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Annals of Mathematics, 127 (1988), 1-47 

Martin's Maximum, saturated ideals, and 
non-regular ultrafilters. Part I 

By M. FOREMAN+, M. MAGIDOR* AND S. SHELAHt 

Abstract 

The authors present a provably strongest form of Martin's axiom, called 
Martin's Maximum, and show its consistency. From it we derive the solutions to 
several classical problems in set theory, showing that 2'o= 82, the non-sta- 
tionary ideal on co1 is 82-saturated, and several other results. We show as a 
consequence of our techniques that there can be no "nice" inner model of a 
supercompact cardinal. We generalize our results to cardinals above oi to show, 
for example, the consistency of the statement "The non-stationary ideal on every 
regular cardinal K iS precipitous." 

In this paper we present a provably maximal form of Martin's axiom 
([M-So]) which we call Martin's Maximum. We show that it settles several 
classical questions in set theory, including the value of the continuum, Friedman's 
problem and the saturation of the non-stationary ideal on coi. We show that 
Martin's Maximum is consistent relative to the existence of a supercompact 
cardinal. 

It is well-known ([So2]) that saturated ideals give rise to generic elementary 
embeddings. It was a widely held belief that the generic embedding had roughly 
the same consistency strength as the analogous non-generic embedding ([Ki]). 
However the generic embedding associated with an 8 2-saturated ideal on o1 is 
analogous to an almost-huge embedding, which is much stronger than a super- 
compact cardinal. Thus, the results in this paper contradict the common ideol- 
ogy. 

Using technology previously developed by Shelah, we were able to force 
over a model with a supercompact cardinal K with a K-c.c., (wl, 0x)-distributive 
partial ordering to make the non-stationary ideal on co restricted to a particular 
stationary set be 8,2-saturated. 

IThe first author would like to thank the NSF for partial support. 
*The second author would like to thank the US-Israel Binational Science Foundation for its 

partial support under grant 2691/82. 
IThe third author would like to thank the US-Israel Binational Science Foundation for its 

partial support under grant 2541/81. 
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2 M. FOREMAN, M. MAGIDOR, S. SHELAH 

A major program in set theory initiated by Solovay, Mitchell and others was 
to construct canonical models of "ZFC + there is a supercompact cardinal". 
The models were supposed to have some of the crystalline structure of L. (This is 
the so-called inner-model problem.) The results in the previous paragraph 
drastically limit the possibilities of such an inner model. For example, they show 
that the canonical models cannot have the same K 1, are generic extensions of one 
another, and so forth. 

Similar techniques show that if there is a supercompact cardinal, then the 
theory of L(R) does not change under set-generic forcing extensions. Woodin 
and Shelah have since strengthened this theorem a great deal by reducing the 
large cardinal hypothesis required. 

We also show the consistency of "for all regular cardinals a, the non-sta- 
tionary ideal on [i is precipitous" from a supercompact cardinal. Further, we 
show that relative to a supercompact cardinal, Chang's conjecture is equivalent 
to a generic version of Chang's conjecture. From this we deduce the consistency 
of a generic huge embedding from a supercompact cardinal. (See [F2] for 
terminology.) 

In Part II of this paper we will show that one can force over a model of 
"ZFC + there is a huge cardinal" to get fully non-regular ultrafilters on any 
succesor cardinal i. We also construct ultrafilters giving rise to ultrapowers of 
small cardinality. 

A summary of our results is as follows: 
In Section 1, we present the axiom we call Martin's Maximum (MM) and 

show that it is a provably maximal version of Martin's axiom. We review the 
technology of semi-proper forcing developed by Shelah ([Shl]) which is in- 
timately connected with the work in this paper. We then show that Martin's 
Maximum is consistent with ZFC relative to a supercompact cardinal. Finally we 
show that MM implies various versions of Martin's Axiom discussed elsewhere in 
the literature. We also introduce the principle (t). 

In Section 2 we deduce various consequences of MM. We first show 
Friedman's problem (every stationary subset of a regular cardinal K > W2 con- 
sisting of points of cofinality X contains a closed set of order type C01). Using the 
same technique, we deduce 28o = 28' = 82 and various other cardinal arith- 
metic consequences. We then show that under MM the non-stationary ideal on 
co1 is K 2-saturated and that the saturation of the non-stationary ideal is preserved 
by c.c.c. forcing. Along the way we show the crucial combinatorial tool that MM 
implies: that every stationary subset of an [H(X)]w reflects to a set of size t1. 
This implies the principle (f). We also obtain partial information about the 
quotient algebra 9(c1)/NSl. In particular we show that any new real in the 
forcing extension is (in a quite strong sense) a minimal degree. 
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MARTIN S MAXIMUM, PART I 3 

Section 3 is a short section mostly devoted to a brief explication of versions 
of MA (Martin's Axiom) consistent with CH and results of Shelah and Woodin 
showing that there can be no nice inner model of a supercompact cardinal. We 
also show a joint result of the authors that weak versions of MA consistent with 
CH imply that the non-stationary ideal on co is presaturated. 

In Section 4, we generalize our results to cardinals above co, to show that 
for any regular A, the non-stationary ideal on [ can be precipitous. Further, we 
get higher order ideals to be precipitous on sets such as [X] <K and [X] K. These 
ideals are versions of the non-stationary ideal. We show that if we have Chang's 
conjecture at a regular cardinal K, then by collapsing a supercompact cardinal to 
K + we can make the Chang's-conjecture ideal precipitous. Finally, we show that 
if 2K = K+ and K'S = K, then there is a K-closed, K+-C.C. forcing that makes any 
normal precipitous ideal on K in V non-precipitous. 

We now want to discuss the notion of closed and unbounded we use. 
On [X] <K there are two different natural notions of closed and unbounded, 

one stronger than the other. 
The weaker notion is the official one used in this paper, though all of 

the proofs work with the stronger notion. Recently, Woodin has exploited the 
stronger notion to great advantage; so we spell out the differences in the 
following definitions and lemma. 

Definition. Let K and X be regular cardinals. Let [X] <K = { XC X: lxi < K) 

and [X]K = {X C X: lxi = K). 
If X c [X] <K then X is strongly closed and unbounded if and only if there 

is a structure s= KX, J;)i=, where f: <'@ X and X = (N -< ./: NI < K). 

Note that any strongly closed and unbounded set contains countable subsets 
of X. 

X is closed and unbounded if and only if: 
i) For all y e [X] <K there is a z e X such that y c z. 
ii) Whenever (ya: a < /) C X where /3 < K and a < a' implies ya C ya 

then Ua < Aya E X. ((ii) is equivalent to X being closed under unions of directed 
systems.) 

Note that if K > O1 there are closed and unbounded sets containing no 
countable sets. Further any strongly closed and unbounded set is closed and 
unbounded. 

The collection of strongly closed and unbounded sets generates a countably 
complete, normal and fine filter, 3 and the closed unbounded sets gene- 
rate a < K-complete normal and fine filter Y. The next lemma, essentially 
due to Kueker, [Ku], shows that Y is the filter generated by adding 
{y [X] <K: y nK E K} to !. 
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4 M. FOREMAN, M. MAGIDOR, S. SHELAH 

LEMMA0. Let I < K<X be regular cardinals, .9/,(X, [), J/(K, [) be the 
filters of strongly closed and unbounded sets on [X] <' and [K] <I respectively. 
Let Yv(X, [i) and Y(K, A) be the corresponding filters of closed and unbounded 
sets. Then: 

a) Y( X, [i) is the filter generated by 

s(X, [u) u {{z E []< I: z n L E M}} 

b) If C c [X] <' is strongly closed and unbounded then { y n K: y E C ) is 
a strongly closed and unbounded subset of [K] <". 

c) If C c [X] < / is closed and unbounded then { y n K: yE C ) contains a 
closed and unbounded set in [K] <y. 

d) If C C [K] <I is closed and unbounded (resp. strongly closed and 
unbounded) then {z E [X] <': z n K E C) is closed and unbounded (resp. 
strongly closed and unbounded). 

Proof. a) Let C c [X] <'I be closed and unbounded. We must find 

Kf]: [ "] -* XI i E c o) such that { y E [X] <': y is closed under each f and 
y f _ e c C. Let Y = (H(X), e, C, A, {[}) where A is a well ordering of 
H(X). Let N -< Y be an elementary substructure of Y of cardinality < [ such 
that N n [i E [. 

For ai E [N n X] <' , we define by induction on I an Ms E N n C so that 
a CM. andif a':Df, MaD M,3. Then, since MaE N, IMsIE Nso Ma cN. 
The collection { Ma.: a E [N n A] ' } is a directed system, hence N n A = 
UMS EC. 

Suppose we have defined Ma for I = n. If IIBI = n + 1 then choose 
M3 cE N n C such that for all subsets if C a =n, 3U M c My. We can 
choose such an M/3 since Ua - Ma E- N and N = "C is unbounded". Clearly 
these Ma's are as desired. 

Let (gi: i E a) be Skolem functions for Y that are closed under composi- 
tion. Let f: [X] <' -* X be the restriction of gi to domains and ranges in X. 

If y E [X] <I, y fn [ E [ and y is closed under each f then there is an 
N -< Y such that N n X = y; hence y c C. 

b) Let (f : i E a) be such that if y E [X] <'I and y is closed under 

(fi: i E a), then y E C. Without loss of generality we may assume that the fJ's 
are closed under composition. Let (gi: i E a) be the result of restricting the 
domains and ranges of each fi to K. If z E [K] <I and z is closed under 
the gi's then there is a y E [X] </ such that y is closed under the f 's and 
y n K = z. Further, if y is closed under the ji's then y n K is closed under the 

gi's. Thus {z E [K]<" there is a y c C, z = y n K) is exactly the set of 
Z E [K] <I closed under {gi: i c ao}. 
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MARTIN S MAXIMUM, PART I 5 

c) By a) we may assume that C is of the form {ty E [A]d: y fl E- e and 
y is closed under ( f: i E d)I} for some sequence of functions ( fi: i E co). By b) 
there are functions (gi: i E a) such that for all z E [K] '</, z = y fl K 

for some y closed under the f 's if and only if z is closed under the g i's. For 
y E [X<I/, y n i E [ if and only if y n K fl C e t. Hence {y nf K: y E C) = 

{ Z: z E [K] <I and z n [ E A, and z is closed under (gi: i E a)). 
d) is immediate. l 

We note that if [ is w, Lemma 0 implies that there is no difference 
between FA(X, w1) and YF(X, wlo). 

Notation. We now discuss the notation and conventions we shall use 
throughout this paper. 

We will write IXI for the cardinality of a set X and o.t. (X) for the order 
type of ( X, E). 

Forcing will be used throughout this paper and we will frequently use both 
Boolean algebra and partial ordering notation. We will use 11 IIi for the Boolean 
value taken in a particular Boolean algebra 2 and drop the 2 if it is clear from 
context. When we use the symbol " > " it will be in the Boolean algebra 
convention; i.e. p < q means that p is stronger than q. Similarly, when we write 
that p is below q we will mean that p is stronger than q. 

We will write that II 11_ = 1 if and only if 4 is true in any forcing extension 
by A. In an attempt to avoid culturally induced confusion of p ? q vs. p < q, 
in this paper we have followed the convention established by the New England 
Set Theory Seminar of using p 1- q as an abbreviation for "p forces q 
to be in the canonical generic object." Solovay has pointed out that the relation 
" p 1- q E G" is not the same as the partial order < p for non-separative 
partial orderings P. We hereby warn the reader that confusion may arise as a 
result of this. 

In a similar abuse of notation we write pI q to mean that p decides the 
Boolean value II q E GlI where G is the canonical term for a generic object. In 
general G will be the generic object. If 4 is an n-ary formula and T ... Tn are 
terms we write PIIk(T1 ... Tn) to mean p 1i- 4(T1 ... Tn) or p 1- f( 1 *... Tn) 

We will let M(P) be the complete Boolean algebra in which the separative 
quotient of P is dense. 

We will also abuse notation by using VP to stand both for the generic 
extension of V by a generic object G c P and for the Boolean-valued universe. 
Similarly we will write that V P l= for II II _(P) = 1. A P-term (or P-name) will 
simply be an element of VP. If Q E VP is a P-term for a partial ordering, a 
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6 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Q-term in VP is a P-term X such that JITIV[G] is a Q-termI I(P) = 1. We will 
occasionally explicitly work with terms, in which case we will attempt to use the 
system of dots and checks. For example a might be a P-term for an ordinal, 
whereas if a is an ordinal in V we will write a for its canonical term in VP. 

We will use quotation marks around certain statements following l= or 1- 
when they occur in prose to delineate the extent of the symbol l= or v-. We 
will also use quotation marks to specify classes defined by the mathematical 
representation of the statement in quotes. 

We will write i: Q -* P if i is a monomorphism of Q into P such that any 
maximal antichain in Q is sent to a maximal antichain in P. Equivalently, i can 
be extended to a complete embedding i: 2(Q) -* 2(P). If i: Q - P and 
G c Q is generic we can form the Boolean algebra 2(P)/G in V[G] in the 
standard way. Then forcing with 2(P)/G over V [G] yields an ultrafilter 
H C 2(P) which is generic over V. We will let P/Q be the Q-term for the 
Boolean algebra 2(P)/G. We will use * for the two step iteration. Thus 
2(P) - (Q*PIQ) 

In doing Boolean algebra computations in 2 we will use E and V for the 
sum or join of elements of 2; similarly we will use H1 or A for the meet of 
elements of 2. 

We will use the notation Pa for an a-stage iteration. If we have defined an 
iteration (P ~~~~~~~lim)im(P:P<a iteration KPq: /3 < a) we will write -P KP6: /3 < a) and i KP: /3 < a) 

for the direct and inverse limits of (P6: ,B < a) respectively. An iteration is 
determined by its "factors" and the type of supports allowed in the iteration. If 
p is a condition in an iteration, then the support of p, which we write supp(p), 
is the set of /3 in which p gives non-trivial information in the ,Bth factor. We can 
represent a condition p by p = Kp(f,): /3 e supp(p)). (See [Bi] for a very good 
exposition of iterated forcing.) 

We will say that a partial ordering P is (K, oo)-distributive whenever 
(Da: a < /3) is a collection of < K-many dense open sets in P, nfa<,Da is dense 
and open. (This is equivalent to P not adding new < K-sequences.) An exception 
to this is that we may write (w, oo)-distributive to mean (wl, oo)-distributive. 

