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A NOTE ON A SET-MAPPIN G P,ROBLEM 
OF HAJNAL AND MATE 

P. KOMJS~TH* (Budapest) and S. SHELAH (Jerusalem) 

A b s t r a c t  

It  is consistent that  there exists a set mapping F with fl < F(fl, or) < a for 
)3 + 2 < a < w2 with no uncountable free sets. 

For our current  purposes ,  a set mapping is a funct ion F such t ha t  D o m ( F )  = 
[X] 2, R a n  (F )  _C [X] x (or C_ IX] <x) for some set X and cardinal  A. Here, if X is a 
set, A a cardinal ,  [X] x = {Y C_C_ X :  IYI = A}, [X] <x = {Y C_ X :  IYI < A}. For a set 
m a p p i n g  as above,  a set Y C X is free i f y  ~ / F ( x l ,  x2) for any  different Xl, z2, y E Y .  
For theorems  and p rob lems  abou t  free sets see [2] and  [3]. In [3], A. Ha jna l  and  A. 
Ms asked if it is consistent  t ha t  there is a set m a p p i n g  F : [w2] 2 --~ [w2] <~ such tha t  
for /3  < a < w2, F(13, a )  is a subset  of the ordinal  interval  (13, a )  = {7:13 < 3' < a}  
and  no uncountab le  free set exists. Here we prove, using models  of A b r a h a m -  
Shelah [1] t ha t  such funct ions can consis tent ly exist. The  models  of  [1] were crea ted  
to show the consis tency of the following s t a t emen t .  There  exists a fami ly  of  closed, 
unbounded  sets {Ea : a < w2) in wl such t ha t  the intersect ion of  any  uncoun tab ly  
m a n y  of t h e m  is finite. 

THEOREM 1. It is consistent that there ezists a set mapping F : [w2] 2 --* 
[w2] -<s~ with F(13, a) C_ (13, a) and with no uncountable free set. 

We give two proofs  for the  Theo rem,  b o t h  using models  of  [1]. 
Assume  t h a t  for a < w2 a funct ion ~o~ : a ---* wl is given such t ha t  ~ 1 ( i )  is 

countable  for every i < wl.  Assume  fur ther  t ha t  E~ C wl is a closed, unbounded  
set for a < w 2 .  P u t  for fl < a < w 2  7 E F(13, a )  if13 < 7 < a a n d  ~ a ( 7 )  < 
m i n ( E ~  - [~a(13) + 1]). 

FIRST PROOF. Let  V be a mode l  of  ZFC,  fix ~ a  as above  for a < w2. T h e  first 
mode l  of  [1] ex tends  V to  a mode l  V" conta ining closed, unbounded  sets E a ( a  < w2), 
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and also V" contains Cohen reals {ca : a < w2} such that  i f X  �9 V" is a countable 
subset of w2 then X �9 V' = V[ca : a < w2]. I f X  �9 V[ca : a �9 B ] , X  C_ w2 is 
infinite, then X ~ Ea for a ~ B. Assume that  {a~ : ~ < wl} is the increasing 
enumeration of a free set. A = { ~  : ~ < w 2} �9 Y[ca : a �9 B] for some countable 
B _Cw2. Put  7n =sup{a~ , ,+ j  : j  < w } ,  then {7n : n  < w }  �9 V[ca : a �9 B]. If 
n < w , j  < k < w , a  > sup{Tn : n < w}, a r B, and {Otwn+j,Otwn.l.k, Ol } is free, 
then ~a(ao~,+j) < ~a(ao~,~+k) and are separated by an element of Ea.  Therefore, if 
t(n) = sup{~a(ao~n+k) : k < w}, then X = {t(n) : n < w} C Ea  (as Ea  is closed), 
and X �9 V[c e : ~ �9 B], as A, ~a �9 V[ce : ~ �9 B]. But these contradict a r B. �9 

SECOND PROOF. We show that  if fqwa holds and there are w~ closed, un- 
bounded sets such that  the intersection of any uncountably many of them is finite, 
then the statement of Theorem 1 holds. This suffices for the proof as both  models 
in [1] are gotten by cardinal presering forcing extension, and we can start  from a 
model of V = L. 

As Dw~ holds, there are closed sets Ca _C a for a < w2 such that  0 �9 Ca 
(a  > 0), sup(Ca) = a for a limit, if /3 �9 Ca then C a = /3 N Ca, and also/3 is 
successor iff its index is a successor in Ca's increasing enumeration. 

For a < w2 we construct by induction ~a : a --* wl as follows. ~0 = @. If a is 
limit, ~a = t3{~a :/3 �9 Ca) .  If a = /3  + 1, 7 = max(Ca),  r = tp (Ca), we let 

{ ~,(~) i f r  < 7 

~ ( ~ )  = max(r ,  ~ ( r  i f 7  _< r < /3  

r i f r  =/3. 

It is easy to prove by induction on a that  

(1) if/3 E Ca then ~a C ~a; 

(2) if e is in the r ' t h  interval of Ca, then ~a(r > r;  

(3) I~ogl(i)l < w for i < Wl. 

(1), (2) are obvious, (3) for _<., is easy, for = follows from 2. 

CLAIM. If~3 < Or,~3 is limit, then there exists a y = y(/3, a)  < wl and/3' </3 
such that for/3' < e </3, ~'a(r = max(y, ~,a(~)). 

PROOF OF CLAIM. By induction on a,  for a fixed/3. The statement is obvious 
for a = / 3 .  

Assume that  a = ~ + 1. I f /3  < max(Ca),  we can apply the inductive 
hypothesis. If 7 = max(Ca)  < /3, r = tp (Ca), for an and-segment ~a(r = 
max(r ,  ~a(r on az end-segment ~ ( 6 )  = max(y, ~a(r for some y, i.e. ~a(r = 
max(max(y,  r), 

If a is limit, 7 E Ca - / 3 ,  ~ C ~a, and we can use the inductive hypothesis. 

