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A NOTE ON A SET-MAPPING PROBLEM
OF HAJNAL AND MATE

P. KOMJATH* (Budapest) and S. SHELAH (Jerusalem)

Abstract

It is consistent that there exists a set mapping F with 8 < F(8,a) < « for
0+ 2 < @ < wz with no uncountable free sets.

For our current purposes, a set mapping is a function F such that Dom (F) =
[X]?, Ran(F) C [X]* (or C [X]<?) for some set X and cardinal A. Here, if X is a
set, A a cardinal, [ X ) ={Y C X : |[Y| = A}, [X]<* ={Y C X :|Y| < A}. For a set
mapping as above, aset Y C X is freeif y & F(z1, z2) for any differentzy,z5,y €Y.
For theorems and problems about free sets see [2] and [3]. In [3], A. Hajnal and A.
Maté asked if it is consistent that there is a set mapping F : [w2]? — [w2]<“ such that
for § < a < wz, F(B,a) is a subset of the ordinal interval (8,a)={y: 8 <y < a}
and no uncountable free set exists. Here we prove, using models of Abraham-
Shelah [1] that such functions can consistently exist. The models of [1] were created
to show the consistency of the following statement. There exists a family of closed,
unbounded sets {E, : @ < ws} in w; such that the intersection of any uncountably
many of them is finite.

THEOREM 1. It is consistent that there ezists a set mapping F : [wq)? —
[wo)SXe with F(B,a) C (B, a) and with no uncountable free set.

We give two proofs for the Theorem, both using models of [1].

Assume that for a < w; a function ¢4 : @ — w; is given such that o7 1(¢) is
countable for every i < w;. Assume further that E, C w; is a closed, unbounded
set for o < wp. Put for < a<wy v € F(B,a)if B <y < aand puy) <
min(Eq — [pa(B) + 1))-

FIRST PROOF. Let V be a model of ZFC, fix ¢, as above for a < wy. The first
model of [1] extends ¥V to a model V” containing closed, unbounded sets E,(a < wz),
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and also V" contains Cohen reals {cq : @ < w3} such that if X € V" is a countable
subset of wy then X € V! = V[cy : @ < wo]. f X € V[cq : @ € B, X Cw; is
infinite, then X ¢ E, for a ¢ B. Assume that {o¢ : £ < w1} is the increasing
enumeration of a free set. A = {a¢ : £ < w?} € V[cq : a € B] for some countable
B C ws. Put 7, = sup{@untj : j < w}, then {7, :n < w} € V[ca : a € B). If
n<wj<k<wa>sup{y :n <w}, a & B, and {aun+j, ®wn4k, o} is free,
then po(awn+j) < Pa(@wn+k) and are separated by an element of E,. Therefore, if
t(n) = sup{@a(@untk) : k < w}, then X = {t(n) : n <w} C E, (as E, is closed),
and X € Vicg : £ € B], as A, o € V[cg : € € B). But these contradict a g B. W

SECOND PROOF. We show that if (J,,, holds and there are wy closed, un-
bounded sets such that the intersection of any uncountably many of them is finite,
then the statement of Theorem 1 holds. This suffices for the proof as both models
in [1] are gotten by cardinal presering forcing extension, and we can start from a
model of V = L.

As O,, holds, there are closed sets Co C o for @ < wy such that 0 € Cy
(a > 0), sup(Cqy) = a for a limit, if 8 € Cq then Cy = f N C,, and also § is
successor iff its index is a successor in C,’s increasing enumeration.

For o < wy we construct by induction ¢, : @ — w; as follows. 5 = 0. If a is
limit, oo = U{ps : BE€ Ca}. Ha =B+ 1,y =max(Ca), 7 = tp(Ca), we let

oy (€) ife<vy
pa(€) = ¢ max(r,pp(e)) ify<e<p
T ife=p.
It is easy to prove by induction on « that
(1) if B € Co then g C @q;
(2) if € is in the 7'th interval of Cy, then p4(€) > T;
(3) lpal(i)| < w for i < wi.

(1), (2) are obvious, (3) for cf (a) < w is easy, for cf (a) = w; follows from 2.

CramM. If B < «,f is limit, then there ezists a y = y(B,a) < w; and ' < B
such that for B’ < € < B, pal(€) = max(y, ¢s(€)).

PRrOOF oF CLAIM. By induction on a, for a fixed 3. The statement is obvious
for a = 3.