There are several partial orderings we will use quite frequently. We will 
write COI(K, X),COl(K, < X),COl(K, < X) for the Levy collapses of X, every- 
thing less than or equal to X and everything less than X to have cardinality K 

respectively. If X is an arbitrary set, we will write COl(K, X) for the Levy 
collapse of X to have cardinality K. 

We will typically use X for a large enough generic regular cardinal. We will 
write X > K for a regular X at least two power set operations greater than K, i.e. 
X > 22K. In contexts where we use it, it will not matter exactly what X is as long 
as it is sufficiently large and regular. We will write H(X) for the collection of sets 
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MARTIN S MAXIMUM, PART I 7 

hereditarily of power less than X. We will write [H(X)] <K and [H(X)]K to mean 
all subsets of H(X) of power < K and power K respectively. We will use A as an 
arbitrary well-ordering of H( X) in order type IH( X) . The sets of set-theoretical 
rank less than K will be called RIK. We will use OR for the class of ordinals and 
cof(-y) for the class of ordinals of cofinality y. Thus K n cof(-y) is the set of 
ordinals less than K of cofinality y. 

Cardinal exponentiation will be denoted in the usual way; i.e. Kim= 

IfIf X -* K}I. 
We will often be interested in ideals. All ideals will be proper and countably 

complete and contain all finite ordinals. If f is an ideal on a set z, then NA(z)/f 
is the Boolean algebra constructed by taking _,)( (z) modulo f. If A E ?A)( (z), A is 
S-positive if and only if A .f. We let .f [ A be the ideal generated by 
f u { A }. The set of >-positive sets will be written f+. The filter dual to f will 
be called J. If A is positive then [A] A is the equivalence class of A modulo f. 

If z= K forsomeset K and (Aa: a< K) C (z) then Aa = (/3: 
forA a < f, I3EAa} andV a<,cAa = (/3: there is an a <, / E Aa}. If 
Z =[]K or [] <K and (Aa: a < X) c NZ)(z) then Aa<,Aa={x cz: for all 
a E x, x Aa} and Va< Aa = (x c z: there is an a c x, x cAa}, 

We will be particularly interested in the non-stationary ideals on various sets 
z. A set x C z is non-stationary if and only if it is in the dual to the closed 
unbounded filter. We refer the reader to earlier remarks about the closed 
unbounded filter on various sets. We will write NSz for the non-stationary ideal 
on Z. 

An ideal f on [K]i will be said to concentrate on [K'] ' if and only if 
{X E [K]X: X nK' has cardinality X'} E S. 

If _/ and Y are structures we will write _s -< Y if _/ is an elementary 
substructure of Y. We will write (K, X) -* (K', X') if and only if whenever 

= (K; X, f)iE , is a structure there is an elementary substructure -/-< Y such 
that I-1V = K' and 1In XI = X'. (This is Chang's conjecture.) If _V is a 
structure with Skolem functions (or a well-ordering) and X c _V then Sk(X) is 
the Skolem hull of X in SV. 

If q E (K) < then 1(nq) is the length of q. We will use for concatenation, 
so that Ua will be q concantenated with a. 

If x c OR then sup x will be the proper supremum of X (i.e. sup X = 
U{y + 1: y E X}). 

We will use the notation Proposition (T), where T is a theory, to mean that 
the proposition is proved in the theory T. 

We will write j: V -- M for an elementary embedding j from V into a 
transitive class M. We will write crit(j) for the critical point of j, i.e. the first 
ordinal moved by j. 
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8 M. FOREMAN, M. MAGIDOR, S. SHELAH 

1. The consistency proof 

In this section we work towards proving the consistency of Martin's 
Maximum, a maximal strengthening of Martin's Axiom [M-So]. 

Definition. If Q is a partial ordering, Q preserves stationary subsets of o, if 
and only if there is a q e Q such that whenever S c ()1, S E V is stationary, 
then JIS is stationaryllp ? q. 

If 9 = (D,,a: a < w1) is a sequence of dense sets in Q and G c Q is a filter, 
we say that G is generic for ?9= (D,,: a < w1) if and only if for each a, 
GnDe# 0. 

Martin's Maximum is the following statement: 
If P is a partial ordering that preserves stationary subsets of W1 and 
9 = ( D,,: a < 1) is a sequence of dense sets in P then there is a filter 
G c P. such that G is generic for 9. 

In general, if F is a class of partial orderings we will say that MA holds for 
F if and only if: 

For all Q E IF and all sequences (D,,: a < co,) of dense sets in (, there is a 
filter G C Q such that G is generic for 9. 

We point out that IF the class of Q such that Q preserves stationary 
subsets of co" is a maximal class for which MA can hold. 

PROPOSITION 1. Suppose that Q does not preserve stationary subsets of W1, 
then there is a sequence of sets -9= (Da: a < w 1) such that there is no 
?-igeneric filter G C Q. 

Proof Since Q does not preserve stationary subsets of w, there is a term 
S E VQ such that IIS E V and S is stationary in Vii = 1 and a term C e VQ 
such that IIC is club in co1 and C n S = 011 = 1. IV 

Let Do = {q E Q: for some S E V, S stationary, q I- S = S}. Let Da = 
{q E Q: qII"Ia E C" and if q I-"la 4 C" then there is a y < a, q I1- C n 
(y, a) = 0 and for some / ? a, q IF-"/3 e C"). 

For each a, choose a term for an c-sequence of ordinals (an: n E co) such 
that 

11if a E C then (an: Eco ) _ C and sup(an: n Eco) = a =1. 
Let Da = {q E Q: either q Il-a i C or q IF- a cC and for some /3- e 
q IF ?ln & B = 

Suppose G c Q is generic for (D,: a < col) U (Dn: a < co1, n e i )gh 
Let C = { a: there is a q c G such that q 1F- a E C). Then C is closed since: if 
(an: n E of C C is an increasing sequence with supremum a and a i C then 
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MARTIN'S MAXIMUM, PART I 9 

for some q E Da, n G, q F- a i C. Hence there is a y < a such that q 1F- C n 
(y, a) = 0. Take some an > y and a y E G such that r 1- a. E C. Then r and 
q are incompatible. This is a contradiction. Hence C is closed. 

Let T be such that for some q e G, q 1F- S = T. By assumption T is 
stationary in V. But T n C = 0 and C is closed and unbounded. This is a 
contradiction. 

We mention a slight strengthening of MA for IF. 
MA + for F is the statement: Whenever QE e F is a partial ordering, 
(Doff a < A)) is a sequence of dense sets in Q and S E VQ is a term for a 

stationary subset of wi in VQ. then there is a s-generic filter G c Q such that 
SG = (a: there is a p E G, p 1- a E S) is stationary in V. Baumgartner has 
shown that for F = "the class of c.c.c. partial orderings" (ordinary MA), MA+ is 
equivalent to MA. 

We now develop the tools to show the consistency of MA for F for various 
F 's. We need the notion of a semi-proper partial ordering, which is due to 
Shelah. (See [Shl].) 

Definition. A partial ordering P is 81-semi-proper if and only if there is a 
club set C c [H(22(P ))]) such that for all N E C and all p E N n P there is a 
q IF- p q 1- (for all X Ee N) (if T is a P-term for an element of 1 then 
TrV[G] E N). Here TV[G] is the realization of T in V[G] where G is any generic 
object with q E G. 

Definition. A q as above will be called a semi-master condition for N 
and P. 

Note. A small amount of reflection will show that 221 | can be replaced by 
any sufficiently large regular cardinal X and yield an equivalent definition. 

For the readers' edification we reproduce a theorem of Shelah [Shl] that 
motivates X -semi-properness. 

PROPOSITION 2. Suppose P is 8 -semi-proper; then P preserves stationary 
subsets of co (in particular cov = cov). 

Proof. Let S be a stationary subset of w,, S E V and CE VP be a term for 
a club subset of co and pE P. Let N < (H(221 IP) ,, A ,C, S, {P}) be a 
countable elementary substructure of H(221P1) (where A is a well-ordering of 
H(221p1)) such that N has a semi-master condition, q 1- p, and N n wi Ee S. 

Let 8 = N n o1. For each P < S, there is a term r Ef N such that 
IJTI Ee C and 43 > II = 1. For each such term 43, q D-1 "T E 8". Hence 
q I-"C is unbounded in 8" and hence q I-"8 E C". However, 8 E S and thus 
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10 M. FOREMAN, M. MAGIDOR, S. SHELAH 

q 1-"S E"e C n S. so C n S # 0". We have shown that every closed unbounded 
set in VQ has non-empty intersection with S; hence VQ l= S is stationary. M 

This argument is the prototype for showing that a particular partial ordering 
P preserves stationary subsets of wo. 

A natural question arises: Can "preserving stationary substes of c'" be 
equivalent to "1 t l-semi-proper"? 

As we shall see, the two properties are inequivalent in general (e.g. in L). 
However, the main advance in this paper is the following lemma: 

LEMMA 3. Suppose K is a supercompact cardinal and P is an t l-semi-proper 
partial ordering such that 

a) VP K="i = 2" and P is K c.c. 
b) For each y E OR there is a y '-supercompact embedding j: V -* M such 

that j(P) = P*Col(o1, < -y)*R and R is 1-semi-proper in MP *Col(c, <?) 

Then in VP: For all partial orders Q, 

(f) Q is 8 1-semi-proper if and only if Q preserves stationary subsets of co 

We postpone the proof of this lemma to prove: 

PROPOSITION 4. Suppose A c [H(X)] w is stationary; then in VCol(w1, IH(X)I) 

A is stationary in [H(X)v] w. (In fact A is preserved by any countably closed 
forcing.) 

Proof. Let X' ? 221H(") be a regular cardinal, p E Col(col, IH(X)I) and C 
be a term for a closed unbounded set in [H(X)v] . 

Let N < (H(X'), c, A , C, FP), ACol(o1, IH(X)I)) be a countable elemen- 
tary substructure of H(X') such that N rn H(X) E A. Let 8 = N rn w. 

Starting below p we build a sequence of conditions (pa: n E of C N. such 
that n r?1 1F- p, and for each dense open set D C Col(c15, IH(X)I) if D E N then 
there is an n, Pn E D. This is easy since N is countable. Since Col(o15, IH(X)I) is 
countably closed there is a q 1+ pn for each n E A. Clearly q EC n { D: D c 
Col(o1, IH(X)I) and D is dense and open and D E N). Hence q: S > 
N n H(X) is surjective. Further, since 11C is club in [H(X)v] jl = 1, 

q 1- "U(C n N) 2 N H(X)V " 

and so q 1F- N n H(X)v c C. But N n H(X)v E A, so that 

q 1[- CrnA 0. 

Thus given any p and any term C for a club set in [H(X)v]( there is a q 1F- p 
such that q 1F- C n A # 0. Hence A is stationary in VCol(wl, IH(X)I). , 
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MARTIN'S MAXIMUM, PART I 11 

We will have many arguments involving sequences such as the ( pn: n E co) 
as in the last proof. We give such a sequence a name: Let P be a partial ordering, 
and N -< (H(X), e,P, A ...). A sequence of conditions, (Pa: n X -w) CNnP 
such that pn 1 1+ pn and for each dense open set D C PI D E N there is an n, 
such that P, E D, will be called a generic sequence for N. 

Note that generic sequences always exist (although info E (.pn may be zero in 
B(P)). 

We sum up the arguments in Proposition 2 and Proposition 4 in the 
following definition and lemma. 

Definition. Suppose N -< H(X) is countable and (pa: n E a) is a generic 
sequence for N. Then p is a strong master condition for N if for all n, p F- p,. 

LEMMA *. Let P be a partial ordering and X = 221P 1, N -< H(X), INI = c. 
Then 

a) If p is a strong master condition for N then p is a semi-master condition 
for N. 

b) If C E VP is a term for a club subset of co, and C= N and p is a 
semi-master condition for N then p IF- N n 1 c C. 

c) If S is a stationary subset of o , such that for all q E P and all C E H(X) 
there is p 1- q and an N -< H(X), INI = co, C E N. and N n w E S such that p 
is a semi-master condition for N then S is stationary in VP. 

Proof This is as in Propositions 2 and 4. 

We now return to the proof of Lemma 3: Suppose that QE c VP is a partial 
ordering such that Q preserves stationary subsets of co, and Q is not t -semi- 
proper. Let X = 222 . Since Q is not s -semi-proper there is a stationary set 
A c [H(X)]'(A such that for all N e A there is a p E N n Q such that there is no 
semi-master condition q for N with q 1- p. By the normality of the non-sta- 
tionary ideal on [H(X)]w there is a fixed p such that on a stationary set 
A c [H(X)] w, for all N E A there is no semi-master-condition q for N such that 
q 1- p. By modifying Q we can assume that p is the trivial condition. Let 
y= IH(A)I. 

Consider j: V -4 M such that j is a y t-supercompact embedding and 
j(P) = P*Col(w, ? -y)*R and R is t 1-semi-proper in MP*Col(WI, '?Y). Then by 
standard large cardinal theory, since P is K-c.c., j can be extended to an 
elementary embedding j: VP -M(P). We confuse j and j. (See [BL].) 

In MP* Col(l, < y) * R A c [H(X)P]w is stationary, since Col(co1, < y) keeps 
A stationary and in MP* Col(1, Y), A can be coded as a stationary subset of w. 
(A is a stationary subset of some [X]@w with IXI = co,.) Since R is 8 -semi-proper, 
R preserves stationary subsets of w, and hence preserves the stationariness of A. 
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12 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Since Mi(P) = "1( Q) preserves stationary subsets of w1' A is stationary in 
Mj(P) * i(Q). In Mi(P) * i(Q), 

C = -< H(j(X)) : if T E X n H(r ) is a Q-term for an element 

of 1 then j(i) e) 'E X} 

is a club set in ([H(j(X))] w)Mj(Q). Since A is a stationary set there is an X E C 
such that X' = X n H(X)vp E A. In Mj", let q E j(Q), x' E A be such that 
q 1- (there is an X e C) (X n H(X)Vp = X'). Then q 1F- if T E X' is a Q-term 
for an element of wi and then j(T)Mj(PQ) E X'. 

Since X' is countable, j(X') = j"(X'). Hence, 

q 1F- "If a e j(X') is a term for an element of c, then aMi(P Q) ej(X). 

So, 

M (P) 
t= there is a q, and q is a semi-master condition for j( X'). 

