A CLOSED $(n+1)$-CONVEX SET IN R^{2} IS A UNION OF n^{6} CONVEX SETS

BY
M. A. PERLES AND S. SHELAH ${ }^{\dagger}$
Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT
It is shown that if a closed set S in the plane is $(n+1)$-convex, then it has no more than n^{4} holes. As a consequence, it can be covered by $\leqq n^{6}$ convex subsets. This is an improvement on the known bound of $2^{n} \cdot n^{3}$.

§0. Introduction

0.1 . Definitions.
S - a subset (usually closed) of \mathbf{R}^{d}.
ker S - the convex kernel of S, is the subset of all points of S in relation to which S is star-like. ker S is always convex.

When S is closed, $\operatorname{ker} S$ is also closed.
$G(S)$ - the graph of non-seeing associated with S, i.e. the graph whose vertices are the points of S, and whose edges connect exactly the pairs of points $a, b \in S$ s.t. $[a, b] \not \subset S$.

Visual Independency - a subset F of S is called visually independent if no two of its points see each other in S (that is, the interval connecting them is not contained in S).
$\alpha(S)$ - the degree of visual independence of S, is the supremum of cardinalities of the visually independent subsets of S. Caution: attention should be paid to whether the supremum is obtained or not in the case $\alpha(S)$ is an infinite cardinal. When $\alpha(S)=n<\mathcal{\aleph}_{0}$ we say that S is
($n+1$)-convex, as in any subset of S of size $n+1$ there are two points that see each other.

[^0]$\beta(S)$ - the chromatic number of $G(S)$.
$\gamma(S)$ - the minimal cardinal k such that S is the union of k convex sets.
Fact. For any $S, \alpha(S) \leqq \beta(S) \leqq \gamma(S)$.
Proof. Suppose there is a visually independent subset F of S of size m. Then its points are the vertices of a complete subgraph of size m of $G(S)$. Therefore the chromatic number of $G(S)$ is at least m. This establishes the first inequality. For the second, suppose that $\left\langle C_{i} \mid i<\lambda\right\rangle, \lambda$ a cardinal, is a sequence of convex sets, such that $\bigcup_{i<\lambda} C_{i}=S$. By induction define $B_{i}=\bigcup_{j<i} C_{j}$. Now colour each $B_{i+1}-B_{i}$ with $f_{i},\left\langle f_{i} \mid i<\lambda\right\rangle$ being a sequence of distinct colours. As each C_{i} is convex, this is a valid colouring.
We concern ourselves here with the question: how do restrictions on $\alpha(S)$ and $\beta(S)$ influence $\gamma(S)$, namely, what upper bounds in terms of $\alpha(S)$ and $\beta(S)$ can be put on $\gamma(S)$?

Early work in this direction is found in McKinney [3], who proved that for closed $S, \beta(S)=2$ implies $\gamma(S)=2$ and $\beta(S)=3$ implies $\gamma(S)=3$. The pentagonal star shows that $\alpha(S)=2$ does not imply $\gamma(S)=2$.

From now on, S is always a closed subset of the plane. Valentine proved in [4] that for such $S, \alpha(S)=2$ implies $\gamma(S) \leqq 3$. Further progress was made by Eggleston, who proved in [2] that for compact S a finite $\alpha(S)$ implies a finite $\gamma(S)$. The next progress was made by Breen and Kay in [1]. They set a bound of order $m^{3} \cdot 2^{m}$ on $\gamma(S)$ - for S having a finite $\alpha(S)=m$. This bound was reduced to $k \cdot 2^{m}$ (k a constant) by M. Perles.
The objective of this paper is to establish the bound of $\alpha(S)^{6}$ for closed S in \mathbf{R}^{2} with finite $\alpha(S)$.

