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A CLOSED (n + 1)-CONVEX SET IN R 2 

IS A UNION OF n 6 CONVEX SETS 

BY 
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ABSTRACT 

It is shown that i fa  closed set S in the plane is (n + l)-convex, then it has no 
more than n 4 holes. As a consequence, it can be covered by _-< n 6 convex 
subsets. This is an improvement on the known bound of 2" • n 3. 

§0. Introduction 

0.1 .  DEFINITIONS. 

S - -  a subset (usually closed) of  R a. 
ker S - -  the convex kernel of S, is the subset of  all points of  S in relation to 

which S is star-like, ker S is always convex. 

When S is closed, ker S is also closed. 

G(S) - -  the graph of  non-seeing associated with S, i.e. the graph whose 

vertices are the points of  S, and whose edges connect exactly the pairs of  points 

a, b ~ S  s.t. [a, b]~S .  
Visual Independency - -  a subset F of  S is called visually independent if  no 

two of  its points see each other in S (that is, the interval connecting them is not 

contained in S). 

a(S) - -  the degree of  visual independence of  S, is the supremum of 

cardinalities of  the visually independent subsets of  S. Caution: attention 

should be paid to whether the supremum is obtained or not in the case a(S) is 

an infinite cardinal. When a(S) = n < R0 we say that S is 

(n + 1)-convex, as in any subset of  S of  size n + 1 there are two points that 

see each other. 
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13(S) ~ the chromatic number of G(S). 
7(S) ~ the minimal cardinal k such that S is the union of  k convex sets. 

FACT. For any S, o~(S) <-_ fl(S) <= 7(S). 
PROOF. Suppose there is a visually independent subset F of S of size m. 

Then its points are the vertices of a complete subgraph of  size rn of G(S). 
Therefore the chromatic number of G (S) is at least m. This establishes the first 

inequality. For the second, suppose that (Ci I i < 2 ), 2 a cardinal, is a sequence 
of  convex sets, such that t,3 i<~ Ci = S. By induction define B; = Uj<~ Cj. Now 

colour each .Bi + t - B~ with fi, ( f~ I i < 2 ) being a sequence of distinct colours. 
As each C~ is convex, this is a valid colouring. 

We concern ourselves here with the question: how do restrictions on a(S) 

and fl(S) influence 7(S), namely, what upper bounds in terms ofa(S)  and fl(S) 
can be put on 7(S)? 

Early work in this direction is found in McKinney [3], who proved that for 

closed S, f l (S)= 2 implies 7 (S) - -2  and f l (S)= 3 implies 7 (S )=  3. The 
pentagonal star shows that a(S) = 2 does not imply ),(S) = 2. 

From now on, S is always a closed subset of  the plane. Valentine proved in 

[4] that for such S, a(S) = 2 implies 7(S) =< 3. Further progress was made by 

Eggleston, who proved in [2] that for compact S a finite a(S) implies a finite 
7(S). The next progress was made by Breen and Kay in [ 1 ]. They set a bound of 
order m3.2 m on 7(S) ~ for S having a finite a(S) = m. This bound was 
reduced to k .  2 m (k a constant) by M. Pedes. 

The objective of  this paper is to establish the bound o f a ( S )  6 for closed S in 

R 2 with finite a(S). 
Breen and Kay have managed to prove that 7(S)= a(S) for S which is 

supported by a line H, namely, is contained in the closed half-plane defined by 

H,  and which is star-like in relation to a point p on H. So a bound of 

2.o~(S) follows immediately for star-like S by slicing S through the point 

in relation to which it is star-like. By the proof of Breen and Kay, for a 

simply connected set S with or(S)= m, ~,(S) < m E. Further, when a set S 

has a finite number of holes, it can be sliced by a finite number of  lines, one 

line through each hole, into a finite number of simply connected sets, the 

degree of visual independence of each being not greater than the original 

a(S). The exponential factor in the bound of Breen and Kay comes in 

when trying to estimate the number of holes in a set S with a finite a(S) in 

terms of  a(S). 
The bound of a(S) 6 will follow from the proof of Breen and Kay once a 

bound of a(S) 4 is obtained for the number of  holes in S: Slice the set to m 4 
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simply connected subsets, and cover each by m: convex subsets. A bound of 
m s on the number of holes was obtained by S. Shelah. It was further reduced to 
m 4 by M. Perles. 