Thus 

VP l= (there is a q) (q is a semi-master condition for X'). 

But X' E A and so X' has no semi-master condition, a contradiction. LI 

We note that an example of such a P is P = Col(co1, < K). So if K is supercom- 
pact VP l= (t). 

THEOREM 5. If "ZFC + there is a supercompact cardinal K" is consistent, 
then so is "ZFC + Martin's Maximum". (In fact we get the "+" version of 
Martin's Maximum.) 

We use the following theorem of Laver: 

THEOREM (Laver, ([LI]). Let K be a supercompact cardinal. Then there 
is a function L: K -* RK such that for every set Q E V and every cardinal 
X there are a ' > X and a '-supercompact embedding j: V -* M such that 
j(L)(K) = Q. 

The paradigm for our proof is the proof by Baumgartner of the consistency 
of the proper forcing axiom. 

We will use technology developed by Shelah in [Shl], [Sh2] to do our 
iteration. A central notion in [Sh2] is iterating with " revised countable supports". 
Rather than redevelop these notions we will treat them axiomatically. 
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MARTIN'S MAXIMUM, PART I 13 

We will use the following properties of revised countable support (RCS) 
iterations: 

a) To specify an iteration of length y, P,, it is enough to specify for a < y 
the factor iterations such that P+1 = Pa *Q. 

b) If /3 is a limit ordinal and (Pa: a </3) have been defined then the 
revised countable support limit, RCS lim(Pft: /3 < a) c lim (Pa: /3 < a). 

c) If K is inaccessible and for all a < K. IPI < K then 

RCSlim(Paf: a < K) = lim (P,: a< K). 

d) If, for all a < ,B, V'a t Qa is t 1-semi-proper and VI*QG = IPa * Qal = 
X1, and Pa is an RCS iteration then RCS lim(P,: a < /) is t 1-semi-proper. 

e) If for all a < ,B, V'a = Qa is t 1-semi-proper and VP*Qa Q IPa * Qal = 81 
and P is an RCS iteration then for all a < /,5 VPa P="P/Pa is an RCS iteration 
with t l-semi-proper factors". 

f) If PA is an RCS iteration and a < / then 

,8 Pa*Q*Pt/Pa+1. 
We are now in a position to define our partial ordering for forcing Martin's 

Maximum. Let L be a Laver function. Our iteration will be an RCS iteration. 
Hence we need only specify the factors (Qa: a < K). 

At stage a we have defined an RCS iteration Pa. 

Case 1. L (a) is a P,-term for a partial ordering Ra, such that RIR, is 
t 1-semi-proper partial ordering II ' = 1. Then we let 

Qa = Ra *ColPG*RG(@i,2R1 21) 

(hence Pa+ i = Pa * R a * Colpa * Ra(o, 21Pa * Ra.)). 

Case 2. L(a) is a P,-term for a partial ordering such that IIL(a) is an 
t 1-semi-proper partial ordering II P < 1. Then, in VP-, let S = sup(221 '()?, 2I1P.) 
and let Qa = Col(wl, 8) (hence Pca+ = Pa * Col(l, 8)). 

Case 3. Otherwise. Let P = P *1. Let P = P. 
, +1 a e P= 

K 

Using property c) of RCS iterations we see that P is K-C.C. Since we are 
frequently (i.e. always in cases 1) and 2)) collapsing cardinals, VP l= K < 82. By 
property d) of RCS iterations, P is t 1-semi-proper. Hence VP l= K =82 

We now check that P satisfies the hypothesis of Lemma 3. From the last 
paragraph we see that a) is satisfied. To see b), let -y E OR. Let Q = Col( w, -y). 
Choose a y +-supercompact embedding j such that j( L)( K) = Q. Consider j(P). 

By property e) of R.C.S. iterations, j(P) = PK * QK * I(P)j(K)/(P)K+? 1 and 
j(P) is defined in M with respect to j(L) the same way that P is in V. 
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14 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Hence at stage K, when j(L)(K) = Col(CO, y) we are in Case 2 of the 
definition of j(P). Hence QK = Col(col, 8) for some S ? y. Hence j(P) = 
PK *Col(co1, y) *Col(co1, 8 - y) * j(P)/j(P)K+ . By property e) of R.C.S. itera- 
tions, in MPK *Col(c1, Y), Col(co1, 8 - y) * j(p)/j(P)K+l is S -semi-proper. 

Hence in VP, if a partial ordering ( preserves stationary subsets of w, then 
it is Xl-semi-proper. 

Let the semi-proper forcing axiom (SPFA) be MA for F ="the class of 
- lsemi-proper partial orderings". 

We will be done if we show VP l= SPFA, since every partial ordering that 
preserves stationary subsets of X is 8 -semi-proper. 

Claim. VP l= SPFA. 

Let G C P be generic and let QE c V[G] be 81-semi-proper. Let 
(Da: a < o1) be a collection of dense sets in Q in V[G]. Let j: V -* M be a 
IQI-supercompact embedding such that j(L)(K) is a P-term for Q such that 

IIj(L)(K) is t 1-semi-properII p = 1. 

Let H _ j(P) be a V-generic ultrafilter extending G. Then we can extend j 
to j: V[G] M M[H]. By the definition of j(P) in M, j(P) = PK* Q *R for some 
-R. Hence, H = G * G'* H' where G' C Q is generic over V[G]. In M[H], 
consider j"G' c j(Q). 

For each D,,, G' In Da, 0;hence j"G' In j(D,) # 0. Since crit(j) > t 1, 
j((Da: a < wj)) = (j(Da): a < co,). Hence M[H] I="jG' _ j(Q) is generic 
for j((Da: a < 

Thus 

M [ H] 1= there is a filter F _ j (Q) such that F is generic for j (( D,: a < 1)). 

By elementarity, 

V [G] 1= there is a filter F Q Q such that F is generic for (D,,: a < )1 

Hence V[G] t= SPFA. A small variation on this argument shows V[G] t 
SPFA+. This completes the proof of Theorem 5. 

We now consider several possible F's and show that Martin's Maximum 
implies MA for these F's. 

Definition. If Q is a partial ordering, then Q is bounded if and only if for 
all f: 1 co - 1 , f e VQ, there is a g e V, g: W 1 --* W1 such that f(a) > g(a) 
for all a. (Equivalently, Q preserves w and for all f: co1 co 1, f E VQ there is 
a g: o 1 -* CO g e V such that g eventually dominates f.) 
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MARTIN'S MAXIMUM, PART I 15 

PROPOSITION 6. If Q is a bounded partial ordering then Q preserves 
stationary subsets of coil 

Proof We show that for every closed unbounded set C C c in V Q there is 
a closed unbounded set D c w1, D E V and D c C. Let C be club, C E VQ. 
Let f(a) = least element of C above a. Let g E V, g(a) > f(a) for all a. 

Let D = (/3: for all a < ,P g(a) < /). Then D is closed unbounded and 
it is easy to check that D c C. [ 

Proposition 6 proves that Martin's Maximum implies MA for F= 
{ Q: Q is a bounded partial ordering). 

We now turn our attention to F = "the class of partial orderings Q such 
that Q doesn't add a real or collapse wl". Note that in general there is a partial 
ordering Q such that Q does not add a real or collapse W2 and Q kills a 
stationary set. However Martin's Maximum implies that there are no such Q. 

PROPOSITION 7. Martin's Maximum implies MA for F= "the class of 
partial orderings Q that do not add reals or collapse N2" 

Proof: Baumgartner has shown that the proper forcing axiom implies that 
there are no Canadian trees on t 1. Todorcevic showed that if there are no 
Canadian trees and every Aronzihn tree is special then every partial order that 
adds a subset of co1 either collapses w2 or adds a real. 

Consequently, if Q is a partial ordering that does not add reals or collapse 
(2 then Q adds no new subsets to wl. By Proposition 6, Martin's Maximum 
implies MA for such Q. E] 

In Section 3 we show the consistency of CH + MA for various F 's. We use 
Lemma 3 there also. 

2. Applications of Martin's Maximum 

We now prove some results using Martin's Maximum. The general outline 
of these proofs is the same as for applications of Martin's Axiom; e.g., given a 
partial ordering Q, we verify that it has some property (in this case, Q preserves 
stationary subsets of o1) and then meet o1 dense sets by a filter G and argue 
combinatorially about the filter G. 

In the following we abbreviate Martin's Maximum by MM. 

LEMMA 8. Suppose K is regular, K ? C2 and A c K n cof(co) is stationary. 
Let S c w be stationary and X > 2K be a regular cardinal. Then for any 
expansion of (H(X), c), (H(X), e, A, A5 there is an N < 
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16 M. FOREMAN, M. MAGIDOR, S. SHELAH 

(H( X), c, l, f)5 a countable elementary substructure of H(X) such that 
N n o1 E S and sup N n K E A. 

Proof Let M < (H(X), A, lo, f) be an elementary substructure of H(X) 
such that co, C M and sup(M n K) E A. (Such an M exists since there is a club 

set of uncountable elementary substructures of (H(X), E, f) , 

Let (an: n EC ) c Mn K be cofinal in M n K. 

Let ( Na: a < l) be a continuous increasing chain of countable elementary 

substructures of M such that (an: n c co C No. Then for each Na, sup Na n 
K = SUpM n K E A. Further, ( Na n fl: a < w } is a closed unbounded set in 

. Thus for some a, Na n c E S. Thus Na is the required N. 

THEOREM 9. MM implies: 
If K ? (12 is regular and A C K n cof o is stationary, then A contains a 

closed set of order type co 

Proof Let P = { pIP: a + 1 -> A, a < 1 and p is an increasing continu- 

ous function}, c). Standard lemmas imply that for any p E P and /3 < o1, 
there is a q 1- p such that /3 c dom q. Hence forcing with P adds a closed set 

C c A such that o.t. C = o. Further,foranyp P and y c K there is a q 1- p 
such that y < sup range q. 

We claim that P preserves stationary subsets of o 

Let p E P and S E V, S c 1 be a stationary set. Let C be a term for a 

closed unbounded subset of o1. Let N -< (H(X), E, lA, P, ... ) * be a countable 

elementary substructure of H(X), X >> K, such that p E N, 8 = N n c c S 
and sup N n K C A. 

Let (Pn: n c ad C N be a generic sequence for N such that p0 = p. Then 

Un E wdom Pn = 6 and Un E- range Pn is cofinal in N n K. Hence the function q: 
8 + 1 -- K defined by q = Un G Pn U ((6, sup N n K)} is a continuous func- 
tion with range a subset of A. Hence q E P and for each n, q 1I Pn. Thus by 
Lemma *, P preserves stationary subsets of c. 

Let s?= (Da: a < w) be defined by Da = (p c P: a c domp}. Let G 
be a filter generic for 2. Then UG: W, -- K is an increasing continuous function 

with range included in A. Hence A contains a closed set of order type o,. Zu 

We note that Ben-David remarked that the conclusion of Theorem 1 and 

0(cof(w)) implies <(cof(X1)). 
The conclusion of Theorem 9 is known as "Friedman's Problem". Shelah 

[Shl] has shown it consistent for K = W2 from a measurable cardinal and for 

general regular K from two supercompacts. 
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MARTIN S MAXIMUM, PART I 17 

A closely related theorem is: 

THEOREM 10. If K > @2 is regular and MM holds then Ki'" = K. In 
particular 2'o= 82 

Proof Let (Sa: a < l) be a disjoint maximal antichain in 9(l)INSl 
such that U a< ,iSa = O1. Let (Aa: a < K) be a partition of K n cof(o) into K 

disjoint stationary subsets. 
We will build a one-to-one function i: [K]'1 -3 K. This clearly suffices. 
Let f E [K]w1. Define the partial ordering Pf by: p E Pf if and only if for 

some 8 < 1, p: 8 + 1 -3 K, p is increasing and continuous and for all /3 < 8, if 
/3 E Sa then p(/3) E Af(a). Pf is ordered by inclusion. 

Claim. If p E Pf and 8 > supdom p, 8 E 1 and y < K, then there is a 
q 1- p such that 8 E domq and q(8) > y. 

Proof We prove this by induction on 6. If 8 is a successor, 8 = /3 + 1, this 
is immediate. 

Assume that it is true for all 6' < 8; let y E K and suppose that 8 E Sa. Let 
N -< (H(X), E, A ... ) be a countable elementary substructure of H(X), such 
thaty<supN KEAf(a) and 8, pEN. 

Let (an: n c co) c N n K be cofinal in N n K. Using our induction 
hypothesis inside N we can build a sequence of conditions (Pn: n e o) c N 
such that Pn+ 1I Pn, po = p and Un ,dom Pn = 6 and Un E (,range Pn is cofinal 
in N n K. Let q = Un G w Pn U {(8, supN n K)}. Then q is continuous, q(8) c 
Nf(,,) and hence q e Pf is as desired. 

Claim. Pf preserves stationary subsets of wl. 

Proof Let S C o1 be stationary, C E Pf be a term for a club subset of o 
and p E Pf. As usual we will be done if we can show that there is an 
N -< (H(X), E, A, C, p) such that N n c E S and there is a strong master 
condition for N, q, extending p. 

Since (Sa: a < l) is a maximal antichain there is an a such that S n Sa is 
stationary. Let N -< ( H( X), E, A, Pf, J G .) be a countable elementary substruc- 
ture of H(X) such that 8 = N n wi E S n Sa and y = sup N n K C Af(a). 

Let (Pn: n c co) C N be a generic sequence for N such that po = p. Then 
it is easy to verify that q = GwPn U {(8, y)} is a condition forcing Pn for 
each n. Hence by Lemma *, Pf preserves stationary subsets of o,. 

Thus we are in a position to apply Martin's Maximum to Pf. Let D3 C Pf be 
defined by D3 = (p c Pf: 8 E dom p}. Let G _ Pf be generic for 9 = 
(D3: 8 < wl). Then F = UG: O -- K iS a continuous function such that if 
8 e Sa then F(6) c Af(a). Let yf = suprange F. Hence Af(a) n yf contains the 
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18 M. FOREMAN, M. MAGIDOR, S. SHELAH 

continuous image of a stationary subset of o1 and hence is stationary. Further, 
U <,Af(< ) n -f f contains a closed unbounded set in yf. Thus for /3 < K, 

AA n yf is stationary in yf if and only if /3 e range f. Since f is increasing we 
can recover f from its range. Hence -yf uniquely determines f. 

Define i: [K]'01 -- K by i(f) = yf. We have just argued that i is always 
defined and is one-to-one. 

