A NOTE ON A SET-MAPPING PROBLEM OF HAJNAL AND MATE

P. KOMJÁTH* (Budapest) and S. SHELAH (Jerusalem)

Abstract

It is consistent that there exists a set mapping F with $\beta < F(\beta, \alpha) < \alpha$ for $\beta + 2 \leq \alpha < \omega_2$ with no uncountable free sets.

For our current purposes, a set mapping is a function F such that $Dom(F) = [X]^2$, Ran $(F) \subseteq [X]^{\lambda}$ (or $\subseteq [X]^{<\lambda}$) for some set X and cardinal λ . Here, if X is a set, λ a cardinal, $[X]^{\lambda} = \{Y \subseteq X : |Y| = \lambda\}, [X]^{<\lambda} = \{Y \subseteq X : |Y| < \lambda\}$. For a set mapping as above, a set $Y \subseteq X$ is free if $y \notin F(x_1, x_2)$ for any different $x_1, x_2, y \in Y$. For theorems and problems about free sets see [2] and [3]. In [3], A. Hajnal and A. Máté asked if it is consistent that there is a set mapping $F : [\omega_2]^2 \to [\omega_2]^{<\omega}$ such that for $\beta < \alpha < \omega_2$, $F(\beta, \alpha)$ is a subset of the ordinal interval $(\beta, \alpha) = \{\gamma : \beta < \gamma < \alpha\}$ and no uncountable free set exists. Here we prove, using models of Abraham-Shelah [1] that such functions can consistently exist. The models of [1] were created to show the consistency of the following statement. There exists a family of closed, unbounded sets $\{E_\alpha : \alpha < \omega_2\}$ in ω_1 such that the intersection of any uncountably many of them is finite.

THEOREM 1. It is consistent that there exists a set mapping $F : [\omega_2]^2 \rightarrow [\omega_2]^{\leq\aleph_0}$ with $F(\beta, \alpha) \subseteq (\beta, \alpha)$ and with no uncountable free set.

We give two proofs for the Theorem, both using models of [1].

Assume that for $\alpha < \omega_2$ a function $\varphi_{\alpha} : \alpha \to \omega_1$ is given such that $\varphi_{\alpha}^{-1}(i)$ is countable for every $i < \omega_1$. Assume further that $E_{\alpha} \subseteq \omega_1$ is a closed, unbounded set for $\alpha < \omega_2$. Put for $\beta < \alpha < \omega_2$ $\gamma \in F(\beta, \alpha)$ if $\beta < \gamma < \alpha$ and $\varphi_{\alpha}(\gamma) < \min(E_{\alpha} - [\varphi_{\alpha}(\beta) + 1])$.

FIRST PROOF. Let V be a model of ZFC, fix φ_{α} as above for $\alpha < \omega_2$. The first model of [1] extends V to a model V" containing closed, unbounded sets $E_{\alpha}(\alpha < \omega_2)$,

 * Research supported by Hungarian National Research Fund No. 1805 and 1908. Mathematics subject classification numbers, 1991. Primary 03E05; Secondary 03E35, 04A20.

Key words and phrases. Set mappings, forcing.

Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht and also V" contains Cohen reals $\{c_{\alpha} : \alpha < \omega_2\}$ such that if $X \in V''$ is a countable subset of ω_2 then $X \in V' = V[c_{\alpha} : \alpha < \omega_2]$. If $X \in V[c_{\alpha} : \alpha \in B], X \subseteq \omega_2$ is infinite, then $X \not\subseteq E_{\alpha}$ for $\alpha \notin B$. Assume that $\{\alpha_{\xi} : \xi < \omega_1\}$ is the increasing enumeration of a free set. $A = \{\alpha_{\xi} : \xi < \omega^2\} \in V[c_{\alpha} : \alpha \in B]$ for some countable $B \subseteq \omega_2$. Put $\gamma_n = \sup\{\alpha_{\omega n+j} : j < \omega\}$, then $\{\gamma_n : n < \omega\} \in V[c_{\alpha} : \alpha \in B]$. If $n < \omega, j < k < \omega, \alpha > \sup\{\gamma_n : n < \omega\}, \alpha \notin B$, and $\{\alpha_{\omega n+j}, \alpha_{\omega n+k}, \alpha\}$ is free, then $\varphi_{\alpha}(\alpha_{\omega n+j}) < \varphi_{\alpha}(\alpha_{\omega n+k})$ and are separated by an element of E_{α} . Therefore, if $t(n) = \sup\{\varphi_{\alpha}(\alpha_{\omega n+k}) : k < \omega\}$, then $X = \{t(n) : n < \omega\} \subseteq E_{\alpha}$ (as E_{α} is closed), and $X \in V[c_{\xi} : \xi \in B]$, as $A, \varphi_{\alpha} \in V[c_{\xi} : \xi \in B]$. But these contradict $\alpha \notin B$.

