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Abstract

Let R be a Dedekind domain. Recently, Enochs’ solution of the Flat Cover Conjecture wa
extended as follows: (∗) If C is a cotorsion pair generated by a class of cotorsion modules, theC is
cogenerated by a set. We show that (∗) is the best result provable in ZFC in caseR has a countable
spectrum: the Uniformization Principle UP+ implies thatC is not cogenerated by a set wheneveC

is a cotorsion pair generated by a set which contains a non-cotorsion module.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

For any ringR, if S is a class of (right)R-modules, we define

⊥S = {
A: Ext1R(A,M) = 0 for all M ∈ S

}

and

S⊥ = {
A: Ext1R(M,A) = 0 for all M ∈ S

}
.
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0021-8693/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.09.018



P.C. Eklof et al. / Journal of Algebra 277 (2004) 572–578 573

f

s.

sion

petus
r an

f the
ence
their

sults
with

FC
rtain

Sh:814
If S is a set (not a proper class), then⊥S = ⊥{K} whereK is the direct product o
the elements ofS, andS⊥ = {B}⊥ whereB is the direct sum of the elements ofS.
(Henceforth, in an abuse of notation, we will write⊥K instead of⊥{K}, andB⊥ instead
of {B}⊥.)

A cotorsion pair (originally called acotorsion theory) is a pairC = (F ,C) such that
F = ⊥C andC = F⊥. C is said to begenerated (respectively,cogenerated) by S when
F = ⊥S (respectively,C = S⊥).

A motivating example (forR a Dedekind domain) is the pair(F ,C) whereF is the
class of torsion-free modules andC =F⊥; the members ofC are called cotorsion module
Equivalently,K is cotorsion if and only if Ext1R(Q,K) = 0, whereQ is the quotient field
of R (cf. [8, §XIII.8]. Pure-injective modules are cotorsion, and torsion-free cotor
modules are pure-injective.

Cotorsion theories were first studied by Salce [10]; their study was given new im
by the work of Göbel and Shelah [9]. (See, for example, [2, Chapter XVI] fo
introduction to these concepts.)

In this paper we are interested in the question of when a cotorsion pair(F ,C) is
cogenerated by a set, or, equivalently, when there is a single moduleB ∈ F such that
C = B⊥. One reason this question is of interest is that, by a result in [5], if(F ,C)

is cogenerated by a set, then it iscomplete, that is, for every moduleM, there is an
epimorphismψ :N → M such thatN ∈ F and ker(ψ) ∈ C; in particular,F -precovers
exist for all R-modules. It is these ideas and results that are involved in the proof o
Flat Cover Conjecture by Enochs [1]; see the introduction to [6] for the historical sequ
of events. (See also [7] and/or [14] for a comprehensive study of (pre)covers and
uses.)

The following is proved in [6]:

Theorem 1.1. For any ring R, if C = (F ,C) is a cotorsion pair which is generated by
a class of pure-injective modules, then C is cogenerated by a set. Moreover, if R is a
Dedekind domain, the same conclusion holds when C is generated by a class of cotorsion
modules, or, equivalently, when every element of C is cotorsion.

Note that(F ,C) is generated by a class of cotorsion modules if and only ifQ ∈ F , in
which case every member ofC is cotorsion.

The case whenC contains non-cotorsion modules is more complicated, and the re
depend on the extension of ZFC we work in. In [6] it is proved that it is consistent
ZFC that the conclusion of Theorem 1.3 holds for even more cotorsion pairs:

Theorem 1.2. Gödel’s Axiom of Constructibility (V = L) implies that C is cogenerated by
a set whenever C is a cotorsion pair generated by a set and R is a right hereditary ring.

The main result of this paper is that Theorem 1.1 is the best that can be proved in Z
(even in ZFC+ GCH) for cotorsion pairs which are generated by a set—at least for ce
rings, includingZ:
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Theorem 1.3. It is consistent with ZFC+ GCH that if R is a Dedekind domain with a
countable spectrum and C = (F ,C) is a cotorsion pair generated by a set which contains
a non-cotorsion module, then C is notcogenerated by a set.