COROLLARY 11. If MM holds, then for singular cardinals K, Kcof(K)- 

max(K+, 2 cf(K)). 

Proof By standard arguments KCof(K) < (K X 2cofK)cof S, O if 2cof(K) > K then 
Kcof(K) = 2cof(K) 

We prove by induction on K that if K > 2cof(K) then KCof(K) = K+. 

If cof(K) = co or co1, then K C(O) = K since (K?)(O1 = K . 

If cof(K) > W1 then there is a closed unbounded set C C K such that if 
L E C then cof(M) < cof(K) and M > 2cof(K). By induction, M1cof l By 
Silver's theorem [Sil] "on the G.C.H. at singular cardinals of uncountable 
confinality" K cof(K) = K E 

This corollary can be regarded as heuristic evidence for the necessity of a 
supercompact cardinal in the proof of the consistency of Martin's Maximum. 

Using the techniques of [Ml] one can show that if "ZFC + there is a 
supercompact cardinal" is consistent then so is "ZFC + there is a supercompact 
cardinal K such that there is a cofinal set A C K of strong singular limit cardinals 
with the property that a E A implies 2a > a+ ". In the latter model, if PK is the 
partial ordering defined in Theorem 5 for adding MM, then by Corollary 11 for 
all /3 < K, VP = --,MM. Further, (V, E) = ZFC and no set forcing can force 
MM to hold in (V, c). 

Saturation properties of ideals have a wide literature ([Kl], [Fl], [F2], 
[F-L], [M] etc). A natural ideal to study is the non-stationary ideal on a regular 
cardinal K. 

Steel and Van Wesep in [S-VW] showed that relative to the theory "ADR + 
0-regular + ZF + DC" it is consistent for the non-stationary ideal on co to be 
t 2-saturated. 

We show: 

THEOREM 12. If MM holds then NS,, is 82-saturated. 

Later we shall show that for various F 's such that MA for F is consistent 
with CH, MA for F implies there is a stationary set S such that NS,, r S is 
t 2-saturated. 
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MARTIN'S MAXIMUM, PART I 19 

Before proving Theorem 12 we remark that if f is a normal, K-complete 
ideal on K and B = IYK'(K)/f and KAa: a < K) are J-positive sets then we can 
represent the Boolean sum E.a<K[Aa]J by Va<KAa = (/3: there is an a < /3 
such that /3 E Aa}. In other words E,<K[Aa],,= [Va<KAAa]_. 

Proof of Theorem 12. Let (Aa: a < c2) be a putative antichain in 9(w 
Without loss of generality we may assume that it is a maximal antichain. 

Let P = Col(c1, o2) * Q where Q is defined in VCol(coI W2) as follows 
Let G: o- '4 be the canonical generic object. Then define VGA. = 

(,/: there is an a < /, /3 E AG(a)}. Since VGA. D AG(O)' VGAa is stationary in 
VP. Let Q be the partial ordering for shooting a closed set through VGA a with 
countable conditions (See [B-H-K]). So q e Q if and only if q: a + 1 VGAa 
for some countable a and q is continuous and increasing. Note that there is a 
dense set D C P of conditions of the form (p, q) where q E V. 

Claim. P preserves stationary subsets of coi 

Proof Let S C 1 be a stationary set, C c V be a term for a closed 
unbounded set and p E P. As usual we will be done when we show that there is 
a q 1- p such that q 1F Cf n S 0. 

Since K A a: a < w2) is a maximal antichain, there is an a < W2 such that 
S n Aa is stationary. 

Let X 2 22'p and N < (H(X), , A,P, (A: a < W2), S ... ) be a count- 
able elementary substructure of H(X) such that { p, a) c N and 8 = N n co E 
A. n S. 

Let ((Pw qn): n E w) c N be a generic sequence for N such that p = 
(pOK q0) and pl(supdom(po)) = a. Then p* = UnPn is a condition in 
Col(O1, W2). FurtherUndomqn = 8 andsupUnrangeqn = 6. Since 8 c Aa 
and 8 > sup(dom po), p* 1 6 c V8AE Hence p* l q* = Un U {e6 6)} 
is a continuous increasing function with range in V7GAa". So p* 1- q* E Q. 
Then for each n, (p*, q*) 1F (Pn, q); so by Lemma *, the claim holds. 

Let 9 = (Da: a < w1) be the following collection of dense sets: 
Da = {(p, q): a c dom p and a c dom q}. Let H C P be generic for 9. 

Let G = U{p: there is a q such that (p, q) C H} and C = U{q: there is a p, 
(p, q) E H}. Then G E V, G: w1 -> W2 and C is a closed subset of wi. Further, 
VGAa = (/3: for some a < /, /3 E AG(a)} D C. Hence Ya<K[AG(a)] = [VGAJ] 
= 1. But the range of G has cardinality 8 1; so some A is incompatible with 

a< K [ AG(a)] a contradiction! E 

We will later show that under MM the non-stationary ideal is "c.c.c. 
indestructible". 
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20 M. FOREMAN, M. MAGIDOR, S. SHELAH 

A combinatorial key to the preceding results is the equivalence of 8 
semi-properness and the preserving of stationary subsets of co. We now examine 
this property more carefully. 

If S c [H(X)]@ then we say that S reflects to a set of size 8 if and only if 
there is an X C H(X), co c x, lXi = 81 and S fn [X]@w is stationary in [X]'@. 
(Equivalently, if S c [Z] ]w is stationary then S reflects to a set of size o1 if and 
only if for all Yc Z, IYI= o1, there is an X such that Yc X, IXI = 1 and 
S n [ X]w0 is stationary in [X] W.) 

We remark that MA' for F: "the class of o-closed partial orderings" 
implies that for every regular X, every stationary subset of [H(X)] ' reflects to a 
set of size 81. 

To see this we apply MA' to P = col(ol, H(X)). 
By Proposition 4, in VP we get a function f: co - H(X)v such that 

onto 
( a: f"a E S} is stationary in co. Hence by MA' we get a function FEc V, 
f: co1 1-l* H(X) such that (a: f"a E S} is stationary in o,. Hence, taking 
Xf"a we get the desired result. Surprisingly MM is enough to get this result. 
(In fact this proof shows that MA' for F = "o-closed partial orderings" implies 
that for any stationary subset S C P,1( H(X)) there is a stationary set T _ 
P,,(H(X)) such that for all x E T, S n) P,l(x) is stationary. For each 
g: H(X) '0 -- H(X) we use the term S* E VP, S* = (a: f'a El S and f'a is 
closed under g }.) 

THEOREM 13. Assume MM. Then for every regular X and every stationary 
set S C [H(X)]w, S reflects to a set of size wi. 

Proof Since the non-stationary ideal on w1 is 82-saturated, there are 81 
stationary subsets of ?o, KAa: a < ,), such that: 

a) For each a there is a closed unbounded set Ca in [H(X)]w such that 
Aa.f {x n , x& C.an S} = 0. 

b) For every A if there is a closed unbounded C _ [H(X)] w with A fn 
{x fn c1: x E C fn S} = 0 then A-Va < v,1a is non-stationary. 

Let P = Q * R where Q = Col(o, IH(X)I) and R is defined in VQ as 
follows. Let f e VQ be the generic function f: co 1- H(X). By Proposition 
4, { a: f'a E S } is stationary. Let R be the partial ordering for shooting a closed 
set through {a: f'a E S} U V a<(,,Aa, with countable conditions. So r E R if 
and only if for some countable 8, r is a continuous, increasing function 
r: 8 + 1 -{a: f'a E S} U V a< IA . 

We claim that P preserves stationary subsets of o1. Note that there is a 
dense set in P of conditions of the form (q, r) E Q * R where r E V. Let 
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MARTIN S MAXIMUM, PART I 21 

B c w 1 be stationary, C E V Q be a term for a stationary set and p E P. As 
usual we will be done if we find a p* 1- p such that p* i1- C fn S * 0. We 
show this in the usual way by a master-condition argument. 

Case 1. B n v,< ,a is stationary. Then by the usual arguments if 
N -< H((22) ') is a countable elementary substructure and 8 = N n co E B fn 
Va< WIAa then N has a master condition p* i1- p. So p* i1- 8 E C n B. 

Case 2. Otherwise. Then for every closed unbounded set D C [H(X)]S 
there is an N E D n S such that N n c B. Let N -H((2< 2 

E, A S. B....) suchthat Nf H(X) E S and6 = Nn 1 E B. Thereissuchan 
N by Lemma 0. Let (pn: n E w) be a generic sequence for N such that 
p0 = p. Let pn = (qw rn). Then U dom qn = 8 and U range qn = 
N n H(X). Hence if q* = Un -qn then q* 1F- 6 E (a: f'a E S}. Let r* = 
Un( Urn {K(88)}. Since UnfWdomrrn = 8 and supU nErangern = 8, r* is a 
continuous function. Further, q* I1- range r* c (a: f"a E S} U V <(,A . 
Hence p* = (q*, r*) E P. 

Since p* I1- Pn for each n, p* is a master condition for n and p* 1- 6 c 
Cn n B. 

Since P preserves stationary subsets of l, using MM we can find a 
generic object G for 2= (Da: a < o) where D. = { p E P: p = (q, r) 
and a c dom q fn dom r and a E range q}. Let f be the canonical function 
f:- W1 -H(X) coming from G and C = U{r: there is a q E Q, (q, r) E G}. 
Then C is a closed unbounded set and C c ( a: f"a E S} U Va<WIA.. Thus 
we will be done if we can show that ?1 - (V <,A.) is stationary, since this 
will show that S l 9, (range f) is stationary. 

For each a we have Ca C [H(X)]w such that Aa. {x nl w: xc C.l S} 
0. ThenVa< WAa n (A<WJ{x n : x e Ca n S}) = 0 and 

Aa < { X n cf X Ex Ca n S} D {x n c, x E (Aa<,,Ca) n S 

But A<coiCa is closed and unbounded in [H(X)]w. Hence A,, <,1Ca ,n S is 
stationary, so that { x fn l: x E (a< iCa) n S} is stationary and disjoint from 

Va < o1A a. El 

Shelah has shown in [Sh3] that if every stationary subset of [8 2] < 01 reflects 
28o < 82' This gives an alternate proof that MM and MA+ for r ="w-closed 
partial orderings" imply 2"o = 82. 
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22 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Reflecting stationary subsets of [H(X)] ' is the crux of the equivalence 
between 8 -semi-properness and the preserving of stationary subsets of l, as 
the following proposition shows: 

PROPOSITION 14. Suppose for a cofinal set of regular cardinals X every 
stationary subset of [H( X)] ' reflects to a set of size co,; then for all partial 
orderings P, P is 81-semi-proper if and only if P preserves stationary subsets 
of xl. 

Proof Suppose P preserves stationary subsets of c1 and P is not 8 -semi- 
proper. Then for some regular X > JPJ, for which every stationary subset of 
[H(X)]"' reflects, there is a stationary subset S of [H(X)]" and p E P such that 
N E S implies there is no semi-master condition q 1- p for N. 

Unravelling the definition we see that p 1a- "If N E S then N[G] = 

{7V[G] : T CN, T a P-termn flw N n w Since S reflects to a set of size 8 
there is a function f: co 1 H(X) such that T= {a: f'a E S) is stationary. 

In V[G], let C = ( N < H(X)vrG]: N is closed under the function sending 
T E VP to its realization iV[G] and N is closed under f and f} 1. Then C is a 
closed unbounded set. Since P preserves stationary subsets of o1, T is stationary 
in VP and hence there is an NE C such that 8 = N nl o E T. Let N' = f". 
Then N' E S and N n fl = S. Further N'[G] n o = 8 since N is closed 
under the function-realizing terms in N. But N' E S implies N'[G] n 1 
N' n q l, a contradiction. E 

We let ( i) abbreviate the proposition " for all partial orderings P, P 
preserves stationary subsets of o1 if and only if P is 8 1-semi-proper.'" Then ( ) is 
itself a combinatorial principle of some strength as we shall show. 

COROLLARY 15. MM implies (f) and SPFA' implies MM. (So MM' if 
and only if SPFA+.) 

We remark that we could have given an alternate proof of the consistency 
of MM as follows: 

We show that Lemma 3 implies MA' for F = "countably closed partial 
orderings." By Proposition 14, MA' for F = "countably closed partial orderings" 
implies (i). Hence it is enough to show the consistency of SPFA'. The argument 
given was our original argument. We present it as it generalizes to get pre- 
cipitous ideals on larger cardinals. 

Let the Strong Chang Conjecture be the following property: 
For every structure _/= (A; w1, f )i =S, of type (82,81) there is a closed 

unbounded set C C co such that a E C implies that there is an . 1 of type 
(818 0) such that n co 1 = a. 
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MARTIN S MAXIMUM, PART I 23 

The following result appears in [Shl]: 

THEOREM (Shelah). 
a) Namba forcing preserves stationary subsets of c1. 
b) If Namba forcing is X -semi-proper then the Strong Chang Conjecture 

holds. (In fact Shelah obtains much stronger results than b).) 

If f is an 82-saturated ideal on w1, then f is c.c.c. indestructible if and 
only if whenever P is a c.c.c. partial ordering then f= { x c : x E VP and 
there is a y E f such that x c y } is 8 2-saturated. (f is the ideal in VP induced 
by f.) 

A question in [B-T2] is whether there can be c.c.c. indestructible ideals on 
c. In [F-M1], Foreman and Magidor show that there can be a 8 2-saturated ideal 
on w1 that is not c.c.c. indestructible. 

In [B-T2] there is a Chang's Conjecture-type criterion for the c.c.c. inde- 
structibility of an 8 2-saturated ideal on co,. We present another one which holds 
under MM. 

THEOREM 16 (ZFC). Suppose the Strong Chang Conjecture holds, S is a 
stationary subset of co and NS, r S is 82-saturated. Then NS,1 r S is C.C.C. 
indestructible. 

If f is an 82-saturated ideal on w, and G C Y(w1)/f is generic, let 
j: V -> M = V81/G be the generic ultrapower. Then Laver [L2] and 
Baumgartner-Taylor [B-T2] showed the following criterion of c.c.c. indestructibil- 
ity: 

THEOREM. I f is 82-saturatedllp = 1 if and only if I1i(P) is c.c.c. in 
V[G]Ilg@(wll,,>,= 1. 