SECOND PROOF. We show that if \Box_{ω_1} holds and there are ω_2 closed, unbounded sets such that the intersection of any uncountably many of them is finite, then the statement of Theorem 1 holds. This suffices for the proof as both models in [1] are gotten by cardinal presering forcing extension, and we can start from a model of V = L.

As \Box_{ω_1} holds, there are closed sets $C_{\alpha} \subseteq \alpha$ for $\alpha < \omega_2$ such that $0 \in C_{\alpha}$ $(\alpha > 0)$, sup $(C_{\alpha}) = \alpha$ for α limit, if $\beta \in C_{\alpha}$ then $C_{\beta} = \beta \cap C_{\alpha}$, and also β is successor iff its index is a successor in C_{α} 's increasing enumeration.

For $\alpha < \omega_2$ we construct by induction $\varphi_{\alpha} : \alpha \to \omega_1$ as follows. $\varphi_0 = \emptyset$. If α is limit, $\varphi_{\alpha} = \bigcup \{ \varphi_{\beta} : \beta \in C_{\alpha} \}$. If $\alpha = \beta + 1$, $\gamma = \max(C_{\alpha})$, $\tau = \operatorname{tp}(C_{\alpha})$, we let

$$\varphi_{\alpha}(\varepsilon) = \begin{cases} \varphi_{\gamma}(\varepsilon) & \text{if } \varepsilon < \gamma \\ \max(\tau, \varphi_{\beta}(\varepsilon)) & \text{if } \gamma \le \varepsilon < \beta \\ \tau & \text{if } \varepsilon = \beta. \end{cases}$$

It is easy to prove by induction on α that

(1) if
$$\beta \in C_{\alpha}$$
 then $\varphi_{\beta} \subseteq \varphi_{\alpha}$;

(2) if ε is in the τ' th interval of C_{α} , then $\varphi_{\alpha}(\varepsilon) \geq \tau$;

(3)
$$|\varphi_{\alpha}^{-1}(i)| \leq \omega \text{ for } i < \omega_1.$$

(1), (2) are obvious, (3) for $cf(\alpha) \le \omega$ is easy, for $cf(\alpha) = \omega_1$ follows from 2.

CLAIM. If $\beta \leq \alpha, \beta$ is limit, then there exists a $y = y(\beta, \alpha) < \omega_1$ and $\beta' < \beta$ such that for $\beta' < \varepsilon < \beta, \varphi_{\alpha}(\varepsilon) = \max(y, \varphi_{\beta}(\varepsilon))$.

PROOF OF CLAIM. By induction on α , for a fixed β . The statement is obvious for $\alpha = \beta$.

Assume that $\alpha = \bar{\alpha} + 1$. If $\beta \leq \max(C_{\alpha})$, we can apply the inductive hypothesis. If $\gamma = \max(C_{\alpha}) \leq \beta, \tau = \operatorname{tp}(C_{\alpha})$, for an and-segment $\varphi_{\alpha}(\varepsilon) = \max(\tau, \varphi_{\alpha}(\varepsilon))$, on az end-segment $\varphi_{\bar{\alpha}}(\varepsilon) = \max(y, \varphi_{\beta}(\varepsilon))$ for some y, i.e. $\varphi_{\alpha}(\varepsilon) = \max(\max(y, \tau), \varphi_{\beta}(\varepsilon))$.