The assumption thatC is generated by a set is essential in Theorem 1.3: for examp
a classical result of Kaplansky, the cotorsion pair(P0,Mod-R) is cogenerated by a set (
countably generated modules), for any ringR. (Here,P0 denotes the class of all projectiv
modules.)

Putting together Theorems 1.1 and 1.3, we have:

Corollary 1.4. Let R be a Dedekind domain with a countable spectrum, and let K be an
R-module. It is provable in ZFC+ GCH that there is a module B such that (⊥K)⊥ = B⊥
if and only if K is cotorsion.

Proof. If K is cotorsion, it is proved in [6] thatB exists. (This is provable in ZFC
alone.) The other direction follows immediately from Theorem 1.3 for the cotorsion
(⊥K,(⊥K)⊥). �

In [4] this result was proved forcountable torsion-free Z-modulesK. It was also proved
there that the cotorsion pair(⊥Z, (⊥Z)⊥) is not complete.

Theorem 1.3 is proved in the next two sections. In the first one we prove in
some preliminary results. In the following section we invoke the additional set-theo
hypothesis UP+.

2. Results in ZFC

We will make use of the following result from [5]. (See also [2, XVI.1.2 and XVI.1.3

Theorem 2.1. Let B be an R-module and let κ be a cardinal > |R| + |B|. Let µ be a
cardinal > κ such that µκ = κ . Then there is a module A ∈ B⊥ such that A = ⋃

ν<µ Aν

(continuous), A0 = 0 (or any given module of size < κ), and such that for all ν < µ,
Aν+1/Aν is isomorphic to B .

Moreover, if, for some R-module K , B ∈ ⊥K , then A/Aν ∈ ⊥K for all ν < µ.

The continuity condition on theAν means that for every limit ordinalσ < µ, Aσ =⋃
ν<σ Aν .
From now on,R will denote a Dedekind domain andQ will denote its quotient field

Moreover, we assume thatQ is countably generated as anR-module, or, equivalently, tha
R has a countable spectrum.

The conditions onA in Theorem 2.1 motivate the hypotheses in the following lemm
Recall that a moduleM is reduced if HomR(Q,M) = 0.

Lemma 2.2. Let B be a torsion-free reduced module. Let µ be a limit ordinal and suppose
M = ⋃

ν<µ Mν (continuous), where M0 = 0, and for all ν < µ, Mν+1/Mν is isomorphic
to B . Then M is torsion-free and reduced.
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Proof. It is clear thatM is torsion-free. Suppose that there is a non-zero homomorph
hence an embedding,θ :Q → M. Let τ be minimal such thatMτ contains a non-zer
element,θ(y), of the range ofθ . Thenτ is not a limit ordinal; sayτ = ν +1, andθ induces
a non-zero map, hence an embedding, ofQ into M/Mν . SinceM/Mν+1 has no torsion
this map embedsQ into Mν+1/Mν , which is a contradiction, sinceMν+1/Mν

∼= B. �
Definition 2.3. By hypothesis onR we can fix a countable set{ρj : j ∈ ω} of non-units of
R such that{(∏i<j ρi)

−1: j ∈ ω} generatesQ as anR-module andρi |ρj if i < j .

Lemma 2.4. Let B be a torsion-free R-module. Suppose M = ⋃
n∈ω Mn such that M0 = 0,

and for all n ∈ ω, Mn+1/Mn is isomorphic to B . Suppose that for some k ∈ ω and all
n ∈ ω, an + Mn is an element of Mn+1/Mn which does not belong to ρk(Mn+1/Mn). Then
the system of equations

{ρnvn+1 = vn − an: n ∈ ω}

in the variables {vn: n ∈ ω} does not have a solution in M .

