Remarks on Squares.

The combinatorial principle square (and some variants) was introduced by Jensen [J]. We have been interested in deriving weak forms of it from ZFC, plus possibly restrictions on cardinal arithmetic, see [Sh 1], [Sh 2], Magidor and Shelah [MS] and Abraham, Shelah and Solovay [ASS]. The modest remarks appearing here were first intented to appear in [ASS]. I thank Shai Ben-David for deleting inaccurances here.

Convention: λ will be a fixed regular uncountable cardinal, δ vary on limit ordinals.

- 1. **Definition**: 1) We call $\overline{C} = \langle C_{\delta} : \delta \in S \rangle$ a square (or S-square) if:
- (i) $S \subseteq \lambda$ is a stationary set.
- (ii) for $\delta \in S$, C_{δ} is a closed unbounded subset of δ .
- (iii) if γ is a limit point of C_{δ} , where $(\delta \in S)$ then $\gamma \in S$ and $C_{\gamma} = C_{\delta} \cap \gamma$.
- 2) We say there is a diamond on \overline{C} for χ where $\overline{C} = \langle C_{\delta} : \delta \in S \rangle$ is a square, if there are $A_{\delta} \subseteq \delta$ for $\delta \in S$ such that for every $A \subseteq \lambda$:

 $\{\delta \in S : C_{\delta} \text{ has order type } \geq \chi \text{ and for every limit point } \gamma \text{ of } C_{\delta} \cup \{\delta\}, A \cap \gamma = A_{\gamma}\}.$

It may be interesting to note that we can find square sequences on some S from cardinality hypothesis only.

2. Lemma : 1) Suppose $\lambda = \mu^+$, $\mu^{<\chi} = \mu$. Then we can find $S_{\xi}(\xi < \mu)$ such that :

a)
$$\bigcup_{\xi < \mu} S_{\xi} = \{ \delta < \lambda : cf \ \delta < \chi \}.$$

- b) for each $\xi < \mu$, there is an S_{ξ} -square sequence $\langle C_i : i \in S_{\xi} \rangle$ (so $C_i \subseteq S_{\xi}$ for each i, $otp(C_i) < \chi$).
 - 2) Suppose $\lambda = \mu^+$, μ singular, $(\forall \vartheta < \mu)[\vartheta^{<\chi} < \mu]$.

Then we can find S_{ξ} ($\xi < \mu$) such that :

- a) $\bigcup_{\xi < \mu} S_{\xi} = \{\delta < \lambda : cf \ \delta < \chi, cf \ \delta \neq cf \ \mu\} S^{*}(\lambda)$. $(S^{*}(\lambda)$ -the bad set, see [Sh 1]) and called it S^{+} .
 - b) for each $\xi < \mu$ there is a weak ($< \chi$)-square sequence $\left< C_i^{\xi} : i \in S_{\xi} \right>$
 - c) if $\delta \in S_{\xi}$, $cf \delta < cf \mu$ then $C_{\delta}^{\xi} \cap S^{+} \subseteq S_{\xi}$.
- d) if $\delta \in S^+$, $cf \ \delta > cf \ \mu$ then there are $\xi_{\gamma} < \mu(\gamma < cf \ \mu)$, such that $C_{\delta}^{\xi_{\gamma}} = C_{\delta}^{\xi_{0}}$, and $C_{\delta}^{\xi_{0}} \cap S^+ \subseteq \bigcup_{\gamma} S_{\xi_{\gamma}}$.

Proof: 1) By Engelking and Karlowicz [EK] there are functions $f_i: \mu \to \mu$ for $i < 2^{\mu}$ such that for any distinct $i_{\gamma} < 2^{\mu}(\gamma < \gamma^{\bullet} < \chi)$ and $\xi_{\gamma} < \mu$, for some $\xi < \mu$, $f_{i_{\gamma}}(\xi) = \xi_{\gamma}$ (for $\gamma < \gamma^{\bullet}$). For each $\delta < \mu^{+}$ let $\langle B_{\xi}^{\delta} : \xi < \mu \rangle$ be a list of all subsets of δ of power $< \chi$ (possible as $\mu = \mu^{<\chi}$). Now define a function $g_{\xi}: \mu^{+} \to \mu$, by $g_{\xi}(i) = f_{i}(\xi)$.