Proof of Theorem 16. Let P be a c.c.c. partial ordering. By the theorem of 
Laver, Baumgartner-Taylor, we must see that for any generic G c Y( w)/J, 
V[G] I= j(P) is c.c.c. 

Since NS,,1 [ S is 8 -saturated w'[G] = W'. Hence j(P) is not c.c.c. if and 
only if in V [G] there are functions Kfa: a < '2) such that fa c V, fa: o, P 
and for all a, ,B C ?2, Ia/ = ( 6: fa(6) is incompatible with f/(6)} c G. Let 
K fa a < c') be a term in V for such a sequence. Let T C S be a stationary set 
such that [T]NSrs 1- Ia E- G for all a < , < cv. By the standard theory of 
saturated ideals (see [J1]) there is a sequence of functions ( g : a < 02) C V, 
ga: co, - P such that [T] 1F- (8: fa(S) = ga(8)} c G. Hence for a, C 2, 
[T] 1- (8: g,(8) and g#(8) are incompatible} E G. 

Since our ideal is NS,1 r S there are closed unbounded sets Ca . such that 
for all 8 E Ca." n T, g,(8) and g#(8) are incompatible. 
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24 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Let X > 2 02 and let -/-< (H(X), w1, E, A, (g.: a < '2), (Ca,3: a, / < 
(2)) be an elementary substructure of H(X) such that I-VI = w2 and w2 C JS. 

Since the Strong Chang Conjecture holds there is an Y2-< - such that 
8 = Yn c1 E T and IY n co2I = 1. Then for all a, f e Yr w2,2 CR A is un- 
bounded in 8 and hence 8 E Caa. Thus fa(S) and fJj(S) are incompatible. But 
then { fa(6): a C 2n w2} is an antichain in P of size co, a contradiction. zu 

COROLLARY 17. if MM holds then NS, is N2-saturated and c.c.c. inde- 
structible. 

Proof Assume MM. By Shelah's theorem and Corollary 15, the Strong 
Chang Conjecture holds. Hence the hypothesis of Theorem 16 hold for NS,1. El 

It is not known how to describe the quotient algebra 9(w1)/NS,, exactly 
under MM, but the following theorem yields some information. 

THEOREM 18. Suppose MA holds for c.c.c. partial orderings. Let f be an 
8 2-saturated ideal on co and P = 9(1)/f. Let G c P be generic and r a real, 
r E V[G], r X V. Then V[r] = V[G]. 

Remark. This says that in a strong sense every new real in V [G] is a 
minimal V-degree. 

Proof Let j: V -- M = V"'/G C V[G] be the generic ultraproduct. Then, 
by standard arguments RM = RV[G] (see [J1]). Let r be a real, r E V[G] - V. 
Let f: w1 -> Rv be a function such that [f]M = r and f e V. 

By [B-T-W], f is selective and hence f is one-to-one on a set of measure 
one for f. 

For s E R let Seq(s) be the set of sequence numbers of s by any standard 
Godel numbering. 

A standard application of MA shows that for any X _ w1 there is an ax_ C o 
such that a EC X if and only if ax n seq(f(a)) is finite. 

As usual j(f)(wl) = r. (See [F2].) Thus for X _ co, X E G if and only if 
E j(X) if and only if Seq(j(f)(w1)) fl j(ax) is finite if and only if Seq(r) fn 

ax is finite. Hence from r we can recover G. CE 

COROLLARY 19. MA implies that if f is an t 2-saturated ideal on o1 then 
a) 9(w )/is not t -dense, 
b) 9(wX1)1_V t V(Colbco, < COD)) 

Proof. Both an t1 dense ideal and Col(w, < (2) add Cohen reals. 

Note. a) was known and appeared in [TI]. b) contradicts published results 
of Woodin in [WI]. 
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3. Versions of Martin's Maximum with CH 

Our techniques combined with work of Shelah in [Shl] give versions of 
Martin's Maximum consistent with the continuum hypothesis. We will briefly 
explicate this here; a more complete version will appear in [Sh-W] now in 
preparation. 

In [Shl], Shelah defines E-complete forcing. We now give a simpler 
definition that is a special case of E-completeness. 

Let P be a partial ordering and S c 1 be a stationary set. P is S-closed if 
and only if there is a closed unbounded set of [H(22'p' )] wsuch that whenever 
N n co E S and (pn: n E co C N is a generic sequence for N then there is p 
such that for all n, p 1I- pn. 

The canonical example of an S-closed forcing is the partial ordering for 
shooting a closed unbounded set through S with countable conditions. 

PROPOSITION 20. Suppose P is an S-closed forcing; then P is (S, oo)-distrib- 
utive. 

Proof. Let T = (TKn: n E -o) be a term for a new co-sequence of ordinals. 
Let N < H(221P1 ) be such that N n c E S and N is countable and r E N. Let 
( pn: n c X ) be a generic sequence for N such that for some p, p I1- pn for all n. 
Then for each n, p decides the value of tn. Hence there is a sequence of ordinals 
Kan: n ck ( Vsuchthat p I- rTn = an. 

The following theorem is due to Shelah. 

THEOREM (Shelah). If PK is an iteration of length K with countable supports 
such that each factor is S-closed then P is S-closed. 

In [Shl] we see that for an (ac, oo)-distributive iteration, revised countable 
supports are the same as countable supports. 

THEOREM 21. If there is a supercompact cardinal K and S is a stationary 
subset of o1 then there is an 8 l-semi-proper, (co, oo)-distributive partial ordering 
P such that in VP, MA for F = "all partial orderings Q such that Q is S-closed 
and preserves stationary subsets of colj' holds. 

Proof We iterate along a Laver function L as we did in the proof of 
Theorem 5. Our partial ordering P will be an iteration of length K with countable 
supports. 

At stage a: If L(a) is a term in V- for an S-closed, semi-proper partial 
ordering QO, then Pt+1 = P* Qa*Col(col, 21P *QaI ). Otherwise Pt+1 
Pa * Colf o 1, 2jL(a) X Paj ) 
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26 M. FOREMAN, M. MAGIDOR, S. SHELAH 

By Shelah's theorems on revised countable support iterations, PK is an 
t l-semi-proper partial ordering that is S-closed. 

As in the proof of Theorem 5, PK satisfies the hypothesis of Lemma 3. 
Further, in V P' we have MA for the classes of Q which are t 1-semi-proper and 
S-closed. Hence, if P = P, P is (o, oo)-distributive, 81-semi-proper and VP 
satisfies MA + for F = "the classes of Q which are S-closed and preserve 
stationary subsets of w"i E 

Since the P in Theorem 21 is 81-semi-proper, if S was costationary in V 
then S is stationary in VP. Thus it is consistent to have MA for this F and S 
stationary. The following proposition is the S-closed version of Theorem 12. 

PROPOSITION 22. Suppose S is stationary and costationary and MA for 
r = the class of partial orders that are S-closed and preserve stationary subsets 
of Xf". Thcn NS, ' S is 8,2-saturated. 

Proof. Let (A,: a < y) be a maximal antichain in NS^,1 S S with y ? '2* 

We apply MA to P = Col(o1, y)* Q where Q is the forcing in Vc`l(1, 'I) for 
shooting a closed set through VGA , U 9 with countable conditions (VGAa is 
defined as before, G being the canonical generic object). 

The P is S-closed and preserves stationary subsets of co. As in Theorem 12 
we get a contradiction. l 

Further, the ideal NS^, ' S is c.c.c. indestructible as in Corollary 17. 

COROLLARY 23. If K is supercompact then in Vcol(*), <K) there is an 
8 2-ideal on co. 

Proof If P is the partial ordering defined in Theorem 21 then Col(W1. < K) 
can be embedded in P as a complete subalgebra. This is true since P is 
(wo, x)-distributive and cofinally often in P we force with arbitrarily large 
portions of Col(co1, < K). 

Hence, in Vcol(*1 <K) we can do an 82-c.c. forcing Q = P/Col(ol, < K) to 
add an 82-saturated ideal, f*. But then f= {x: IIx Ecf*11 = 1) is 82-c.c. in 
VCol()l, <K). (See [KI].) l 

A note on history is appropriate here. Ideals were known to have conse - 
quences for Lebesgue measurability of sets of reals in L(R). Magidor, in [M2] 
showed that if there is a measurable cardinal and a precipitous ideal on c1 then 
every 3 set of reals is Lebesgue measurable. Foreman, in [F2], showed that if 
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there is a 2 4ocdense, normal and fine ideal on [(2 o) +] 41 then every set of reals in 
L(R) is Lebesgue measurable, has the property of Baire and L(R) = o (X)'. 
Woodin had shown in unpublished work that under CH an w1-dense ideal on w, 
suffices for these consequences. 

Woodin, aware of this work and of Theorem 12, proved the following 
proposition. It was proved simultaneously with the third author's realization that 
his technique of S-complete forcing could be used together with the results of 
Sections 1 and 2 to prove Theorem 21. In a phone call to the first author, 
Woodin, unaware of Theorem 21 and its consequences, announced his proposi- 
tion. We state Woodin's proposition in somewhat greater generality then he first 
proved it (his original statement involved Col(ol, < K) and the non-stationary 
ideal). 

PROPOSITION (Woodin). Suppose K is weakly compact and there is a K-C.C. 

partial ordering P such that in VP there is a generic elementary embedding 
j: V -- M with j(A1) = K and (R)v' c M. Then 

L(R)v 1=. Every set is Lebesgue measurable, has the property of Baire, and 

The proof of this proposition uses the following theorem. 

THEOREM (Folk). Suppose K is weakly compact and P is a K-C.C. partial 
ordering such that VP l= K = o1. Then for every generic G C P there is a generic 
HC Col(o1 <K) such that Rv [G] = V[H]. 

Proof Since P is K-C.c. and K is weakly compact, every real in V[G] is 
generic for an intermediate extension Vie where a is a complete subalgebra of 
?V(P) and 121 < K. (This is standard; see [JI] or [Mi] for a proof.) Hence for all 
reals r E V[G] there are an inaccessible y < K and a V-generic object HY c 
Col(o, < y), HY E V[G], such that r E V[H ]. 

Let G* be V[G] generic for Col(w, K). In V[G*], IRV[G]I = X and there is 
a cofinal sequence of inaccessibles (Ky: n E o C K. In V[G][G*] choose a 
sequence Hn C Col(o, < yn) such that 

1) Hn is V-generic, Hn E V[G], 
2) for each real r E V[G] there is an n such that r E V[Hn]. (We use the 

homogeneity of the Levy algebra to do this.) By the chain condition, for any 
antichain A c Col(o, < K) there is an n such that A c Col(o, < Yn). Hence 
UH_ C Col(o, < K) is generic. Thus L(R)v[G] c L(R)v[H]. Since every H GE V 
L(R)vl H] C L(R)v[G]E 

We now prove Woodin's proposition. 
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Proof Since K is weakly compact and j(Wl) = K and P is K-C.C., P satisfies 
the hypothesis of the Folk theorem. Hence for each G c P generic, for some 
generic H C Col(wo, < K), L(R)vrG] = L(R)V[H]. Thus j: L(R)v -- L(R)M 
L(R)V[H] is an elementary embedding of L(R)v into L(R)V[H] where H is 
generic for the Levy collapse. By Solovay's results in [Sol], L(R)v[H] t= . Every 
set of reals in L(R) is Lebesgue measurable, has the property of Baire and 
X (Xo). Since L(R)v L(R)V[H] we are done. 

If K is supercompact, Corollary 23 implies that in Vc"l(w1 < K) there 
is an tS2-saturated ideal f on o1. Let Q = 9(o1)/f in Vcol(w, K). Then P = 
Col(wl < K) * Q satisfies the hypothesis of Woodin's proposition: 

First, P * Q is K-C.c. Let G * H C P * Q be generic. By standard theory of 
saturated ideals there is an elementary embedding j: V [G] -* C V [G * H] 
sending oi to K and V[G * H] I= R C M*. 

Let M = UaEORj(R'v). Then j ' V: V -* M. Since V[G] G R C V, M* = 
R C M. Hence 

RV[G*H] C M. 

Thus, as a corollary of Woodin's Proposition and Corollary 23 we get: 

COROLLARY. If there is a supercompact cardinal K then every set of reals in 
L(R) is Lebesgue measurable, has the property of Baire and L(R) I= co -> (Co) O. 

Shelah and Woodin have since weakened the hypothesis on K a great deal 
[Sh-W]. 

It is also easy to see, when these techniques are used, that if K is a 
supercompact cardinal and Q is any partial ordering and G C Q is generic, then 
for some y, H C Col(co, < y) generic there are an elementary embedding 

j: L (R) V[G] L (R) V[H] 

and an elementary embedding k: L(R)v L(R)VEH]. Hence the theory of L(R) 
is invariant under set forcing. 

Magidor has shown that MM implies that all Es sets of reals are Lebesgue 
measurable. 

Finally we note another version of MA for a class of partial orderings that is 
consistent with CH. 

If K iS a supercompact cardinal, MA + for c-closed partial orderings holds in 
V col(wi, <K). As noted earlier, MA+ for w-closed partial orderings implies (t). We 
shall show that it implies that the non-stationary ideal on w1 is almost 82- 
saturated. 
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MARTIN S MAXIMUM, PART I 29 

Definition ([B-T]). A K-complete ideal f on K is K--preserving if and only if 
forcing with P = 9(Ki)/f preserves K+. f is presaturated if and only if f 
preserves K+ and is precipitous. 

THEOREM [B-T]. If 2K = K+ and f preserves K+ then 
a) f is precipitous. 
b) If j: V -* M c V [G] is the generic elementary embedding then 

MK n V[G] c M 

Thus presaturated ideals have many of the same desirable properties that 
saturated ideals have. 

LEMMA 24. Let _1= KH(X), c, f)l be a fully Skolemized expansion of 
H(X). (f: [H(X)]- H(X) for some n.) Let N -< be an elementary 
substructure of si, x E N and a < sup N n OR. Let ? be an expansion of _s, 
Y= (H(Q), c, f, g j) jug such that the functions gj are closed under composi- 
tion with the f 's and include Skolem functions for Y. Suppose that K N, g j r N) 
< S. Then 

Sk-v(N U {a}) n x = Sky(N U {a}) n x. 

Proof For the conclusion of the lemma we may assume that 

gj: H(X) x OR -* x. 