Proof. Suppose, to the contrary, that there is a solutionvn = un ∈ M. We haveu0 ∈ Mm

for somem � k. Sincean ∈ Mm for n < m, and sinceB is torsion-free,un ∈ Mm for
n � m. But thenρmum+1 = um −am implies thatum+1+Mm belongs toMm+1/Mm (since
M/Mm+1 is torsion-free) and thusρk dividesam + Mm in Mm+1/Mm, which contradicts
the choice ofam. �

Recall that a moduleM is called asplitter if Ext1R(M,M) = 0. (See, for example, [9
11], or [2, Chapter XVI].)

Lemma 2.5. If C is a cotorsion pair which is generated and cogenerated by sets, then there
is a torsion-free splitter which generates C.

Proof. Let C = (F ,C). Let B,K be modules such thatF = ⊥K and C = B⊥. By [5,
Theorem 10],K has a specialF -precover, i.e., there is an exact sequence 0→ M → N →
K → 0 such thatM ∈ C andN ∈F . SinceK ∈ C, alsoN ∈ C, andN ∈ C ∩F is a splitter.

We haveF = ⊥N (since clearlyF ⊆ ⊥N , and ⊥N ⊆ ⊥K = F ). Let T be the
torsion part ofN . ThenT is a direct sum of itsp-components,T = ⊕

p∈mSpec(R) Tp . If

Tp �= 0, then Ext1R(R/p,N) = 0, so HomR(R/p,E(N)/N) = 0, and hence HomR(R/p,

E(Tp)/Tp) = 0. ThereforeTp is divisible. SoN = T ⊕L whereL is a torsion-free splitter
SinceT is divisible,⊥L = ⊥N =F . �
Lemma 2.6. Suppose that C is a cotorsion pair which is cogenerated by a cotorsion
module, and generated by a set. Then C is cogenerated by a cotorsion module of the form
B ⊕ T where B is torsion-free, T is torsion, and for every prime p such that R/p is a
submodule of T , pB = B .
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Proof. Let C = (F ,C) and letK be a module such thatF = ⊥K. If K is cotorsion, then
by [6, Theorem 16], there is a set of maximal idealsP such thatF is the set of all module
with zerop-torsion part for allp ∈ P . ThenC = B⊥ whereB = Q ⊕ ⊕

q /∈P R/q .
So we can assume thatK is not cotorsion, and that, by Lemma 2.5,K is torsion-free.
Let C be a cotorsion module such thatC = C⊥. We haveC = D ⊕ E whereD is

divisible andE reduced. SinceK is not cotorsion,D is torsion. Denote byT ′ the torsion
part ofE. By a theorem of Harrison–Warfield, [8, XIII.8.8], we haveE = B ⊕ G whereB

is torsion-free reduced and pure-injective, andG is a cotorsion hull ofT ′. We claim that
there is an exact sequence 0→ T ′ → G → Q(δ) → 0 for someδ � 0.

Indeed, by [14, 3.4.5],G is a cotorsion envelope ofT ′ in the sense of Enochs. Now b
Theorem 2.1 there is a cotorsion preenvelopeG′ of T ′ such thatG′/T ′ is the union of a
continuous chain with successive quotients isomorphic toQ, and henceG′/T ′ ∼= Q(γ ) for
someγ . The claim now follows sinceG/T ′ is isomorphic to a direct summand ofG′/T ′
by [14, 1.2.2]

SinceK is torsion-free andG ∈F , an application of HomR(−,K) yields

0 = HomR

(
T ′,K

) → Ext1R
(
Q(δ),K

) → Ext1R(G,K) = 0.

Thus, Ext(Q(δ),K) = 0, so sinceK is not cotorsion,δ = 0 andT ′ = G. HenceC = B ⊕T

whereT = T ′ ⊕ D is torsion.
By [7, 5.3.28], there is a setP of maximal ideals ofR such thatB ∼= ∏

p∈P Jp

whereJp is the p-adic completion of a free module over the localization ofR at p.
In particular,qB = B for all maximal idealsq /∈ P . For eachp ∈ P , there is an exac
sequence 0→ Jp → E(Jp) → Ip → 0 whereIp is a direct sum of copies ofE(R/p), and
E(Jp) = Q(αp) for someαp > 0.