Breen and Kay have managed to prove that $\gamma(S)=\alpha(S)$ for S which is supported by a line H, namely, is contained in the closed half-plane defined by H, and which is star-like in relation to a point p on H. So a bound of $2 \cdot \alpha(S)$ follows immediately for star-like S by slicing S through the point in relation to which it is star-like. By the proof of Breen and Kay, for a simply connected set S with $\alpha(S)=m, \gamma(S) \leqq m^{2}$. Further, when a set S has a finite number of holes, it can be sliced by a finite number of lines, one line through each hole, into a finite number of simply connected sets, the degree of visual independence of each being not greater than the original $\alpha(S)$. The exponential factor in the bound of Breen and Kay comes in when trying to estimate the number of holes in a set S with a finite $\alpha(S)$ in terms of $\alpha(S)$.

The bound of $\alpha(S)^{6}$ will follow from the proof of Breen and Kay once a bound of $\alpha(S)^{4}$ is obtained for the number of holes in S : Slice the set to m^{4}
simply connected subsets, and cover each by m^{2} convex subsets. A bound of m^{8} on the number of holes was obtained by S. Shelah. It was further reduced to m^{4} by M. Perles.
§1. A bound on the number of holes for a set S with $\alpha(S)$ finite
The fixed assumptions in this section are that S is a closed subset of the plane, and that $\alpha(S)=m$ is a natural number.
1.1. Definition. A hole in S is a bounded connected component of the complement of S.
1.2. Theorem. For S as above, namely a closed subset of the plane with $\alpha(S)=m$, the number of holes in S does not exceed m^{4}.

Proof. We begin by analysing the structure of $K:=\mathrm{cl}(\operatorname{conv}(H))$, where H is a hole of S. We first note that $K=\operatorname{cov}(\mathrm{cl}(H))$.

Next we have:
(i) $H \subset \operatorname{Int}(K)$,
(ii) every extremal point of K belongs to the boundary of H,
(iii) if a, b are extremal points of K such that $(a, b) \subset \operatorname{Int}(K)$, then (a, b) is not included in S.
1.3. Fact. (i) is obvious, and (ii) follows from what is noted above. To see (iii) assume that (a, b) is in $\operatorname{Int}(K)$, so dividing $\operatorname{Int}(K)$ into two open sets. As K is the convex hull of its extremal points, there must be an extremal point of K on each side of $[a, b]$ (otherwise K would be limited to one side). As from (ii) these points are on the boundary of H, there are two points of H "near" them, namely, also on different sides of $[a, b]$. As H is open and connected, it is arcwise connected, so an arc connecting these points must intersect (a, b) - necessarily at a point of H.

An immediate corollary from (iii) is that there are at most $2 \cdot m+1$ extremal points of K (where $m=\alpha(S)$), for otherwise arrange $2 \cdot m+2$ extremal points clockwise on $\operatorname{bd}(H)$ and get a contradiction to ($m+1$)-convexity of S by considering the set of points with even index: they do not see each other because of (iii). This corollary implies that K is a polygon.

Let $H_{1}, H_{2}, \ldots, H_{N}$ be a list of $N=m^{4}+1$ different holes of S. We intend to derive a contradiction to $(m+1)$-convexity. Our next step is dedicated to showing that we may assume that for two different holes from the list, H_{i} and H_{j}, the different respective polygons K_{i} and K_{j} have no vertex in common. So
for each i choose $z_{i} \in H_{i}$, and let ε be such that for all i the closed disk $B\left[z_{i}, 2 \cdot \varepsilon\right]$ is included in H_{i}. Consider $S^{*}=S+B[0, \varepsilon]$:
(i) S^{*} is closed.
(ii) $\alpha\left(S^{*}\right) \leqq \alpha(S)$.
(iii) S^{*} has among its holes N holes $H_{1}^{*}, \ldots, H_{N}^{*}$ of S^{*} with $z_{i} \in H_{i}^{*}$.
(iv) When $i<j, K_{i}^{*}$ and K_{j}^{*} have no common vertex.
(i) follows from S^{*}, being the addition of a closed and a compact set. To prove (ii) suppose $a_{i}^{*}=a_{i}+u_{i}, 0<i \leqq m+1$ are $m+1$ distinct points of S^{*} with $a_{i} \in S$ and $u_{i} \in B[0, \varepsilon]$. From (m+1)-convexity of S, without loss of generality assume a_{1} and a_{2} see each other in S. Since $\left[a_{1, a 2}\right] \subset S$, $\left[a_{1}, a_{2}\right]+B[0, \varepsilon] \subset S^{*}$. But $\left[a_{1}, a_{2}\right]+B[0, \varepsilon]$ is a convex set with a_{1}, a_{2} in it, so $\left[a_{1}^{*}, a_{2}^{*}\right] \subset S^{*}$. Now for (iii): from the choice of ε it is clear that z_{i} is not covered by S^{*}, and that the connected component of z_{i} in the complement of S^{*} is bounded. Let H_{i}^{*} be the connected component of z_{i} in the complement of S^{*}. Lastly, (iv) follows by combining the facts that the vertices of K_{i}^{*} are on the boundary of H_{i}^{*}, and that boundaries of different $H_{i}^{* ' s}$ are disjoint.
By replacing S with S^{*}, if necessary, we may assume that our N holes H_{i} are such that their respective K_{i} 's are polygons with no vertices in common, and so we do from now on.

