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Annals of Mathematics, 127 (1988), 1-47

Martin’s Maximum, saturated ideals, and
non-regular ultrafilters. Part I

By M. Foreman', M. MacIpor* AND S. SHELAH?

Abstract

The authors present a provably strongest form of Martin’s axiom, called
Martin’s Maximum, and show its consistency. From it we derive the solutions to
several classical problems in set theory, showing that 2™ = R,, the non-sta-
tionary ideal on w, is N,saturated, and several other results. We show as a
consequence of our techniques that there can be no “nice” inner model of a
supercompact cardinal. We generalize our results to cardinals above w, to show,
for example, the consistency of the statement “The non-stationary ideal on every
regular cardinal « is precipitous.”

In this paper we present a provably maximal form of Martin’s axiom
(IM-So]) which we call Martin’s Maximum. We show that it settles several
classical questions in set theory, including the value of the continuum, Friedman’s
problem and the saturation of the non-stationary ideal on w,. We show that
Martin’s Maximum is consistent relative to the existence of a supercompact
cardinal.

It is well-known ([So2]) that saturated ideals give rise to generic elementary
embeddings. It was a widely held belief that the generic embedding had roughly
the same consistency strength as the analogous non-generic embedding ([K1]).
However the generic embedding associated with an N ,-saturated ideal on w, is
analogous to an almost-huge embedding, which is much stronger than a super-
compact cardinal. Thus, the results in this paper contradict the common ideol-
ogy.

Using technology previously developed by Shelah, we were able to force
over a model with a supercompact cardinal k with a k-c.c., (w,, 0o)-distributive
partial ordering to make the non-stationary ideal on w, restricted to a particular
stationary set be N ,-saturated.

'The first author would like to thank the NSF for partial support.

*The second author would like to thank the US-Israel Binational Science Foundation for its
partial support under grant 2691 /82.

¥The third author would like to thank the US-Israel Binational Science Foundation for its
partial support under grant 2541 /81.
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2 M. FOREMAN, M. MAGIDOR, S. SHELAH

A major program in set theory initiated by Solovay, Mitchell and others was
to construct canonical models of “ZFC + there is a supercompact cardinal”.
The models were supposed to have some of the crystalline structure of L. (This is
the so-called inner-model problem.) The results in the previous paragraph
drastically limit the possibilities of such an inner model. For example, they show
that the canonical models cannot have the same 8, are generic extensions of one
another, and so forth.

Similar techniques show that if there is a supercompact cardinal, then the
theory of L(R) does not change under set-generic forcing extensions. Woodin
and Shelah have since strengthened this theorem a great deal by reducing the
large cardinal hypothesis required.

We also show the consistency of “for all regular cardinals p, the non-sta-
tionary ideal on p is precipitous” from a supercompact cardinal. Further, we
show that relative to a supercompact cardinal, Chang’s conjecture is equivalent
to a generic version of Chang’s conjecture. From this we deduce the consistency
of a generic huge embedding from a supercompact cardinal. (See [F2] for
terminology.)

In Part II of this paper we will show that one can force over a model of
“ZFC + there is a huge cardinal” to get fully non-regular ultrafilters on any
succesor cardinal p. We also construct ultrafilters giving rise to ultrapowers of
small cardinality.

A summary of our results is as follows:

In Section 1, we present the axiom we call Martin’s Maximum (MM) and
show that it is a provably maximal version of Martin’s axiom. We review the
technology of semi-proper forcing developed by Shelah ([Sh1l]) which is in-
timately connected with the work in this paper. We then show that Martin’s
Maximum is consistent with ZFC relative to a supercompact cardinal. Finally we
show that MM implies various versions of Martin’s Axiom discussed elsewhere in
the literature. We also introduce the principle (1).

In Section 2 we deduce various consequences of MM. We first show
Friedman’s problem (every stationary subset of a regular cardinal k¥ > w, con-
sisting of points of cofinality w contains a closed set of order type w,). Using the
same technique, we deduce 2% = 2% = R, and various other cardinal arith-
metic consequences. We then show that under MM the non-stationary ideal on
w, is N ;saturated and that the saturation of the non-stationary ideal is preserved
by c.c.c. forcing. Along the way we show the crucial combinatorial tool that MM
implies: that every stationary subset of an [H(A)]“ reflects to a set of size w,.
This implies the principle (). We also obtain partial information about the
quotient algebra #(w,)/NS, . In particular we show that any new real in the
forcing extension is (in a quite strong sense) a minimal degree.
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MARTIN’S MAXIMUM, PART I 3

Section 3 is a short section mostly devoted to a brief explication of versions
of MA (Martin’s Axiom) consistent with CH and results of Shelah and Woodin
showing that there can be no nice inner model of a supercompact cardinal. We
also show a joint result of the authors that weak versions of MA consistent with
CH imply that the non-stationary ideal on w, is presaturated.

In Section 4, we generalize our results to cardinals above w, to show that
for any regular p, the non-stationary ideal on p can be precipitous. Further, we
get higher order ideals to be precipitous on sets such as [A] =* and [A]*. These
ideals are versions of the non-stationary ideal. We show that if we have Chang’s
conjecture at a regular cardinal «, then by collapsing a supercompact cardinal to
k™, we can make the Chang’s-conjecture ideal precipitous. Finally, we show that
if 2 = k™ and k® = k, then there is a k-closed, k*-c.c. forcing that makes any
normal precipitous ideal on k in V non-precipitous.

We now want to discuss the notion of closed and unbounded we use.

On [A] =" there are two different natural notions of closed and unbounded,
one stronger than the other.

The weaker notion is the official one used in this paper, though all of
the proofs work with the stronger notion. Recently, Woodin has exploited the
stronger notion to great advantage; so we spell out the differences in the
following definitions and lemma.

Definition. Let k and A be regular cardinals. Let [A] =* = {x C A: |x| < k)
and [A]* = {x C A: |x| = «}.

If X C [A] =" then X is strongly closed and unbounded if and only if there
is a structure &/ = (A, f;);c, Where f: A= > A and X = {N <&: |N| < k}.
Note that any strongly closed and unbounded set contains countable subsets
of A.

X is closed and unbounded if and only if:

i) For all y € [A] =" there is a z € X such that y C z.

ii) Whenever (y,: a < 8) € X where B8 < k and a < o' implies y, C y,,
then U, _ py, € X. ((ii) is equivalent to X being closed under unions of directed
systems.)

Note that if k > w, there are closed and unbounded sets containing no
countable sets. Further any strongly closed and unbounded set is closed and
unbounded.

The collection of strongly closed and unbounded sets generates a countably
complete, normal and fine filter, %, and the closed unbounded sets gene-
rate a < k-complete normal and fine filter %#. The next lemma, essentially
due to Kueker, [Ku], shows that &% is the filter generated by adding
{ye[A]" ynNnkek}to £
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4 M. FOREMAN, M. MAGIDOR, S. SHELAH

LemMa 0. Let p < k < A be regular cardinals, #(\, p), %,(k, n) be the
filters of strongly closed and unbounded sets on [A]<* and [k] =* respectively.
Let # (A, p) and F (k, ) be the corresponding filters of closed and unbounded
sets. Then:

a) F (A, ) is the filter generated by

FZAp)u {{ze AT znpep}}.

b) If C c [A] <* is strongly closed and unbounded then {y N k: y € C} is
a strongly closed and unbounded subset of [k] =*.

c) If C c [A] <* is closed and unbounded then {y N k: y € C} contains a
closed and unbounded set in [k] ~*.

d) If Cc [k]=* is closed and unbounded (resp. strongly closed and
unbounded) then {z € [A]~* zN«k € C} is closed and unbounded (resp.
strongly closed and unbounded).

Proof. a) Let C < [A]=* be closed and unbounded. We must find
(fi: [A]=“ > Ali € w) such that {y € [A]=* y is closed under each f; and
yNnpep} CC Let £= (H(A), ¢ C,A,{pn}) where A is a well ordering of
H(MA). Let N <. be an elementary substructure of £ of cardinality < p such
that NN p € p.

For @ € [N N A] =“, we define by induction on |d|an M; € N N C so that
@dc M, andif @D B, M;D Mg. Then, since M; € N, [M;| € Nso M; C N.
The collection {M; o € [NNA]~“} is a directed system, hence N N A =
UM e C.

Suppose we have defined M for |&|=n. If | I3 | =n + 1 then choose
Mz € N N C such that for all subsets & C B, |&|=n, BUM,C Mj;. We can
choose such an My since Uz gM; € N and N =“C is unbounded”. Clearly
these M/’s are as desired.

Let (g;: i € w) be Skolem functions for £ that are closed under composi-
tion. Let f: [A]=“ — X be the restriction of g; to domains and ranges in A.

If ye[A]“*, yNp€p and y is closed under each f; then there is an
N < % such that NN A = y; hence y € C.

b) Let (f: i € w) be such that if y € [A\]“* and y is closed under
(f: i € w), then y € C. Without loss of generality we may assume that the f’s
are closed under composition. Let {(g;: i € w) be the result of restricting the
domains and ranges of each f to k. If z € [k]~* and z is closed under
the g,’s then there is a y € [A] =* such that y is closed under the f;’s and
y N k = z. Further, if y is closed under the f’s then y N k is closed under the
g.’s. Thus {z € [k]=* there is a y € C, 2=y Nk} is exactly the set of
z € [k] =* closed under {g;: i € w}.
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MARTIN'S MAXIMUM, PART I 5

c) By a) we may assume that C is of the form {y € [A]“* y N p € p and
y is closed under ( f;: i € w)} for some sequence of functions ( f;: i € w). By b)
there are functions (g;; i € w) such that for all z€ [k]~*, z=y Nk
for some y closed under the f;’s if and only if z is closed under the g,’s. For
ye[A]", ynpepifandonlyif yNnk Npe p. Hence {yNk:y e C) =
{z: z€[k]"*and 2N p € p, and z is closed under (g;: i € w)}.

d) is immediate. O

We note that if p is w;, Lemma O implies that there is no difference
between Z (A, w,;) and F (A, w,).

Notation. We now discuss the notation and conventions we shall use
throughout this paper.

We will write |X| for the cardinality of a set X and o.t. (X) for the order
type of (X, ¢).

Forcing will be used throughout this paper and we will frequently use both
Boolean algebra and partial ordering notation. We will use || || for the Boolean
value taken in a particular Boolean algebra % and drop the £ if it is clear from
context. When we use the symbol “> " it will be in the Boolean algebra
convention; i.e. p < g means that p is stronger than g. Similarly, when we write
that p is below ¢ we will mean that p is stronger than gq.

We will write that ||¢||; = 1 if and only if ¢ is true in any forcing extension
by 4. In an attempt to avoid culturally induced confusion of p > g vs. p < g,
in this paper we have followed the convention established by the New England
Set Theory Seminar of using p I g as an abbreviation for “p forces ¢
to be in the canonical generic object.”” Solovay has pointed out that the relation
“pI-q € G” is not the same as the partial order < for non-separative
partial orderings P. We hereby warn the reader that confusion may arise as a
result of this.

In a similar abuse of notation we write p||g to mean that p decides the
Boolean value ||g € G|| where G is the canonical term for a generic object. In
general G will be the generic object. If ¢ is an n-ary formula and 7, --- 7, are
terms we write p||¢(7,---7,) to mean p I ¢(7, - 7,) or p I (71 T,).
We will let %(P) be the complete Boolean algebra in which the separative
quotient of P is dense.

We will also abuse notation by using V? to stand both for the generic
extension of V by a generic object G C P and for the Boolean-valued universe.
Similarly we will write that V* I= ¢ for ||¢|| 5 = 1. A P-term (or P-name) will
simply be an element of VP. If Q € V? is a P-term for a partial ordering, a
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6 M. FOREMAN, M. MAGIDOR, S. SHELAH

Q-term in V? is a Pterm 7 such that ||7V[¢] is a Q-term||4(P) = 1. We will
occasionally explicitly work with terms, in which case we will attempt to use the
system of dots and checks. For example & might be a P-term for an ordinal,
whereas if a is an ordinal in V we will write & for its canonical term in V'¥.

We will use quotation marks around certain statements following &= or I—
when they occur in prose to delineate the extent of the symbol = or . We
will also use quotation marks to specify classes defined by the mathematical
representation of the statement in quotes.

We will write i: Q = P if i is a monomorphism of Q into P such that any
maximal antichain in Q is sent to a maximal antichain in P. Equivalently, i can
be extended to a complete embedding i: B(Q) > ZP). If i: Q= P and
G C Q is generic we can form the Boolean algebra #(P)/G in V[G] in the
standard way. Then forcing with Z(P)/G over V|[G] yields an ultrafilter
H c #(P) which is generic over V. We will let P/Q be the Q-term for the
Boolean algebra #(P)/G. We will use * for the two step iteration. Thus
B(P) = B(Q +P/Q).

In doing Boolean algebra computations in # we will use ¥ and V for the
sum or join of elements of %; similarly we will use I or A for the meet of
elements of %.

We will use the notation P, for an a-stage iteration. If we have defined an
iteration (By: B < a) we will write RLLN (By: B < a) and Moo, — (P B<a)
for the direct and inverse limits of (F,: B < a) respectively. An iteration is
determined by its “factors” and the type of supports allowed in the iteration. If
p is a condition in an iteration, then the support of p, which we write supp(p),
is the set of B in which p gives non-trivial information in the Bth factor. We can
represent a condition p by p = (p(B): B € supp(p)). (See [B1] for a very good
exposition of iterated forcing.)

