A NOTE ON A SET-MAPPING PROBLEM OF HAJNAL AND MÁTE

P. KOMJÁTH* (Budapest) and S. SHELAH (Jerusalem)

Abstract

It is consistent that there exists a set mapping F with $\beta<F(\beta, \alpha)<\alpha$ for $\beta+2 \leq \alpha<\omega_{2}$ with no uncountable free sets.

For our current purposes, a set mapping is a function F such that $\operatorname{Dom}(F)=$ $[X]^{2}, \operatorname{Ran}(F) \subseteq[X]^{\lambda}$ (or $\subseteq[X]^{<\lambda}$) for some set X and cardinal λ. Here, if X is a set, λ a cardinal, $[X]^{\lambda}=\{Y \subseteq X:|Y|=\lambda\},[X]^{<\lambda}=\{Y \subseteq X:|Y|<\lambda\}$. For a set mapping as above, a set $Y \subseteq X$ is free if $y \notin F\left(x_{1}, x_{2}\right)$ for any different $x_{1}, x_{2}, y \in Y$. For theorems and problems about free sets see [2] and [3]. In [3], A. Hajnal and A. Máté asked if it is consistent that there is a set mapping $F:\left[\omega_{2}\right]^{2} \rightarrow\left[\omega_{2}\right]^{<\omega}$ such that for $\beta<\alpha<\omega_{2}, F(\beta, \alpha)$ is a subset of the ordinal interval $(\beta, \alpha)=\{\gamma: \beta<\gamma<\alpha\}$ and no uncountable free set exists. Here we prove, using models of AbrahamShelah [1] that such functions can consistently exist. The models of [1] were created to show the consistency of the following statement. There exists a family of closed, unbounded sets $\left\{E_{\alpha}: \alpha<\omega_{2}\right\}$ in ω_{1} such that the intersection of any uncountably many of them is finite.

Theorem 1. It is consistent that there exists a set mapping $F:\left[\omega_{2}\right]^{2} \rightarrow$ $\left[\omega_{2}\right] \leq \aleph_{0}$ with $F(\beta, \alpha) \subseteq(\beta, \alpha)$ and with no uncountable free set.

We give two proofs for the Theorem, both using models of [1].
Assume that for $\alpha<\omega_{2}$ a function $\varphi_{\alpha}: \alpha \rightarrow \omega_{1}$ is given such that $\varphi_{\alpha}^{-1}(i)$ is countable for every $i<\omega_{1}$. Assume further that $E_{\alpha} \subseteq \omega_{1}$ is a closed, unbounded set for $\alpha<\omega_{2}$. Put for $\beta<\alpha<\omega_{2} \quad \gamma \in F(\beta, \alpha)$ if $\beta<\gamma<\alpha$ and $\varphi_{\alpha}(\gamma)<$ $\min \left(E_{\alpha}-\left[\varphi_{\alpha}(\beta)+1\right]\right)$.

First proof. Let V be a model of ZFC, fix φ_{α} as above for $\alpha<\omega_{2}$. The first model of [1] extends V to a model $V^{\prime \prime}$ containing closed, unbounded sets $E_{\alpha}\left(\alpha<\omega_{2}\right)$,

* Research supported by Hungarian National Research Fund No. 1805 and 1908.

Mathematics subject classification numbers, 1991. Primary 03E05; Secondary 03E35, 04A20.

Key words and phrases. Set mappings, forcing.
and also $V^{\prime \prime}$ contains Cohen reals $\left\{c_{\alpha}: \alpha<\omega_{2}\right\}$ such that if $X \in V^{\prime \prime}$ is a countable subset of ω_{2} then $X \in V^{\prime}=V\left[c_{\alpha}: \alpha<\omega_{2}\right]$. If $X \in V\left[c_{\alpha}: \alpha \in B\right], X \subseteq \omega_{2}$ is infinite, then $X \nsubseteq E_{\alpha}$ for $\alpha \notin B$. Assume that $\left\{\alpha_{\xi}: \xi<\omega_{1}\right\}$ is the increasing enumeration of a free set. $A=\left\{\alpha_{\xi}: \xi<\omega^{2}\right\} \in V\left[c_{\alpha}: \alpha \in B\right]$ for some countable $B \subseteq \omega_{2}$. Put $\gamma_{n}=\sup \left\{\alpha_{\omega n+j}: j<\omega\right\}$, then $\left\{\gamma_{n}: n<\omega\right\} \in V\left[c_{\alpha}: \alpha \in B\right]$. If $n<\omega, j<k<\omega, \alpha>\sup \left\{\gamma_{n}: n<\omega\right\}, \alpha \notin B$, and $\left\{\alpha_{\omega n+j}, \alpha_{\omega n+k}, \alpha\right\}$ is free, then $\varphi_{\alpha}\left(\alpha_{\omega n+j}\right)<\varphi_{\alpha}\left(\alpha_{\omega n+k}\right)$ and are separated by an element of E_{α}. Therefore, if $t(n)=\sup \left\{\varphi_{\alpha}\left(\alpha_{\omega n+k}\right): k<\omega\right\}$, then $X=\{t(n): n<\omega\} \subseteq E_{\alpha}$ (as E_{α} is closed), and $X \in V\left[c_{\xi}: \xi \in B\right]$, as $A, \varphi_{\alpha} \in V\left[c_{\xi}: \xi \in B\right]$. But these contradict $\alpha \notin B$.

