following 

properties: 
(a) *1 [P] iff for every sufficiently large cardinal x, and for every countable 

N -< (H(X),e, <?), if PeN and <in: n <)> eN is a P-name of a sequence of 
rational intervals, and <Pn: n < w> e N, each Pn e P, and po -- "ZInI = b E Q` and 
for every n E W, Pn K "In = In", then for every random real x over N, if x 0 Un In then 
there exists po < q e P, q is (N, P)-generic and 

q Ik"x is random over N[Gp]" and q I"x 0 U In". 
n 

(b) *2[P] if for every P-name A of a subset of R and for every p E P, if p IF 
"1u(A) < c", then 

*l{x e R: (]q e P)(p <q A q JF"x 0 A")} ? 1-c. 

(c) *3[P] iff for every A e V n (j?2) if V #' "'(A) > 0" then VP 1 "L, (A) > 0',. 
(d) *4[P] iff for every sufficiently large cardinal x, and for every countable 

N -< (H(X), e, <?), if P E N and <p,, n < co> E N, each pn e P, and <An < w-)> e N, 
each An a P-name, and for every n, Pn I"An a '2 is a Borel set and ju(An) < E"nd and 
limn-ogn = 0 and x e '2 is random over N, then there exists q e P such that 

(i) q is (N, P)-generic, 
(ii) q IF-"x is random over N[Gp]", and 
(iii) there exists n such that q ? pn and q IKtx 0 An". 

1.2. DEFINITION. P is weakly homogeneous iff 1Hp "(Vp e P)(3 GP e V')(p e GP c P 
and GP is a generic filter over V)". 

1.3. Fact. If P is weakly homogeneous, then *2 [P] iff *3 [P]. 
Proof. (i) Suppose *2[P], and let A E V n 01(f2) be such that there exists p E P, 

p IF- "u(A) = 0". Therefore 

e*lx c 2; p lFx e A} = 0, 

and this implies that yu(A) = 0. So we have proved that *2[P] => *31P]. 
(ii) Suppose * 3[P]; without loss of generality, A = UnI5n, each In a P-name 

of a rational interval. Let E > 0 be sufficiently small, and define X = {x E w2: p Ik 
"x e Al. 

In order to get a contradiction, suppose that jt*(X) > c; we pick <pm: m < c>, 
Pm < Pm +1, and <In: n < c)> rational intervals and h eSw o increasing such that 

pm 1l"(Vn < h(m))(In = In) A E lnj < g/4" 
n > h(m) 

Therefore En <h(m) I In I < c. Now we have that 

Y* -x yUIn) >0. 

Let Y = X-Un In. Also, from the choice of Pm' Pm forces that Y is covered by 
U1>h(m)i. As P is weakly homogeneous, it is easy to prove that above p there 
exists a P-name <17m: h(m) < 1 < co> satisfying the above conclusion with Pm 
replaced by p and <In: hm < n < co> by <1lm: h(m) < 1 < co>. From this we have 
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THE KUNEN-MILLER CHART 913 

iK" E IImI < e/4m" and p Ik"Y' U lv"; 
I > h(m) I > h(m) 

therefore 

p Ik c n u a 
m I>h(m) 

which implies that p F ".it *(Y) = 0 ", a contradiction. C] 
1.4. Fact. *1[P] iff *4[P]. 
Proof. (i) *1[P] => *4[P]. Without loss of generality, working in N, we have 

An = U{,: 1 < }, In,l a P-name of a rational interval. For every n we choose 

<pn,l: 1 < w> and <In,,: 1 < w> such that Pn,i H"'In = Inl"9 Pn = pN,O and Pn,1 < 

PnI+1 Therefore i (UlIln) < En, and this implies that 

j2n u ins) = 0. 

Also fn U, In,, e N; therefore, as x is random over N, there exists n E co, x U I 
Now using *1 [P] there exists q ? Pn, q is (N, P)-generic, and 

q lH-"x is random-over N[Gp]" and q H"X 4x U Inl = An 

This concludes the proof of (i). 

(ii) *4[P] =- *1[P] is clear. C: 
1.5. THEOREM. If Lv denotes the Laver real forcing, then *3[Lv]. 
1.6. REMARK. J. Baumgartner gives the following problem (see [MI, p. 113]): 

Show that if one adds a Laver real the ground reals have measure zero. Clearly, 
Theorem 1.5 gives a negative answer to this problem. 

We will break the proof of Theorem 1.5 into a series of lemmas and definitions. 
1.7. DEFINITION. (i) Lv is the set of trees T c wcW with the property that there 

exists s E T (called the stem of T) so that Vt E T, t c s or s c t, and if t D s and t E T 
then there are infinitely many n E co such that t' An> E T. 

(ii) T1 <LV T2 iff T1 - T2. 
(iii) p, = {v E p: tj c v or v c il}, where p E Lv. 
(iv) T1 <OLv T2 iff T1 <LV T2 and they have the same stem. 
(v) For p E Lv, let s(p) be the stem of p. 
This forcing notion was introduced in [L]. Without loss of generality, we write < 

instead of <Lv- 
1.8. LEMMA. Let <In: n < co> be a sequence of Lv-names of rational intervals such 

that I[Lv "ZII4I = q < 1", q E Q+, and let p E Lv. Then there exists p'0 ? p and there 
exists f: p' -+ {finite sequences of rational intervals} such that 