We will say that a partial ordering P is (k, co)-distributive whenever
(D, a < B) is a collection of < x-many dense open sets in P, zD, is dense
and open. (This is equivalent to P not adding new < k-sequences.) An exception
to this is that we may write (w, co)-distributive to mean (w,, oo)-distributive.

There are several partial orderings we will use quite frequently. We will
write Col(k, A), Col(k, < A), Col(k, < A) for the Levy collapses of A, every-
thing less than or equal to A and everything less than A to have cardinality «
respectively. If X is an arbitrary set, we will write Col(k, X) for the Levy
collapse of X to have cardinality «.

We will typically use A for a large enough generic regular cardinal. We will
write A > « for a regular A at least two power set operations greater than «, i.e.
A > 2% In contexts where we use it, it will not matter exactly what A is as long
as it is sufficiently large and regular. We will write H(A) for the collection of sets
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MARTIN’S MAXIMUM, PART I 7

hereditarily of power less than A. We will write [ H(A)] =* and [ H(A)]* to mean
all subsets of H(A) of power < k and power k respectively. We will use A as an
arbitrary well-ordering of H(A) in order type |H(A)| The sets of set-theoretical
rank less than k will be called R,. We will use OR for the class of ordinals and
cof(y) for the class of ordinals of cofinality y. Thus k N cof(y) is the set of
ordinals less than k of cofinality vy.

Cardinal exponentiation will be denoted in the usual way; ie. k=
(FIF A = )

We will often be interested in ideals. All ideals will be proper and countably
complete and contain all finite ordinals. If .# is an ideal on a set z, then #(z)/#
is the Boolean algebra constructed by taking #(z) modulo £. If A € #(z), A is
Fpositive if and only if A € #. We let #| A be the ideal generated by
# U { A}. The set of Lpositive sets will be written #*. The filter dual to # will
be called £. If A is positive then [A] , is the equivalence class of A modulo .#.

If z =« for some set k and (A a <k) C P(z) then A, _ A, = {B:
for all « < B, B€A,} and V, A, = {B: thereisan a < B, BEA }. If
z=[A]"or [A]"“ and (A, a <A) C P(z) then A, A, = {x € z: for all
a€x,x€A,}and V, \A,={xEz: thereisana €x, x € A_}.

We will be particularly interested in the non-stationary ideals on various sets
z. A set x C z is non-stationary if and only if it is in the dual to the closed
unbounded filter. We refer the reader to earlier remarks about the closed
unbounded filter on various sets. We will write NS, for the non-stationary ideal
on Z.

An ideal £ on [k]* will be said to concentrate on [’]* if and only if
{x € [k]* x N «’ has cardinality A’} € L.

If o/ and £ are structures we will write &/ <.% if &/ is an elementary
substructure of . We will write (k, A) - (k’, \’) if and only if whenever
L= (k; A, f;); ., is a structure there is an elementary substructure &/ < .# such
that |&/| =k’ and |&N A|=XN. (This is Chang’s conjecture.) If & is a
structure with Skolem functions (or a well-ordering) and X C ./ then Sk*¥(X) is
the Skolem hull of X in 7.

If n € (k) = then l(7) is the length of 1. We will use " for concatenation,
so that 7" a will be 7 concantenated with a.

If x € OR then sup x will be the proper supremum of X (i.e. sup X =
U{y + 1: y € X}).

We will use the notation Proposition (T), where T is a theory, to mean that
the proposition is proved in the theory T.

We will write j: V- M for an elementary embedding j from V into a
transitive class M. We will write crit(j) for the critical point of j, i.e. the first
ordinal moved by j.
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8 M. FOREMAN, M. MAGIDOR, S. SHELAH

1. The consistency proof

In this section we work towards proving the consistency of Martin’s
Maximum, a maximal strengthening of Martin’s Axiom [M-So).

Definition. If Q is a partial ordering, Q preserves stationary subsets of w, if
and only if there is a g € Q such that whenever S C w,, S € V is stationary,
then ||S is stationary|, > g.

If 2= (D, a < w,) is a sequence of dense sets in Q and G C Q is a filter,
we say that G is generic for 2= (D, a < w,) if and only if for each a,
GND,+ @.

Martin’s Maximum is the following statement:

If P is a partial ordering that preserves stationary subsets of w, and
2 ={D,: a < w,) is a sequence of dense sets in P then there is a filter
G C P, such that G is generic for 2.

In general, if T is a class of partial orderings we will say that MA holds for
I' if and only if:

For all Q € I and all sequences ( D,: @ < w,) of dense sets in Q, there is a
filter G C Q such that G is generic for 2.

We point out that I' =“the class of Q such that QO preserves stationary
subsets of w,” is a maximal class for which MA can hold.

ProposiTION 1. Suppose that Q does not preserve stationary subsets of w,,
then there is a sequence of sets 9= (D, a < w,) such that there is no
D-generic filter G C Q.

Proof. Since Q does not preserve statiorary subsets of w, there is a term
S € V? such that ||S € V and § is stationary in V||=1 and a term C € V©
such that ||C is clubin w, and CN S = || = L.

Let D, = {q € Q: for some S € V, S stationary, q I- S = §} Let D, =
(g€ Q: q|"a€C” and if gI-“a & C” then there is a y <a, gIHCN
(v, @) = @ and for some 8 > a, g IF“B € C”}.

For each a, choose a term for an w-sequence of ordinals (a,: n € w) such
that

|if « € C then(a,: 1 € @) € C andsup{a,: n € w) =al =1.

Let D,, = {q € Q: either gI-a & C or g+ a € C and for some B € w,,
q-a,=pB}

Suppose G C Q is generic for (D a < w,) U(D, : a < w0}, n € ).
Let C = { a: there is a ¢ € G such that g I- « € C}. Then C is closed since: if
(a,: n € w) C C is an increasing sequence with supremum « and a & C then
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MARTIN'S MAXIMUM, PART I 9

for some g € D, N G, g I+ a & C. Hence there is a y < a such that g - C N
(v, @) = @. Take some a, > y and a y € G such that r I~ «, € C. Then r and
q are incompatible. This is a contradiction. Hence C is closed.

Let T be such that for some g € G, g - S = T. By assumption T is
stationary in V. But TN C= & and C is closed and unbounded. This is a
contradiction. O

We mention a slight strengthening of MA for T

MA™ for T is the statement: Whenever Q € I' is a partial ordering,
2 = (D, a < w,) is a sequence of dense sets in Q and S € V is a term for a
stationary subset of w,; in V9, then there is a Z-generic filter G C Q such that
S¢ = {a: thereisa p € G, p - a €S} is stationary in V. Baumgartner has
shown that for I' = “the class of c.c.c. partial orderings” (ordinary MA), MA ™ is
equivalent to MA.

We now develop the tools to show the consistency of MA for T" for various

I'’s. We need the notion of a semi-proper partial ordering, which is due to
Shelah. (See [Sh1].)

Definition. A partial ordering P is N -semi-proper if and only if there is a
club set C  [H(22"")]* such that for all N € C and all p € N N P there is a
q-p qi=(for all € N) (if 7 is a Pterm for an element of w, then
7VICl € N). Here 7V[¢! is the realization of 7 in V[G] where G is any generic
object with g € G.

Definition. A q as above will be called a semi-master condition for N
and P.

Note. A small amount of reflection will show that 22" can be replaced by
any sufficiently large regular cardinal A and yield an equivalent definition.

For the readers’ edification we reproduce a theorem of Shelah [Sh1] that
motivates N -semi-properness.

ProposITION 2. Suppose P is N -semi-proper; then P preserves stationary
subsets of w, (in particular o' = ).

Proof. Let S be a stationary subset of w,, S € V and C € V? be a term for
a club subset of w, and p € P. Let N < (H(2%"), & A, C,S,{P}) be a
countable elementary substructure of H(22'P'+) (where A is a well-ordering of
H(22'P'+)) such that N has a semi-master condition, q I-p, and N N w, € S.

Let 6 = NN w,. For each B <4, there is a term 78 € N such that
|78 € C and 78 > B|| = 1. For each such term 78, g I-“78 € §”. Hence
g +C is unbounded in 8" and hence g I8 € C”. However, § € S and thus
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10 M. FOREMAN, M. MAGIDOR, S. SHELAH

gI=“6€CnNS,s0oCN S# @”. We have shown that every closed unbounded
set in V© has non-empty intersection with S; hence V = S is stationary. O

This argument is the prototype for showing that a particular partial ordering
P preserves stationary subsets of w,.

A natural question arises: Can “preserving stationary substes of w,” be
equivalent to “N -semi-proper”’?

As we shall see, the two properties are inequivalent in general (e.g. in L).
However, the main advance in this paper is the following lemma:

LeEMMA 3. Suppose « is a supercompact cardinal and P is an 8 -semi-proper
partial ordering such that

a) VP E“k =R8,” and P is k c.c.

b) For each y € OR there is a v -supercompact embedding j: V — M such
that j(P) = P*Col(w,, < v)*R and R is N -semiproper in MF Cl(wr <7

Then in V¥ For all partial orders Q,

(1) Qs W -semi-proper if and only if Q preserves stationary subsets of w;.

We postpone the proof of this lemma to prove:

ProposITION 4. Suppose A C [H(M)]“ is stationary; then in V Col(wr 1HMD,
A is stationary in [H(A)V]“. (In fact A is preserved by any countably closed

forcing.)

Proof. Let N > 92" pe a regular cardinal, p € Col(w,, |[H(A)|) and C
be a term for a closed unbounded set in [ H(A)Y]*.

Let N < (H(X'), & A, C,{P}, A,Col(w,, |[H(A)))) be a countable elemen-
tary substructure of H(A’) such that NN H(A) € A. Let § = NN w,.

Starting below p we build a sequence of conditions {p,: n € w) C N, such
that p, ., I= p, and for each dense open set D C Col(w,, |[H(A)|) if D € N then
there is an n, p, € D. This is easy since N is countable. Since Col(w,, |H())]) is
countably closed there is a g I p, for each n € w. Clearly g € N{D: D C
Col(w,, |[H(A)|) and D is dense and open and D € N}. Hence q: § —
N N H(A) is surjective. Further, since ||C is club in [H(A)V]“|| = 1,

g-“U(CNN)2NnHA)"”
and so g - NN H(\)Y € C. But N N H(A\)Y € A, so that
g-CNA=#g@.

Thus given any p and any term C for a club set in [H(A)"]® there is a g I p
such that g I- C N A # &. Hence A is stationary in V Col(<r [HOID, O
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MARTIN’S MAXIMUM, PART I 11

We will have many arguments involving sequences such as the (p,: n € w)
as in the last proof. We give such a sequence a name: Let P be a partial ordering,
and N < (H(X), &P, A...). A sequence of conditions, (p,: n € w) CSNNP
such that p,,, I~ p, and for each dense open set D C P, D € N there is an n,
such that p, € D, will be called a generic sequence for N.

Note that generic sequences always exist (although inf,, .  p, may be zero in
B(P)).

We sum up the arguments in Proposition 2 and Proposition 4 in the
following definition and lemma.

Definition. Suppose N < H(M) is countable and (p,: n € w) is a generic
sequence for N. Then p is a strong master condition for N if for all n, p I p,,.
, N<H()A), |IN| = w.

P+

LemMa *. Let P be a partial ordering and \ = 22
Then

a) If p is a strong master condition for N then p is a semi-master condition
for N.

b) If C € V® is a term for a club subset of w, and C € N and p is a
semi-master condition for N then p - NN w, € C.

¢) If S is a stationary subset of w, such that forall g € P and all C € H(M)
thereisp - gqand an N < H(A), IN| = w, CE N, and N N w, € S such that p
is a semi-master condition for N then S is stationary in VF.

Proof. This is as in Propositions 2 and 4.

We now return to the proof of Lemma 3: Suppose that Q € V¥ is a partial
ordering such that Q preserves stationary subsets of w, and Q is not ¥ -semi-
proper. Let A = 22" Since Q is not N-semi-proper there is a stationary set
A C [H(M)]® such that for all N € A thereisa p € N N Q such that there is no
semi-master condition g for N with g I p. By the normality of the non-sta-
tionary ideal on [H(A)]“ there is a fixed p such that on a stationary set
A C [H(A)]®, for all N € A there is no semi-master-condition g for N such that
q = p. By modifying Q we can assume that p is the trivial condition. Let
y = [H(A)].

Consider j: V— M such that j is a y*-supercompact embedding and
j(P) = PxCol(w,, < y)*R and R is ¥ -semi-proper in M¥* (@1 =7) Then by
standard large cardinal theory, since P is k-c.c., j can be extended to an
elementary embedding j: V¥ — Mi®, We confuse j and j. (See [B1].)

In MF?*Coltwr =m+R° A c [H(A)P]® is stationary, since Col(w,, < y) keeps
A stationary and in M®*€«1 <7 A can be coded as a stationary subset of .
(A is a stationary subset of some [ X]“ with |X| = w,.) Since R is N -semi-proper,
R preserves stationary subsets of w, and hence preserves the stationariness of A.
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12 M. FOREMAN, M. MAGIDOR, S. SHELAH

Since MI® =“j(Q) preserves stationary subsets of w,”, A is stationary in
Mi®+i©) T Mi®*i©)

) MI® =0

C={X<H(j(}\) :if 7 € X N H(\)" is a Q-term for an element

of w, then j(ﬂr)Mm‘i(O) S X}

is a club set in ([ H( j()\))]‘“)Mj(P)'i(O). Since A is a stationary set there isan X € C
such that X’ = XN HA) € A. In Mi® let g j(Q), x" € A be such that
g |- (there isan X € C) (X N HA)Y " =X).ThengI-if re X' isa Q-term
for an element of «, and then j(r)*'*"” € X".