Now for each $\zeta < \mu$ we define S_{ξ} :

(*) $S_{\boldsymbol{\xi}}$ is the set of limit ordinals $\boldsymbol{\delta} < \boldsymbol{\mu}$ of cofinality $< \boldsymbol{\chi}$ such that $B_{g_{\boldsymbol{\xi}}(\boldsymbol{\delta})}^{\boldsymbol{\delta}}$ is a closed unbounded subset of $\boldsymbol{\delta}$, moreover for each accumulation point $\boldsymbol{\gamma}$ of $B_{g_{\boldsymbol{\xi}}(\boldsymbol{\delta})}^{\boldsymbol{\delta}}$, $B_{g_{\boldsymbol{\xi}}(\boldsymbol{\delta})}^{\boldsymbol{\gamma}} = B_{g_{\boldsymbol{\xi}}(\boldsymbol{\delta})}^{\boldsymbol{\delta}} \cap \boldsymbol{\gamma}$.

Clealy for every γ, δ as in (*) $\gamma \in S_{\zeta}$. So condition b) is satisfied: $\langle B_{g_{\zeta}(\delta)}^{\delta} : \delta \in S_{\zeta} \rangle$ exemplify it.

Why condition a) holds? If $\delta < \lambda$, $cf \ \delta < \chi$, let C_{δ} be a closed unbounded subset of it of cardinality $< \chi$. Let for $\gamma \in C_{\delta} \cup \{\delta\}$, $\xi_{\gamma} < \mu$ be such that $B_{\xi_{\gamma}}^{\gamma} = C_{\delta} \cap \gamma$ (possible by the choice of $\langle B_{\xi}^{\gamma} : \xi < \mu \rangle$). So by the choice of

the functions f_i , there is $\zeta < \mu$ such that for every $\gamma \in C_{\delta} \cup \{\delta\}, f_{\gamma}(\zeta) = \xi_{\gamma}$ hence $g_{\xi}(\gamma) = \xi_{\gamma}$. So easily $\delta \in S_{\xi}$.

- 2) Left to the reader (just see what proof of the theorem from [EK gives).
- 2. Conclusion: If for simplicity G.C.H., χ regular, $\mu > \chi^{\bullet}, \lambda > \mu^{+}$ then there is a χ -square S with diamond on it. (see [ASS])
- 3. Question: Let $\lambda = \mu^+$, μ regular, $\bigotimes_{\{\delta < \lambda : cf \ \delta = \mu\}}$, and assume G.C.H. Is there a μ -square with diamond on it.
- 4. Lemma: Let λ be regular uncountable cardinal, R a set of regular cardinals $<\lambda$, such that $|R|<\lambda$, and $(\forall \kappa\in R)$ $\kappa^+<\lambda$. Then we can find $S_{\kappa}(\kappa\in R)$ such that:
 - a) S_{κ} is a stationary subsets of λ .
 - b) for every $\delta \in S_{\kappa}$, $cf \delta = \kappa$.
 - c) if $\delta \in S_{\kappa_1}$, $\kappa_1 \neq \kappa_2$ then $S_{\kappa_2} \cap \delta$ is not stationary in δ .

Remark: In (d) only the case $\kappa_2 < \kappa_1$ is relevant.