(i) tj c v e p' implies fj(q) is an initial segment of f(v), 
(ii) tj e p' implies p' # "f(iq) is an initial segment of <In: n < co>", and 
(iii) for every E e Q+ and for every branch x of p' there exists n e co such that for 

every m ? n, /(Uf(x I m)) ? q -. 
PROOF. We apply the following fact: 
1.9. Fact. If po e Lv and D c Lv is open dense, then there exists Pi 0? po such 

that Pi E Dc', where Dc' = {p E Lv: {tj E p: p, e D} contains a front} and A c p is a 
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914 HAIM JUDAH AND SAHARON SHELAH 

front if 
(i) Cj # v E A -+ j v, and 
(ii) for every x e woo if (Vk)(x I k e p) then (3k)(x I k e A). 
Proof. By induction on the ordinal oe, for each v e po, when rk(v) = o we define 
(i) rk(v) = 0 iff there exists P1 e D, POv <? P 1 
(ii) rk(v) = o > 0 iff there exists n such that for every m > n we have that if v K <m> 

e Po then rk(v A <m>) is well defined and less than cx, and 
(iii) rk(v) = oo if there is no a such that rk(v) = a. 
Claim 1. For every s(po) c v e po we have that rk(v) < oo. 
Proof of Claim 1. Let v e po be such that rk(v) = oo and s(po) c v. We define P~v 

- {p E po: p c v or v c p and, for every k e [lg(v), lg(p)), rk(p [ k) = oo}. Clearly p v 
Pov, and by the definition of rk, v < p E p*. Then (]3n)(p A <n> E p*). Therefore 

Pc E Lv, and as D is dense there exists p such that p* <?0 p** E D. By hypothesis 
s(p**) E p*, and this implies that rk(s(p**)) = oo; but clearly rk(s(p**)) = 0. C: 

Claim 2. For every v E po there exists p1 such that pov <0 p1 E DcI. 
Proof of Claim 2. By induction on rk(v). If rk(v) = 0, the proof is easy. If rk(v) = 

a > O it follows by the induction hypothesis. C] 
This concludes the proof of Fact 1.9 and the proof of Lemma 1.8. C] 
1.10. LEMMA. If A c [0, 1] and ii*(A) = 1, then IFLV "jt*(A) = 1". 
PROOF. Suppose that there exist <In: n < co>, an Lv-name of a sequence of 

rational intervals, and p e Lv such that 
(i) P [LV '1I1 = q < 1", 
(ii) p [k"(Vx e A)(3]n)(x e Ij)". 
Therefore there exist f and p' satisfying the requirements of Lemma 1.8, and, 

without loss of generality, p' = p. Now let X be a large enough regular cardinal, and 
let N be countable such that N -< <H(x), e, <x> and f, p belong to N. Let x e A 
be such that x is random over N. N[x] is a generic extension of N; therefore 
N[x] I= ZFC*. Working in N[x], for every E E Qe we define 

(i) he(Q) = min{l: EZf(q) [ 11 ? q- u {lg(f(ij))}, and 
(ii) fj(,) = f(rq) r [he(C), lg(f(ij))). 
We need to find p' > p and E e Q+ such that 

P' ILv "X $ U U fe(qG r )", 

where qG iS the generic branch. Clearly this is sufficient. Suppose that it is impossible. 
Then the following fact holds in N[x]. 

1.11. Fact. For every E e Q+ there exists T, C p satisfying 
(a) il c v E Te => i E Te, 
(b) Te ? 0, 
(c) for every branch tj e p there exists m < co such that j [ m 0 Te, and 
(d) for every j e Tf, either x e Uf,(t) or I 

{j1 A<n> E p: A A<n> T7} I < No 
Proof. We define when D(ij) ? oe, by induction on ac: 
(i) D(ij) 2 0 iff x 0 fj(t), and 
(ii) D(ij) ? a (> 0) iff for every fi < a there exist infinitely many k e co such that 

D(Te w<k>) d DbO 
Then we define D(qj) = oe iff D(qj) 2 oe but D(qj) ;> oe + 1. Otherwise D(qj) = oo. 
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THE KUNEN-MILLER CHART 915 

Claim. D(s(p)) = oo if ]p' ?> p such that (Vij e p')(x 0 Ufte)). 
Proof. () By induction on a it is easy to prove that, for every ij e p', if s(p) c 5 

then D(ij) ? c. 
(=>) We define oc(*) = sup{D(ij): tj e p and D(ij) < oo} and p' = {e e p: tj c s(p) 

or s(p) c tj and D(j P k) ? (o(*) + 8 or oo for every k e [lg(s(p)), lg(ij))}. Clearly if 
v c j e p' then v e p'. Suppose that s(p) c v e p'; then D(v) ? ox(*) + 8 or oo, 
and therefore AV = {k: D(v^ <k>) ? c(*) + 7 or oo} is infinite, and by the choice 
of oe(*), we have 

k e AV => D(vA<k>) 2 (*) + 8 or oo, 

which says that p' e Lv. D 
So we have proved that D(s(p)) < oo, and we define Tf = eq e p: tj ' s(p) or 

<D(t k): lg(s(p)) < k < lg(tj)> is a decreasing sequence of ordinals}. Clearly if 
i c v e T, then j e T,. If s(p) r j e Te then D(ij) < oo, and if x 0 Ufe(tl) then 
{k: 1^ A<k> e p and D(ij A <k>) ? D(tj)} is finite, and this implies that there exists 
n c- o-) such that for k c- -) - n, if 1^ A<k> c- p then 1^ A< k> c- T,. E 

Therefore, still working in N[x], there exists h,: Tl -+ wo1 such that for every 
q K<n> E Tf,, h(ij K<n>) < h(tj). As x is random over N, there exists a Borel set B e N, 
1(B) > 0, such that in N 

(*) B 1- "for every e > 0 there exist h, and Tl as above". 
random 

Set e = ,u(B)* 10-10, and let h, and T, be random names witnessing (*) for this 8; h, 
and T, belong to N. Using the wo-bounding property of random forcing (see [SH1, 
p. 169]), we can find B' ' B with u(B') ? 144(B) and such that for each ij e p 