Since X’ is countable, j(X’) = j”(X’). Hence,

q I-“If o € j(X’) is a term for an element of w,, then oM e j(x).”

So,

Mi"™ &= there is a g, and q is a semi-master condition for j(X’).
Thus

VP = (thereis a q) (g is a semi-master condition for X’).

But X’ € A and so X’ has no semi-master condition, a contradiction. O

We note that an example of such a P is P = Col(w,, < k). So if k is supercom-
pact VP &= (1).

THEOREM 5. If “ZFC + there is a supercompact cardinal k™ is consistent,
then so is “ZFC + Martin’s Maximum™. (In fact we get the “+” version of
Martin’s Maximum.)

We use the following theorem of Laver:

TueoreM (Laver, ([L1]). Let k be a supercompact cardinal. Then there
is a function L: k — R, such that for every set Q € V and every cardinal
A there are a X' > \ and a N'-supercompact embedding j: V — M such that

j(L)(k) = Q-

The paradigm for our proof is the proof by Baumgartner of the consistency
of the proper forcing axiom.

We will use technology developed by Shelah in [Shl], [Sh2] to do our
iteration. A central notion in [Sh2] is iterating with “revised countable supports™.
Rather than redevelop these notions we will treat them axiomatically.

This content downloaded from 142.103.160.110 on Sun, 23 Nov 2014 21:17:08 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Sh:240

MARTIN’S MAXIMUM, PART I 13

We will use the following properties of revised countable support (RCS)
iterations:

a) To specify an iteration of length v, P, it is enough to specify for a <y
the factor iterations Q, such that P, , = P _x Q.

b) If B is a limit ordinal and (P, a« < ) have been defined then the
revised countable support limit, RCSlim(F;: B8 < a) C lim (B B < ).

¢) If k is inaccessible and for all & < «, |P,| < k then

RCSIm(P,: a < k) = lim(P,: & < k).

d) If, for all « < B, V¥ = Q, is N-semi-proper and V¥*% = [P *Q | =
N, and P_ is an RCS iteration then RCSlim(P: a < B) is N ,-semi-proper.

e) If forall « < B, V% = Q, is N -semi-proper and V%*% = [P+ Q | = N,
and P is an RCS iteration then for all « < 8, V** =“P,/P, is an RCS iteration
with N ,-semi-proper factors”.

f) If P; is an RCS iteration and @ < 8 then

Py ~ P * Qu*By/P, .

We are now in a position to define our partial ordering for forcing Martin’s
Maximum. Let L be a Laver function. Our iteration will be an RCS iteration.
Hence we need only specify the factors (Q,: a < k).

At stage a we have defined an RCS iteration P,.

Case 1. L(a) is a P term for a partial ordering R, such that ||R, is
N -semi-proper partial ordering ||* = 1. Then we let

Q. = R, *Col®* fe( ), 2IF*Ral)
(hence P, | = P * R_*Col®* fe(, 2IF*Ral)),

Case 2. L(a) is a P term for a partial ordering such that ||L(a) is an
N ,-semi-proper partial ordering ||® < 1. Then, in V%, let 8 = sup(22""", 2/%)
and let Q, = Col(w,, §) (hence P, ,, = P _*Col(w,, 8)).

Case 3. Otherwise. LetP,  , =P x1. LetP = P..

Using property c) of RCS iterations we see that P is k-c.c. Since we are
frequently (i.e. always in cases 1) and 2)) collapsing cardinals, V¥ £ k < N,. By
property d) of RCS iterations, P is N -semi-proper. Hence V¥ = k = N,.

We now check that P satisfies the hypothesis of Lemma 3. From the last
paragraph we see that a) is satisfied. To see b), let y € OR. Let Q = Col(w, v).
Choose a y *-supercompact embedding j such that j(L)(x) = Q. Consider j(P).

By property e) of R.C.S. iterations, j(P) =P, *Q, * j(P),,,/(P),,,, and
j(P) is defined in M with respect to j(L) the same way that P is in V.
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14 M. FOREMAN, M. MAGIDOR, S. SHELAH

Hence at stage k, when j(L)(x) = Col(w,y) we are in Case 2 of the
definition of j(P). Hence Q, = Col(w,,d) for some & > y. Hence j(P)=
P *Col(w,, y)*Col(w,, 8 — v) * j(P)/j(P),.,. By property €) of R.C.S. itera-
tions, in M%< *Clwr ) Col(w,, § — v)* j(P)/j(P),,, is ¥ -semi-proper.

Hence in V¥, if a partial ordering Q preserves stationary subsets of w, then
it is N -semi-proper.

Let the semi-proper forcing axiom (SPFA) be MA for I' =“the class of
N -semi-proper partial orderings”.

We will be done if we show V¥ = SPFA, since every partial ordering that
preserves stationary subsets of w is ¥ ;-semi-proper.

Claim. V® = SPFA.

Let G C P be generic and let Q € V[G] be N -semi-proper. Let
(D,: a < w,) be a collection of dense sets in Q in V[G]. Let j: V> M be a
|Q|*-supercompact embedding such that j(L)(k) is a P-term for Q such that

lj(L)(x) is ¥ -semi-proper||p = 1.

Let H C j(P) be a V-generic ultrafilter extending G. Then we can extend j
to ] V[G] —» M[H]. By the definition of j(P) in M, j(P) = P_* Q *R for some
R. Hence, H= G*G’'+* H where G’ C Q is generic over V[G] In M[H],
consider j'G’ C j(Q).

Foreach D,, G' " D, # @;hence j”G’ N j(D,) # . Since crit(j) > N,
j(Dy a < w)) ={(j(D,): a <w,). Hence M[H] E“jG" C j(Q) is generic
for j((Dy; a < w;))”.

Thus

M[H] & there s a filter F C j(Q) such that F is generic for j({D,: a < w,)).
By elementarity,
V[G] E there is a filter F C Q such that F is generic for (D,: a < «,).

Hence V[G] = SPFA. A small variation on this argument shows V[G] E
SPFA ™. This completes the proof of Theorem 5. O

We now consider several possible I'’s and show that Martin’s Maximum
implies MA for these I'’s.

Definition. If Q is a partial ordering, then Q is bounded if and only if for
all f: w;, > w,, fE VY thereisa ge V, g w, > w, such that f(a) > g(a)
for all a. (Equivalently, Q preserves w,; and for all f: w, > w,, f € V© there is
a g w; = w;, g € Vsuch that g eventually dominates f.)
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MARTIN'S MAXIMUM, PART I 15

ProposiTioN 6. If Q is a bounded partial ordering then Q preserves
stationary subsets of w,.

Proof. We show that for every closed unbounded set C C w, in V© there is
a closed unbounded set D C w,, D € V and D C C. Let C be club, C € V©.
Let f(a) = least element of C above a. Let g € V, g(a) > f(«) for all a.

Let D = { B: for all « < B, g(a) < B}. Then D is closed unbounded and
it is easy to check that D C C. O

Proposition 6 proves that Martin’s Maximum implies MA for T =
{Q: Q is a bounded partial ordering}.

We now turn our attention to I' =“the class of partial orderings Q such
that Q doesn’t add a real or collapse w,”. Note that in general there is a partial
ordering Q such that Q does not add a real or collapse w, and Q kills a
stationary set. However Martin’s Maximum implies that there are no such Q.

PropositioN 7. Martin’s Maximum implies MA for T =“the class of
partial orderings Q that do not add reals or collapse ¥ ,”.

Proof. Baumgartner has shown that the proper forcing axiom implies that
there are no Canadian trees on 8,. Todorcevic showed that if there are no
Canadian trees and every Aronzihn tree is special then every partial order that
adds a subset of w, either collapses w, or adds a real.

Consequently, if Q is a partial ordering that does not add reals or collapse
w, then Q adds no new subsets to w,. By Proposition 6, Martin’s Maximum
implies MA for such Q. a

In Section 3 we show the consistency of CH + MA for various I'’s. We use
Lemma 3 there also.

2. Applications of Martin’s Maximum

We now prove some results using Martin’s Maximum. The general outline
of these proofs is the same as for applications of Martin’s Axiom; e.g., given a
partial ordering Q, we verify that it has some property (in this case, ) preserves
stationary subsets of w,) and then meet w, dense sets by a filter G and argue
combinatorially about the filter G.

In the following we abbreviate Martin’s Maximum by MM.

LEmMA 8. Suppose « is regular, k > w, and A C k N cof(w) is stationary.
Let S C w, be stationary and A > 2° be a regular cardinal. Then for any
expansion of (H(X), €), (H(A), &, A, f,);c., there is an N <
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(H(MN), & A, f,);c., a countable elementary substructure of H(\) such that
NNw, €Sand sup NNk € A.

Proof. Let M < (H(A), &, A, f,); <., be an elementary substructure of H(A)
such that w, € M and sup(M N k) € A. (Such an M exists since there is a club
set of uncountable elementary substructures of (H(A), & f);,c..)
Let (a,: n € w) € M N k be cofinal in M N «.

Let (N,: a < w;) be a continuous increasing chain of countable elementary
substructures of M such that (a,: n € w) C N,. Then for each N, sup N, N
k =sup M N k € A. Further, { N, N w;: @ < w,} is a closed unbounded set in
@;. Thus for some &, N, N w, € S. Thus N, is the required N. O

THEOREM 9. MM implies:
If k > w, is regular and A C k N cof w is stationary, then A contains a
closed set of order type w,.

Proof. Let P = ({p|p: « + 1 > A, a < w, and p is an increasing continu-
ous function}, C ). Standard lemmas imply that for any p € P and B < w,,
there is a g I~ p such that 8 € dom q. Hence forcing with P adds a closed set
C C A such that o.t. C = w,;. Further, forany p € Pand y € k thereisa g I+ p
such that y < sup range q.

We claim that P preserves stationary subsets of w,.

Let p e Pand S €V, S C w, be a stationary set. Let C be a term for a
closed unbounded subset of w,. Let N < (H(A), ¢, A,P,--- ) be a countable
elementary substructure of H(A), A > k, such that pe N, § =NNw, €S
and sup N Nk € A.

Let (p,: n € w) C N be a generic sequence for N such that p, = p. Then
U,c.domp, = 8 and U, . range p, is cofinal in N N k. Hence the function g:
8 + 1 — « defined by g =U,.p, U {(8,supN N k)} is a continuous func-
tion with range a subset of A. Hence g € P and for each n, g I~ p,. Thus by
Lemma *, P preserves stationary subsets of ;.

Let 2= (D, a < w,) be defined by D, = {p € P: « € domp}. Let G
be a filter generic for 2. Then UG: w, — « is an increasing continuous function
with range included in A. Hence A contains a closed set of order type w;. O

We note that Ben-David remarked that the conclusion of Theorem 1 and
O(cof(w)) implies O(cof(w,)).

The conclusion of Theorem 9 is known as “Friedman’s Problem”. Shelah
[Sh1] has shown it consistent for kK = w, from a measurable cardinal and for
general regular k from two supercompacts.
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A closely related theorem is:

THEOREM 10. If k > w, is regular and MM holds then k“* = k. In
particular 2% = N,

Proof. Let (S,; a < w;) be a disjoint maximal antichain in #(w,)/NS,
such that U, S, = w;. Let (A, a < k) be a partition of k N cof(w) into
disjoint stationary subsets.

We will build a one-to-one function i: [k]“* — k. This clearly suffices.

Let f € [x]“\. Define the partial ordering P, by: p € P, if and only if for
some § < w,;, p: 6 + 1 — k, p is increasing and continuous and for all 8 < 9, if
B € S, then p(B) € Ay, Py is ordered by inclusion.

Claim. If p € P; and 8 > supdom p, 8 € w,; and y < k, then there is a
g I+ p such that § € dom g and ¢(8) > v.

Proof. We prove this by induction on é. If § is a successor, § = 8 + 1, this
is immediate.

Assume that it is true for all §" < §; let ¥ € k and suppose that § € S,. Let
N < (H(A),& A ---) be a countable elementary substructure of H(A), such
that y <supNNk € A,, and §, p €N.

Let (a,; n€ w) C NNk be cofinal in NN k. Using our induction
hypothesis inside N we can build a sequence of conditions (p,: n € w) C N
such that p,,, I+ p,, p, = p andU, . dom p, = § and U, . ,range p,, is cofinal
in NNk Let g =U,c p, Y {{8,sup N N «k)}. Then g is continuous, q(8) €
N, and hence g € P, is as desired. O

Claim. P, preserves stationary subsets of ;.

Proof. Let S C w, be stationary, C € P, be a term for a club subset of w,
and p € P,. As usual we will be done if we can show that there is an
N < (H(A), & A,C,p) such that NN w, € S and there is a strong master
condition for N, q, extending p.

Since (S,: a@ < w,) is a maximal antichain there is an a such that S N S is
stationary. Let N < (H(A), ¢, A, Pr, ficu) be a countable elementary substruc-
ture of H(A) such that § =NNw, €SN S, and y =sup N Nk € Ag,,.

Let (p,: n € w) C N be a generic sequence for N such that p, = p. Then
it is easy to verify that ¢ = U, p, U {(8,v)} is a condition forcing p, for
each n. Hence by Lemma *, P, preserves stationary subsets of w,.