Let y E N n OR, y > a. If y E N then the function gj(y,-) [ y E N for 
each j, since (N. g j N) < Y. Now Sk(N U { a}) n x = { gj(y, a): y E- N}. 
But gj(y, -) [ y E Sk<(N u {a}) and a E Sk(N U {a}). Hence gj(y, a) E 

Sk'(N U { a}). Thus SkV(N U {a }) fl x = Sky(N U { a}) fl x. 

This lemma is useful in that it lets us change the quantifier "almost all" to 
"all" for subsets of [H(X)]K (K a regular cardinal). 

Suppose _1= (H(K), c, A ... ) is a structure such that for almost all N E 

[H(X)]" there is an a such that Sk<(N U {a}) fl x = N n x. Then by adding a 
predicate C for the closed unbounded set witnessing this we get that for all 
N -< (H(X), c, A, C, {X}) =x there is an a such that Sk (N U {a}) nix = 

Nrn x. 

THEOREM 25. MA' for co-closed partial orderings implies that the non-sta- 
tionary ideal on co is presaturated. 

Proof We will show: 

Claim. Let T be a stationary set. If ( An: n E co) is an co-sequence of 
maximal antichains below T in P = 91(coj)/NSwi then there is a stationary set 
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30 M. FOREMAN, M. MAGIDOR, S. SHELAH 

S c T such that for all n, 

An ' S = {[x n S]: X E A} 

has cardinality t 1. 
[B-T] has a proof that the claim suffices. For the readers convenience we give it 
here. 

Assume the claim. Then, if (Tn: n c a) is a term for a sequence of 
functions in V [G] with jlTn E V, Tn: 1 -ORIp = 1, we can find stationary set 
S and functions( Jf: n c) V, fn: col -* OR so that 

[SI W- {fa: fn(a) = Tn(a)} e G. 

Hence, if [S] 1- {(a: Tnra(a) < Tn(a)} E G then there is a closed un- 
bounded set Cn c w such that for all a E Cn n S, fjnj(a) < fn(a). Let P3 E 

fn EflCn rn S. Then for all n, fn+ (/) < fn(3). This contradicts regularity. 
Hence NS.1 is precipitous. 

To see that 9(coj)/NSu,l preserves c2 we suppose not. Let T E VP be a 
term for a function from X onto w2. Let An be a maximal antichain deciding the 
values of T(n). Then there is a stationary set S _ wi and a set P C (2 of 
cardinality wi such that [S] + range T c P. This contradicts surjectivity. 

We prove the claim. Let T c W be a stationary set and (a n: a < Yn) = A 
be a sequence of maximal antichains in T. Let K be a regular cardinal K > 

supn E w'yn Let G C Col(w1, K) be generic. Then we can form VGAn = { a: there 
is a PB < a, xa E anG(,)}. Suppose that in V[G], flfn ,vGAf is stationary. Then 
by MA + for countably closed partial orderings, in V we could get a function 
G: wc K such that S = nfllvGAn is stationary. But then jAn r SI < 
jrange GI = w 1. Hence we would be done. 

Thus we must show that nfl G A n is stationary in V [G]. We do this by 
an application of Lemma *. Suppose that for each x E H(X) there is a 
countable N -< H(X) such that for all n, 8 = N n co E aa for some a E N and 
x E N. Since Col(col, K) is countably closed we have a strong master condition q 
for N. Then for each a E N. a < K implies that a is in the range of q 3 S. 
Hence q iH- 3 E n f 'G An. On the other hand, for any term C E Vcl()1, K) for 
a closed unbounded set, if C E N then q 1F- 8 E C. Hence q IF- (nf l GAn) n 
C#t0. 

Fix x E H(X). We must see that there is a countable N -< (H(X), c, A, x) 
such that for all n, 8 = N nl E G a' for some a. We prove this using (t). 

By the remarks preceding Theorem 13, (t) holds. From (t) we will deduce 
that for any n, and any expansion of H(X), -V= (H(X), a, fi)i3,, there is a 
closed unbounded set of N -< I, Cn, such that for all N E Cn, if N n c Eoe T 
there is an a, N n co E a n and Sk(Nu {Xa}) n xl = N n xl. 
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MARTIN S MAXIMUM, PART I 31 

If there are such sets, by Lemma 24, we can assume that there is an 
expansion 9= (H(X), c, gj~j E @ of _1 such that for all N -< Y and for all n, if 
N n E T there is an a such that 8 = N nl c G a n and Sk(N U { a)) fc 
- N n co Thus, by adding such ai's, one at a time, to an N -< Y and closing 
under Skolem functions we get an N -< H(X) as desired. 

Thus, we must see that there are such sets Cn. For each antichain An, 
let P be the partial ordering Col(w1, K) * Q where Q e VP shoots a club set 
through VGAn with countable conditions. By (f), P is semi-proper. Let Cn be 
the closed unbounded set of N -< _1 that has partial master conditions. 
Let N E Cn, N nl 1 E T and p = (r, q) be a partial master condition. Then if 
3 = Nflc,1p, I EoVcGAn; hence for some a E K and / < 8, r(3) = a 
and 8 E an. Let G C P be generic, with p E G. Then N[G] n co = N n fl . 
But Sk '(N U { a}) c N[G], so Sk'(N U { a}) n o1 = N n co1. Thus 
SkV(N U { a)) n co = N n o,, for this a. 

This argument is the prototype of many arguments to show that various 
ideals on a cardinal u or [iu] <` are precipitous or presaturated. The strategy is 
always to expand a structure N to include elements of an antichain in N without 
increasing N n u. 

4. Precipitous ideals 

As we saw in Theorem 25, and in Shelah's theorems about Namba forcing, 
(t) is a strong combinatorial principle in its own right. We now elaborate on this 
to produce models where the non-stationary ideal on a regular cardinal u (and 
[p] etc.) is precipitous. We start by stating a standard lemma: 

LEMMA. If Oc 9(Z) is an ideal on Z then f is precipitous if and only if 
there is no set S E f+ and no tree T c (2Z) <(0 labelled with f-positive sets 

(A& r,: E T), AT, C Z, such that 
a) A0 = S. 
b) For each rl E T, {AT, rX a E T } is a maximal antichain below AT, 

and, 
c) for all f: X -, 2z, if for all n, f[r n C T, then nnewAfrn = 0 (see 

[JI], p. 439). 

Thus to prove that an ideal is precipitous, we must show that there is no 
such tree. If T is such a tree we let An = { A ,: l Ee T and 1(?q) = n }. Then by 
b, An is an S-maximal antichain below S and An+1 refines An. 

THEOREM 26. (t) implies that NS(A1 is precipitous. 
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32 M. FOREMAN, M. MAGIDOR, S. SHELAH 

Proof Suppose not. Let X >> w. Let (An: n C a) be the sequence of 
antichains coming from a tree T that witnesses NS.1 is not precipitous. Let 
S = AO. For each maximal antichain A C 92(Xo), consider the forcing 

P = col(o15,2&i)*Q 

where Q is the partial ordering for shooting a closed set through VGA. Then P is 
X -semi-proper by (t). Hence as we argued in the proof of Theorem 25, for any 
expansion P/= (H(X), c, f)3, there is a club set C c [H(X)]'o such that if 
N E C then there is an a C A such that 

a) N n o1 C a 
b) Sk<(N u {a}) qw = Nnl. 

Claim. For any expansion 1= (H(X), c, -5 E (, of H(X) there is a club set 
C c [H(X)] 1' such that for all N C C and all maximal antichains A C 91(l), 

A E N implies that there is an a E A and 
a) N n xl E a. 
b) Skv(N u {a}) n co = N n wl. 

Proof Otherwise there would be a particular maximal antichain A and a 
stationary set T _ [H(X)] w such that for all N E T, A E N and for all a E A, if 
N n 1 E a then Sk (N U {a}) n 1 # N n 1. This contradicts the last 
paragraph. The claim follows. El 

Let C be a club set in [H(X)]&( witnessing the claim for d= (H(X), c, T). 
Let 9= ( H( X), c, T, f)i, E, be such that all countable elementary substructures 

N -< are in C. 
Then by Lemma 24, if N -< Y and a < 2"1 then 

Sk(N U { a}) n co = Sk(N U {a a}) n wl 

Let N -< Y be a countable set such that 8 = N n co E S. We will build a 
function f: co - 2"" such that for all n, f [ n E T and 8 E Af k n. This will be a 
contradiction. 

Suppose we have defined f [ n, such that Sky(N U f r n) i co, = N ni wo 

Then { Afrn } U { Afjn-a: f r n-a EC T} is a maximal antichain that lies in 
Sky(N U f r n). Hence there is an a such that 8 E Afrn-a and Sk(NU fr n 
U { a}) n c1 = 3. Let fln) = a. 

One might ask about cardinals above wo. Gittik and Shelah have done 
considerable work on this problem (see [GI], [Shl]). 

It turns out however, that with a sufficiently large cardinal a Levy collapse is 
sufficient to make NS precipitous: 
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MARTIN S MAXIMUM, PART I 33 

THEOREM 27. Suppose K is a supercompact cardinal and i < K is regular. 
Then in VCol(y <K) the non-stationary ideal on u is precipitous. 

The original proof of this used a version of (t) that holds in VCOl(' <K) and 
an argument similar to Theorem 25. The direct proof is simpler so we give it. We 
need to use a particular stationary set in [H(X)] <A that is very resilient. 

Let N -< ( H( X), c, A, f )Vi E ' Then N is internally approachable (IA) if 
and only if there is a sequence (Na: a < 8) such that N = U,<3N. and if 
3 < 8, then (Nix: a </3) c N. 

By cardinality considerations, 38I < IN . We note that all countable N are 
internally approachable. Let IA = {N -< H(X): N is internally approachable). 
Note that the definition of IA is independent of whether we are working in 
[H(X)] <A or [H(X)] < ' for some f < X. 

The following lemma yields the salient facts about IA. 

LEMMA 28. Let y < X be uncountable regular cardinals. 
a) IA is stationary in [H(X)] ' . 
b) If X' is regular, y < X' < X and N -< H(X), N e IA and X' e N then 

N n H(X') E IA. 
(Note there are two IA's here-one for X and one for A'.) 

c) { N n y: N e IA) includes a club set. 
d) If S C IA is stationary in [H(y)] < and a is any ordinal then S is 

stationary in VCol(Y, <'a) 

Proof a) Let C be a club set in [H(X)] <". Let (Ni: i eca) c C be such 
that Ni 1 Ni u {Ni }.Then UiNi e C n IA. 

b) Let N -< H(X), N e IA and X' e N. Then N = Ua<, Na and for each 
< <3, (Na: a </3) e N. Let N' = N n H(X'). Then N' -< H(X'). We claim 

that for each /3 < 8, (Na in H(X'): a </3) c N'. 
Since (Na: a </3) c N, N l= (Na in H(X'): a < /) is a < y-sequence 

of elements of H(X'). Hence, N 1= (Na n H(X'): a < /3) e H(X'). Thus, 

(Na n H(X'): a < /3) E N' = N n H(X'). 
c) Let (Na: a < y) c [H(X)] `Y be a continuous tower of elementary 

substructures of H( X) such that 

(NO: fl< a) e Na 

Then { Na: a is a limit ordinal < y } _ IA and is continuous. Hence 

{Na l y: a is a limit point < y} 

is a club set in y. 
d) Let S C IA n [H(X)] `Y be a stationary set. Let C e VCOl(Y, <a) 

be a term for a club set in [H(X)v]<Y. Let X* >> a be regular. Let 
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N -< (H(X*), c, A, Col(wl, < a), C, S) be an elementary substructure of cardi- 
nality < y such that N n H(X) e S. (We use Lemma 0 to get such an N.) 

Then N fl H(X) = Ua< Na for some sequence (Na: a < 8) and for all 
/3 < to (Na: a < /) e N. Choose a sequence of conditions (pa: a < /) C 

Col( y, < a) such that: 
a) If a > a' then pa 1- pa'. 
b) There is an Ma e N [H(X)] <' such that pa 1-"Na C M_ and M_ D 

U~<aMA and Ma e C". 
c) For all 3 <8, (pa: a </3) e N. 
Such a sequence is easy to build if at stage a we choose Pa ? the A\-least 

condition of Col(y, < a) such that for some Ma, b) holds. Then we choose the 
\-least such Ma. 

Since Ma e N. l= IMaI < y; hence IMal e N. But N n y e OR. Hence 
M C N. Since M. C H(X), Ma C N n H(X). 

Let p E Col(y, < a) be such that for all a < 8, p 1- Pa. (Recall 8 < y by 
cardinality considerations.) 

Then p 1- C n (N n H(X)) is unbounded in N n H(X). Hence p 1- N n 
H(X) E C. Hence p 1- C n S 0. 0l 

(The theorem above is also true for the strongly closed unbounded filter on 
[It] ' . Instead of working with a term for a closed unbounded set C we work 
with a term for a countable sequence of functions (fi: i e w). We build a 
sequence (pa: a < 8) such that: a) For all /3 < a, (pa: a < /3) e N. 

b) For all i E Na and all i, there is an m such that Pa , f1in) = m. Then 
Ua< pa I- N is closed under f: i E).) 

Proof of Theorem 27. We will work as in Theorem 26 to build a path 
through any tree of antichains. Let P = Col(M, < K). 

Main Claim. Let X >> f. In VP let V= (H(X), c, A, , be any expan- 
sion of H(X). Then for almost all N -< X, N e [H(X)] <'I n IA, if 
(Aa: a < f+) e N is a maximal antichain in 9(p)/NSM then there is an 
a < p such that 

a) Sk "(N U {at}) n M= Nn ft. 
b) NnEAa. 

Proof Otherwise by normality we get a stationary set S C IA and a 
particular maximal antichain (Aa: a < f+) such that for all N c S, if N n f E 
Aa then Sk (N U { a})fC) n l N n p . 

Let j: V -- M be a X-supercompact embedding. Then, since P = 
Col(Ml, < K) iS K-c.c., if G C P is generic then there is an H C j(P) = 
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Col(M, < j(K)) generic such that G C H and j can be extended to j: V[G] 
M[H]. Let V' = V[G]. Since S C IA, S is stationary in [H(X)v'] <' in Mj(P). 
Let f: IL 4H(X)v and 

OflLu 

T={ < e:f" S and 8 = f"S n IL); 
then T is stationary. 

Let (Ai: a < j(K)) = j((Aa: a < K)). By elementarity, M[H] I= 
(Ai: a < j(K)) is a maximal antichain in 9(M)/NS . Thus there is an a such 
that Ai n T is stationary. 