Next, assume (by rotating the axes, if necessary) that for any two different vertices v, v^{\prime} from the set of all vertices of all K_{i}^{\prime} 's the segment $\left(v, v^{\prime}\right)$ is not parallel to the y-axis. So a single leftmost vertex of each K_{i} is well defined. Rearrange the holes by increasing the order of the x-coordinate of the leftmost vertex.
We summarize our assumptions:
(i) H_{0}, \ldots, H_{N} are $m^{4}+1$ holes of S;
(ii) $K_{i}=\operatorname{con}\left(\mathrm{cl}\left(H_{i}\right)\right)$ is a polygon;
(iii) $i<j$ implies K_{i} and K_{j} have no vertex in common;
(iv) each K_{i} has a leftmost vertex $z_{i}=\left\langle x_{i}, y_{i}\right\rangle$, and $i<j$ implies $x_{i}<x_{j}$;
(v) z_{i} belongs to the boundary of H_{i}.

We intend to associate with each hole H_{i} a ray R_{i} and two segments J_{i}^{+}, J_{i}^{-}. To do so we must first recall
1.4. Fact. If S is closed in the plane and $\alpha(S)<\infty$, then S is locally star-like in relation to every point of S.

Proof. Suppose the property fails for point w in S. That is, for each neighbourhood B of $w, S \cap B$ fails to be star-like in relation to w. Define by
induction a sequence $\left\langle x_{n} \mid n<\infty\right\rangle$ of visually independent points of S monotonically converging to w and such that no x_{n} see w, as follows. Let $x_{0} \in S$ be a point which does not see w. It must exist, or S would be star-like in relation to w. Suppose x_{0}, \ldots, x_{n-1} are defined. Because S is closed, there is an open neighbourhood B of w which all of the defined x 's do not see. Utilize the fact that $S \cap B$ is not star-like to choose $x_{n} \in S \cap B$ such that x_{n} does not see w. The sequence we have constructed contradicts the finiteness of $\alpha(S)$, thus proving our fact.

To simplify notation, let us describe the definition of the ray R and the segments J^{+}, J^{-}for one hole H from our list, where H has convex closure K and where $z_{0}=\left\langle x_{0}, y_{0}\right\rangle$ is a leftmost vertex of H. The definition is identical for all H_{i} 's.
Let $h>0$ be a small real number. We define the box

$$
P(h)=\left\{\langle x, y\rangle\left|x_{0}<x<x_{0}+h,\left|y-y_{0}\right|<h\right\} .\right.
$$

Choose h_{0} so small that $S \cap P(h)$ is star-like in relation to z_{0}. This is possible because of 1.4. For each $0<h<h_{0}$ define

$$
\Sigma(h)=\left\{\sigma \mid\left\langle x, y_{0}\right\rangle+h \cdot\langle 1, \sigma\rangle \in H\right\},
$$

where $\Sigma(h)$ is an open set in the line $L(h)=\left\{\langle x, y\rangle \mid x=x_{0}+h\right\}$. For $0<h \leqq h_{0}, \Sigma(h)$ is not empty, for if it were empty for some such h, the line $L(h)$ would divide H into two connected components, contrary to its definition. We also prove now