(i) {n: (]B" ' B')(B" J-"i E Te A 1 A<n> T1" A u(B" n Uf,(t) = O)} is finite, 
and 

(ii) {J e w1: (]B" ' B')(B" 1 he(ij) = c)} is finite. 
Now we define 

T* = e e p: (]B" ' B')(B" Teatr 
random 

Hjt1) = e e 
o-)w1: (]B" 

' B')(B" "I E Te A h 
=tj) 

= 
' 

random 

1.12. Fact. (a) Te* 'p, Te* 0 and, if j c= v e T*, then tj e Te*. 
(b) If q e T* and x e B' is random over N, and x 0 Uf,(n) and tj e T[x], then 

{n: q^A<n> EE T[x] A <AKn> 0 T*} is finite. 
Proof. By the definition of T* and the choice of B'. D 
1.13. Fact. If v = A <n> e T*, then max H,(v) < max Hjq). 
Proof. Let oe = max(v) and B" c B' be such that 

B" I[ "he(v) = Y'. 
random 

Therefore 

B" I[ "hj(q) is well defined and larger than oe". 
random 

This implies that o < max He(q). D1 
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916 HAIM JUDAH AND SAHARON SHELAH 

1.14. COROLLARY. For every Cj e %w there exists n E co such that j [ n 0 T*. C: 
So there exists h: T* -+ w1 such that 

Cj c v E T* =* h(ij) > h(v). 

Now, by induction on h(tj), for each tj e T* we define a set 1 c [0, 1] with yu(Y) ? E 
as follows: 

(i) If tj does not have an extension in T*, then Y, = Ute). 
(ii) If q has extensions in T* then 

Y7 U n{YA <I,> 1 n and q'<1> e T*}. 
n 

Thus Ys~p) is well defined, U4'>)) ? ? and Ys E N. Therefore there exists x e A n 
(B'- Y(p)), x random over N. As x X Y,(P) it is not hard, using 1.12(b), to see that 
T1[x] has a branch. But this is a contradiction to the construction of the tree T1[x]. 
This finishes the proof of Lemma 1.10. D 

Clearly Lemma 1.10 implies Theorem 1.5. D 
1.15. COROLLARY. *2[Lv]. 
PROOF. Clearly Lv is weakly homogeneous; then Fact 1.3 gives the conclusion of 

this corollary. D 
1.16. THEOREM. *1[Lv]. 
We will break the proof into a series of lemmas and definitions. 
1.17. DEFINITION. (a) Let A be an Lv-name of a Borel subset of R such that 

IFLv 'A = Un In and ElInI = c". For p e Lv, we say that <In: n < wo> is interpreted 
over p, if for every n there exists a front A_ c p, and (i) (Vv e A)(P n = In); 
(ii) (dv c- An+ JO(P c- An)(P c v). 

(b) Let x be a regular cardinal, large enough, and let N -< <H(x, , <x)> 
1IN11 = No, po e N rn Lv and A e N an Lv-name satisfying the condition of (a), 
interpreted over po. We define Y c R by putting x into Y iff there exists q e Lv such 
that the following four conditions hold: 

(i) po < q e Lv. 
(ii) For every open dense set D c Lv, if D e N then there exists r e Del rn N such 

that r < q. 
(iii) q IFH"x , A". 
(iv) If # "<Jn: n < wo> is a sequence of rational intervals and ZIJnl < c0" and J= 

<Jn: n < eo> c N, and Di = {r e Lv: f is interpretable over r with front <A': 1 < wo>}, 
then there exists r e DJ n N and k e wo such that 

(Vm ? k Vt11 e q n A' )(x 0 J 

1.18. LEMMA. Y is a?1 set of reals. 
PROOF. X e Y iff there exists q c po such that the following four conditions hold: 
(i) q e Lv (z1). 
(ii) If <El: 1 < wo> is an enumeration of {DCI: D e N and D c Lv is an open dense 

set}, E, = <rlim: m < wo>, then for every 1 there exists m such that q c rjm (JO). 
(iii) We know that A is interpreted over po. Therefore we can find <An, In : n, v> 

witnessing this and then, for every n, for every v e q n A, x 0 In (,A o) 
(iv) We have an enumeration of {<r, <An Jn: n, v>>: r e DJ}. 
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Clearly DJI = Di and then, for every J e N, there exist r E DJ r) N and k e w such 
that (Vm > k)(Vq1 E q n A')(x 0 Jrm)(4). E 

1.19. LEMMA. ,L*(Y) > 1 - C. 
PROOF. By Laver [L], there exists q E Lv satisfying (i) and (ii) of Lemma 1.8. Also 

every q' > q satisfies (i) and (ii) of Lemma 1.18. Now we define 

Yq = {x E R: there exists qx e Lv, qx ? q and 

q, K'x x A u {B: B e N and u(B) = "J. 