Thus we are in a position to apply Martin’s Maximum to P,. Let D; C P, be
defined by D;={p€P: §domp}. Let G C P, be generic for 9=
(Ds: 8 < w;). Then F=UG: w, = k is a continuous function such that if
§ € S, then F(8) € Ag,,. Let v, = suprange F. Hence A, N v, contains the
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continuous image of a stationary subset of w,; and hence is stationary. Further,
Ua<w,Afa N ¥y contains a closed unbounded set in vy, Thus for B <k,
Ap N v, is stationary in v, if and only if B € range f. Since f is increasing we
can recover f from its range. Hence v, uniquely determines f.

Define i: [k]“* = x by i(f) = v, We have just argued that i is always
defined and is one-to-one. m)

CoroLLARY 11. If MM holds, then for singular cardinals k, k' =
max(x+,2°°f(")).

Proof. By standard arguments k) < (k X 2<fx)t* oo if 2% > i then
Kcof(n) — 2cof(n).

We prove by induction on « that if k > 2°1*) then x®f®) = g+,

If cof(k) = w or w,, then k) = k* since (k*)“ = k™.

If cof(k) > w, then there is a closed unbounded set C C k such that if
p € C then cof(p) < cof(k) and p > 21 By induction, p** = u*. By
Silver’s theorem [Sil] “on the G.C.H. at singular cardinals of uncountable
confinality” kf®) = g, O

This corollary can be regarded as heuristic evidence for the necessity of a
supercompact cardinal in the proof of the consistency of Martin’s Maximum.

Using the techniques of [M1] one can show that if “ZFC + there is a
supercompact cardinal” is consistent then so is “ZFC + there is a supercompact
cardinal k such that there is a cofinal set A C k of strong singular limit cardinals
with the property that « € A implies 2* > a™ . In the latter model, if P, is the
partial ordering defined in Theorem 5 for adding MM, then by Corollary 11 for
all B <k, V%= —-MM. Further, (V,, ¢) = ZFC and no set forcing can force
MM to hold in (V, &).

Saturation properties of ideals have a wide literature ([K1], [F1], [F2],
[F-L], [M] etc). A natural ideal to study is the non-stationary ideal on a regular
cardinal k.

Steel and Van Wesep in [S-VW] showed that relative to the theory “ADg +
f-regular + ZF + DC” it is consistent for the non-stationary ideal on w, to be
N y-saturated.

We show:

TaeoREM 12. If MM holds then NS is R y-saturated.

Later we shall show that for various I'’s such that MA for T is consistent
with CH, MA for T implies there is a stationary set S such that NS, ' S is
N ,saturated.
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Before proving Theorem 12 we remark that if . is a normal, k-complete
ideal on k and B = #(k)/# and (A a < k) are Fpositive sets then we can
represent the Boolean sum ¥, _, [A,], by V.. A, = {B: there is an a < f8
such that B € A_}. In other words £, _ . [A, ], = [V.< ALl s

Proof of Theorem 12. Let (A ,: a < w,) be a putative antichain in #(w,)/,.
Without loss of generality we may assume that it is a maximal antichain.

Let P = Col(w,, w,)* Q where Q is defined in V1“1 “2) a5 follows.

Let G: w; = w, be the canonical generic object. Then define V;A, =
{B:thereisan a < B, B € Ay, }. Since VA, D Ag ), VA, is stationary in
V. Let Q be the partial ordering for shooting a closed set through v A , with
countable conditions (See [B-HK]). So g € Q if andonly if q: a + 1 = V-A,
for some countable a and g is continuous and increasing. Note that there is a
dense set D C P of conditions of the form (p, q) where g € V.

Claim. P preserves stationary subsets of w;.

Proof. Let S C w, be a stationary set, C € V¥ be a term for a closed
unbounded set and p € P. As usual we will be done when we show that there is
aqgl-psuchthat gl-CN S+ 3.

Since (A a < w,) is a maximal antichain, there is an @ < w, such that
S N A, is stationary.

Let A > 22" and N < (H(A), &, A,P,(A,: a < w,),S...) be a count-
able elementary substructure of H(A) such that {p,a} C Nand § = NN w, €
A, NS

Let ((p,.q,): n € w) C N be a generic sequence for N such that p =
(Py> o) and p,(supdom(p,)) = a. Then p* =U,..p, is a condition in
Col(w,, ). FurtherU,, . . dom g, = 6 and supU,, . ,range q,, = 8. Since § € A
and 8 > sup(dom p,), p* -8 € VA ,. Hence p* -q*=U,..q, Y {(5,8)}
is a continuous increasing function with range in VA ,”. So p* - g¢* € Q.
Then for each n, (p*, ¢*) I~ (p,, q,); so by Lemma #*, the claim holds.

Let 2= (D, a < w,) be the following collection of dense sets:

D,= {(p,q): « € domp and a € domgq}. Let H C P be generic for 2.
Let G = U{p: there is a q such that (p,q) € H} and C = U{gq: there is a p,
(p,q) €H}.Then G € V, G: w, = w, and C is a closed subset of w,. Further,
VeA, = {B:forsome a < B, B € Ay, )} 2 C.HenceX,_ [Ag] =[VcAL]
= 1. But the range of G has cardinality ¥,; so some A is incompatible with
L4 <c[Ac(a) a contradiction! O

We will later show that under MM the non-stationary ideal is “c.c.c.
indestructible”.
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A combinatorial key to the preceding results is the equivalence of N;-
semi-properness and the preserving of stationary subsets of w,. We now examine
this property more carefully.

If S € [H(A)]® then we say that S reflects to a set of size N, if and only if
there is an X C H(A), w; C x, |[X| =8, and S N [X]* is stationary in [X]*.
(Equivalently, if S C [Z]“ is stationary then S reflects to a set of size w, if and
only if for all Y € Z, |Y| = w,, there is an X such that Y C X, |X| = w; and
S N [X]* is stationary in [X]“.)

We remark that MA™ for I': “the class of w-closed partial orderings”
implies that for every regular A, every stationary subset of [ H(A)]“ reflects to a
set of size N,.

To see this we apply MA™ to P = col(w,, H(A)).

1-1

By Proposition 4, in V¥ we get a function f: w, —> H(A)" such that

onto

{a: f’a € S} is stationary in w,. Hence by MA™ we get a function F € V,
i w, RN H(A) such that {a: f’a € S} is stationary in w,. Hence, taking

Xf"a we get the desired result. Surprisingly MM is enough to get this result.
(In fact this proof shows that MA™* for I' = “w-closed partial orderings” implies
that for any stationary subset S C P, (H(X)) there is a stationary set T C
P,(H(A)) such that for all x €T, SN P, (x) is stationary. For each
g: H()\)<“’ — H()) we use the term S* € VE, S* = {a: f'a €S and fais
closed under g}.)

THEOREM 13. Assume MM. Then for every regular N and every stationary
set S C [H(A)]“, S reflects to a set of size w,.

Proof. Since the non-stationary ideal on w, is N jsaturated, there are N,
stationary subsets of w;, (A, a < w,), such that:

a) For each a there is a closed unbounded set C, in [H(A)]“ such that
A N{xNw:x€EC, NS} =

b) For every A if there is a closed unbounded C C [H(A)]® with A N
{xNw:xeCNS} = then A - v,_, A, is non-stationary.

Let P = Q*R where Q = Col(w,, |[H(A)|) and R is defined in V¢ as
follows. Let f € V© be the generic function f: ;T-t})) H(M). By Proposition
4, {a: f"a € S} is stationary. Let R be the partial ordering for shooting a closed
set through {a: f’a € S} U v, A,, with countable conditions. So r € R if
and only if for some countable 8, r is a continuous, increasing function
rd+l-o{a ffaceSjuv, A,

We claim that P preserves stationary subsets of w,. Note that there is a
dense set in P of conditions of the form (q,r) € Q* R where r € V. Let
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B C w, be stationary, C € V© be a term for a stationary set and p € P. As
usual we will be done if we find a p* I- p such that p* IHFC NS+ . We
show this in the usual way by a master-condition argument.

Case 1. BN v, A, is stationary. Then by the usual arguments if
N < H(2¥)") is a countable elementary substructure and § = NN w, € BN
V< wAqthen N has a master condition p* I~ p. So p* I- 6 € C N B.

Case 2. Otherwise. Then for every closed unbounded set D C [H(A)]“
there is an N€DNS such that NN w, € B. Let N < (H(2¥)"),
e, A,S,B,...) such that NN H(A) € Sand 8 = N N w, € B. There is such an
N by Lemma 0. Let (p,: n € w) be a generic sequence for N such that
po = p. Let p, = (g, r,). Then Udom g, = § and U range g, =
N N H(MA). Hence if g* =U,_.q, then ¢* -8 € {a: f’a € S}. Let r* =
U,eor, YU {(8,8)}. Since U, domr, = 8 and supU, . ranger, =8, r* is a
continuous function. Further, g*I-ranger* C {a: ffa €S} UV, A,
Hence p* = (g*, r*) € P.

Since p* I+ p, for each n, p* is a master condition for n and p* I- § €
CnB.

Since P preserves stationary subsets of w,, using MM we can find a
generic object G for 9= (D, a <w,;) where D, ={p€P: p={q,r)
and a € domqg N domr and a € range q}. Let f be the canonical function
f: @, > H(A\) coming from G and C = U{r: there is a g € Q, (q,r) € G}.
Then C is a closed unbounded set and C C {a: f'a €S} UV, A,. Thus
we will be done if we can show that w, — (v, A,) is stationary, since this
will show that S N Z, (range f) is stationary.

For each a we have C, C [H(A)]“ such that A, N {x Nw;: x € C, N S}
= @.Thenv, A, N, {xNw:x€EC,NS})=J and

ApcofxnopxeC,nsSy2{xnw:xe (4, ,C)NnS)

But A, ,C, is closed and unbounded in [H(A)]“. Hence A, ,C, NS is

stationary, so that {x N w;: x € (4,.,C,) N S} is stationary and d15]01nt from
va < wlA a’ a

Shelah has shown in [Sh3] that if every stationary subset of [N,] = “! reflects
2% < N,. This gives an alternate proof that MM and MA™* for T’ =“w-closed
partial orderings” imply 2% = R,
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Reflecting stationary subsets of [H(A)]“ is the crux of the equivalence
between N -semi-properness and the preserving of stationary subsets of w,, as
the following proposition shows:

ProrosiTioN 14. Suppose for a cofinal set of regular cardinals N\ every
stationary subset of [H(A)]“ reflects to a set of size w,; then for all partial
orderings P, P is N -semi-proper if and only if P preserves stationary subsets
of w,.

Proof. Suppose P preserves stationary subsets of w, and P is not ¥ -semi-
proper. Then for some regular A > |P|, for which every stationary subset of
[H(A)]“ reflects, there is a stationary subset S of [H(A)]® and p € P such that
N € S implies there is no semi-master condition q I~ p for N.

Unravelling the definition we see that p I-“If N &€ S then N[G] =
(V€. 7c N, 7a P—term} N w, # NN w,.” Since S reflects to a set of size N,
there is a function f: w, =1 H(A) such that T = {a: f"a € S} is stationary.

In V[G], let C = { N < H(A\)"I€]: N is closed under the function sending
T € VT to its realization V(¢! and N is closed under f and f~!}. Then C is a
closed unbounded set. Since P preserves stationary subsets of w,, T is stationary
in V¥ and hence there is an N € C such that § = NN w, € T. Let N’ = f"8.
Then N’ €S and N’ N w, = §. Further N'[G] N w; = & since N is closed
under the function-realizing terms in N. But N’ € § implies N'[G] N w, #
N’ N w,, a contradiction. O

We let (1) abbreviate the proposition “for all partial orderings P, P
preserves stationary subsets of w, if and only if P is X -semi-proper.” Then (1) is
itself a combinatorial principle of some strength as we shall show.

CoroLLARY 15. MM implies (1) and SPFA* implies MM. (So MM ™ if
and only if SPFA™))

We remark that we could have given an alternate proof of the consistency
of MM as follows:

We show that Lemma 3 implies MA™* for I' =“countably closed partial
orderings.” By Proposition 14, MA™ for I' = “countably closed partial orderings”
implies (1). Hence it is enough to show the consistency of SPFA *. The argument
given was our original argument. We present it as it generalizes to get pre-
cipitous ideals on larger cardinals.

Let the Strong Chang Conjecture be the following property:

For every structure &/ = (A; wy, f;); <., of type (N,,N¥,) there is a closed
unbounded set C C w, such that a € C implies that there is an £ < &7 of type
(N, N,) such that N w, = a.
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The following result appears in [Sh1]:

THEOREM (Shelah).

a) Namba forcing preserves stationary subsets of w,.

b) If Namba forcing is N -semi-proper then the Strong Chang Conjecture
holds. (In fact Shelah obtains much stronger results than b).)

If # is an N saturated ideal on w,, then £ is c.c.c. indestructible if and
only if whenever P is a c.c.c. partial ordering then = {(x Cw;: x€ VF and
there is a y € £ such that x C y} is N ysaturated. (# is the ideal in V* induced
by £.)

A question in [B-T2] is whether there can be c.c.c. indestructible ideals on
w;. In [F-M1], Foreman and Magidor show that there can be a N ;saturated ideal
on w, that is not c.c.c. indestructible.

In [B-T2] there is a Chang’s Conjecture-type criterion for the c.c.c. inde-
structibility of an N ,-saturated ideal on w,. We present another one which holds
under MM.

TrEOREM 16 (ZFC). Suppose the Strong Chang Conjecture holds, S is a
stationary subset of w, and NS, I S is Rsaturated. Then NS, | S is c.c.c.
indestructible.