Proof: For every κ choose pairwise disjoint stationary subsets $\{S(\kappa,i):i<\lambda\}$ of $\{\delta<\lambda:cf\ \delta=\kappa\}$, such that $\kappa,i< Min\ S(\kappa,i)$ (exists by Solovay [So]). Suppose the lemma fails Now we define by induction on $\xi<\lambda$, $\kappa_{\xi}\in S$ and $\left\langle S_{\kappa}^{\xi}:\kappa<\kappa_{\xi},\ \kappa\in R\right\rangle$, and $\gamma(\xi,\kappa)$ γ_{κ}^{ξ} such that

- (i) $S_{\kappa}^{\xi} \subseteq S(\kappa, \gamma_{\kappa}^{\xi})$ for $\kappa \in \kappa_{\xi} \cap R$) (i.e. $\kappa < \kappa_{\xi}, \kappa \in R$
 - (ii) $\gamma_{\xi}^{\xi} \neq \gamma_{\xi}^{\zeta}$ for $\zeta < \xi$ (when both are defined).
- (iii) if $\vartheta < \sigma < \kappa_{\xi}$, $\kappa \in R$, $\sigma \in R$, $\delta \in S_{\sigma}^{\xi}$ then $S_{\delta}^{\xi} \cap \delta$ is not stationary in δ .
- (iv) the set $T_{\xi} = \{\delta : \delta \in \bigcup \{S(\kappa_{\xi}, i) : i \notin \{\gamma_{\kappa_{\xi}}^{\xi} : \zeta < \xi\}\}$, and no $S_{\kappa}^{\xi}(\kappa \in R \cap \kappa_{\xi})$ is stationary in $\delta\}$ is not stationary and so disjoint to some club C^{ξ} of λ .

There is no problem is the definition: for each ξ we define γ_{κ}^{ξ} , S_{κ}^{ξ} by indunction on $\kappa \in R$. If it impossible to choose S_{κ}^{ξ} then the set defined in (iv) for κ cannot be stationary (as then the lemma's conclusion holds - remember $\kappa, i < Min \ S(\kappa, i)$ and by Fodour Lemma for some γ , $S(\kappa, \gamma) \cap T$ is stationary and we could have choose $S_{\kappa, \xi}^{\xi} = S(\kappa_{\xi}, \gamma) \cap T$, $\gamma_{\kappa}^{\xi} = \gamma$, but we have assumed this is impossible.

Now as $|R| < \lambda$ for some κ_{α} , $A = \{\xi < \lambda : \kappa_{\xi} = \kappa_{\alpha}\}$ has power λ , and choose $B \subseteq A$, $|B| = \kappa_{\alpha}^{+}$ so $|B| < \lambda$. Let $B = \{\xi_{\varepsilon} : \varepsilon < \kappa^{+}\}$ and so $\xi^{*} = \bigcup_{\varepsilon} \xi_{\varepsilon} < \lambda$. Hence there is $\gamma < \lambda$ such that $\gamma \not\in \{\gamma_{\kappa_{\alpha}}^{\xi} : \zeta < \xi^{*}\}$, and there is $\delta \in S(\kappa_{\alpha}, \gamma) \cap \bigcap_{\varepsilon < \kappa_{\delta}^{\xi}} C^{\xi_{\varepsilon}}$. Working carefully with the choice of $C^{\xi_{\varepsilon}}$ we see that for each $\varepsilon < \kappa_{\alpha}^{+}$, $\delta \cap (\bigcup_{\varepsilon < \kappa_{\alpha}^{\xi}})$ is stationary in δ . So an ordinal of cofinality κ_{α} has κ_{α}^{+} pairwise disjoint stationary subsets, contradiction.

References.

[ASS]

U. Avraham, S. Shelah and R. M. Solovay, Squares with diamonds and Souslin trees with special squares for successor of singulars, *Fund Math*, submitted.

[MS]M. Magidor and S. Shelah, Compactness in successor of singular, in preparation, see Abstracts of A.M.S. Aug (or. Oct.) 1983.

[Sh1]

S. Shelah, Successor of singular cardinals, Proc. of the ASL meeting Mons. 8/1978, Logic Colloquium 78. ed M. Boffa, D. van Dalem and K. McAlon, Studies in Logic and the Foundation of Math, Vol. 97, North Holland Pub. Co. 1979, 357-380.

[Sh2]

S. Shelah, Diamonds and uniformization, J.Symb. Logic, in press.

[So] R. M. Solovay. Real valued measurable cardinals, Proc. Symp. in Pur Math. Vol XIII 1 (ed. D. Scott) Amer. Math. Soc. (1971), 397-428.