By *2[Lv] we know that *(Yq) > 1 - c. For every x e Yq, it is not hard to find 
q' > q_ witnessing xe Y (remember that uINit = No and that if qx, IF"x 0 
Un nmf>rn im" then there exists q"0 > qx satisfying that there exists n such that for 
every y [q"] and for every m >: nif q sAj and q c: y then x J1). El 

Now working in N (as in 1.17(b)), we define Q0 = Levy(NO, 2H0), and Q1 is random 
real forcing over NQO. Let y c QO be generic over N, and x random over N[y]. 
Clearly the parameters of the definition of Y are in N [y], and we can ask, in N [y, x], 
if "x e Y". In N[ y] there exist Bo, B1 e Q1 such that y(B0 u B1) = 1, Bo r- B1 = 0, 
and in N[y] we have that Bo IF"x e Y" and B1 IFV"x 0 Y". Also we know that 
4(BO) > 1 - c. It is well known that x is random over N; therefore, working in N, we 

have 

(*) QO * Q, - Ro * RI 

where Ro is random real forcing. In NRO we can ask: "After R1 does x e BI?", and we 
obtain BO* E RO such that 

N l= BO l- "(3r e R1)(r IF-x e BO)" 
Ro 

and 

N- - Bo *';i x c- B,'' 
Ro 

Working in NQO, it is not hard to prove that Bo c B* (a.e.); therefore p(B*) 1- c. 
From this, if x is random real over N and x e Bo Ewe can find y c Q0 generic over 

N such that (y, x) c Qa * Q1 is generic over N and N[y, x] F "x e Y"; furthermore, 
Yisa V set. 

We can conclude that V F "x e Y". In other words, there exists a Borel set 
BO e N, u(B*) > I - c, such that for every x e V r) B*, if x is random over N then 
x e Y. In this case we denote Y = Y(N, po, A). 

PROOF OF THEOREM 1.16. Given N, <p,: n < w>, <Is: n < 0>, pn F = 1 p,, K: 
n < (o> Npn, p? P.+1i X 0 U'M Iand VIII = c, we define, for every k ec w, 

Y(NF, Pn <tlk+. k < w>) = Y. 

and, by the above work, we can find a Borel set B* e N, 1(B*) 1 - (c - Y? III) 
such that for every x E V r) B*, if x is random over N, then x e Y,. Without loss of 
generality <B*: n < w> E N, and g(UB*) = 1. Therefore if x is random real over N, 
then there exists n e 9 such that x e B*; and this implies that x e Y,. This concludes 
the proof of the theorem. El 
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918 HAIM JUDAH AND SAHARON SHELAH 

1.20. THEOREM. If P is a forcing notion and Q is a P-name of a forcing notion and 
*1[P] and [-p "*1[Q]", then *1[P * Q]. 

PROOF. Let N, P * Q I N. <n: n E co> E N, <(Pn, qn): n < c> E N, <In: n < c> 
E N and x random over N all satisfy the requirements of 1.1 (a). For each n we define 
<(pn, qn,1): < co> e N and <InKl I < ,1 > : N, each In, a P-name of a rational 
interval, as follows: for 0 < I < n let In, = I, and (Pn, qn 1) = (Pn, qn); for I = n + 
m + 1 let qnl 1be a P-name of a member of Q and In,, a P-name of a rational in- 
terval such that 

Pn Ip"lqnn+m <Qqnl and qn IQ "Inl1[GP] = Digs 

Now we define An = U1nIn, 1. Clearly for every n E co, An e N and An is such that 
Pn [Fp "An C 2'", and there exists <En: n < w> such that limns 00 En = 0 and Pn IFP 
11y(An) < Enit 

As x is random real over N and *4[P], we can find n, p E P such that p is (N, P)- 
generic and Pn < p p and p 1F "x ? An". Fixing such n and p, let G c P be generic over 
V containing p. Therefore we know the following: 

(i) x is random real over N[G] -< <H(X)v[GI, E, <X>. 
(ii) x 0 Ul?In l[G], and thus x 0 UloIln,[G]. 
(iii) For each I co, qnA[G] IFQ[G] "I = In l[G] 
Applying *1[Q[G]], we find q e Q[G] such that q is (N[G], Q[G])-generic, 

q ? qn[G], 

q I-Q[G] "x is random over N[G][GQ[GI]", and q I-Q[G] "X 0 U In"- 
n 

As G is arbitrary, we can find q, a P-name of a member of Q, satisfying all this. Now 
it is not hard to see that (p, q) witnesses *1[P * Q]. This finishes the proof of the 
theorem. D 

1.21. THEOREM. Let <Pi; Qj: i < 6>, 6 = U6 # 0, be a countable-support iterated 
forcing system satisfying 

(i) for every i < j < A, i # Ui, Pj/Pi is a proper forcing notion, and 
(ii) for every i < 6, *1[Pi]. 

Then *1[Pj]. 
PROOF. Let N -< <H(X),e, <x>, JINJ = 05 po < Pi < c Pa, <Kl: 1< c)> c N, 

<1K: 1 < co> E N, pn IFPP "I = Ii", I, a P6-name of a rational interval, and 

Po F1p6 E 111 = b E Q`; 

without loss of generality b = 2, X E R is a random real over N, and x ? U 1I. 
Let <Dn: n < co> be an enumeration of the open dense subsets of Ph that belong to 

N. Let <<In,: I < wo>: n < co> be an enumeration of the sequences <J1: I < co> E N 
such that J1 is a P6-name of a rational interval and -p,6 "El I'Il = 2" and Io,, = II. We 
fix c(O) < a(1) < ... such that a(n) E N, c(0) = 0, U(a(n)) = 5 and a(n) # Ua(n). 