If # is an N saturated ideal on w, and G C #(w,)/F is generic, let
j: V> M=V™/G be the generic ultrapower. Then Laver [L2] and
Baumgartner-Taylor [B-T2] showed the following criterion of c.c.c. indestructibil-
ity:

THEOREM. ||£ is Nsaturated||p = 1 if and only if || j(P) is ccc. in
V[G]”g’(wl)/j= L

Proof of Theorem 16. Let P be a c.c.c. partial ordering. By the theorem of
Laver, Baumgartner-Taylor, we must see that for any generic G C #(w,)/#,
VI[G] & j(P) is c.c.c.

Since NS, I S is N saturated w{!! = w}. Hence j(P) is not c.c.c. if and
only if in V[G] there are functions { f,: @ < wy ) such that f, € V, f.: w, > P
and for all &, B € w,, I, s = {8: f,(8) is incompatible with f;(8)} € G. Let
(fi: @ < wy) be a term in V for such a sequence. Let T C S be a stationary set
such that [T]ys aslh=1, € G forall a < B < wy. By the standard theory of
saturated ideals (see [J1]) there is a sequence of functions (g, a < w,) €V,
g, w, — P such that [T] I~ {&: f(8) = g.(0)} € G. Hence for a, B € w,,
[T] I~ (8: g,(8) and gg(8) are incompatible} € G.

Since our ideal is NS, I S there are closed unbounded sets C, .p such that
foral 6 € C, ;N T, ga(8) and gg(8) are incompatible.
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Let A > 2 and let /< (H(A), 0w, & A, {(gy a < w,), (Chp a, B <
w,)) be an elementary substructure of H(A) such that || = &, and w, C .
Since the Strong Chang Conjecture holds there is an £ < &/ such that
§=2Nw, €T and | €N w,| = w,. Then for all &, B €.LN w,, C, g is un-
bounded in § and hence 8 € C, ;. Thus f,(8) and f3(8) are incompatible. But
then { £,(8): & € £N w,} is an antichain in P of size w,, a contradiction. a

CororLary 17. if MM holds then NS, is N ysaturated and c.c.c. inde-
structible.

Proof. Assume MM. By Shelah’s theorem and Corollary 15, the Strong
Chang Conjecture holds. Hence the hypothesis of Theorem 16 hold for N S, O

It is not known how to describe the quotient algebra #(w,)/ NS, exactly
under MM, but the following theorem yields some information.

THEOREM 18. Suppose MA holds for c.c.c. partial orderings. Let # be an
N ;-saturated ideal on w, and P = P(w,)/F. Let G C P be generic and r a real,
re V[G], r & V. Then V[r] = V[G].

Remark. This says that in a strong sense every new real in V[G] is a
minimal V-degree.

Proof. Let j: V> M = V*1 /G C V[G] be the generic ultraproduct. Then,
by standard arguments RM = RV(¢! (see [J1]). Let r be a real, r € V[G] ~ V.
Let f: w, > RY be a function such that [f],,=r and f€ V.

By [B-T-W], # is selective and hence f is one-to-one on a set of measure
one for 4.

For s € R let Seq(s) be the set of sequence numbers of s by any standard
Godel numbering.

A standard application of MA shows that for any X C w, thereisan a, C w
such that a € X if and only if a, N seq( f(@)) is finite.

As usual j(f)(w,;) =r. (See [F2].) Thus for X C w,, X € G if and only if
w, € j(X) if and only if Seq(j( f)(w,)) N j(a,) is finite if and only if Seq(r) N
a, is finite. Hence from r we can recover G. a

CoroLLARY 19. MA implies that if # is an 8 jsaturated ideal on w, then
a) P(w,)/F is not N dense,
b) P(w,)/F % B(Col(w, < w,)).

Proof. Both an 8, dense ideal and Col(w, < w,) add Cohen reals. i

Note. a) was known and appeared in [T1]. b) contradicts published results
of Woodin in [W1]. O
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3. Versions of Martin’s Maximum with CH

Our techniques combined with work of Shelah in [Shl] give versions of
Martin’s Maximum consistent with the continuum hypothesis. We will briefly
explicate this here; a more complete version will appear in [Sh-W] now in
preparation.

In [Shl], Shelah defines E-complete forcing. We now give a simpler
definition that is a special case of E-completeness.

Let P be a partial ordering and S C w, be a stationary set. P is Sclosed if
and only if there is a closed unbounded set of [H(22'P'+)]“’ such that whenever
NN w, € Sand (p,;: n € w) C N is a generic sequence for N then there is p
such that for all n, p I p,.

The canonical example of an S-closed forcing is the partial ordering for
shooting a closed unbounded set through S with countable conditions.

PropositioN 20. Suppose P is an S-closed forcing; then P is (w, co)-distrib-
utive.

Proof. Let 7= (1,: n € w) be a term for a new w-sequence of ordinals.
Let N < H(22'P'+) be such that N N w; € S and N is countable and 7 € N. Let
(p,: n € w) be a generic sequence for N such that for some p, p I p, for all n.
Then for each n, p decides the value of 7,. Hence there is a sequence of ordinals
(a,: n € w) € Vsuchthat p -7, = a,. O

The following theorem is due to Shelah.

THEOREM (Shelah). If P_is an iteration of length k with countable supports
such that each factor is S-closed then P is S-closed.

In [Sh1] we see that for an (w, co)-distributive iteration, revised countable
supports are the same as countable supports.

THEOREM 21. If there is a supercompact cardinal k and S is a stationary
subset of w, then there is an ¥ -semi-proper, (w, oo)-distributive partial ordering
P such that in VE,MA for T =“all partial orderings Q such that Q is Sclosed
and preserves stationary subsets of w,” holds.

Proof. We iterate along a Laver function L as we did in the proof of
Theorem 5. Our partial ordering P will be an iteration of length x with countable
supports.

At stage a: If L(a) is a term in V¥ for an S-closed, semi-proper partial
ordering Q,, then P, , = P,*xQ,*Col(w, 2P+ Ql") Otherwise P,., =
P *Col(w,, QIL(IXIRe] Ty,
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By Shelah’s theorems on revised countable support iterations, P, is an
N |-semi-proper partial ordering that is S-closed.

As in the proof of Theorem 5, P, satisfies the hypothesis of Lemma 3.
Further, in V% we have MA for the classes of 0 which are N -semi-proper and
Sclosed. Hence, if P =P, P is (w, co)-distributive, N -semi-proper and V¥
satisfies MA™ for I' =“the classes of Q which are S<losed and preserve
stationary subsets of w,”. a

Since the P in Theorem 21 is 8 ,-semi-proper, if S was costationary in V
then S is stationary in V. Thus it is consistent to have MA for this ' and S
stationary. The following proposition is the S-closed version of Theorem 12.

ProposiTION 22. Suppose S is stationary and costationary and MA for
I’ =“the class of partial orders that are Sclosed and preserve stationary subsets
of w,”. Then NS, | Sis N ysaturated.

Proof. Let (A, a < y) be a maximal antichain in NS, S with v > w,.
We apply MA to P = Col(w,, y)* Q where Q is the forcing in VU« for
shooting a closed set through v,A, U S with countable conditions (VA is
defined as before, G being the canonical generic object).

The P is Sclosed and preserves stationary subsets of w,. As in Theorem 12
we get a contradiction. O

Further, the ideal NS 1 S is c.c.c. indestructible as in Corollary 17.

CoroLLARY 23. If k is supercompact then in VCU“r <% there is an
N yideal on w,.

Proof. 1f P is the partial ordering defined in Theorem 21 then Col(w,, < k)
can be embedded in P as a complete subalgebra. This is true since P is
(w, co)-distributive and cofinally often in P we force with arbitrarily large
portions of Col(w,, < k).

Hence, in V(¢ <%) we can do an N ,c.c. forcing Q = P/Col(w,, < k) to
add an N ,-saturated ideal, #*. But then £ = {x: ||[x € #*|| = 1} is Ryc.c. in
Y Colter. <8 (See [K1].) a

A note on history is appropriate here. Ideals were known to have conse-
quences for Lebesgue measurability of sets of reals in L(R). Magidor, in [M2]
showed that if there is a measurable cardinal and a precipitous ideal on w, then
every 23} set of reals is Lebesgue measurable. Foreman, in [F2], showed that if
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there is a 2%o-dense, normal and fine ideal on [(2%°) *]™ then every set of reals in
L(R) is Lebesgue measurable, has the property of Baire and L(R) E «w — (w)“.
Woodin had shown in unpublished work that under CH an w,-dense ideal on w,
suffices for these consequences.

Woodin, aware of this work and of Theorem 12, proved the following
proposition. It was proved simultaneously with the third author’s realization that
his technique of S-complete forcing could be used together with the results of
Sections 1 and 2 to prove Theorem 21. In a phone call to the first author,
Woodin, unaware of Theorem 21 and its consequences, announced his proposi-
tion. We state Woodin’s proposition in somewhat greater generality then he first
proved it (his original statement involved Col(w,, < k) and the non-stationary
ideal).

ProrosiTioN (Woodin). Suppose k is weakly compact and there is a k-c.c.
partial ordering P such that in V¥ there is a generic elementary embedding
j: V.= M with j(w,) = k and (R)”" € M. Then

L(R)Y &= . Every set is Lebesgue measurable, has the property of Baire, and
w = (w)“

The proof of this proposition uses the following theorem.

THeEOREM (Folk). Suppose k is weakly compact and P is a k~c.c. partial
ordering such that V¥ = k = w,. Then for every generic G C P there is a generic
H C Col(w, < k) such that RVI¢] = RVIH],

Proof. Since P is k-c.c. and k is weakly compact, every real in V[G] is
generic for an intermediate extension V¥ where % is a complete subalgebra of
#(P) and |#| < k. (This is standard; see [J1] or [Mi] for a proof.) Hence for all
reals r € V[G] there are an inaccessible y < k and a V-generic object H, C
Col(w, <), H, € V[G], such that r € V[H,].

Let G* be V[G] generic for Col(w, «). In V[G*], [RVI?]| = & and there is
a cofinal sequence of inaccessibles (y,: n € w) C k. In V[G][G*] choose a
sequence H, C Col(w, < vy,) such that

1) H, is V-generic, H, € V[G],

2) for each real r € V[G] there is an n such that r € V[H_]. (We use the
homogeneity of the Levy algebra to do this.) By the chain condition, for any
antichain A C Col(w, < k) there is an n such that A C Col(w, < v,). Hence
UH, € Col(w, < k) is generic. Thus L(R)"(%) ¢ L(R)"!#). Since every H_ € V,
LRV ¢ L(R)VC, "o

We now prove Woodin’s proposition.
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Proof. Since « is weakly compact and j(w,) = k and P is k-c.c., P satisfies
the hypothesis of the Folk theorem. Hence for each G C P generic, for some
generic H C Col(w, < k), L(R)VI®! = L(R)V[#). Thus j: L(R)Y - LR)M =
L(R)"™M) is an elementary embedding of L(R)” into L(R)"!#] where H is
generic for the Levy collapse. By Solovay’s results in [Sol], L(R)V!*! = . Every
set of reals in L(R) is Lebesgue measurable, has the property of Baire and
w = (w)*. Since L(R)" = L(R)"#] we are done. a

If x is supercompact, Corollary 23 implies that in V@1 <% there
is an N ,-saturated ideal # on w,. Let Q = P(w,)/# in VCUr®) Then P =
Col(w, < k) * Q satisfies the hypothesis of Woodin’s proposition:

First, P* Q is kc.c. Let G * H C P* Q be generic. By standard theory of
saturated ideals there is an elementary embedding j: V[G] - M* C V[G * H]
sending w, to k and V[G* H] = R C M*.

Let M = U, corj(RY). Then jI V: V- M. Since V[G]ER C V, M* E
R C M. Hence

RV[G «H] c M.
Thus, as a corollary of Woodin’s Proposition and Corollary 23 we get:

CoroLLARY. If there is a supercompact cardinal k then every set of reals in
L(R) is Lebesgue measurable, has the property of Baire and L(R) E w — (w)*.

Shelah and Woodin have since weakened the hypothesis on k a great deal
[Sh-W].

It is also easy to see, when these techniques are used, that if k is a
supercompact cardinal and Q is any partial ordering and G C Q is generic, then
for some y, H C Col(w, < y) generic there are an elementary embedding

j: LR > L(R) "™

and an elementary embedding k: L(R)V — L(R)"[#]. Hence the theory of L(R)
is invariant under set forcing.

Magidor has shown that MM implies that all =}s sets of reals are Lebesgue
measurable.

Finally we note another version of MA for a class of partial orderings that is
consistent with CH.

If k is a supercompact cardinal, MA* for w-closed partial orderings holds in
V Colter. <k) - Ag noted earlier, MA* for w-closed partial orderings implies (). We
shall show that it implies that the non-stationary ideal on w, is almost N,-
saturated.
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Definition ([B-T]). A k-complete ideal £ on « is k *-preserving if and only if
forcing with P = P(k)/# preserves k*. # is presaturated if and only if #
preserves k* and is precipitous.

TueOREM [B-T]. If 2 = k* and # preserves k* then

a) J is precipitous.

b) If j: V- M C V[G] is the generic elementary embedding then
M*NV[G] cM

Thus presaturated ideals have many of the same desirable properties that
saturated ideals have.

LEmMA 24. Let &/ = (H(A), &, f.); ., be a fully Skolemized expansion of
H(M). (fi: [H(M)]" — H(A) for some n.) Let N <%/ be an elementary
substructure of &/, x € Nand a < sup N N OR. Let £ be an expansion of <,
L= (H(MN), ¢, £, 8;)i, je . such that the functions g; are closed under composi-
tion with the f;’s and include Skolem functions for &£. Suppose that (N, g, N)
< #. Then

Sk*(NU {a}) Nx=Sk?(NU {a}) Nx.