Second proof. We show that if $\square_{\omega_{1}}$ holds and there are ω_{2} closed, unbounded sets such that the intersection of any uncountably many of them is finite, then the statement of Theorem 1 holds. This suffices for the proof as both models in [1] are gotten by cardinal presering forcing extension, and we can start from a model of $V=L$.

As $\square_{\omega_{1}}$ holds, there are closed sets $C_{\alpha} \subseteq \alpha$ for $\alpha<\omega_{2}$ such that $0 \in C_{\alpha}$ $(\alpha>0)$, $\sup \left(C_{\alpha}\right)=\alpha$ for α limit, if $\beta \in C_{\alpha}$ then $C_{\beta}=\beta \cap C_{\alpha}$, and also β is successor iff its index is a successor in C_{α} 's increasing enumeration.

For $\alpha<\omega_{2}$ we construct by induction $\varphi_{\alpha}: \alpha \rightarrow \omega_{1}$ as follows. $\varphi_{0}=\emptyset$. If α is limit, $\varphi_{\alpha}=\cup\left\{\varphi_{\beta}: \beta \in C_{\alpha}\right\}$. If $\alpha=\beta+1, \gamma=\max \left(C_{\alpha}\right), \tau=\operatorname{tp}\left(C_{\alpha}\right)$, we let

$$
\varphi_{\alpha}(\varepsilon)= \begin{cases}\varphi_{\gamma}(\varepsilon) & \text { if } \varepsilon<\gamma \\ \max \left(\tau, \varphi_{\beta}(\varepsilon)\right) & \text { if } \gamma \leq \varepsilon<\beta \\ \tau & \text { if } \varepsilon=\beta\end{cases}
$$

It is easy to prove by induction on α that

$$
\begin{equation*}
\text { if } \beta \in C_{\alpha} \text { then } \varphi_{\beta} \subseteq \varphi_{\alpha} \tag{1}
\end{equation*}
$$

if ε is in the τ^{\prime} th interval of C_{α}, then $\varphi_{\alpha}(\varepsilon) \geq \tau$;

$$
\begin{equation*}
\left|\varphi_{\alpha}^{-1}(i)\right| \leq \omega \text { for } i<\omega_{1} \tag{2}
\end{equation*}
$$

(1), (2) are obvious, (3) for $\mathrm{cf}(\alpha) \leq \omega$ is easy, for $\mathrm{cf}(\alpha)=\omega_{1}$ follows from 2.

Claim. If $\beta \leq \alpha, \beta$ is limit, then there exists a $y=y(\beta, \alpha)<\omega_{1}$ and $\beta^{\prime}<\beta$ such that for $\beta^{\prime}<\varepsilon<\beta, \varphi_{\alpha}(\varepsilon)=\max \left(y, \varphi_{\beta}(\varepsilon)\right)$.

Proof of Claim. By induction on α, for a fixed β. The statement is obvious for $\alpha=\beta$.

Assume that $\alpha=\bar{\alpha}+1$. If $\beta \leq \max \left(C_{\alpha}\right)$, we can apply the inductive hypothesis. If $\gamma=\max \left(C_{\alpha}\right) \leq \beta, \tau=\operatorname{tp}\left(C_{\alpha}\right)$, for an and-segment $\varphi_{\alpha}(\varepsilon)=$ $\max \left(\tau, \varphi_{\bar{\alpha}}(\varepsilon)\right)$, on az end-segment $\varphi_{\bar{\alpha}}(\varepsilon)=\max \left(y, \varphi_{\beta}(\varepsilon)\right)$ for some y, i.e. $\varphi_{\alpha}(\varepsilon)=$ $\max \left(\max (y, \tau), \varphi_{\beta}(\varepsilon)\right)$.