By induction on k < co, we will choose qk E Pa(k) and PI(k)-names 

Kpk. 1 < C>; Ikv; v(k) 

such that if qk E Gk C Pa(k), Gk generic over V, then 
(a) pk[Gk] [ a(k) e Gk, 
(b) P~/a(k) I- "p[Gk] < pk+ l [Gk]JX 
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(c) IP, is a pa(k)-name of a rational interval, 

(d) p"V[Gk] CFP6/Po(k) ( < k, Vv < k + l)(I4v = , v[Gk])", 
(e) qk IkPac(k) "P 

k c N[Gk] r- PIG, 
(f) x is random over N[Gk1, 
(g) (VC < k)(x 0 Ujk ,v[Gk]v4 o 
(h) pk= p65p(k)"if C < k and v < Wo then Iv has a Pa(v)-name", 
(i) qk F- "v(k) < o", v(O) = 0, 
(j) po < po e Dk, 

(k) <KI4,v[Gj: 1 < k, v < co> e N[Gk] and <plk[Gk]: 1 < o)> e N[GkI, and 
(1) po [ a(k) < qk, qk+1 [ a(k) = qk- 
The induction. For k = 0 we set po = Po, qO = 0 e PO = {0}, v(O) = 0, and 

Iov = Iv. 
For k + 1 we will work in N [Gk, qk e Gk . We fix 1 e wo, and by induction on m e w) 

we define pk. such that 

pk[Gk] < pk P/Gk poeDk, Pl,mp < P,m+1; 

for every ? < k + 1, p ko ' [v, 6) forces that 1,;v has a PI(v)-name, and for every ? < 
k + 1 and v < k + 1 + m 

pil, m 1 Cv=1,v[k + 1] 

Therefore the sequences <pkm: 1, m < o)> and <Ik, I , < k + 1, 1, v < wo> belong to 
N[Gk]. 

Now we define <mk(l): 1 < wO> such that mk(l) < co and 

Pl,Mk(l) Ik {k+1, vl : MJO < V < (t)} < 2 

and we define 

= 'U{Ik: C < k, 1 < v < wl U U{Ik+1,v: mk(l) < v < c01". 

It is not hard to find <E1: 1 < co> such that 

Pl rk(1) 4 (k + 1) F- 14(A k) < l" 
P.(k + 1) 

and limlO, E1 = 0. 
Applying *4[Ip(k+ 1)], we can find qk?+ 1 Pa(k+ l)/Gk and 1(k) such that 

Pl(k),mk(l(k)) a(kj) < qk+ l qk+ 1K x l AI(k), 
P.(k + 1) 

qk+1 t x is random over N[GP.(k+l)]. 
Now we define 

k+1 = k 
kv = jk,l(k) + = 

Pl P l(k), Mk(l(k)) + I 5 Ik=Iklk v(k + 1 ) = Mk(l(k))- 

It is easy to check that this works. Now we define q e P. by setting q [t(k) = qk. 
Then: 

(i) q is (N, P6)-generic [use (j) and (1)], 
(ii) po < q, and 
(iii) q t "x is random over N[Gp,] and x 0 UnIn 
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920 HAIM JUDAH AND SAHARON SHELAH 

[It is sufficient to show that for every n E co, q IJ "x 0 UV(l) I Inl,"; and this follows 
from (g) and (h).] 

This concludes the proof of the theorem. fZ 
1.22. THEOREM. con(ZF) => cons(ZFC + m B(m) + m U(m) + m B(c) + U(c)). 
PROOF. Let V = L be the constructible universe, let P e L be the w(02-iteration 

of Laver reals with countable support, and let G c P be generic over V Then 
V(G) 1 "-i B(m) + - U(m) + - B(C) + U(C)". 

(i) m B(m) + m B(C). By [SHi, pp. 206-207], P has the Laver property; and this 
implies that in V[G] the real numbers are included in the union of the meager 
measure zero sets coded in V 

(ii) m U(m). By *1[P ] we have that yi*(2w rn V) = 1. 
(iii) U(c). For every f Ec 'co, 

Af = {g e Ho: (V'n)(g(n) < f(n))} 

is a meager set. And in V [G] for every A E [ho] <c there exists f E Oc6 such that 
A a Af. E 1 

?2. Preserving "the old reals are unbounded". 
2.1 DEFINITION: We say (f, R, S) iff the following seven conditions hold: 
(a)f= <fa:aeI>. 
(b) I is a directed set of indices. 
(c) For every J c I, if IJI < No then there exists a e I such that, for every b e J, 

b <?a. 
(d) For every a e I, fa E 'OH(co). 
(e) S c H(o) x H(co) and R c H(o) x H(co) and xSy A yRz : xSz. 
(f) For every a, b E I, a <, b -> (V'n)(fa(n)Rfb(n)). 
(g) For every f e 'H(o) there exists a E I such that (3]n)(f (n)Sfa(n)). 
2.2. THEOREM. Let f, R, S, Q = <Pi; Qj: i < 6> be in V, satisfying 
(i) Q is a finite-support iterated forcing system such that, for every i < 6, lFp, 

Qi F c.c.c.", 
(ii) for every i < 6, I-p, "G(f, R, S), and 
(iii) if 6 = y + I then IFP *Q" "G3(fRS)". 
Then, if P6 = lim Q, then If-p,6(f,R,S)". 
PROOF. If 6 = y + 1, then the conclusion follows from (iii). If 6 = 0, it is clear. 

Therefore we will prove the theorem when 6 = U6 # 0. Conditions (a), (b), (d), (e) 
and (f) of Definition 2.1 are clear. As P6 I= "c.c.c.", we know that 

p6 4"(VB ' V)(JBJ = o= (3A e V)(B c A A JAI = No)). 

This implies that (c) of Definition 2.1 holds after forcing with Ph. 
So we need to check 2.1(g). Let g e VP" be such that lFpA "g: co H(co)", 
(i) If cof(6) > No then 2.1(g) follows from the c.c.c. of Ph. 
(ii) If cof(6) = NO, then we fix a well-order <(a of H(wo) and a sequence <a": 

n < w> of ordinals such that cn < an + I and an y- 6. 

For each n we define gf e VP"" as follows: 

gn(i) = min< {a e H(wo): (3p P61/Gp")(p IFg(i) = a)}. 
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Clearly I~pP ";gf e '?H(w)". For each n there exists an E I such that 

I IC (3 i) g(i) Sfan (i0)) 

Using the c.c.c. of P6, we can find b E I such that, for every n E w, an <, b. Therefore, 
for every n E w, I-X"(] i)(gn(i)Sfb(i))". 