Proof. For the conclusion of the lemma we may assume that
H(A) X OR - «x.

Let yENNOR, y>a If yEN then the function g,(y, =) vy € N for
each j, since (N, g;[ N) <Z. NowSk'f(NU{a})ﬂx—{g(y,a) yENJ.
But g (y, —)[‘y€Sk"“’(NU{a}) and a € Sk*(N U {a}). Henceg(y, a) €
Sk”(NU {a}). Thus Sk¥*(N U {a}) N x = SkYN U {a}) N x. O

This lemma is useful in that it lets us change the quantifier “almost all” to
“all” for subsets of [ H(A)]" (k a regular cardinal).

Suppose &= (H(k), e, A...) is a structure such that for almost all N €
[H(M)]*® there is an a such that Sk*(N U {a}) N x = N N x. Then by adding a
predicate C for the closed unbounded set witnessing this we get that for all
N < (H(A), & A, C, {x}) =% there is an a such that SkYN U {a}) N x =
NN x.

THEOREM 25. MA™ for w-closed partial orderings implies that the non-sta-
tionary ideal on w, is presaturated.

Proof. We will show:

Claim. Let T be a stationary set. If (A,: n € w) is an w-sequence of
maximal antichains below T in P = 2(w,)/NS, then there is a stationary set
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S € T such that for all n,
A1 S={[xnS]:x€A,}

has cardinality 8.
[B-T] has a proof that the claim suffices. For the readers convenience we give it
here.

Assume the claim. Then, if (7,: n € w) is a term for a sequence of
functions in V[G] with |7, € V, 7.: @, = OR||p = 1, we can find stationary set
S and functions ( f,: n € w) € V, f,: w; = OR so that

[S] - {a: fi(a) = 7,(a)} € G.

Hence, if [S] I+ {a: 7,,,(a) <T(a)} € G then there is a closed un-
bounded set C, C w, such that forall a € C, N S, f,.,(a) < f(a). Let B
N,c.C,NS. Then for all n, £, ,(B) < f(B). This contradicts regularity.
Hence NS, is precipitous.

To see that #(w,)/NS,, preserves w,, we suppose not. Let 7 € V? be a
term for a function from w onto w,. Let A, be a maximal antichain deciding the
values of 7(n). Then there is a stationary set S C w, and a set P C w, of
cardinality w, such that [S] t# range 7 C P. This contradicts surjectivity.

We prove the claim. Let T C w, be a stationary set and (al: a <7v,) = A,
be a sequence of maximal antichains in T. Let x be a regular cardinal « >
sup,, ¢ ,Y.- Let G C Col(w,, k) be generic. Then we can form VA, = { a: there
isa B <a, a €agg,). Suppose that in V[G], N, . VA, is stationary. Then
by MA™ for countably closed partial orderings, in V we could get a function
G: w, > k such that S=N, . V- A, is stationary. But then |A | S| <
frange G| = w,. Hence we would be done.

Thus we must show that N, . VA, is stationary in V[G]. We do this by
an application of Lemma #*. Suppose that for each x € H(A) there is a
countable N < H(A) such that for all n, § = N N w, € a’, for some a € N and
x € N. Since Col(w,, k) is countably closed we have a strong master condition g
for N. Then for each « € N, a < k implies that a is in the range of ¢ I' d.
Hence g - 8 €N, . VA,. On the other hand, for any term C € V 1% for
a closed unbounded set, if C € N then g I+ 8 € C. Hence g - (N, VcA,) N
C+ 2.

Fix x € H(A). We must see that there is a countable N < ( H(A), €, A, x)
such that for all n,8 = NN w, € a” for some a. We prove this using (1).

By the remarks preceding Theorem 13, (1) holds. From (1) we will deduce
that for any n, and any expansion of H(A), &= (H(A), ¢, f);,, there is a
closed unbounded set of N < &/, C,, such that foral Ne C,,if NNw, €T
there is an @, NN w, € a” and Sk*(N U {a}) N w, = NN w,.
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If there are such sets, by Lemma 24, we can assume that there is an
expansion = (H(A), ¢, g;); <, of & such that for all N <% and for all n, if
N N w, € T thereis an a such that § = N N w, € a” and Sk¥YN U {a}) N w,
= N N w,. Thus, by adding such a’s, one at a time, to an N <.# and closing
under Skolem functions we get an N < H(A) as desired.

Thus, we must see that there are such sets C,. For each antichain A,
let P be the partial ordering Col(w,, k)* Q where Q € V¥ shoots a club set
through VA, with countable conditions. By (1), P is semi-proper. Let C, be
the closed unbounded set of N <./ that has partial master conditions.
Let Ne C,, NN w, € T and p = (r, q) be a partial master condition. Then if
d=NNuwp, I8 € V;A,; hence for some a €k and B <6, r(B) =«
and 8 € a’. Let G C P be generic, with p € G. Then N[G] N w, = NN w,.
But Sk*(N U {a}) € N[G], so Sk*N U {a}) N @, = NN w,. Thus
Sk*(N U {a}) N w, = NN w,, for this a. O

This argument is the prototype of many arguments to show that various
ideals on a cardinal p or [u] < are precipitous or presaturated. The strategy is
always to expand a structure N to include elements of an antichain in N without
increasing N N p.

4. Precipitous ideals

As we saw in Theorem 25, and in Shelah’s theorems about Namba forcing,
(1) is a strong combinatorial principle in its own right. We now elaborate on this
to produce models where the non-stationary ideal on a regular cardinal p (and
[1]® etc.) is precipitous. We start by stating a standard lemma:

LemMAa. If £C P(Z) is an ideal on Z then J is precipitous if and only if
there is no set S € #" and no tree T C (2%)<* labelled with Fpositive sets
(A:nmeT) A CZ, such that

a) A, = S.

b) For each n € T, {A, _,: 1 ~ a € T} is a maximal antichain below A,
and,

c) forall f: w— 2% if foralln, fi neT, then N, ,Af, = D (see
[J1], p. 439).

Thus to prove that an ideal is precipitous, we must show that there is no
such tree. If T is such a tree welet A, = {A,: 7 € T and l(n) = n}. Then by
b, A, is an f~maximal antichain below S and A, ,, refines A,.

THEOREM 26. (1) implies that NS, is precipitous.
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Proof. Suppose not. Let A > w,. Let (A,: n € w) be the sequence of
antichains coming from a tree T that witnesses NS, is not precipitous. Let
S = A,. For each maximal antichain A C #(w,), consider the forcing

P = col(w,,2“1)*Q

where Q is the partial ordering for shooting a closed set through V- A. Then P is
N -semi-proper by (1). Hence as we argued in the proof of Theorem 25, for any
expansion &= (H(A), ¢, f);c,, there is a club set C € [H(A)]* such that if
N € C then there is an a € A such that

a) NNw, €a,

b) Sk#*(NU {a}) Nw, =NN w,.

Claim. For any expansion &/ = ( H(A), ¢, f;);c, of H()A) there is a club set
C C [H(A)]® such that for all N € C and all maximal antichains A C #(w,),
A € N implies that there is an @ € A and

a) NN w, €a.

b) Sk*(NU {a})) Nw, =NN w,

Proof. Otherwise there would be a particular maximal antichain A and a
stationary set T C [H(A)]“ such that forall N T, A € Nand forall a € A, if
NNw, €a then Sk*YNU {a}) Nw, # NN w,. This contradicts the last
paragraph. The claim follows. O

Let C be a club set in [H(A)]“ witnessing the claim for &/ = (H(A), &, T).
Let = (H(A), ¢, T, f;); <., be such that all countable elementary substructures
N < &Z are in C.

Then by Lemma 24, if N <.%Z and a < 2“1 then

Sk?(NU {a}) Nw, =Sk*(NU {a}) N w,.

Let N < .2 be a countable set such that § = N N w, € S. We will build a
function f: w — 2“1 such thatforall n, ft n€ T and 8§ € Ay, - This will be a
contradiction.

Suppose we have defined f| n, such that SkY(N U ft n) Nw, = NN W)
Then {Aﬁn} U {Afpq: fIna €T} is a maximal antichain that lies in
Sk(N U f1 n). Hence there is an a such that § € A, ., and SK¥(N U f| n
U {a}) Nw, =0.Let f(n) =a O

One might ask about cardinals above w,. Gittik and Shelah have done
considerable work on this problem (see [G1], [Sh1]).

It turns out however, that with a sufficiently large cardinal a Levy collapse is
sufficient to make NS precipitous:
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THEOREM 27. Suppose « is a supercompact cardinal and p < k is regular.
Then in VC* <% the non-stationary ideal on . is precipitous.

The original proof of this used a version of (1) that holds in V ©°* <% and
an argument similar to Theorem 25. The direct proof is simpler so we give it. We
need to use a particular stationary set in [H(A)] =* that is very resilient.

Let N < (H(MA), & A, f,);c.,- Then N is internally approachable (1A) if
and only if there is a sequence (N,: a < &) such that N=U_,_;N, and if
B < 4§, then (N;: a < B) €N.

By cardinality considerations, |8| < |N|. We note that all countable N are
internally approachable. Let IA = { N < H(A): N is internally approachable}.
Note that the definition of IA is independent of whether we are working in
[H(M)] = or [H(N)] =* for some p < A.

The following lemma yields the salient facts about IA.

LemMma 28. Let y < A be uncountable regular cardinals.

a) IA is stationary in [H(X)] =".

b) If N is regular, y <X <X and N < H(A), N € IA and A" € N then
N N H\) € IA.
(Note there are two 1A’s here—one for A and one for \'.)

c) {N N y: N €IA} includes a club set.

d) If S C 1A is stationary in [H(y)] =" and o is any ordinal then S is
stationary in VI <o),

Proof. a) Let C be a club set in [H(A)] <. Let (N;: i € w) C C be such
that N;,;, 2 N, U {N,}. Then U, N, € C N IA.

b) Let N < H(A), N IA and X’ € N. Then N = U__sN, and for each
B <8 (N: a<B)yeN Let N=Nn H(A). Then N’ < H(X). We claim
that for each B < 8, (N, N H(A'): a < B) € N".

Since (N, a<pB) €N, NE (N,NH(XN): a <) is a < y-sequence
of elements of H(MN’). Hence, NE (N, N H(X): a < pB) € H(X'). Thus,
(N, N H(\): a < B) € N' = Nn H(N).

c) Let (N: a <y) C[H(A)]™" be a continuous tower of elementary
substructures of H(A) such that

(Ng: B<a) €N,y
Then { N,: a is a limit ordinal < y} C IA and is continuous. Hence
{N, N y: ais alimit point < v}

is a club set in y. .
d) Let SCIAN[H(A)]=Y be a stationary set. Let C & VClr. <o
be a term for a club set in [H(A)V]<". Let A* > o be regular. Let
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N < (H(A*), ¢, A,Col(w,, < 0),C, S) be an elementary substructure of cardi-
nality < y such that N N H(A) € S. (We use Lemma 0 to get such an N.)

Then N N H(A) =U,_sN, for some sequence (N,: a < &) and for all
B <98, (N;: a<B) e N. Choose a sequence of conditions (p,: a < fB) C
Col(y, < o) such that:

a) If a > a’ then pa I pa’.

b) There is an M, € N N [H(A)] =" such that p, -“N, € M, and M_D
Ug<aMp and M, € C”.

c) Forall 8 <34, (p,; a <B) €N.

Such a sequence is easy to build if at stage a we choose p, ., the A-least
condition of Col(y, < o) such that for some M _, b) holds. Then we choose the
A-least such M.

Since M, € N, N= |M_| < ; hence [M | € N. But N N y € OR. Hence
M, C N. Since M, C H(\), M, € N N H(\).

Let p € Col(y, < o) be such that for all @ < §, p I~ p,. (Recall § < y by
cardinality considerations.)

Then p I- C N (N N H(MA)) is unbounded in N N H(A). Hence p I N N
HA) € C.Hence pl-CNS# @. m]

(The theorem above is also true for the strongly closed unbounded filter on
[p] <. Instead of working with a term for a closed unbounded set C we work
with a term for a countable sequence of functions ( f;: i € w). We build a
sequence (p,: a < §) such that: a) Forall 8 < a, (p,: a < B8) €N.

b) For all @ € N, and all i, there is an m such that p, = f{#) = m. Then
Uu<sPo = N is closed under ( f: i € w).)

Proof of Theorem 27. We will work as in Theorem 26 to build a path
through any tree of antichains. Let P = Col(u, < k).

Main Claim. Let A > p. InVF let &= (H(A), &, A, f,), ., be any expan-
sion of H(A). Then for almost all N <&/, N € [HA)]=* N IA, if
(Ag a<p") €N is a maximal antichain in 2(p)/NS, then there is an
a < p* such that

a) Sk*(NU {a}) Np=NnNp.

by NNnpeaA,.

Proof. Otherwise by normality we get a stationary set S C IA and a
particular maximal antichain (A : @ < p*) such thatforal N S,if NN p €
A then

* Sk*(NU {a})Nnp#NnNp.

Let j: V> M be a Asupercompact embedding. Then, since P =

Col(p, < k) is kcc, if GC P is generic then there is an H C j(P) =
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Col(p, < j(x)) generic such that G € H and j can be extended to f VIG] =
M[H]. Let V' = V[G]. Since S C IA, S is stationary in [H(A)V] <* in MI®,
Let f: p— H(A)" and

T={8<p: f’'6Sand 8 =f'8Np};
then T is stationary.