If α is limit, $\gamma \in C_{\alpha} - \beta$, $\varphi_{\gamma} \subseteq \varphi_{\alpha}$, and we can use the inductive hypothesis.

Let $\{E_{\alpha} : \alpha < \omega_2\}$ be a sequence of closed, unbounded sets in ω_1 . Define F as is defined before the first proof of the Theorem.

Sh:431

LEMMA 2. If $\{\alpha_{\xi} : \xi < \omega_1\}$ is the increasing enumeration of some free set, then

- (a) for some infinite $A \subseteq \omega_1$, $A \subseteq E_{\alpha_{\xi}}$ for uncountably many ξ ;
- (b) there is a closed, unbounded $D \subseteq \omega_1$, such that if $\delta \in D$, $\delta \leq \xi$, then $E_{\alpha_{\xi}}$ contains an end-segment of $D \cap \delta$;

(c) there is a closed, unbounded $D \subseteq \omega_1$ such that for every $\delta \in D$, for uncountably many $\xi, D \cap \delta \subseteq E_{\alpha_{\xi}}$.

Clearly, Lemma 2 concludes the second proof of Theorem 1.

PROOF. (b) implies (c), by Fodor's theorem. (c) clearly implies (a), so we prove (b). Put $\alpha = \sup\{\alpha_{\xi} : \xi < \omega_1\}$, $C_{\alpha} = \{\beta_{\xi} : \xi < \omega_1\}$, an increasing enumeration. We define the following set *E*. Put $\delta \in E$, if δ is limit, $\beta_{\delta} = \sup\{\alpha_{\xi} : \xi < \delta\}$, $\xi < \delta$ iff $\varphi_{\alpha}(\alpha_{\xi}) < \delta$. Define *D* as follows. Put $\delta \in D$ if δ is a limit point of *E*.

Assume that $\delta \in D, \delta \leq \xi, \gamma = \sup\{\alpha_{\xi} : \xi < \delta\}$. Then $\alpha_{\xi} \geq \gamma, \gamma \in C_{\alpha}$, therefore $\varphi_{\gamma} \subseteq \varphi_{\alpha}$. If $\xi_1 < \xi_2 < \delta$, as $\alpha_{\xi_2} \notin F(\alpha_{\xi_1}, \alpha_{\xi})$, we get that $\varphi_{\alpha_{\xi}}(\alpha_{\xi_1}) < \varphi_{\alpha_{\xi}}(\alpha_{\xi_2})$ and they are separated by $E_{\alpha_{\xi}}$. Therefore, if $\xi_1 < \xi_2 < \delta$ are large enough, $\varphi_{\gamma}(\alpha_{\xi_1}) < \varphi_{\gamma}(\alpha_{\xi_2})$ and they are separated by $E_{\alpha_{\xi}}$. If $\eta \in D \cap \delta$ is large enough, then

$$\eta = \sup\{\varphi_{\alpha}(\alpha_{\xi}) : \xi < \eta\} = \sup\{\varphi_{\gamma}(\alpha_{\xi}) : \xi < \eta\}$$

so $\eta \in E_{\alpha_{\ell}}$ and we are done.

COROLLARY 3. There consistently exists a function f such that $\beta < f(\beta, \alpha) < \alpha$ for $\beta + 2 \leq \alpha < \omega_2$ with no uncountable free set.

PROOF. If F is as in Theorem 1, we let $p = (s, g) \in P$ if s is a finite subset of ω_2, g is a partial function on $s, g(\beta, \alpha) \in F(\beta, \alpha)$. Put $(s', g') \leq q(s, g)$ iff $s' \supseteq s$, $g' \supseteq g$. It is easy to see that (P, \leq) is ccc, and $\cup G$ covers ω_2 for a generic subset G. Put $f = \bigcup \{g : (s, g) \in G\}$ for a generic G. Assume that 1 forces that Y is an uncountable free set. We can find $p_{\xi} \models \alpha_{\xi} \in Y$ for some different $\alpha_{\xi}(\xi < \omega_1)$, and we can also assume that p_{ξ} is of the form $(s \cup s_{\xi}, g_{\xi})$ with $\{s, s_{\xi} : \xi < \omega_1\}$ pairwise disjoint and with the g_{ξ} 's agreeing on s. There are $\xi_1 < \xi < \xi_2, \alpha_{\xi} \in f(\alpha_{\xi_1}, \alpha_{\xi_2})$, extend $p_{\xi_1}, p_{\xi_2}, p_{\xi_2}$ to a q = (s', g) such that $\alpha_{\xi} = g(\alpha_{\xi_1}, \alpha_{\xi_2})$.