2.3. Claim. lP6p' "(]i)(g(i)Sfb(i))". 
Proof. If this does not hold, then there exist p E P6 and k E wO with 

P VFP" "(Vi > k)(--ig(i)Sfb(i))"- 

There exists n E w such that p E Pan, and this implies that there exist m E W - (k + 1) 
and p < q E Pan such that 

66]xgn(m) Sfb m 

Then, by the definition of gn, there exists r E P6, q < r, with r IFP- ",gn(m) = g(m)"; and 
this implies 

r lIP65 "g(m)Sfb(m)". 

As p < r and k < m, we have found a contradiction. This concludes the proof of the 
claim. Li 

Clearly the claim implies Definition 2.1(g), and this finishes the proof of the 
theorem. Oi 

2.4. DEFINITION. The meager forcing M is the partially ordered set defined by 
setting (t, w) E M iff there exists n(t) E a) such that 

(a) if t e n(t)?2 and c = v e t then q E t; 
(b) if q E tandlg(q) < n(t) then n^<O> e tor^<K1> E t,w c '2and IwI < NO;and 
(c) if x e w then x [n(t) E t. 
The order for M is given by setting (t1,w1) < (t2,w2) iff tI = t2 r. n(')2 and 

WI C W2. 

2.5. Fact. (i) M is c-centered. 
(i) IFM "V n 2' is a meager set". 
Proof. (i) Clearly M = Ut'>2 Mt, where Mt = {(t, w) E M}. 

(ii) Let T = U {t: 3(t, w) E GM}; then #M "T is a meager perfect tree" and IFM 
"(Vx E 2' rn V)(]n E wo)(3t E n2)(Vk ? n)(t x [[n, k) E T)". C1 

If p e M, then t(p), w(p) and n(p) are defined satisfying p = (t(p), w(p)) and 
n(p) = n(t(p)). 

REMARK. M adds Cohen reals. 
2.6. LEMMA. If p E M, k E w and r is an M-name of an ordinal, then there exists 

m(k, p,) = m < such that if q E Mand p < qand t(p) = t(q)and lw(q) - w(p)I < k, 
then there exists r e M such that q < r and n(r) < m and r decides the value of '. 

PROOF. If this does not hold, then for every m there exists qm, e M such that 

p < q. and t(p) = t(qm) and Iw(q.) - w(p)I < k and for every r 2 qm if r decides 

the value of r then n(r) > m. 
Set w(q.) - w(p) = {xm,..., Xmm)}, k(m) < k. Thinning <qm: m < w> if necessary, 

we can assume that k(m) = k(*). If 1e [1,k(*)] then x[ml = X1' [i. Let 

<Y5 ..., Yk(*)> be such that for every mE Ewand l E [1,k(*)] we have Yi [ m = xm [im. 
Therefore p < (t(p), w(p) u {YI ... . Yk(*)})' and (let r E M and cr E ord) 

r ' 1~ = ", (t(p),w(p) U {Y1, ...Yk(*)}) < r 

Let n(*) = n(r) + 8 and r* = (t(r), w(qn(*)) u w(r)). 
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2.7. Claim. (i) r* E M. 
(ii) r < r* and qn(*) < r*. 
(iii) r* # X = oa and n(r*) = n(r) < n(*). 
PROOF. Remember that {Y1, ... Yk(*)} C w(r). 
Now 3.7(iii) contradicts the choice of qn(*), and this finishes the proof of the 

lemma. Cl 
2.8. DEFINITION. We say that F c o0' is unbounded if 

(Vg - a) ?) (3f EF F) (3 'n) (g(n) < f (n)). 

2.9. THEOREM. If F e V is unbounded, then KM "F is unbounded". 
PROOF. Suppose that there exists an M-name g of a member of w0' and p e M 

such that 
P IkM "(Vf E F)(Voon)(f (n) < g(n)). 

Let N -< <H(X), , <x> be such that IINII = No, and P, p, g are in N. Pick f e F such 
that, for every h e N n w0', (3]n)(h(n) < f(n)). Working in N, for each p0 E M, for 
every k E wo we define 

hpo(k) = max{i e w): (3q, r E M)(t(q) = t(po) and Iw(po) - w(q)I < k, 

n(r) < m(k,pO,g(k)) and r jk"g(h) = i")}. 

Using the above lemma, it is not hard to show that for every k EF w, hpo(k) E w. 
By assumption there exist q ? p and ko E w) such that q jF(Vk ? ko)(f(k) < g(k)). 

Set PO = (t(q), w(q) r- N). Clearly PO E N. Choose k1 = 1w(q) - w(po)l and k2 such 
that hpo(k2) < f(k2) and k1 < k2 

By Lemma 2.6, there exist r > q, PO such that n(r) < m(k2, PO, g(k2)), and i such 
that r lp "g(k2) = i"; and this implies that 

r lj"g(k2) < hpo(k2) < f(k2)", 

which is a contradiction to the choice of q. This concludes the proof of the 
theorem. Cl 

2.10. THEOREM. cons(ZF) = cons(ZFC + - B(m) + U(m) + - B(c) + - U(c) + 
C(c)). 

PROOF. Let Vk= "A(m) + 2'0 > N,", and let Q = <Pi; Qj: i < w)1> be a finite- 
support iterated forcing system satisfying, for every i < wi, Jkp, "Qi is the meager 
forcing M" and if i is a limit ordinal, then Pi = limQ [ i. Let P, = lim Q. Then 

IP, "-p B(m) + U(m) + - 
B(c) + - 

U(c) + C(c)". 