§1. A bound on the number of holes for a set S with a(S) finite 

The fixed assumptions in this section are that S is a closed subset of  the 
plane, and that a(S) = m is a natural number. 

1.1. D~FINITION. A hole in S is a bounded connected component of the 
complement of S. 

1.2. THEOREM. For S as above, namely a closed subset o f  the plane with 
a(S) = m, the number o f  holes in S does not exceed m 4. 

PROOF. We begin by analysing the structure of K: - -  el(cony(H)), where H 
is a hole of S. We first note that K = coy(el(H)). 

Next we have: 

(i) H c Int(K), 

(ii) every extremal point of  K belongs to the boundary of H, 

(iii) i r a ,  b are extremal points of  K such that (a, b) c Int(K), then (a, b) is 
not included in S. 

1.3. FACT. (i) is obvious, and (ii) follows from what is noted above. To 
see (iii) assume that (a, b) is in Int(K), so dividing Int(K) into two open sets. 
As K is the convex hull of  its extremal points, there must be an extremal point 
of  K on each side of [a, b ] (otherwise K would be limited to one side). As from 
(ii) these points are on the boundary of H, there are two points of  H "near" 

them, namely, also on different sides of [a, b]. As H is open and connected, 
it is arcwise connected, so an arc connecting these points must intersect (a, b) 

necessarily at a point of H. 

An immediate corollary from (iii) is that there are at most 2. m + 1 extremal 
points of  K (where m = a(S)), for otherwise arrange 2. m + 2 extremal points 

clockwise on bd(H) and get a contradiction to (m + l )- convexity of S by 
considering the set of  points with even index: they do not see each other 
because of (iii). This corollary implies that K is a polygon. 

Let//1,//2 . . . . .  Hs be a list o f N  = m 4 q- 1 different holes of  S. We intend to 

derive a contradiction to (m + 1)-convexity. Our next step is dedicated to 

showing that we may assume that for two different holes from the list, H,. and 

/-/j, the different respective polygons Ki and Kj have no vertex in common. So 
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for each i choose zi ~ H;, and let t be such that for all i the closed disk B [zi, 2. e ] 

is included in Hi. Consider S* = S + B[0, e]: 
(i) S* is dosed. 
(ii) a(S*) < a(S). 
(iii) S* has among its holes N holes H * , . . . ,  H* of S* with zi E H*. 

(iv) When i < j ,  K* and ~ have no common vertex. 
(i) follows from S*, being the addition of  a closed and a compact set. To 

prove (ii) suppose a* = ai + ui, 0 < i < m + 1 are m + 1 distinct points 
of  S* with aiES and uiEB[O, e]. From (m + 1)-convexity of  S, without 

loss of  generality assume a, and a2 see each other in S. Since [a,,a2] C S, 
[a, ,  a2] + B[0, e] C S*. But [al, a2] + B[0, e] is a convex set with a~, a2 in 
it, so [a*, a~'] c S*. Now for (iii): from the choice of e it is clear that z; 
is not covered by S*, and that the connected component of z; in the com- 

plement of S* is bounded. Let H* be the connected component of zi in the 

complement of S*. Lastly, (iv) follows by combining the facts that the vertices 

of  K* are on the boundary of H*, and that boundaries of different H*'s are 
disjoint. 

By replacing S with S*, if necessary, we may assume that our N holes Hi are 

such that their respective Ki's are polygons with no vertices in common, and so 
we do from now on. 