1.5. Claim. If $0<h^{\prime}<h \leqq h_{0}$ then $\Sigma\left(h^{\prime}\right) \subseteq \Sigma(h)$.

Proof. Let $\sigma \in \Sigma\left(h^{\prime}\right)$. This is to say that $z_{0}+h^{\prime} \cdot\langle 1, \sigma\rangle \in H$. We have to show that $\sigma \in \Sigma(h)$. If this were not the case, we would have the point $z_{0}+h \cdot\langle 1, \sigma\rangle \in S \cap P\left(h_{0}\right)$. But then from our choice of h_{0} (which assures that the $S \cap P\left(h_{0}\right)$ is star-like in relation to $\left.z_{0}\right)$ also $z_{0}+h^{\prime} \cdot\langle 1, \sigma\rangle$ would be in S-a contradiction. This proves the claim.

From 1.5 and the fact that each $\Sigma(h)$ is not empty, it follows by compactness that the following is not empty:

$$
\bigcap_{0<k \leq h_{0}} \operatorname{cl}(\Sigma(h)) .
$$

So let us choose a point σ_{0} from this non-vacuous intersection, and define the ray $R=\left\{z_{0}+t \cdot\left\langle 1, \sigma_{0}\right\rangle \mid t>0\right\}$. We also define $\sigma_{0}=\inf \left\{\Sigma\left(h_{0}\right)\right\}$ and $\sigma^{+}=$
$\sup \left\{\Sigma\left(h_{0}\right)\right\}$ and define the segments $J_{-}=\left\{z_{0}+h \cdot\left\langle 1, \sigma_{-}\right\rangle \mid 0<h \leqq h_{0}\right\}$ and $J^{+}=\left\{z_{0}+h \cdot\left\langle 1, \sigma^{+}\right\rangle \mid 0<h \leqq h_{0}\right\}$. Note that one of the segments J^{+}, J_{-}may lie on R.

We make the same definitions as above for each hole in our list, but, still for simplicity of notation, let us concentrate on a single hole H. We observe that since for every $0<h<h_{0}, \sigma_{0} \in \operatorname{cl}(\Sigma(h))$, either
(a) $(\sigma, \sigma+\varepsilon) \subseteq \Sigma(h)$ for some $\varepsilon>0$ or
(b) $(\sigma, \sigma-\varepsilon) \subseteq \Sigma(h)$ for some $\varepsilon>0$.

An argument similar to the argument we used in 1.5 shows
1.6. Fact. If (a) holds for ε and h and $h<h^{\prime} \leqq h_{0}$, then (a) holds for ε and h^{\prime}; the same for (b).

Now either (a) or (b) must hold for arbitrarily small h; therefore 1.6 gives
1.7. Fact. Either
(a) for all $0<h \leqq h_{0}$, (a) holds
or
(b) for all $0<h \leqq h_{0}$, (b) holds.

Let us denote by $R^{+}\left(R^{-}\right)$the open upper (lower) half-plane determined by R. A straightforward corollary of 1.7 is
1.8. Corollary. If $\left(a^{\prime}\right)$ holds, then whenever v is a point on R such that $x(v)<h_{0}$, there is an open neighborhood B of v such that $B \cap R^{+} \subseteq H$; the same with R^{-}if $\left(\mathrm{b}^{\prime}\right)$ holds.
1.8 intuitively says that there is an open stripe of H either right above or right below R near z_{0}.
We now define Q^{+}to be the upper right quarter-plane determined by R and $\left\{\langle x, y\rangle \mid x=x_{0}\right\}$ and Q^{-}to be the lower right quarter-plane, and we add R to the first in case (b^{\prime}) holds, and to the latter otherwise. More precisely, if (b^{\prime}) holds then

$$
Q^{+}=\left\{z_{0}+t \cdot\langle 1, \sigma\rangle \mid t>0, \sigma>\sigma_{0}\right\}
$$

and

$$
Q^{-}=\left\{z_{0}+t \cdot\langle 1, \sigma\rangle \mid t>0, \sigma \leqq \sigma_{0}\right\}
$$

and analogously when (a^{\prime}) holds. Now we can finally prove our main result.
1.9. Lemma. If $w \in S \cap Q^{+}$then there is an h_{w} such that the sub-segment $\left\{z_{0}+t \cdot\left\langle 1, \sigma_{-}\right\rangle \mid 0<t<h_{w}\right\} \subset J_{-}$is not seen by w, and if $w \in S \cup Q^{-}$then
there is an h_{w} such that the sub-segment $\left\{z-0+t \cdot\left\langle 1, \sigma^{+}\right\rangle \mid 0<t<h_{w}\right\}$ of J_{+} is not seen by w.