In M[H], let C = {N -< j(s-): INI < , a e N and N is closed under f, 
f-' and j r H(X)V[G]}. Then C is a club set in [H(j(X))]'<. Choose Ne C 
such that 8 = N n f E T n Aa. Let N' = f"8; then N' c S. Further, j(N') = 
j"N' _ N and N n j = N' n j = (j"N') n j, since crit(j) = K > P. 

Now Ski(")(j(N') U {a}) _ N; hence Ski(')(j(N') U {a}) n f = 
j(N') n p. But then 

M [ H] = there is an a < , such that j(N') n L E Ai and 

SkA(v)(j(N') U {a }) n p = j(N') n j. 
So 

V[G] I="there is a < P +, 

N' n e Aa and Sk-(N' U { a}) n = N' n I,." 
But N' E S. a contradiction. El 

By the main claim and Lemma 24, we can expand H(X) to Y = 
H(X),5 , c\, Jf ) such that for all elementary substructures N -< Y with 

INI < L and all maximal antichains (Aa: a < IL) E N there is an a such that 
a) N n l E Aa, 
b) Skw(Nu {aU}) n j = N n p. 
One can also pick Y such that if N is a substructure of Y, N E IA and 

a < p', then the closure of N U { a) under the operation of Y is in IA. See 
below in the proof of Theorem 29. 

We now work exactly as in Theorem 26. Let T c (p) < ' be a tree labelled 
with stationary sets (Aq: i Ee T) such that {A-a: q-a E T} is a maximal 
antichain below A',. We show that there is a function f: w + I such that for 
all n, f r n E T andf nl Cw Afrno 0. 

Let N-< Y, TEN, INI < and NflME T0. Then as before we can 
build a sequence (an: n C W) c IL such that Sk(N U { an: n < m)) n = 

Nfl n forallfinite m and Nf Ce A<ao al an) forall n. 

COROLLARY. If ZFC + there is a supercompact cardinal is consistent then 
so is ZFC + for every regular cardinal K, NSK is precipitous. (Compare [Fl].) 
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Proof We only use (222K)--supercompactness (at most) in the proof of 
Theorem 27. If there is a supercompact cardinal K, VK l= there is a class of a that 
is (222) '-supercompact. 

By iterating Levy collapses with Easton-supports we can make a generic 
object G such that VX' [G] I= If a is the successor of a regular cardinal then a is 
(22 2) -supercompact in V. 

Since, if 2M = L, IL'-closed forcing preserves precipitousness, VX[G] I= ZFC 
for every regular cardinal K, NSK is precipitous. [ 

Higher type ideals have very nice consequences for the set-theoretic uni- 
verse. (See [F2]). 

THEOREM 29. Let K be a supercompact cardinal and X < y < L < K be 
regular cardinals. Then in VC`l( <K) there is a stationary set S c [p] < y such 
that NS [/] < . r S is precipitous. Further NS is precipitous. 

We note that this is one theorem where we get a stronger result by 
considering the filter of "strongly" closed unbounded sets. (See the introduction 
for comments about "strongly" closed unbounded sets.) Woodin has remarked 
that this theorem gives generalizations of Namba forcing for cardinals above W2 

by considering N e IA with N n a having various cofinalities, where a is some 
cardinal less than I. 

Proof We will show that in VCol(M <K), NS[H(M)] <- r IA is precipitous. Since 

jH(jt)I = I in VCol(M <K), this proves the theorem. 
Our method will be as in Theorems 26 and 27. We will build a branch 

through any tree of antichains and an N -< H(X) with N n H(M) in the 
intersection of this branch. We first show that if X >> I then the projection of 
NS([H(X)] < Y) U {IA} onto NS([H(M)] <Y') is NS([H(M)] <Y') U {IA}. 

Claim a) If C _ [H(X)] `Y is a closed unbounded set then { x n H(l): 
x E C n IA) D D n IA for some D c [H(M)] 'Y that is closed and unbounded. 

b) If D _ [H(M)] <' is closed and unbounded then there is a closed 
unbounded set C C [H(M)] < such that { x n H(M): x E C and x E IA) C 

D n IA. 

Proof. By Lemma 0 there is a function f: H( X) <- H(X) such that if 
N E [H(X)] < f n IA, N n y E y and N is closed under f then N E C. Also we 
can make sure that if M E IA n H(M) 'Y then the closure of M under f is in IA. 
Such an f is defined by induction (for 8 < y) f^: H(M 4 H(A) ' where f0 is 
the original function guaranteeing that N e C and f6(M) = the closure of M 
under (fIp < 8). Let f code (faj1 < y) such that if N is closed under f, then 
N is closed under fJ for 8 E N n y. This f is easily seen to satisfy the 
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requirements. Let D = {M e [H(M)] 'Y: M < , M n y E y}. We claim that 
for all Me D n IA there is an N e C n IA such that N n H(M) = M. 

Let ?/= (H(X), c, \, f, gi)i E @ be a fully skolemized structure. Let ?= 
(H(IL), c, A hi) i e be such that if M -< Y then Sk '(M) n H(f ) = M. Let 

D= {ME [H(M)]<7: M-< ,MfnyEy}. We claim that for all ME 
D n IA, there is an N e C n IA such that N n H(M) = M. 

If M e D n IA, then the closure of M under f is as required. This proves 
the claim. 

We now prove the main claim analogous to the one in Theorem 27. 

Main Claim Let G c Col(M, < K) be generic. In V[G], let X >> (22 ) and 
-= (H(X), c, AJ)i5 * Then for almost all N -< [H(X)] `Y, if N e IA then for 
all (Aa: a < j) c N, (Aa: a < IL) a maximal antichain in 

9[H(M)] <")/NS U {IA} 

then there is an a < p such that 
a) Sk(NU {a}) n H(M) = N n H(M), 
b) N n H(M) e Aa. 

Proof Otherwise, there is a stationary set S C IA n [H(M)] < Y and a fixed 
maximal antichain (Aa: a < p') such that if N e S then (Aa: a < M+) e N 
and if N n H(M) E Aa then 

Sk(N U {a}) n H(M) = N n H(M). 

Let j: V -- M be a XA-supercompact embedding. Let V' = V[G]. Then in 
MCol(M <j () IH(X)v'l = j and S is a stationary subset of [H(X)v'] <. Let 
f: H(M) -- H(X)v be a bijection. 

Let T = {N e [H(M)V'] `Y: f"N e S and N =f"N n H(M)V'}; then T is 
stationary and T C IA by Lemmas 0 and 28. 

Let (Ai: a < j(K)) = j((Aa: a<K)). Then (Ai: a < j(K)) is a maximal 
antichain in 9([H(M)] `Y)/NS U (IA); hence for some a, Ai n T is stationary. 
Let C { N -< H(j(X))MCo0lL < j(K) NI < y and a E N and N is closed under f, 
f' and j r H(X)v'}. By Lemma 0, there is an Ne C, N n H(M) E Tn Ai. 
Let N' = N n H(M) and N* = f"N'. Then N* e S. 

Since jN*j < ., j(N*) = j"N* and j(N*) c N. Further, j(N*) n H(p) = 

N fl H(Mt). Hence Ski(-v)(j(N*) U { a)) n H(M) = N n H(Mt). So by elemen- 
tarity, V' = "there is an a, N* n H(M) e Aa and Sk '(N* U {cx}) n H(M) = 
N* n H(M)". But this is a contradiction since N* E S. This proves the main 
claim. 
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38 M. FOREMAN, M. MAGIDOR, S. SHELAH 

By Lemma 24, we can expand s& to an ?= (H(X), c, gi)i E (, such that for 
all N -< Y, if NeIA and (Aa: a < M+) e N is a maximal antichain in 
9'([H(M)] < ")/NS U {IA} then for some a < p+ 

a) Sk2(N U { a}) n H(M) = N n H(M), 
b) NrnH(M) EAa. 
Hence, as in Theorem 27, this allows us to build a branch with non-empty 

intersection through any tree of antichains. E 

Huge, cardinal-type ideals have been studied extensively. (See [F2] and 
[M2].) Magidor in [M3] showed: 

THEOREM (Magidor). (K, X) -- (K', A') if and only if there is a normal, 
fine, countably complete ideal on [K] K' concentrating on [X] A'. 

(Recall (K, X) -* (K', A') is the statement that every structure of type (K, X) 
has an elementary substructure of type (K', X').) 

The ideal in Magidor's theorem always exists. Chang's conjecture is needed 
to show that it is a proper ideal. 

The ideal is easy to describe, namely: X E f if and only if X c [K]K, 

[x fl XI = A' and there is a structure J'= (K, K, fi)i , such that X = 
{ y -< JV: o.t. x = K' and [xl = A'}. This ideal is seen to be analogous to the 
non-stationary ideal on [y] ' for cardinals X, &. 

When "huge" ideals are precipitous they can imply the G.C.H., Aa is 
Jonsson etc. [F2]. This makes it desirable to show that they can be precipitous. 

Frequently proofs of the consistency of Chang conjecture type transfer 
properties yield the stronger result that there is a precipitous normal ideal as in 
Magidor's theorem. The next theorem shows that modulo a supercompact 
cardinal this is equivalent to the transfer property. 

THEOREM 30. Suppose K is a supercompact cardinal and suppose that t < K 

and (,I, -y) -* (It', y') for regular cardinals ,u' < ,p and y' < X. Then in 
VCoI(, <K) there is a precipitous ideal on [I I] ' concentrating on [y] Y'. 

Thus, modulo a supercompact cardinal, Chang's conjecture is equivalent to 
a precipitous huge ideal. 

Note. We will show that the minimal normal and fine ideal are precipitous. 

COROLLARY 31. If "ZFC + there is a supercompact" is consistent then so 
is " ZFC + there is a normal and fine precipitous ideal on [I 2] 'I concentrating 
on [81] 

Proof of corollary from theorem. By Silver's theorem on Chang's conjecture, 
[Si2], from an Erdds cardinal one can force (825 81) (81 82) Since the first 
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MARTIN'S MAXIMUM, PART I 39 

Erd6s cardinal is less than the first supercompact cardinal and the forcing in 
Silver's theorem is of small cardinality, Silver's forcing yields (8 2' 1) -* (81 8 0) 

and preserves the supercompactness of the cardinal. Hence by Theorem 30, a 
further forcing yields a precipitous ideal. El 

Huge-type precipitous ideals were shown to be consistent from huge 
cardinals in [F2]. 

If ( , y) -* (n', y') then for all regular X ? I, we get an ideal on [H(X)]M 
concentrating on [y]y ' analogously to Magidor's theorem. Namely, a set X c 
{x E [H(X)]&: [x n yj = y'} is in the dual of f if and only if there is a 
structure d= (H(X), c, f) i . such that 

XD {x E [H(X)IM: Ix n yI = Wand x -<A- 

Since (p, y) (p', y'), this is a proper ideal. We will call this the non-stationary 
ideal on [H(X)]M'. A set S C [H(X)]'' is stationary if and only if for all 
expansions d/= (H(X), c, f)E, of H(X) there is an x e S. [x n yj = y' and 
x -< -y. Similarly we define a set S _ [ f L {x: [x n yj = y'} to be stationary 
if and only if for all expansions -?= (p, E there is an X -< -, x c S. A set 
will be called closed and unbounded if its complement is not stationary. 

We will prove Theorem 30 with the same method as we proved Theorems 
27 and 29. We must define a notion of internally approachable appropriate in 
this context. 

A set N E [H(X)]t` is internally approachable if and only if there is a 
continuous increasing sequence (Na: a < sup N n p) c [H(X)] t' such that for 
each /l c N n a, (Na a < /) E, N, NaI < i and UaIsupNnLN, D N. We will 
let IA stand for the collection of N E [H(X)]t` that are internally approachable. 
We claim that IA is stationary in [H(X)]t` and projects to a closed unbounded 
set in [ ] '. To see that IA is stationary we let -?= (H(X), , f, A)i, be an 
expansion of H(X). 

Let (Na: a < sM) be a continuous increasing sequence of elementary 
substructures of -? such that each Na has cardinality < p and (Na: a < /3) C 

NI1. Let M = UNa and let Y be the result of expanding (M, A, f, ) by 
the function g(13) = (NNa: a < /). 

Since jY I = y we can choose a Chang elementary substructure N of Y of 
type (M', y'). Since N -< I, N "for all x there is a /3 < p such that for some 
Na in the sequence g( /3), x E Na". Further such an a must exist in N. Hence 
N _ Ua N N and, since g(/l) E N for / cE N n A, (Na: a</3) cN.Thus 
N is an elementary substructure of -? and N is internally approachable. 

To see that IA projects to a closed unbounded set in [M]'` (i.e. { N n q: 
N E IA n [H(X)]W} is closed and unbounded in [M]P') it is enough to see that 
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40 M. FOREMAN, M. MAGIDOR, S. SHELAH 

for any stationary set S C [ ]' and any expansion of H(X), V= 
(H(X), c, A, fJ).,, there is an N -, NE IA n [H(X)]` such that N n [ 
C S. 

Again we build (Na: a < p), a continuous increasing sequence of elemen- 
tary substructures of (H(X), e, A, fi E @ such that INaI < [ and for each < A, 
(N: a</3) cE- N1. Let Y expand Ua<,Na by the function g(13) = 
(Na: a < /3). As usual we find functions (gi: i E d) with domain [p] `0 so that 
if x _ [ is closed under (gi: i E A) then Sk(x) n y = x. 

Since S _ [] p is stationary there is an x E S closed under ( g i: i Eco). 
But then Sk(x) n q = x and Sk(x) -< Y. Thus N = Sk(x) is internally 
approachable and N n q E S as desired. 

We now need a lemma like Lemma 28 d. 

LEMMA 32. Assume (p, y) -* (n', y') and 8 E OR. Suppose X >> [ and 
S c [H(X)]q n IA is stationary. Then in Vc?1( `8) 

a) (p. 8) -->(p/'y)5 
b) S is stationary in [H(X)v]t` (i.e. any expansion of H(X)v has an 

elementary substructure of type (ni', y') in S). 

Proof A proof of a) appears in [Fl]. 
b) It suffices to see b) for 8 > X. Let a?= (H(X)v, a, fiie,, be an 

expansion of H(X)v in VCol( <8). In V, if X' > X, the non-stationary ideal on 
[H(X')]t` projects onto the non-stationary ideal on [H(X)]'. Thus, if p c 
Col(M, < 8) and 2'= (H(X), f) is a term for the structure -V and X' >> 8, 
there is an elementary substructure N < H(X'), V , A, p, {p}) such that 
No H(X) E S. 