If α is limit, $\gamma \in C_{\alpha}-\beta, \varphi_{\gamma} \subseteq \varphi_{\alpha}$, and we can use the inductive hypothesis.
Let $\left\{E_{\alpha}: \alpha<\omega_{2}\right\}$ be a sequence of closed, unbounded sets in ω_{1}. Define F as is defined before the first proof of the Theorem.

Lemma 2. If $\left\{\alpha_{\xi}: \xi<\omega_{1}\right\}$ is the increasing enumeration of some free set, then
(a) for some infinite $A \subseteq \omega_{1}, A \subseteq E_{\alpha_{\xi}}$ for uncountably many ξ;
(b) there is a closed, unbounded $D \subseteq \omega_{1}$, such that if $\delta \in D, \delta \leq \xi$, then $E_{\alpha_{\xi}}$ contains an end-segment of $D \cap \delta$;
(c) there is a closed, unbounded $D \subseteq \omega_{1}$ such that for every $\delta \in D$, for uncountably many $\xi, D \cap \delta \subseteq E_{\alpha \xi}$.

Clearly, Lemma 2 concludes the second proof of Theorem 1.
Proof. (b) implies (c), by Fodor's theorem. (c) clearly implies (a), so we prove (b). Put $\alpha=\sup \left\{\alpha_{\xi}: \xi<\omega_{1}\right\}, C_{\alpha}=\left\{\beta_{\xi}: \xi<\omega_{1}\right\}$, an increasing enumeration. We define the following set E. Put $\delta \in E$, if δ is limit, $\beta_{\delta}=\sup \left\{\alpha_{\xi}: \xi<\right.$ $\delta\}, \xi<\delta$ iff $\varphi_{\alpha}\left(\alpha_{\xi}\right)<\delta$. Define D as follows. Put $\delta \in D$ if δ is a limit point of E.

Assume that $\delta \in D, \delta \leq \xi, \gamma=\sup \left\{\alpha_{\xi}: \xi<\delta\right\}$. Then $\alpha_{\xi} \geq \gamma, \gamma \in C_{\alpha}$, therefore $\varphi_{\gamma} \subseteq \varphi_{\alpha}$. If $\xi_{1}<\xi_{2}<\delta$, as $\alpha_{\xi_{2}} \notin F\left(\alpha_{\xi_{1}}, \alpha_{\xi}\right)$, we get that $\varphi_{\alpha_{\xi}}\left(\alpha_{\xi_{1}}\right)<$ $\varphi_{\alpha_{\xi}}\left(\alpha_{\xi_{2}}\right)$ and they are separated by $E_{\alpha_{\xi}}$. Therefore, if $\xi_{1}<\xi_{2}<\delta$ are large enough, $\varphi_{\gamma}\left(\alpha_{\xi_{1}}\right)<\varphi_{\gamma}\left(\alpha_{\xi_{2}}\right)$ and they are separated by $E_{\alpha_{\xi}}$. If $\eta \in D \cap \delta$ is large enough, then

$$
\eta=\sup \left\{\varphi_{\alpha}\left(\alpha_{\xi}\right): \xi<\eta\right\}=\sup \left\{\varphi_{\gamma}\left(\alpha_{\xi}\right): \xi<\eta\right\}
$$

so $\eta \in E_{\alpha_{\ell}}$ and we are done.
Corollary 3. There consistently exists a function f such that $\beta<f(\beta, \alpha)<$ α for $\beta+2 \leq \alpha<\omega_{2}$ with no uncountable free set.

Proof. If F is as in Theorem 1, we let $p=(s, g) \in P$ if s is a finite subset of ω_{2}, g is a partial function on $s, g(\beta, \alpha) \in F(\beta, \alpha)$. Put $\left(s^{\prime}, g^{\prime}\right) \leq q(s, g)$ iff $s^{\prime} \supseteq s$, $g^{\prime} \supseteq g$. It is easy to see that (P, \leq) is ccc, and $\cup G$ covers ω_{2} for a generic subset G. Put $f=\cup\{g:(s, g) \in G\}$ for a generic G. Assume that 1 forces that Y is an uncountable free set. We can find $p_{\xi} \mid \vdash \alpha_{\xi} \in Y$ for some different $\alpha_{\xi}\left(\xi<\omega_{1}\right)$, and we can also assume that p_{ξ} is of the form $\left(s \cup s_{\xi}, g_{\xi}\right)$ with $\left\{s, s_{\xi}: \xi<\omega_{1}\right\}$ pairwise disjoint and with the g_{ξ} 's agreeing on s. There are $\xi_{1}<\xi<\xi_{2}, \alpha_{\xi} \in f\left(\alpha_{\xi_{1}}, \alpha_{\xi_{2}}\right)$, extend $p_{\xi_{1}}, p_{\xi}, p_{\xi_{2}}$ to a $q=\left(s^{\prime}, g\right)$ such that $\alpha_{\xi}=g\left(\alpha_{\xi_{1}}, \alpha_{\xi_{2}}\right)$.