The Claim in Theorem 1 implies the following property of the functions $\{\varphi_{\alpha} : \alpha < \omega_2\}$.

(*) If $\delta < \omega_1$ is limit, $\{x(i) : i < \delta\}$ is increasing, $x(i) < \omega_2$, then there exist $j(i) < \omega_1$ such that if $\alpha \ge \sup\{x(i) : i < \delta\}$, then there is a $y < \omega_1$ such that for $i < \delta$ large enough $\varphi_{\alpha}(x(i)) = \max(y, j(i))$.

We show that (*) is independent.

THEOREM 4. If the existence of a Mahlo cardinal is consistent then it is consistent that there are no functions $\varphi_{\alpha} : \alpha \to \omega_1$ with $|\varphi_{\alpha}^{-1}(i)| \leq \omega$ for $i < \omega_1$, satisfying (*).

PROOF. Assume GCH. Let κ be a Mahlo cardinal, let P be the Lévy collapse of κ onto ω_2 . Fix for $\beta < \kappa$, cf $(\beta) = \omega$, a converging sequence $x(\beta, i) \nearrow \beta(i < \omega)$. Assume that for $\{x(\beta, i) : i < \omega\}$ some $\{j(\beta, i) : i < \omega\}$ exists, as in (*). One can find, by standard arguments, (see [4]), an inaccessible cardinal $\alpha < \kappa$, an intermediate model V' in which $\alpha = \omega_2$ and $\{j(\beta, i) : i < \omega\}$ are determined for $\beta < \alpha$. For a stationary $S \subseteq \{\beta < \alpha : cf(\beta) = \omega\}$, $j(\beta, i) = j(i)$ $(i < \omega)$. The final model is forced over V' by a countably closed poset, Q. Let $q \in Q$ be a condition forcing that $\varphi_{\alpha}^{-1}(j(i)) \subseteq \gamma$ for some $\gamma < \alpha$ $(i < \omega)$. In the final model, there is a $j < \omega$ for every $\beta \in S$, $\beta > \gamma$, such that $x(\beta, j) > \gamma$, for $j < i < \omega$, $\varphi_{\alpha}(x(\beta, i)) = \max\{y(\beta), j(i)\}$, but q forces that it is different from j(i), so it is $y(\beta)$.

By a well-known lemma, S stays stationary after forcing by Q. Then, there is an $i < \omega, j \ge i$, an unbounded $S' \subseteq S$ such that for $\beta \in S', x(\beta, i) = x, \{x(\beta, i+1) : \beta \in S'\}$ are different. Therefore, if $\beta \in S', \varphi_{\alpha}(x(\beta, i+1)) = y(\beta) = \varphi_{\alpha}(x)$, so $\varphi_{\alpha}^{-1}(\varphi_{\alpha}(x))$ contains uncountably many elements, a contradiction.

REFERENCES

- U. ABRAHAM, S. SHELAH, On the intersection of closed, unbounded sets, Journal of Symb. Logic, 51 (1986), 180-189.
- [2] P. ERDÖS, A. HAJNAL, On the structure of set mappings, Acta Math. Acad. Sci. Hung., 9 (1958), 111-131.
- [3] A. HAJNAL, A. MÁTÉ, Set mappings, partitions, and chromatic numbers, Logic Colloquium '73, Bristol, North-Holland, 1975, 347-379.
- [4] T. JECH, Set Theory Acad. Press, 1978.

(Received October 1, 1991)

DEPARTMENT OF COMP. SCI R. EÖTVÖS UNIVERSITY BUDAPEST, MÚZEUM KRT 6-8 1088, HUNGARY

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY JERUSALEM, GIVAT RAM ISRAEL

42