Since S C IA there is a sequence (Na: a < sup N n p) of sets of size < i 
so that U pNn,N D N n H(X) and for each ce N n , (Naa< )EN. a< sup anI ,:a )-N 
Working inside N. we can build a tower of conditions (pa: a < sup N n p) 
extending p so that p decides all of each f r Na. (Note that the tower is not in 
N but for each /3 E N n M, (pa: a < /) E N.) To do this we use the fact that 
N I, INaI < s so that we can extend any condition to a condition that decides all 
of f Na. Then for /3 E N n Mu (pa: a </3) is the lexicographically least 
sequence such that Pa decides all of f Na. Since (Na: a < /)ed N, 

(Pa: a < /3) E N. 
Since Col(M, < 8) is < M-closed there is a condition q such that for all 

a <sup N l ti, q I- Pa. 
Then q R- "N n H(X) is closed under each f" because if x c N n H(X) 

then for some a E N rl Bud x c Na. Hence Pa F- fi(x) = y for some 
y E Nl nH(X). So q i-fi(x) E N n H(X). Thus q FR-"Nl nH(X) -<" and 
N n H(X) E S. Hence S is stationary in Vcol(, 8). E 
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Proof of Theorem 30. As usual, we will be done if we can show some 
version of the main claim. 

Main Claim. Assume the hypothesis of the theorem. In V' = Vc`1(L <K), let 
X >> K and _ = ( H(X), c, fi, be an expansion of H(X). Then for a closed 
unbounded set C c [H(X)]/', whenever x E C is internally approachable and 
(Aa: a < e+) C x is a maximal antichain in 9([p]Q')/NS there is an a such 
that 

a) Sk(x U { a}) n p = x n I, 
b) x n i E Aa. 

Proof Let j: V -* M be a X--supercompact embedding. If the lemma is 
false, let S c [H(X)]W n IA be a stationary set and (Aa: a < K) be a maximal 
antichain in 9([P]L')/NS such that for all x E S. (Aa: a < K) E S and for all 
a, if x n tt E Aa then Sk(x U a)) n t * x n I. 

We can extend j to j': V' M' = Mco'(O, < j(K)). By Lemma 32, in M', S is 
stationary in [H(Mi)v`]t. Let f: -* H(X)v' be a bijection and (Ai: a < j(K)) 

-j((A, a<K)). Then T = {x C [M]' ': f"x e S and x =f"x nq } is sta- 
tionary in [y]'. Hence for some a, T n A" is stationary. 

Let C = {N -< j(V): a E C and N is closed under f, f' and j r H(X)v }. 
Then C is closed and unbounded and hence for some x E C, x n - E T n Ai. 

Let N = f"x n t; then, Skj(')(j"NU {a}) n t _ xn it = j"N n t and 
j"N = j(N). Hence M' t="there is an a, j(N) n qt E Ai and Skj(')(j(N) U 
{a}) n t = j(N) n n." But then NE S and V' I="there is an a, N n ,i Ee Aa 
and Sk(N U { a)) n q = N n n", a contradiction. This proves the main claim. 

By Lemma 24, we can expand (H(X), e) to an 2= (H(X), c, J)5 - such 
that for every N -< Y with INI = A' and IN n y yj = y' and every maximal 
antichain (Aa: a < Al) E N. there is an a such that N n r E= Aa and 
Sk(N u { a)) n t = N n t. 

This allows us to build a branch with non-empty intersection through any 
tree of antichains, thus proving Theorem 30. 2 

Previous to this work Jech asked two questions that in light of Theorems 
26-30 look very attractive. He asked whether, assuming that there is a super- 
compact cardinal K, one can prove either 

a) NSK is precipitous, 
b) NS.1 is precipitous. 

Unfortunately both are false: 

THEOREM 33. If KK = K, 2K = K' then there is a < K-closed, K '-c.c. 

forcing P such that for all normal ideals f in V the normal closure of f in VP is 
not precipitous. 

This content downloaded from 142.103.160.110 on Sun, 23 Nov 2014 21:17:08 PM
All use subject to JSTOR Terms and Conditions

Sh:240

http://www.jstor.org/page/info/about/policies/terms.jsp


42 M. FOREMAN, M. MAGIDOR, S. SHELAH 

We first prove two lemmas: 

LEMMA 34. Suppose that J is a normal, K-complete ideal on K and P is a 
< K-closed forcing; then the normal closure of J in VP is a proper ideal. 

Proof The normal closure of J is the collection of sets included in some set 
of the form v(Xa: a< K) for a sequence (Xa: a< K) C_ Jin VP. If the normal 
closure is not a proper ideal then there is a sequence ( X,: a < K) C J, 

(Xa a< K) E VP such that K C V(X_: a < K). Let KTa: a < K) C VP be a 
term for such a sequence. 

In P, build a sequence of conditions (pa: a < K) such that Pa R- pa for 
a > a' and for each a, PassIIa, p F- a=Xa for some xa E J. Thenva<Kx D K 

since f is proper in V. Let 8 E K Va<KXa* Then, if P > 8, po IF 6 % Va< KXa, 

a contradiction. E 

The following lemma is standard and we omit the proof. 

LEMMA 35. Let K be a regular cardinal. There is a sequence of functions 
(Oa: a < K+), Qa: K -- K, such that whenever J is a normal K-complete 
precipitous ideal on K then Oa represents a in the generic ultrapower. 

Recall, an ideal is not precipitous if and only if there is a tree of maximal 
antichains where the intersection of the sets that lie on any branch of the tree is 
empty. Thus to show that an ideal f is not-precipitous it is enough to show that 
there are sets (A',: 'q E (K+)<') and functions (f,: 'q E (K+)<@) such that: 

a) If q extends v then A, C AP 
b) { Atria: aE G K+ } is an almost disjoint maximal antichain below AW. 
c) f,,: An - K+ and for all y E A,,a, A (Y) < f(Y)) 
Clause c) guarantees that if g: X -- K+ thennfl nnAgrn = 0, since if 

yEf nnriAgrn then (fgrn(y): n e o) forms a descending o-sequence of 
ordinals. The forcing in Theorem 33 consists of approximations to such a tree. 

Proof of Theorem 33. P will be an iteration of length K+. Let T = (K+) <" 

and Kla:a < K+) be a well-ordering of T such that if q is an initial segment of 
v then q comes before v. The iteration will add a sequence of sets (A',: 'q E T) 
and functions (fT: 'q E T) such that: 

a) Ar C K and IAa -, An-, I < K, if a O. 
b) fT: An -- K and f, eventually dominates Oa for each a E K+. 

c) For all a and y E A'q-a, Arl" (Y) < f(y). 
The iterations will be with < K-supports. 

Suppose we have defined Pa and (Aqo: P < a) and (f7R: P < a). To 
specify Pa?1+ we must define the factor algebra Qa in V-. Suppose Pa = ^y 
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Then 'q = for some Po < a. We put q c Qa if and only if 

q = yas, f~' Kbas3 1 E y), KSa f3 1 x)) 
where 

a)aq CK, JaJ< Kanda,, cAq, 
b) y E [a] <, ba, Ac K, 

and if qA = Any' for some y' then a,, n A' c b. A, 
c)f': an K5, XC [K] <Ken Sal GE Kand for all > SaQ, if SEa' then 

f4(Y) > OW05( 
d) for all ( c= a,,}, f4,Y) < AMt) 

The ordering is given by q* F- q where 

q* =a f* ( bl: 13 E Y*), S 1 E x*)) 
if and only if, 

a) a is an end extension of an,, 
b) f*ra =f~ ' 
c) y * D y and for all 1 el y, b*3 =ba ,a 
d) x* D xandforall3e x, Sap= S'at. 
Note that a,, approximates A, and fit approximates f . Clause b) in the 

definition of the partial ordering guarantees that the A-na and a,-3 are almost 
disjoint. 

Clause d) guarantees that Jlea < f, on A,,a, Clause c) guarantees that fr 
does not stray into the well-founded part of the generic ultrapower. Let Pa+l= 
Pa * Qa . 

Claim. P is < K-closed and K-C.C. 

Proof. < K-closure is true since we are iterating with < K-supports and 
each Qa is < K-closed. Since P is K-closed we could have defined P in the ground 
model as a product forcing. In fact P has a dense set, D, of conditions of the 
form p = (p(a): a G supp p) where for a e supp p 

p(a) = (a,,, fy' Kaba 1 e y(a)) , (Salt,: 1 x(a))) 

and aT,, fr', y(a), KbalA:O/3 e y(a)) and (SalA: 3 Ec x(a)) are all elements of V. 
Further y(a) = supp p n a and x(a) = supp p. 

Let (pa: a < Ki) _ P. We want to show that for some a, 13 , Pa and po 
are compatible. We may assume that each Pa E D and by a standard 
A-system argument we may further assume that there is a set F c K+, IFj < K 

and for all a < 1, supp Pa n supp pl3 = F and if a < 1 then sup supp Pa < 
inf(supp p3 - F). By the cardinality of K" we may assume that for all a, 13 and 
all a Ec F(.)P# ( an ( Pp ( Pp 
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Further, by cardinality arguments we may assume that for a, 8 E F, 

(ba8)P- = (ba& 0) and (Sa )PI = (Su 8) . 

We claim that any p and q satisfying these properties are compatible. 
Define a condition y with support supp p U supp q. For a E supp p - 

supp q let y(a) = p(a) and for a E supp q - supp p let y(a) = q(a). For 
a E F. let 

y(a) = (az, , ', (Kba, : A e y (a)), (Sa, : /3 E x(a) U x(a)P)). 

Note that aT = a and (fT')p=(fr')q and {y(a),Kba a: /E y(a))} I= 
{y(a) Kba, : /3 E y(a))}I and for /3 e x(a)y n x(a)P, (Safl)p = (Sa )q. Then 
y is a condition since the restrictions on a coordinate y(a) refer only to a', and 
f, for /3 < a, /3 Ee y(a), and q and p agree on the a,, 's for /3 E F. This proves 
the claim. 

As we argued, we will be done if we can show that for any ideal on K, 

JY E V and any 'q E T. { Anna: a E K + } is an O-maximal antichain below A, in 
V P. 

Let S E VP be a term for an -Y-positive set S c A W. Then, by the chain 
condition there is a A such that Al., S e V'P+. Choose the least 0 > A such that 
'q = Gi for some A. We will show that A7, n S t S. 

Let (Xy: y < K) E VP be a term for a sequence of elements of f and 
p E P be a condition, p 1- A71, n S C V(XY: y < K). 

Let G., c P., be generic with p r e c GC,,. Let V' = V[Gp,], X >> K and let 
M < (H(X)v', c, APp, G, P, S. q, 0) be such that: 

a) M n K+ E OR, Mj = K and MK CM; 
b) p, (X : y < K) E M. 
Let (Na: a < K) be a continuous chain of elementary substructures of M, 

each of cardinality < K such that 
a) M=Ua<KNa 
b) {p} U {X:(X y < K)) c No. 
c)(N: P3<a) ENa+ 

Then clause c) implies that whenever a is a limit ordinal then Na is internally 
approachable. 

Let S' = S {a: for some yE Na, V-y = 'q for P3<42 and a eA,- 
Then, if S n A,,Y Ef for each y such that flpy = q1 for some 3 <4, 5 
S'mod f. (Here we use the remarks just before the proof of Theorem 12.) 

Let 8a = sup Na n K and 8* = sup M n K+. Then 

C = { a: for all y E Na q K E b*(6a) > (y(6a)} 

is a closed and unbounded subset of K. Further there is a final segment I of A, 
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such that fn> >6* on I. There is a limit ordinal a such that 6,a E C n S' n I 
and t~a ? U(f1 Na), since otherwise C n S* c {a: for some XEc Na n X, 
aE X} Ef . Choose such an a0. Then 6a t Asy for any ycNa for which 
there is a /3 < 4 and sh.y = 

Build a sequence of conditions that lie in Na0, A pe: /3 < /*) e P/P,, such 
that po = p and p,, R- pa if /3' > /3 and for all dense open sets D C P/P1, that 
lie in NaO there is a /3 such that p, E D. This is possible since Na CIA. (Repeat 
the argument in Lemma 28d.) Then /3* < K and hence there is a master 
condition q I- pa for each : < /*. We may assume that q is the coordinatewise 
union of the Ape: /3 < /*). For each y < 6,aO, q decides the value of Xy and 
q IF-y C NaO. Hence q I /ao VY<K XY. 

Now Sao E S and J(6ao) > Oa*(8a). Let 

q(0) = Gary, Jfr, (b0A: /E3 y), (S0,:: /E3 x)) 
be the Oth coordinate of q. 

Since y, x _ Nan Oa*(6a,) > OA(a) for each /3 E x and for each /3 c 
6a 0 AA, we can define a condition q* in Q0 by 

(an NU {6aO} tfr U {Sao Ca*(8ao)))Kbo,/3 , GE y),K(So :/3C E x). 

Then q* I- q(0) is in Q9. 
Let q'(a) = q(a) for a 0 0 and q'(O) = q*. We must see that q' is a 

condition in P. The only problem that could arise is a 0' > 0, 0' E supp q, such 
that q' r If - q(O') t Q9,. Let 

q(0') = (ar, f,, (b0, /3: /3 e y(O')), (S4, : /3 E ))). 

Then a C 6a and hence a cannot conflict with aU { S } and f cannot 
conflict with fry u { a 0,a* (Ja) )} Hence q' E P. 

But q IF- Sao E (S n AN@) VY<KKXY y < K) and q' IF- p, a contradic- 
tion. Hence { A a: a < K + } is a maximal antichain below A',. E 

Now in the proof of Theorem 33, pIP = K+ and hence if X > K is a 
supercompact cardinal then X is supercompact in VP. Further if Q is a 
< K-closed forcing then the normal closure in VQ of (NSK)V is (NSK)VQ. Thus a 
supercompact cardinal X does not prove that NSK is precipitous for any K < X. 

If K is a K-closed indestructible supercompact cardinal (see [LI]), then 
forcing with P leaves K supercompact. Hence we get a model with a supercom- 
pact cardinal K such that NSK is not precipitous. (By Theorem 27, it is consistent 
to have a supercompact cardinal K such that NSK is precipitous.) 
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