Next, assume (by rotating the axes, if necessary) that for any two different 
vertices v, v' from the set of  all vertices of all Ki's the segment (v, v') is not 
parallel to the y-axis. So a single leftmost vertex of  each Ki is well defined. 
Rearrange the holes by increasing the order of  the x-coordinate of  the left- 

most vertex. 
We summarize our assumptions: 
(i) Ho, . . . .  HN are m 4 + 1 holes of  S; 

(ii) Ki = con(d(Hi)) is a polygon; 
(iii) i < j  implies Ki and Kj have no vertex in common; 

(iv) each Ki has a leftmost vertex zi = (xi, Yi), and i < j  implies xi < x j ;  

(v) z; belongs to the boundary of Hi. 
We intend to associate with each hole Hi a ray R, and two segments Ji + , Ji- .  

To do so we must first recall 

1.4. FACT. If  S is closed in the plane and a ( S ) <  oo, then S is locally 

star-like in relation to every point of  S. 

PROOF. Suppose the property fails for point w in S. That is, for each 

neighbourhood B of w, S tq B fails to be star-like in relation to w. Define by 
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induction a sequence (xn ] n < 0o ) of  visually independent points of  S mono- 

tonically converging to w and such that no xn see w, as follows. Let x0 E S be a 

point which does not see w. It must exist, or S would be star-like in relation to 

w. Suppose x0 . . . .  , xn_ ~ are defined. Because S is dosed,  there is an open 

neighbourhood B of w which all of  the defined x 's  do not see. Utilize the fact 

that S n B is not star-like to choose x~ E S  O B such that x~ does not see w. The 

sequence we have constructed contradicts the finiteness of  a(S), thus proving 

our fact. 

To simplify notation, let us describe the definition of  the ray R and the 

segments J+ ,  J -  for one hole H from our list, where H has convex closure K 

and where z0 = (x0, Y0) is a leftmost vertex of  H.  The definition is identical for 

all H~'s. 
Let h > 0 be a small real number. We define the box 

P(h)= ( ( x , y )  [ x 0 < x  < x 0 +  h, lY-Y01 < h } .  

Choose h0 so small that S n P(h) is star-like in relation to z0. This is possible 
because of  1.4. For each 0 < h < h0 define 

E(h) = (tr [ (x, Y0) + h .  ( 1, a )  E H ) ,  

where E(h) is an open set in the line L(h)={(x,y)lX=Xo+h}. For 

0 < h _-< h0, E(h) is not empty, for if  it were empty for some such h, the line 

L(h) would divide H into two connected components, contrary to its defini- 
tion. We also prove now 

1.5. CLAIM. I f0  < h' < h < h0 then Y.(h') ___ Y-(h). 

PROOF. Let aE,Y_,(h'). This is to say that z 0 + h ' . ( 1 ,  a ) E H .  We have to 
show that trEE(h). If  this were not the case, we would have the point 

Zo + h.  ( 1, tr) E S O P(ho). But then from our choice of  ho (which assures that 

the S O P(ho) is star-like in relation to z0) also z0 + h ' .  ( 1, tr) would be in S - -  a 
contradiction. This proves the claim. 

From 1.5 and the fact that each E(h) is not empty, it follows by compactness 

that the following is not empty: 

n cl(E(h)). 
0 < h ~ h  0 

So let us choose a point ao from this non-vacuous intersection, and define the 

ray R ffi {Zo + t .  ( l, ao) [ t > 0}. We also define ao -- inf{Y_.(ho)} and a + 
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sup{Y-,(ho)} and  def ine the  segments  J_  = {50 + h .  ( 1, a _ )  I 0 < h < h0) and  

J+ -- {zo + h .  ( l, a +) I 0 < h < h0}. Note that one of the segments J+,  J_ may 
lie on R. 

We make the same definitions as above for each hole in our list, but, still for 
simplicity of  notation, let us concentrate on a single hole H. We observe that 
since for every 0 < h < h0, ao~d(E(h)) ,  either 

(a) (tr, a + e) _ E(h) for some e > 0 
o r  

(b) (tL a - e) _ E(h) for some e > 0. 
An argument similar to the argument we used in 1.5 shows 

1.6. FACT. If(a) holds for t and h and h < h '  -<_ ho, then (a) holds for e and 
h'; the same for (b). 

Now either (a) or (b) must  hold for arbitrarily small h; therefore 1.6 gives 

1.7. FACT. Either 
(a') for all 0 < h _-< h0, (a) holds 

o r  

(b') for all 0 < h < h0, (b) holds. 