The Claim in Theorem 1 implies the following property of the functions $\left\{\varphi_{\alpha}\right.$: $\left.\alpha<\omega_{2}\right\}$.
$\left(^{*}\right)$ If $\delta<\omega_{1}$ is limit, $\{x(i): i<\delta\}$ is increasing, $x(i)<\omega_{2}$, then there exist $j(i)<\omega_{1}$ such that if $\alpha \geq \sup \{x(i): i<\delta\}$, then there is a $y<\omega_{1}$ such that for $i<\delta$ large enough $\varphi_{\alpha}(x(i))=\max (y, j(i))$.

We show that (*) is independent.
Theorem 4. If the existence of a Mahlo cardinal is consistent then it is consistent that there are no functions $\varphi_{\alpha}: \alpha \rightarrow \omega_{1}$ with $\left|\varphi_{\alpha}^{-1}(i)\right| \leq \omega$ for $i<\omega_{1}$, satisfying (*).

Proof. Assume GCH. Let κ be a Mahlo cardinal, let P be the Lévy collapse of κ onto ω_{2}. Fix for $\beta<\kappa, \operatorname{cf}(\beta)=\omega$, a converging sequence $x(\beta, i) \nearrow \beta(i<\omega)$. Assume that for $\{x(\beta, i): i<\omega\}$ some $\{j(\beta, i): i<\omega\}$ exists, as in (*). One can find, by standard arguments, (see [4]), an inaccessible cardinal $\alpha<\kappa$, an intermediate model V^{\prime} in which $\alpha=\omega_{2}$ and $\{j(\beta, i): i<\omega\}$ are determined for $\beta<\alpha$. For a stationary $S \subseteq\{\beta<\alpha: \operatorname{cf}(\beta)=\omega\}, j(\beta, i)=j(i)(i<\omega)$. The final model is forced over V^{\prime} by a countably closed poset, Q. Let $q \in Q$ be a condition forcing that $\varphi_{\alpha}^{-1}(j(i)) \subseteq \gamma$ for some $\gamma<\alpha(i<\omega)$. In the final model, there is a $j<\omega$ for every $\beta \in S, \beta>\gamma$, such that $x(\beta, j)>\gamma$, for $j<i<\omega$, $\varphi_{\alpha}(x(\beta, i))=\max \{y(\beta), j(i)\}$, but q forces that it is different from $j(i)$, so it is $y(\beta)$.

By a well-known lemma, S stays stationary after forcing by Q. Then, there is an $i<\omega, j \geq i$, an unbounded $S^{\prime} \subseteq S$ such that for $\beta \in S^{\prime}, x(\beta, i)=x,\{x(\beta, i+1)$: $\left.\beta \in S^{\prime}\right\}$ are different. 'Therefore, if $\beta \in S^{\prime}, \varphi_{\alpha}(x(\beta, i+1))=y(\beta)=\varphi_{\alpha}(x)$, so $\varphi_{\alpha}^{-1}\left(\varphi_{\alpha}(x)\right)$ contains uncountably many elements, a contradiction.

REFERENCES

[1] U. Abraham, S. Shelah, On the intersection of closed, unbounded sets, Journal of Symb. Logic, 51 (1986), 180-189.
[2] P. Erdős, A. Hajnal, On the structure of set mappings, Acta Math. Acad. Sci. Hung., 9 (1958), 111-131.
[3] A. Hajnal, A. Máté, Set mappings, partitions, and chromatic numbers, Logic Colloquium '73, Bristol, North-Holland, 1975, 347-379.
[4] T. JEch, Set Theory Acad. Press, 1978.
(Received October 1, 1991)
Department of Comp. Sci
R. EÖtvốs University Budapest, Múzeum krt 6-8 1088, Hungary

Institute of Mathematics
the Hebrew University
Jerusalem, Givat Ram
IsRaEL