(a) - B(m). As Cohen reals are added in every limit stage of cofinality wt, it is well 
known that 

lkPI + 2r n V[G [i] has measure zero" 

and, by c.c.c., 

(*) ikp, ,2'O = U 2C r V[G c awi]". 

(b) U(m). It is not hard to show that for every i < w1, Pi is a-centered. Therefore, 
for every Pi-name r for a real number, there exists A, e V such that p(A,) = 0 and 
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[P- '"r e A". Now using (*) and A(m), we can prove that for every X E VP-i, if 
iP- "X E [2E<]C", then there exist AX E V with 1i(AX) = 0 and J[p- "X c AX". 

(c) m B(c). The wl -meager trees of the generic sequence witness this. 
(d) m U(c). The wo1-Cohen reals given by the support of the iteration witness this. 

(e) C(c). If J[p, "n C(c)", then 

ikp, "U{B: B E V and B meager} is meager". 

(Remember that V # A(m). Therefore V # A(c).) And this implies that 

I[-p "wa' rn V is bounded". 

But using Theorems 2.9 and 2.2, we can prove 

i-p. "wa' rn V is unbounded". 

(In order to see this, in V we define <f: i < c> such that i <j < c implies 
(V'n)(f1(n) < fj(n)), and we define aRb iff Jal < IbI iff aSb.) This concludes the 
proof of the theorem. D 

?3. Preserving "the union of the old measure zero sets is not a measure zero set". 
3.1. THEOREM. Let M c N be models of ZFC*. Then the following statements are 

equivalent: I 

(i) There exists h E '?([Ioi]<`) r- N such that, for every n Ew c, Ih(n)I < n and for 
every f E Obw r- M there exists n E co such that, for every m ? n, f(m) E h(m). 

(ii) There exist h E '([o([] < ) r- N and g E 06w r- M such that, for every n E w, 
Ih(n)I < g(n) and for every f Ec wc r- M there exists n E co such that, for every m 2 n, 
f(m) e h(m). 

PROOF. (i) => (ii) is clear. 
(ii) (i). Suppose we have h and g satisfying the requirements of (ii). Then we set 

G,: o' -+ w, the canonical one-to-one and onto function from w' to co, and for each 
< 1 we define Gli: ow - o by setting G1i(k) = ni(G7'(k)), where 7i is the projection 

function over the ith coordinate. 
In M we pick <ni: i < co> such that ni < ni+,1 and g(ni) < ni, and in N we define the 

function h': o -+ w. If i e [nl, n1, i), then 

h'(i) = Gn'+1 h(l), 

where j + 1 = i. Clearly h' is well defined and satisfies lh'(i)l < jh(l)j for n1 < i < 
n1+ , and in this case Ih(l)I < g(l) < n1 < i. Therefore Ih'(i)I < i. 

Now we will show that for every f e Ow r- M there exists n e wo such that, for 
every m ? n, f(m) e h'(m). We define 

'() = Gn+ 1 -n(f(n1),... , f(n1 + -1)) 

Then clearly f' e 'o-w n M, and thus there exists k e o) such that, for every 1 ? k, 
f'(l) c h(l). Therefore, 

G.+ i -n(f '(I)) = f(n1 + j), 

where j e n+ I - n1, and this implies that f(n1 + j) e h'(i), where i = n1 + j. Hence, 
for every i ? nk, f(i) e h'(i). D 
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924 HAIM JUDAH AND SAHARON SHELAH 

3.2. COROLLARY. Let M c N be models of ZFC*. Then the following are 
equivalent: 

(i) In N the union of all measure zero sets coded in M is a measure zero set. 
(ii) Theorem 3.1(ii). 
(iii) Theorem 3.1 (i). 
PROOF. (i) (ii). Some little changes in the proof of [RS, 1.1] give that by (i) there 

exists h E 0'([wo] <w') such that, for every n e w, Ih(n)I < n2 and for every f E '0w- n M 
there exists n e co such that, for every m ? n, f(m) E h(m). 

(ii) => (iii) is proved in 3.1. 
(iii) (i) was proved by Bartoszyniski; see [RS]. D 
3.3 DEFINITION. Let P be a forcing notion satisfying the countable chain 

condition. 
(a) We say that x E 'o- is N-big iff, for every h E '([ow] <w), if there exists k E co 

such that Ih(n)I < n" for every n E w,), then there exist infinitely many n E co such 
that x(n) 0 h(n). 

(b) We say that P is good iff, for every N-big x E Wa), if P E N then 

I[-P "x is N[Gp]-big". 

3.4. LEMMA. If P is good and I-p "Q is good", then P * Q is good. 
PROOF. Easy. L 
3.5. LEMMA. If Q = <Pi; Qj: i < 6> is a finite-support iterated forcing system and, 

for every i, I Ip"Qi is good", then P6 = HmQ is good. 
PROOF (induction on 6). If 6 = y + 1, then use the induction hypothesis and 

Lemma 3.4. If 6 = U 6 0, then let N -< <H(X), e, ?> be such that P6 e N and 

INII = o, and let x e WW be N-big. Let p e P6, h e NP6, and k e w be such that 

I[P5 "h e 0O([w] ̀0) and (Vn)(Ih(n)I < nk)", 

p Vf "(Vn > l)(x(n) e h(n))"- 

Let 6(*) = sup(b n N) and Pi = p r 6(*), and let a < 6(*) be such that Pi e Pa. Let 
Ga ' Pa be generic over V, Pi E Ga. By the induction hypothesis, x is N[Gj-big. 
Working in N[GJ], we can find <r": n < aw> with rn E P6/Ge, rn < r + and 

r. IF-"h(n) = a.", Pt < ro 

when <a,: n < > E N[Ga]. The function n -+ a, belongs to N[Ga] and, for every n, 
Ia.I < n". Therefore there exist infinitely many n E co such that x(n) s a.. So let n > 1 
satisfy this, and thus r. IF- "x(n) 0 h(n)". But r. and p are compatible, and this is a 
contradiction to the choice of p and 1. L 

3.6. THEOREM. If P is a a-centered partially ordered set, then P is good. 
PROOF. (a) P l= "c.c.c." clearly. 
(b) Suppose N -< <H(X), e, <x>, P e N, IINII = No, and let x e "co be N-big. Let 

h e NP be such that, for some fixed k e w, 

-p "h e '0([w]<'a) and (Vn)(Ih(n)I < n')". 