Let us denote by R + (R -)  the open upper (lower) half-plane determined by 
R.  A straightforward corollary of 1.7 is 

1.8. COROLLARY. /f(a') holds, then whenever v is a point on R such that 

x (v)  < ho, there is an open neighborhood B o f  v such that B A R + C_ H; the same 

with R -  if(b') holds. 

1.8 intuitively says that there is an open stripe of H either right above or 
right below R near z0. 

We now define Q + to be the upper right quarter-plane determined by R and 
{(x, y)  I x = Xo} and Q -  to be the lower right quarter-plane, and we add R to 
the first in case (b') holds, and to the latter otherwise. More precisely, if (b') 

holds then 
Q+ = {Zo+ t - ( l ,  a)  l t  > 0 ,  a > a o }  

and 

Q -  = {Zo + t . (1 ,  a ) I  t >o ,  a_<- ao) 

and analogously when (a') holds. Now we can finally prove our main result. 

1.9. LEMMA. If  wES N Q+ then there is an hw such that the sub-segment 

{Zo + t . ( 1, a_ ) I 0 < t < hw } c J_ is not seen by w, and i f  w E S u Q -  then 
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there is an hw such that the sub-segment {z - 0 + t . ( 1, t7 + ) I 0 < t < hw } o f  J+ 
is not seen by w. 

Zo = (Xo, Yo) 

J_ 

H 

Q÷ 

R 

Fig. 1. 

h0 

Q_ 

PROOF. This is easy if one looks at Fig. 1. Suppose (a') holds. Let 

w E S  n Q+. Denote by u(h), for small enough h, the point on J_ with 

x ( u )  = h. By connecting w to u(h) we intersect R at the unique point v(h). 

Clearly, as h tends to 0, also x(v(h))  tends to 0. So set h small enough that 
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x ( v (h ) )  is smaller than h(0). By 1.8 the segment (w, u(h) )  passes in an open 

neighbourhood of  v(h) which is in H,  and, furthermore, the same is true for all 

h'  < h. Now let w ~ Q_. If  w is not on R,  the same argument works. If  w is on 

R,  find h so small that there is a point v(h) on R with a neighborhood in H 

containing the segment (v(h),  v(h) + (0, n )) .  Take the part o f J  ÷ which this 

segment in H shades from w. The case when (b') holds is symmetric. 
Recall now that we have the definitions and Lemma 1.9 for all the holes in 

our list. Look at the sequence of  m 4 + 1 slopes (tri [ i < N)  of  the rays 

(R~ [ i < N).  There is either a weakly increasing subsequence of  length m 2 + 1 

or a weakly decreasing such subsequence. Without loss of  generality assume 

that (fro . . . .  , aM) is a weakly increasing sequence, where M = m: + 1. Ob- 

serve now the set {Qi + [ i < M} partially ordered by inclusion. By Dillworth's 

theorem it has either an antichain of  size m + 1 or a chain of  size m + 1. 

So let us first suppose that Q0 + . . . . .  Qm + forms a chain with respect to 

inclusion. This means that if i < j  < rn + 1 then zj ~ Q~+. We define now by 

induction on i a set of m + 1 visually independent points of  S such that each 

x~ ~J_~ and i < j  implies x~ does not see zj. By repeated use of  the lemma 

choose XoEJ_o which does not see any of  {zj lJ > 1}. Suppose that x~ were 
chosen for i < n < m. There is a neighborhood o f z ,  which all xi, i < n do not 

see. Inside this neighourhood find a point x ,  E J _ , .  So x0 satisfies both 
requirements. We may choose Xm + ~ to be z,, + t. The set we have obtained is the 

desired contradiction to a(S)  = m.  
Next suppose that Q0 + . . . . .  Q,,+ forms an antichain with respect to inclusion. 

This means evidently that i < j  implies zj E Q_j. The same inductive process 

as above works also here. This completes our proof of  the bound m 4 o n  the 

number of  holes of  S. 
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