Let (Ai: a < j(k)) = j(Ay a <k)). By elementarity, M[H] =
(Al: a < j(k)) is a maximal antichain in P(p)/NS,. Thus there is an a such
that AJ N T is stationary.

In M[H],let C= {N < j(&): IN| <p, «a € N and N is closed under f,
£ ' and j H(N)VIC!). Then C is a club set in [H(j(A))] “*. Choose N € C
suchthat § =NNpeTNA, Let N = f"§; then N’ € S. Further, j(N') =
j"N"Cc Nand NN p=N Np=(j"N) N p,since crit(j) = k > p.

Now Ski®)(j(N’) U {a}) € N; hence Ski*™(j(N) U {a}) N p =
j(N’) N p. But then

M[H] k= thereisan a < p™, such that j(N’) N p € AJ and
SKIO(j(N) U (a)) 0 = (V)

So
V[G] E“thereis a < p*,
NNnpeA,andSk*(N' U {a}) Np=N nNp”
But N’ € S, a contradiction. O

By the main claim and Lemma 24, we can expand H(A) to =
(H(MN), & A, f,);c,, such that for all elementary substructures N <. with
|IN| < p and all maximal antichains (A _: @ < p™) € N there is an « such that

ayNnpeA,

b) SkANU {a)) N p=NnN p.

One can also pick £ such that if N is a substructure of .#, N € IA and
a < u*, then the closure of N U {a} under the operation of .# is in IA. See
below in the proof of Theorem 29.

We now work exactly as in Theorem 26. Let T C (n) =“ be a tree labelled
with stationary sets (A,: n € T) such that {A, . n"a € T} is a maximal
antichain below A,. We show that there is a function f: @ — p™ such that for
alln, ftneTandN, . Af, * 2.

Let N<%, TEN, [N|J<p and NN p € T,. Then as before we can
build a sequence (a,: n € w) C p* such that Sk4NU {(a,: n <m)})Np=
NN pforallfinitemand NNpe A, for all n. a

o aﬂ)

CoroLLARY. If ZFC + there is a supercompact cardinal is consistent then
so is ZFC + for every regular cardinal k, NS_ is precipitous. (Compare [F1].)
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Proof. We only use (222‘)+-supercompactness (at most) in the proof of
Theorem 27. If there is a supercompact cardinal k, V_ = there is a class of « that
is (22*) *-supercompact.

By iterating Levy collapses with Easton-supports we can make a generic
object G such that V.[G] E If « is the successor of a regular cardinal then « is
(2%) *-supercompact in V.

Since, if 2* = u™*, p*-closed forcing preserves precipitousness, V,[G] E ZFC
for every regular cardinal k, NS, is precipitous. O

Higher type ideals have very nice consequences for the set-theoretic uni-
verse. (See [F2]).

TueOREM 29. Let k be a supercompact cardinal and w <y < p < k be
regular cardinals. Then in VCI <% there is a stationary set S C [p] < y such
that NS, <, I S is precipitous. Further NS,. is precipitous.

We note that this is one theorem where we get a stronger result by
considering the filter of “strongly” closed unbounded sets. (See the introduction
for comments about “strongly” closed unbounded sets.) Woodin has remarked
that this theorem gives generalizations of Namba forcing for cardinals above w,
by considering N € IA with N N a having various cofinalities, where a is some
cardinal less than p.

Proof. We will show that in V?* <* NS, ., I IA is precipitous. Since
|[H(p)| = p in VI <) this proves the theorem.

Our method will be as in Theorems 26 and 27. We will build a branch
through any tree of antichains and an N < H(A) with NN H(p) in the
intersection of this branch. We first show that if A > p then the projection of
NS([H(A)] <7) U (TA) onto NS([H(w)] <) is NS([H(1)] <*) U (TA).

Claim a) If C C [H(A)] =" is a closed unbounded set then {x N H(p):
x € CNIA} D D N IA for some D C [H(p)] =7 that is closed and unbounded.

b) If D C [H(p)] <" is closed and unbounded then there is a closed
unbounded set C C [H(p)] < such that {x " H(p): x € C and x €IA} C
D N IA.

Proof. By Lemma 0 there is a function f: H(A)=“ — H(A) such that if
N € [H(M)]“*NIA, NNy € yand N is closed under f then N € C. Also we
can make sure that if M € IA N H(p) =" then the closure of M under f is in IA.
Such an f is defined by induction (for § < v) f5: H(u = H(A) =" where f; is
the original function guaranteeing that N € C and fy(M) = the closure of M
under ( f,|p < 8). Let f code ( f;|8 < v) such that if N is closed under f, then
N is closed under f; for 8 € NNy. This f is easily seen to satisfy the
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requirements. Let D = {M € [H(p)] =" M <%, M Ny € y}. We claim that
for all M € D N IA thereis an N € C N IA such that N N H(p) = M.

Let o= (H(A), & A, f, g;);c. be a fully skolemized structure. Let ¥=
(H(p), & A, h;),c,, be such that if M <& then Sk*(M) N H(p) = M. Let
D={Me[Hp)]~" M<Z MnNnyey} We claim that for al M€
D N 1A, there is an N € C N IA such that NN H(p) = M.

If M € D N IA, then the closure of M under f is as required. This proves
the claim.
We now prove the main claim analogous to the one in Theorem 27.

Main Claim Let G C Col(u, < k) be generic. In V[G], let A > (22") and
&= (H(N), & A, £); .. Then for almost all N < [H(A)] =7, if N € IA then for
all (A a <p) €N, (A, a <p) a maximal antichain in

2([H(r)]=")/Ns U (1A}

then there is an a < p such that
a) S(N U {a}) N H(p) = N N H(p),
b) NN H(p) €A,.

Proof. Otherwise, there is a stationary set S C IA N [H(p)] =" and a fixed
maximal antichain (A, a < p*) such that if N € S then (A a<pu™) €N
and if N N H(p) € A, then

Sk?(NU {a}) N H(p) # NN H(p).

Let j: V> M be a A'-supercompact embedding. Let V' = V[G]. Then in
MColw =it 1 H(A)Y|=p and S is a stationary subset of [H(A)V']<". Let
f: H(p) = H(M)Y be a bijection.

Let T = (N € [H(p)"]<": f'N€Sand N = f'N 0 H(p)"); then T is
stationary and T C IA by Lemmas 0 and 28.

Let (Al: a < j(k)) = j((A,;_a™*)). Then (Al: a < j(x)) is a maximal
antichain in 2([H(u)] <)/NS U (IA); hence for some a, Al N T is stationary.
Let C = {N < HGA)YM™™ ™™, |N| <y and @ € N and N is closed under f,
f ! and j HAA)Y'}). By Lemma O, there is an N € C, NN H(p) € T N Al
Let N = NN H(p) and N* = f’N’. Then N* € §.

Since |[N*| < p, j(N*) = j”N* and j(N*) C N. Further, j(N*) N H(p) =
N N H(p). Hence Ski*(j(N*) U {a}) N H(p) = N N H(p). So by elemen-
tarity, V' = “there is an a, N* N H(p) € A, and Sk¥(N* U {a}) N H(p) =
N* N H(p)”. But this is a contradiction since N* € S. This proves the main
claim.
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By Lemma 24, we can expand & to an £= (H(A), ¢, g;); <., such that for
al N<%, if N€IA and (A, a<p*) €N is a maximal antichain in
P(H(p)]=")/NS U {IA} then for some a < p*¥,

a) Sk%N U {a)) 0 H(g) = N 1 H(p),

b) NN H(p) €A,

Hence, as in Theorem 27, this allows us to build a branch with non-empty
intersection through any tree of antichains. O

Huge, cardinal-type ideals have been studied extensively. (See [F2] and
[M2].) Magidor in [M3] showed:

THEOREM (Magidor). (k, A) — (x N) if and only if there is a normal,
fine, countably complete ideal on [k]* concentrating on [A]".

(Recall (k, A) - (k’, X’) is the statement that every structure of type (k, A)
has an elementary substructure of type (k’, A).)

The ideal in Magidor’s theorem always exists. Chang’s conjecture is needed
to show that it is a proper ideal.

The ideal is easy to describe, namely: X € 4 if and only if X C [«]*,
|lx " A| = A" and there is a structure &= (k,A, f,);c, such that X =
{y <: ot. x=«" and |x| = A’}. This ideal is seen to be analogous to the
non-stationary ideal on [y] <? for cardinals A, 8.

When “huge” ideals are precipitous they can imply the G.C.H., ¥ is
Jonsson etc. [F2]. This makes it desirable to show that they can be precipitous.

Frequently proofs of the consistency of Chang conjecture type transfer
properties yield the stronger result that there is a precipitous normal ideal as in
Magidor’s theorem. The next theorem shows that modulo a supercompact
cardinal this is equivalent to the transfer property.

TueOREM 30. Suppose k is a supercompact cardinal and suppose that p < k
and (p,y) > (p',y") for regular cardinals p’ <p and vy <A. Then in
V Col(k: <) there is a precipitous ideal on )" concentrating on [y].

Thus, modulo a supercompact cardinal, Chang’s conjecture is equivalent to
a precipitous huge ideal.

Note. We will show that the minimal normal and fine ideal are precipitous.

CoroLrARY 31. If “ZFC + there is a supercompact” is consistent then so
is “ZFC + there is a normal and fine precipitous ideal on [8,]™ concentrating
on [R,]%.”

Proof of corollary from theorem. By Silver’s theorem on Chang’s conjecture,
[Si2], from an Erdos cardinal one can force (N, N,) » (¥, N,). Since the first
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Erdos cardinal is less than the first supercompact cardinal and the forcing in
Silver’s theorem is of small cardinality, Silver’s forcing yields (N5, 8,) » (8, N,)
and preserves the supercompactness of the cardinal. Hence by Theorem 30, a
further forcing yields a precipitous ideal. O

Huge-type precipitous ideals were shown to be consistent from huge
cardinals in [F2].

If (g, ¥) > (1, ¥') then for all regular A > p, we get an ideal on [H(A)]*
concentrating on [y]* analogously to Magidor’s theorem. Namely, a set X C
{x € [HM)]*: |xNy| =7} is in the dual of # if and only if there is a
structure &= (H(A), ¢, f); <., such that

X2 {xe[HN)]": |xny|=y and x </ }.

Since (p, y) > (p’, Y'), this is a proper ideal. We will call this the non-stationary
ideal on [H(M)]*. A set S C [H(MA)]* is stationary if and only if for all
expansions &= (H(A), ¢, f);c, of H(A) there isan x € S, |[x N y| = v’ and
x < . Similarly we define a set S C [u]* N {x: |[x N y| = Y’} to be stationary
if and only if for all expansions &= (p, f);c,, thereisan X </, x € S. A set
will be called closed and unbounded if its complement is not stationary.

We will prove Theorem 30 with the same method as we proved Theorems
27 and 29. We must define a notion of internally approachable appropriate in
this context.

A set N € [H(MA)]* is internally approachable if and only if there is a
continuous increasing sequence (N,: a@ < sup N N p) C [H(A)]* such that for
each Be NNy, (Ny a<B)EN, [Ny <pandU,ponn,N. 2 N We will
let IA stand for the collection of N € [H(A)]* that are internally approachable.
We claim that IA is stationary in [H(A)]* and projects to a closed unbounded
set in [u]*. To see that IA is stationary we let o/ = (H(A), ¢, f,, A) be an
expansion of H(A).

Let (N, a <p) be a continuous increasing sequence of elementary
substructures of %/ such that each N, has cardinality < p and (N, a < B) €
N;. - Let M = UN, and let £ be the result of expanding (M, ¢, f, A),, by
the function g(B8) = (N, a < B).

Since |£| = p we can choose a Chang elementary substructure N of % of
type (1, v’). Since N < &, N ="“for all x there is a 8 < p such that for some
N, in the sequence g(B), x € N,”. Further such an a must exist in N. Hence
NcU,cnn,N, and, since g(8) € N for € NN p, (N a < B) € N. Thus
N is an elementary substructure of 2/ and N is internally approachable.

To see that IA projects to a closed unbounded set in [p]* (ie. {N N p:
N € IA N [H(M)]*)} is closed and unbounded in [p]*) it is enough to see that

i€w
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for any stationary set S C [u]* and any expansion of H(A), &=
(H(A), & A, £);c., there is an N <./, N € IA N [H(A)]* such that NN p
c S.

Again we build (N,: a < pn), a continuous increasing sequence of elemen-
tary substructures of ( H(A), ¢, A, f;); <., such that |[N,| < p and for each B8 < p,
(N; a<B)e€N,, Let £ expand U, ., N, by the function g(B) =
(N, a < B). As usual we find functions (g;: i € w) with domain [p] = so that
if x C p is closed under (g;: i € w) then Sk¥(x) N p = x.

Since S C [n]* is stationary there is an x € S closed under (g;: i € w).
But then Sk¥x) N pu=x and Sk¥x) <.%. Thus N = Sk¥ x) is internally
approachable and N N p € S as desired.

We now need a lemma like Lemma 28 d.

LEmMma 32. Assume (p,y) > (p',y") and 8 € OR. Suppose A > p and
S c [H(N)]* N 1A is stationary. Then in V €l <&,

a) (p, 8) » (1,7,

b) S is stationary in [H(A)V]* (ie. any expansion of H(A)V has an
elementary substructure of type (p', y’) in S).

Proof. A proof of a) appears in [F1].

b) It suffices to see b) for 8 > A. Let &= (H(A)", e, f);c., be an
expansion of H(A)Y in VCI® <9 In V if A’ > A, the non-stationary ideal on
[H(A\)]* projects onto the non-stationary ideal on [H(A)]*. Thus, if p €
Col(g, < &) and £= (H()), £) is a term for the structure & and A’ > §,
there is an elementary substructure N < (H(\), e, A, #Z,{p)}) such that
NN H(\) € S.