Let q be a maximal ideal such thatR/q embeds inT . Assumeq ∈ P . Then an
application of HomR(−,K) yields

0 = Ext1R(Iq ,K) → Ext1R
(
Q(αq),K

) → Ext1R(Jq,K) = 0.

The first Ext is zero becauseR/q ↪→ T ; soR/q ∈ F = ⊥C and thusE(R/q) ∈ F by [5,
Lemma 1] sinceE(R/q) is the union of a continuous chain of modules with succes
quotients isomorphic toR/q ; the last Ext is zero becauseJq ∈ F . So K is cotorsion, a
contradiction. This proves thatq /∈ P and henceqB = B. �

3. Proof of Theorem 1.3

Let C = (F ,C) be a cotorsion pair cogenerated by a set, and generated by a
cotorsion moduleK. We aim to produce a contradiction by constructingH ∈ ⊥K (= F )
and A ∈ C such that Ext1R(H,A) �= 0. We do this assuming GCH plus the followin
principle, which is consistent with ZFC+ GCH (cf. [3] or [12]):
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UP+. For every cardinalµ of the formτ+ whereτ is singular of cofinalityω there is a
stationary subsetS of µ consisting of limit ordinals of cofinalityω and a ladder system
ζ̄ = {ζδ: δ ∈ S} which has theλ-uniformization property for everyλ < τ .

Recall that ifS is a subset of an uncountable cardinalµ which consists of ordinal
of cofinality ω, a ladder system on S is a family ζ̄ = {ζδ: δ ∈ S} of functionsζδ :ω → δ

which are strictly increasing and have range cofinal inδ. For a cardinalλ, we say that
ζ̄ has theλ-uniformization property if for any functionscδ :ω → λ for δ ∈ S, there is a
pair (f,f ∗) wheref :µ → λ andf ∗ :S → ω such that for allδ ∈ S, f (ζδ(ν)) = cδ(ν)

wheneverf ∗(δ) � ν < ω. We refer to [2, Chapter XIII] for more details.
We consider two cases: (1)C is cogenerated by a cotorsion module; and (2) the nega

of (1).
The moduleH will be the same in both cases (for a givenµ). Let ζ̄ = {ζδ: δ ∈ S} be

as in (UP+) for thisµ. We also use the notation from Definition 2.3. LetH = F/L where
F is the free module with the basis{yδ,n: δ ∈ S, n ∈ ω} ∪ {xj : j < µ} andL is the free
submodule with the basis{wδ,n: δ ∈ S, n ∈ ω} where

wδ,n = yδ,n − ρnyδ,n+1 + xζδ(n). (1)

ThenH is a module of cardinalityµ and the uniformization property of̄ζ implies that
H ∈ ⊥K. (In fact,H ∈ ⊥K for any moduleK of cardinality< τ . See [2, Chapter XIII] or
[13].)

Assuming we are in case (1), letB ⊕ T be a cogenerator ofC as given in Lemma 2.6
Let κ � max(|B|, |R|, |K|) and letµ = τ+ = 2τ whereτ > κ is a singular cardinal o
cofinality ω. Thenµκ = µ. Let A = ⋃

ν<µ Aν be as in Theorem 2.1 for thisB andµ; so,

in particular,A ∈ B⊥. Note that thenA ∈ (B ⊕ T )⊥ = C becauseT ⊥ consists of precisely
those modulesM such thatpM = M wheneverR/p ↪→ T . Note thatA/Aδ is torsion-free
for all δ ∈ µ, becauseB is torsion-free.