Let {Ea : a < w2} be a sequence of closed, unbounded sets in wl. Define F 
as is defined before the first proof of the Theorem. 
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then 
(a) 
(b) 

(c) 
many 

LEMMA 2. I f  {he : ~ < w~} is the increasing enumeration of some free set, 

for some infinite A C w~, A C Ea~ for uncountably many ~; 
there is a closed, unbounded D C_ wl, such that if 6 �9 D, 6 < ~, then Ea~ 
contains an end-segment of D ~ 6; 
there is a closed, unbounded D C w~ such that for every 6 �9 D, for uncountably 
~ , D A 6  C_ E ~ .  

Clearly, Lemma 2 concludes the second proof of Theorem 1. 

PROOF. (b) implies (c), by Fodor's theorem. (c) clearly implies (a), so we 
prove (b). Put  a = sup{a~ : ( < Wl), Ca = {/3~ : ~ < wl}, an increasing enumer- 
ation. We define the following set E. Put  6 E E, if 6 is limit, fl~ = sup{a~ : ( < 
6), ( < ~ iff ~ ( a ~ )  < 5. Define D as follows. Put  6 �9 D if ~ is a limit point of E.  

Assume that  6 �9 D,6  < ( , 7  = sup{a~ : ( < ~). Then c~ >_ 7 ,7  �9 Ca, 
therefore ~7 C_ ~'a. I f~ l  < ~2 < 6, as c ~  ~ F ( c ~ , a ~ ) ,  we get that  ~ , ( a ~ , )  < 
~a~ (ct~) and they are separated by E ~ .  Therefore, if~l < ~2 < 6 are large enough, 
~.~(c~r < ~-r and they are separated by Ea~. If r] �9 D N ~ is large enough, 
then 

,~ = sup{~o(o~) :  ~ < ,~} = s u p { ~ ( ~ ) :  ~ < ,~} 

so 7] �9 Ea t and we are done. �9 

COROLLARY 3. There consistently exists a function f such that fl < f(fl ,  c~) < 
a for ~ + 2 < a < w2 with no uncountable free set. 

PROOF. If F is as in Theorem 1, we let p = (s,g) E P if s is a finite subset 
of w2, g is a partial function on s, g(fl, a)  �9 F(fl ,  a).  Put  (s', g') < q(s, g) iff s' _D s, 
g' _.D g. It is easy to see that  (P, <) is ccc, and UG covers w2 for a generic subset 
G. Pu t  f = U{g : (s, g) �9 G} for a generic G. Assume that  1 forces that  Y is an 
uncountable free set. We can find P~I t- a~ �9 Y for some different ae(~ < w~), and 
we can also assume that  pe is of the form (s U s~, g~) with {s, s~ : ~ < w~} pairwise 
disjoint and with the g~'s agreeing on s. There are ~1 < ~ < ~2,a~ �9 f (c~l ,a~2) ,  
extend p~,, p~, Pe2 to a q = (s', g) such that  a~ = g(a~,, he2 ). �9 

The Claim in Theorem 1 implies the following property of the functions {~a : 

<W2}. 
(*) If 6 < wl is limit, {x(i) : i < 6} is increasing, x(i) < w2, then there exist 

j ( i )  < wl such that  if a > sup{x(/) : i < 6), then there is a y < Wl such that  
for i < 6 large enough ~a(x( i ) )  = max(y, j ( i )) .  

We show that  (*) is independent. 

THEOREM 4. I f  the existence of a Mahlo cardinal is consistent then it is 
consistent that there are no functions ~a : a ~ wx with I~1(i)1 < w for i < wx, 
satisfying (*). 

Sh:431



42  KOMJATH AND SHELAH: ON A SET-MAPPING PROBLEM OF HAJNAL AND MATE 

PROOF. Assume GCH.  Let  ~ be a Mahlo cardinal,  let P be the L6vy collapse 
of  ~ onto w~. F ix  for fl < re, cf(f l)  = w, a converging sequence x(fl, i ) / z  fl(i < w). 
Assume tha t  for {x(fl, i) : i < w} some {j(fl, i) : i < w} exists, as in (*). One 
can find, by s t andard  arguments ,  (see [4]), an inaccessible cardinal  o~ < ~, a n  
in te rmedia te  model  Y'  in which a = w: and {j(fl, i) : i < w} are de te rmined  for 
fl < a .  For a s t a t i o n a r y  S___ {fl < a : cf(fl)  = ~},  j(fl, i) = j(i) (i < w). The  
final model  is forced over W by a countab ly  closed poset ,  Q. Let q E Q be a 
condi t ion forcing tha t  ~ l ( j ( i ) )  C 7 for some 7 < a (i < w). In the final model ,  
there is a j < w for every fl E S, fl > 7, such tha t  x(fl, j) > 3', for j < i < w, 
toc,(x(fl, i)) = max{y(f l ) , j ( i )} ,  but  q forces tha t  it is different f rom j(i), so it is 
y(Z). 

By a well-known lemma,  S stays s ta t ionary  after  forcing by Q. Then,  there  is 
an i < r >_ i, an unbounded  S '  C_ S such tha t  for/3 E S ' ,  x(/3, i) = x, {x(/3, i +  1) : 
/3 E S '}  are different. Therefore ,  i f /3  E S ~, ta,(x(/3, i + 1)) = y(/3) = ta , (x) ,  so 
to~, 1 ( taa(x))  contains uncoun tab ly  m a n y  elements, a contradict ion.  �9 
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