Fig. 1.

Proof. This is easy if one looks at Fig. 1. Suppose (a^{\prime}) holds. Let $w \in S \cap Q^{+}$. Denote by $u(h)$, for small enough h, the point on J_{-}with $x(u)=h$. By connecting w to $u(h)$ we intersect R at the unique point $v(h)$. Clearly, as h tends to 0 , also $x(v(h))$ tends to 0 . So set h small enough that
$x(v(h))$ is smaller than $h(0)$. By 1.8 the segment $\langle w, u(h)\rangle$ passes in an open neighbourhood of $v(h)$ which is in H, and, furthermore, the same is true for all $h^{\prime}<h$. Now let $w \in Q_{-}$. If w is not on R, the same argument works. If w is on R, find h so small that there is a point $v(h)$ on R with a neighborhood in H containing the segment $\langle v(h), v(h)+\langle 0, n)\rangle$. Take the part of J^{+}which this segment in H shades from w. The case when (b^{\prime}) holds is symmetric.

Recall now that we have the definitions and Lemma 1.9 for all the holes in our list. Look at the sequence of $m^{4}+1$ slopes $\left\langle\sigma_{i} \mid i<N\right\rangle$ of the rays $\left\langle R_{i} \mid i<N\right\rangle$. There is either a weakly increasing subsequence of length $m^{2}+1$ or a weakly decreasing such subsequence. Without loss of generality assume that $\left\langle\sigma_{0}, \ldots, \sigma_{M}\right\rangle$ is a weakly increasing sequence, where $M=m^{2}+1$. Observe now the set $\left\{Q_{i}^{+} \mid i<M\right\}$ partially ordered by inclusion. By Dillworth's theorem it has either an antichain of size $m+1$ or a chain of size $m+1$.

So let us first suppose that $Q_{0}^{+}, \ldots, Q_{m}^{+}$forms a chain with respect to inclusion. This means that if $i<j<m+1$ then $z_{j} \in Q_{i}^{+}$. We define now by induction on i a set of $m+1$ visually independent points of S such that each $x_{i} \in J_{-i}$ and $i<j$ implies x_{i} does not see z_{j}. By repeated use of the lemma choose $x_{0} \in J_{-0}$ which does not see any of $\left\{z_{j} \mid j>1\right\}$. Suppose that x_{i} were chosen for $i<n \leqq m$. There is a neighborhood of z_{n} which all $x_{i}, i<n$ do not see. Inside this neighourhood find a point $x_{n} \in J_{-n}$. So x_{0} satisfies both requirements. We may choose x_{m+1} to be z_{m+1}. The set we have obtained is the desired contradiction to $\alpha(S)=m$.

Next suppose that $Q_{0}^{+}, \ldots, Q_{m}^{+}$forms an antichain with respect to inclusion. This means evidently that $i<j$ implies $z_{j} \in Q_{-j}$. The same inductive process as above works also here. This completes our proof of the bound m^{4} on the number of holes of S.

References

1. M. Breen and D. C. Kay, General decomposition theorems for m-convex sets in the Plane, Isr. J. Math. 24 (1976), 217-233.
2. H. G. Eggleston, A condition for a compact plane set to be a union of finite many convex sets, Camb. Phil. Soc. 76 (1974), 61-66.
3. R. L. McKinney, On unions of two convex sets, Can. J. Math. 18 (1966), 883.
4. F. A. Valentine, A three point convexity property, Pacific J. Math. 7(2) (1957), 1227-1235.

[^0]: ${ }^{\dagger}$ The author would like to thank the BSF for partially supporting this research. Publication no. 354.

 Received November 13, 1989