By hypothesis there exists <D.: n < w> such that P = Un D. and each Dn is directed. 
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THE KUNEN-MILLER CHART 925 

Now we define tn(r) and Tn(r) by 

tn(r) = {a E [wo]<w: (]q 2 r)(q IF-h(n) = a)}, Tn(r) = ntn(r). 

Therefore ITn(r)l < nk. Also, 

r1 < r2 tn(tj) ' tn(r2) A Tn(rj) c Tn(r2). 

We know that D, is directed. Therefore there exists r" l e D, satisfying 

(Vr e D1)(rn" < r =- Tn(r) = Tm(rnl)). 

Now we define h'(n) = Tn(rn" ). Clearly h' E N n r'([o]< ') and, for every n E co, 
Ih'(n)l < n". Therefore there exist infinitely many n e w) such that x(n) 0 h'(n). Let 
G c P be generic over V. In V[G] we need to prove that there exist infinitely many 
n ec w such that x(n) 0 h[G](n). If this fails, there exists r e P such that 

r 1"(-- 3 xn) (x(n) 0 h (n))". 

There exists m e w) such that 

r l"(Vn > m)(x(n) c- h(n))". 

There exists 1 e w) such that r e D,. Let n > m be such that x(n) 0 h'(n). This implies 
that there exist r" e P, r" > r', such that r" IF "x(n) 0 h(n)"; and this is a contradiction 
to the choice of r. Li 

3.7. THEOREM. If P is random real forcing, then P is good. 
PROOF. Suppose h, N, x e WW)' are as in the definition of good. We define 

Bnsi = Ili e h(n)II. 

Clearly Bnj e P, and an = {i: j4(Bnsi) ? 1/n}. Clearly 

aI ? h(n) 12 
2k+1I la n- I/ = 

The function n -+ an belongs to N, and therefore (3Tn)(x(n) 0 an). Let G c P be 
generic over V, and let p e P and 1 e w be such that 

p IF "(Vn > l)(x(n) e h(n))" 

There exists m e wo, 1 < m, such that ,(p) > 1/m and x(m) 0 am. Therefore 
/I(Bmx(m)) < 1/m, and this implies that 

P* =P-Bmx(m) eP and p< p*IH"x(m)0h(m)". 

This is a contradiction. This finishes the proof of the theorem. LI 
3.8. THEOREM. Let P be a good forcing notion, and let G c P be generic over V. 

Then V[G] 1 "the union of all measure zero sets added in V is not a measure 
zero set". 

PROOF. Suppose the conclusion of the theorem does not hold. Then by 
Corollary 3.2 there exists h: ) -+ [w-)] < such that 

(*) Ih(n)l < n for every n e w, 
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926 HAIM JUDAH AND SAHARON SHELAH 

for every x E WWto n V there exists k E co 
such that x(n) E h(n) for every n > k. 

Let h E VP be a name for such an h, and p E G forcing this. Let N -< <(H(x), e, ?x> 
be such that P E N, IINII = No, h E N, p E N, and x an N-big member of co@. There- 
fore x is N[G]-big, and this implies that (**) fails for this x. D1 

3.9. THEOREM. cons(ZF) => cons(ZFC + m B(m) + m U(m) + C(m) + m C(c)). 
PROOF. Let VP= "A(m) + -iCH", and let Q = <PK; Qa: a < 1),> be a finite- 

support iterated forcing such that 
(i) if a is odd, then loopy "Q,, is random real forcing", and 
(ii) if a is even,_then ky ;;"Qa is Hechler real forcing". 
Let P. =limQ. Then P., is good and if G c P. is generic over V, then 

V[G] I= "the union of every measure zero set 
(*) coded in V is not a measure zero set". 

3.10. Claim. V[G] I= m B(m) + m U(m) + C(m) + m C(c). 
Proof. (a) m U(m). The w)-random reals of the generic sequence witness this fact. 

(b) m B(m). As Cohen reals are added in every even stage, it is possible to show 

that /u(2'r n V[G [ a]) = 0 for every a < w)1; and by c.c.c. of P.1 we can prove that 

2@ = U 2` n V[G a]. 
a eto 1 

(c) m C(c). Each pair of Hechler reals add a meager set which contains the union 

of all meager sets coded in the ground model. We use the c.c.c. and the fact that 

every meager set is contained in a Borel meager set in order to show that the w1- 

sequence of meager sets obtained from the Hechler reals witnesses m C(c). 

(d) C(m). As in V # A(m), we can build <Ai: i < 2 e0> E V such that for every 

i < 2'0 we have pu(Ai) = 0, and for every measure zero set A E V there exists i < 2'0 

with A c Ai, and if i < j < 2'0 then Ai ' Aj. As P.,1 1 c.c.c., if V[G] kI m C(m) 

then there exists a measure zero set A E V[G] such that, for every i < 2t?, Ai ' A. 

But this implies that P., is not good, a contradiction. C] 
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