Assume that « = @+ 1. If § < max(C,), we can apply the inductive
hypothesis. If ¥ = max(Cq) < B,7 = tp(Cy), for an and-segment @,(c) =
max(7, pa{€)), on az end-segment () = max(y, ps(¢)) for some y, i.e. po(€) =
max(max(y, 7), ps(€))-

If o is limit, ¥ € Cy ~ B,y C ¥a, and we can use the inductive hypothesis.
[ |

Let {Eq : a < wp} be a sequence of closed, unbounded sets in w;. Define F
as is defined before the first proof of the Theorem.
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LEMMA 2. If {a¢ : £ < wy} is the increasing enumeration of some free set,
then
(a) for some infinite A Cwy, A C E,, for uncountably many §;
(b) there is a closed, unbounded D C wi, such that if 6 € D, § < &, then E,,
contains an end-segment of DN §;
(c) thereis a closed, unbounded D C w; such that for every 6 € D, for uncountably
many §,DN6 C E,,.

Clearly, Lemma 2 concludes the second proof of Theorem 1.

ProoF. (b) implies {c), by Fodor’s theorem. (c) clearly implies (a), so we
prove (b). Put a = sup{a¢ : £ < w1}, Co = {B¢ : € < w1}, an increasing enumer-
ation. We define the following set E. Put é € E, if § is limit, 85 = sup{a¢ : £ <
6}, € < 0iff pa(ag) < 6. Define D as follows. Put § € D if § is a limit point of E.

Assume that § € D,é§ < £,7v = sup{ag : £ < 6}. Then a¢ > 7,7 € Ca,
therefore @, C po. If & < €2 < 6, as ag, € F(ag,,a¢), we get that pq, (ag ) <
¥a(ag,) and they are separated by E,,. Therefore, if §; < €2 < 6 are large enough,
py(ag,) < py(ae,) and they are separated by E,,. If n € D N § is large enough,
then

1 = sup{pa(a¢) : & < n} = sup{p,(a¢) : £ < n}

so n € Eq, and we are done. [ |

CoOROLLARY 3. There consistently ezists a function f such that 8 < f(B,a) <
o for B+ 2 < a < wy with no uncountable free set.

PRrooF. If F is as in Theorem 1, we let p = (s,g) € P if s is a finite subset
of wq, ¢ is a partial function on s, g(8, @) € F(B3,a). Put (s',¢’') < ¢(s,9) iff & D s,
g D g. It is easy to see that (P, <) is ccc, and UG covers wy for a generic subset
G. Put f =U{g : (5,9) € G} for a generic G. Assume that 1 forces that ¥ is an
uncountable free set. We can find p¢| F a¢ € Y for some different a¢(§ < w1), and
we can also assume that p; is of the form (s U s¢, g¢) with {s, s¢ : £ < w;} pairwise
disjoint and with the g;’s agreeing on s. There are §; < § < &3, a¢ € f(og,, 2¢,),
extend p¢,, e, Pe, to a ¢ = (8', g) such that op = g(ag,,0¢,). M

The Claim in Theorem 1 implies the following property of the functions {¢, :
a < wa}.
(*) If 6§ < wy is limit, {z(d) : ¢ < 8} is increasing, (i) < w2, then there exist
J(i) < wy such that if & > sup{z(i) : i < §}, then there is a y < w; such that
for i < & large enough ¢, (z(7)) = max(y, j(7)).

We show that (*) is independent.

THEOREM 4. If the ezisience of a Mahlo cardinal is consistent then it is
consistent that there are no functions ¢, : @ — wy with |p;1(i)| < w for i < wy,

satisfying (*).
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Proor. Assume GCH. Let « be a Mahlo cardinal, let P be the Lévy collapse
of x onto wy. Fix for B < «, cf(f) = w, a converging sequence z(83,7) / B(i < w).
Assume that for {z(3,i) : i < w} some {j(5,1) : i < w} exists, as in (*). One
can find, by standard arguments, (see [4]), an inaccessible cardinal o < «, an
intermediate model V' in which a = w; and {j(8,7) : i < w} are determined for
B < a. For a stationary S C {8 < a : cf(8) = w}, j(8,1) = j(i) (i < w). The
final model is forced over V' by a countably closed poset, Q. Let ¢ € @ be a
condition forcing that ¢;1(j(¢)) C 7 for some ¥ < a (i < w). In the final model,
there is a j < w for every § € S, 8 > v, such that z(83,7) > v, for j < { < w,
va(2(B,1)) = max{y(B),j(¢)}, but ¢ forces that it is different from j(7), so it is
y(8)-

By a well-known lemma, S stays stationary after forcing by Q. Then, there is
an i <w,j > i, an unbounded $' C § such that for 8 € &', z(8,7) = z, {z(8,i+1) :
B € S'} are different. Therefore, if 8 € &', pa(2(B,i + 1)) = y(B) = ¢alz), so
©21(pa(z)) contains uncountably many elements, a contradiction. M
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