Since S C IA there is a sequence (N,: a < sup N N p) of sets of size < p
sothatU, . unn,No 2 NN H(A) and foreach € NN p, (N,: a < B) €N.
Working inside N, we can build a tower of conditions (p,: @ <sup N N p)
extending p so that p decides all of each ﬁ I N,. (Note that the tower is not in
N but for each B € NN p, (p,;: @ < B) € N.) To do this we use the fact that
N E |N,| < p so that we can extend any condition to a condition that decides all
of f;I N,. Then for € NNy, (p,: a <) is the lexicographically least
sequence such that p, decides all of £ N, Since (N, a<B) €N,
(pys @ < B) €N.

Since Col(p, < 8) is < p-~closed there is a condition g such that for all
a<supNnNu, ql-np,.

Then g I-“N N H(A) is closed under each f,” because if x € N N H(A)
then for some a € NNpu, x € N, Hence p, I~ f(x) =y for some
y € NN HA). So g - f(x) € NN H(A). Thus g I-“N N H(A) <~ and
N N H(\) € S. Hence § is stationary in V €l <®), O
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Proof of Theorem 30. As usual, we will be done if we can show some
version of the main claim.

Main Claim. Assume the hypothesis of the theorem. In V/ = V Col(®: <% et
A > k and &= (H(A), ¢, f.); ., be an expansion of H(A). Then for a closed
unbounded set C C [H())]*, whenever x € C is internally approachable and
(A, a<p*) € x is a maximal antichain in 2@([u]*)/NS there is an a such
that

a) Sk¥(xU {a)) Np=xNg,

b)xNnpeA,

Proof. Let j: V—> M be a A*-supercompact embedding. If the lemma is
false, let S € [H(A)]* N IA be a stationary set and (A a < k) be a maximal
antichain in 2([p]*)/NS such that forall x € S, (A a < k) € S and for all
a,if xNpe A, then Sk¥(x U {a}) Np #xNp.

We can extend j to j: V' > M’ = M <i) By Lemma 32, in M’, S is
stationary in [H(p)"']*. Let f: p > H(X)" be a bijection and (Al: a < j(k))
= j((Ay @ <k)). Then T= {x € [p]*: f’x€ S and x = f'x N p} is sta-
tionary in [p]*. Hence for some a, T N AJ is stationary.

Let C = {N < j(#): a € Cand N isclosed under f, f * and j I H(A)"'}.
Then C is closed and unbounded and hence for some x € C, x N p € TN Al

Let N = f”x N p; then, Sk (j"NU {a}) NpCxNp=j’NNp and
j”N = j(N). Hence M’ =“there is an a, j(N) N p € Al and Ski*(j(N) U
{a}) Np=j(N)Np.” Butthen N€ S and V' =“thereisana, NN p € A,
and Sk*(N U {a}) N p = N N n”, a contradiction. This proves the main claim.

By Lemma 24, we can expand ( H(A), €) to an £= (H(A), ¢, f;); ., such
that for every N <% with |[N|=p and [NN y|=y" and every maximal
antichain (A, a<p*) €N, there is an a such that NNpe A, and
SkUNU {a))Np=NnNp.

This allows us to build a branch with non-empty intersection through any
tree of antichains, thus proving Theorem 30. O

Previous to this work Jech asked two questions that in light of Theorems
26-30 look very attractive. He asked whether, assuming that there is a super-
compact cardinal k, one can prove either

a) NS, is precipitous,

b) NS, is precipitous.

Unfortunately both are false:

THEOREM 33. If k" =k, 2“= k"% then there is a < k-closed, k*-c.c.
forcing P such that for all normal ideals £ in V the normal closure of % in V¥ is
not precipitous.
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We first prove two lemmas:

LEmMA 34. Suppose that £ is a normal, k-complete ideal on k and P is a
< k-closed forcing; then the normal closure of # in V¥ is a proper ideal.

Proof. The normal closure of £ is the collection of sets included in some set
of the form V(X a < k) for a sequence (X : a < k) C # in V*. If the normal
closure is not a proper ideal then there is a sequence (X, a <k) C.J,
(X, a<k) €VPsuch that k € V(X a <k). Let (1 a <k) € VF bea
term for such a sequence.

In P, build a sequence of conditions (p,: @ < k) such that p, I+ p/ for
a > o and for each a, p,||7,, p I+ 7, = X, for some x, € £. Thenv,_, x, Dk
since £ is properinV. Let § € k ~ v, _ .x,. Then, 1f,B > 8, pg -8 & Voo Xp
a contradiction. i

The following lemma is standard and we omit the proof.

LemMA 35. Let k be a regular cardinal. There is a sequence of functions
(Oy a<«k™), Op k—«k, such that whenever £ is a normal k-complete
precipitous ideal on k then O, represents a in the generic ultrapower.

Recall, an ideal is not precipitous if and only if there is a tree of maximal
antichains where the intersection of the sets that lie on any branch of the tree is
empty. Thus to show that an ideal £ is not-precipitous it is enough to show that
there are sets (A : 1 € (k*)~“) and functions ( f;: 7 € (k*)~*) such that:

a) If n extends » then A, C A,.

b) {A,,: @ € "} is an almost disjoint maximal antichain below A, .

o f: A, >k andforall y €A, fio(Y) < (V)

Clause c) guarantees that if g: w —» k™ then N, A, , = &, since if
Y E€NpenAgn then (f,(v): n € w) forms a descending w-sequence of
ordinals. The forcing in Theorem 33 consists of approximations to such a tree.

Proof of Theorem 33. P will be an iteration of length k*. Let T = (k*)~=¢
and (1, a < k") be a well-ordering of T such that if 7 is an initial segment of
v then n comes before ». The iteration will add a sequence of sets (A,: n € T)
and functions ( f,: 7 € T) such that:

a)A, Ckand |[A,,NA 4| <k if a #B.

b) f,: A, = « and f, eventually dominates O, for each a € k™.

c)Forall aand y € A, , fi-a(Y) < £(Y)-

The iterations will be with < k-supports.

Suppose we have defined P, and (A, B <a) and ( fogt B <a). To

specify P, ., we must define the factor a.lgebra Q, in VE Suppose Ne = N"Y-
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Then n = ng for some B, < a. We put q € Q, if and only if
q=(a,, f:(bap BEY), (S5 BEX))

where

a)a, Ck la,|<kanda, CA,

b)ye[a]<" b, s € k,
and if nz = 0"y’ for some y’ then a, ﬂAﬁCbaB,

¢ fi:a, =Kk x€[kT]™"S, BEKandfora]l$>SaB,1f£€a then
F(€) > O4(§),

d) for all £ € a,, £1(£) < £(£).

The ordering is given by g* |- g where
q* =(ay, f,5. (bl g BE y*). (585 B € x*))

if and only if,

a) ay is an end extension of a,

b) f *la, =f,

c) y* Dy and forall B € y, b¥ s =b, s,

d)x*2>xandforal BEx,S, ,=5F

Note that a, approximates A, and f; approximates f, . Clause b) in the
definition of the partial ordering guarantees that the A, ., and a,.; are almost
disjoint.

Clause d) guarantees that f,., < f, on A ., . Clause c) guarantees that f,
does not stray into the well-founded part of the generic ultrapower. Let P, | =

Pa * Qa'

Claim. P is < k-closed and k*-c.c.

a

Proof. < k-closure is true since we are iterating with < k-supports and
each Q, is < k-closed. Since P is k-closed we could have defined P in the ground
model as a product forcing. In fact P has a dense set, D, of conditions of the
form p = (p(a): a € supp p) where for a € supp p

pla) = (a, . f;.(bap: B € y(a)),(S, p: B € x(a)))

and a, , f,, y(@), (b, g: B € y(a)) and (S, z: B € x(a)) are all elements of V.
Further y(a) = supp p N a and x(a) = supp p.

Let (p,; a <k") C P. We want to show that for some «, B, p, and p,
are compatible. We may assume that each p, € D and by a standard
A-system argument we may further assume that there is a set F C k¥, |F| <k
and for all @ < B, supp p, N supp pg = F and if a < B then supsupp p, <
inf(supp pg ~ F). By the cardinality of k* we may assume that for all &, 8 and

all F’ P, Pp
°< (a, )™ = (a, )" and (£2)™ = (£,)"
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Further, by cardinality arguments we may assume that for 0,8 € F,
(bo,ﬁ)pu = (bo,ﬁ)& and (SU,S)Pu = (SU,S)Pﬂ'

We claim that any p and g satisfying these properties are compatible.

Define a condition y with support supp p U supp q. For a € supp p ~
supp q let y(a) = p(a) and for a € supp g ~ supp p let y(a) = g(a). For
a € F, let

v(a) =(a,. £, (bo g: B E y(a)), (S, p: BE x(a)” Ux(a)”)).

Note that a? =aj and (f)” = (f)? and {y(a),(b, s B €E y(a))}? =
{y(a), (b, g: B € y(a))}? and for B € x(a)? N x(a)?, (S, )" = (S5, p)? Then
vy is a condition since the restrictions on a coordinate y(«a) refer only to a,, and
f;,; for 8 < a, B € y(a), and g and p agree on the anﬁ’s for B8 € F. This proves
the claim.

As we argued, we will be done if we can show that for any ideal on «,
#€ Vandany n €T, {A,,: @ € "} is an F£maximal antichain below A, in
VP,

Let S € VP be a term for an £positive set S C A,. Then, by the chain
condition there is a ¥ such that A , S € VEh, Choosg the least # > i such that
ng = 1§ for some §. We will show that A, NS & 7.

Let (X,: y <k) € V® be a term for a sequence of elements of .# and
p € P be a condition, p - A, NS C V(X y<k).

Let G, C P, be generic with p | ¢ € G,. Let V' = V[G,], A > « and let
M < (H(N)Y, & AP, G,,P, S, 7, 8) be such that:

a) MN k"€ OR, [M|=«and M="C M,

b) p,(X,: y <k) € M.

Let (N, a < k) be a continuous chain of elementary substructures of M,
each of cardinality < k such that

ayM=U__ N,

b) (p} U ((X,: v < )} C N,

¢) (Nyi B <ay €N,, .

Then clause ¢) implies that whenever « is a limit ordinal then N, is internally
approachable.

Let S’ =S ~ {a: for some y EN,, n°y=1ng for f <y and a € A }.
Then, if SN A, €S for each y such that 9~y =7, for some B8 <y, S =
S'mod #. (Here we use the remarks just before the proof of Theorem 12.)

Let 8, = sup N, N k and 8* = sup M N k. Then

C = {a:forall y € N, N «*, Op(8,) > O,(8,)}

is a closed and unbounded subset of k. Further there is a final segment I of A,
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such that f, > O,. on I. There is a limit ordinal « such that §, € CN S’ NI
and 8, &€ (FN N,), since otherwise C N S* C {a: for some X € N, N4,
a € X} € 4. Choose such an «,. Then §, & A, for any y € N, for which
there is a 8 < ¢ and 7"y = 7,.

Build a sequence of conditions that lie in N, , (pg: B < B*) € P/P, such
that p, = p and p, I p, if B” > B and for all dense open sets D C P/P, that
lie in N, , there is a B such that pg € D. This is possible since N, € IA. (Repeat
the argument in Lemma 28d.) Then B* < k and hence there is a master
condition g I pg for each B < B*. We may assume that g is the coordinatewise
union of the (p,: B < B*). For each y < §,, g decides the value of X and
q-X,€N,.Hence g -6, ¢V, _X,.

Now §, € S and f£,(8, ) > O5.(§, ). Let

q(0) = (@, fr>(bg g BE y),(Sg g BEx))
be the 6th coordinate of q.

Since y, x C N,, O;.(8, ) > Og(a) for each B € x and for each B €y,
8, & Ap, we can define a condition ¢g* in Q, by

(a5, U (84,1, £y U {84, Coe(80,) 1) (Ba g B € 4),(So 4 B E 7).
Then g* I+ g(8) is in Q,.
Let g'(a) = g(a) for a # 6 and q’(#) = g*. We must see that ¢’ is a
condition in P. The only problem that could arise is a 8" > 8, 8’ € supp q, such
that ¢’ I 0" I q(0') & Q.. Let

qa(8) = (a,,, f,,.(by, B: B € y(8')).(S; 5: B € x(0))).

Then a, C 8, and hence a, cannot conflict with a, U {§,} and f,’ cannot
conflict with £ U {(8, ,05+(8,))}. Hence q" € P.

But ¢’ -8, €(SNA,)~V, (X, y<kK) and q’ I p, a contradic-
tion. Hence { A, _,: a < k™} is a maximal antichain below A, . a

n~at

Now in the proof of Theorem 33, |P| = k* and hence if A >k is a
supercompact cardinal then A is supercompact in V*. Further if Q is a
< k-closed forcing then the normal closure in V€ of (NS,)" is (NS,)"". Thus a
supercompact cardinal A does not prove that NS_ is precipitous for any k < A.

If x is a k-closed indestructible supercompact cardinal (see [L1]), then
forcing with P leaves k supercompact. Hence we get a model with a supercom-
pact cardinal k such that NS, is not precipitous. (By Theorem 27, it is consistent
to have a supercompact cardinal k such that NS_ is precipitous.)

Onro State University, CoLumsus, OHIO
Hesrew UNIVERSITY, JERUSALEM, ISRAEL (two authors)
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