We need to show that Ext1
R(H,A) �= 0; in other words, to define a homomorphis

ψ :L → A which does not extend toF .
SinceB is reduced there is ak ∈ ω such thatρkB �= B; then for allδ ∈ S andn ∈ ω we

can chooseaδ,n ∈ Aδ+n+1 such thataδ,n + Aδ+n /∈ ρk(Aδ+n+1/Aδ+n). We claim that

for all δ ∈ S, the family of equations

Eδ = {
ρnvn+1 = vn − (aδ,n + Aδ): n ∈ ω

}
(�)

does not have a solution inA/Aδ.

Supposing, for the moment, that this claim is true, we will prove that Ext1
R(F/L,A) �= 0.

Defineψ :L → A by ψ(wδ,n) = aδ,n for all δ ∈ S, n ∈ ω. Suppose, to obtain a contrad
tion, thatψ extends to a homomorphismϕ :F → A. The set ofδ < µ such thatϕ(xj ) ∈ Aδ

for all j < δ is a club,C, in µ, so there existsδ ∈ S ∩ C. By applyingϕ to the relations
(1), and sinceϕ(xj ) ∈ Aδ for all j < δ, we have thatvn = ϕ(yδ,n) + Aδ is a solution to the
equations inA/Aδ, a contradiction.

Thus it remains to prove (�). Suppose that (�) is false for someδ ∈ S, and that for
some{bn: n ∈ ω} ⊆ A, vn = bn + Aδ is a solution toEδ. There are two subcases.
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Suppose first thatb0+Aδ+ω is a non-zero element ofA/Aδ+ω. ThenA/Aδ+ω contains a
copy ofQ (generated overR by the cosets of thebn, n ∈ ω). But this contradicts Lemma 2.
(with M = A/Aδ+ω, Mν = Aδ+ω+ν/Aδ+ω).

Otherwise we can prove by induction thatbn ∈ Aδ+ω for all n ∈ ω becauseA/Aδ+ω has
no torsion andρn(bn+1 + Aδ+ω) = bn + Aδ+ω. Thus there is a solution of

{
ρnvn+1 = vn − (aδ,n + Aδ): n ∈ ω

}

in Aδ+ω/Aδ. But this contradicts Lemma 2.4 (withM = Aδ+ω/Aδ, Mn = Aδ+n/Aδ and
an = aδ,n + Aδ).

This completes the proof in case (1).
Now supposing we are in case (2), letB be a module cogeneratingC. Let κ � max(|B|,

|R|, |K|) and letµ = τ+ = 2τ whereτ > κ is a singular cardinal of cofinalityω. Let
A = ⋃

ν<µ Aν be as in Theorem 2.1 for thisB andµ; soA ∈ B⊥. Let H be as above.
Then for all δ ∈ µ, A/Aδ cogeneratesC since the construction ofA and Lemma 1

of [5] implies thatM ∈ (A/Aδ)
⊥ wheneverM ∈ B⊥. Hence, since we are in case (

Ext1R(Q,A/Aδ) �= 0 for all δ ∈ µ.
Now Q ∼= Fδ/Lδ whereFδ is the free module with the basis{yδ,n: n ∈ ω} andLδ is the

free submodule with the basis{w′
δ,n: δ ∈ S, n ∈ ω} wherew′

δ,n = yδ,n − ρnyδ,n+1. Hence
there is a homomorphismψδ: Lδ → A/Aδ which does not extend toFδ .

Let πδ : A → A/Aδ be the canonical projection. Defineψ :L → A so thatπδψ(wδ,n) =
ψδ(w

′
δ,n). In order to prove Ext1R(H,A) �= 0, we will show thatψ does not extend to

homomorphismϕ :F → A. If it did, there would existδ ∈ S ∩C whereC is the club of all
δ < µ such thatϕ(xj ) ∈ Aδ for all j < δ. But thenπδ ◦ (ϕ � Fδ) would be an extension o
ψδ , a contradiction.

This completes the proof of Theorem 1.3.
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