\$Q\$-Sets do not Necessarily have Strong Measure Zero
Author(s): Jaime Ihoda and Saharon Shelah
Source: Proceedings of the American Mathematical Society, Vol. 102, No. 3 (Mar., 1988), pp. 681683
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2047245
Accessed: 20-12-2015 05:57 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
http://www.jstor.org

Q-SETS DO NOT NECESSARILY
 HAVE STRONG MEASURE ZERO

JAIME IHODA AND SAHARON SHELAH

(Communicated by Thomas J. Jech)

Abstract

The purpose of this paper is to give a negative answer to the following question (see Miller [4]): Do all Q-sets have strong measure zero?

1. Definitions and standard facts.

1.1 Q-set. A set of reals X is a Q-set iff every subset of X is a relative F_{σ}. The history of Q-sets can be found in Fleissner's paper [2]. We recall the following facts
(i) If X is a Q-set then $|X|<2^{\aleph_{0}}$ and $2^{|X|}=2^{\aleph_{0}}=c$.
(ii) Every Q-set has universal measure zero.
(iii) Martin's axiom implies that if $X \subseteq \mathbf{R}$ and $|X|<2^{\aleph_{0}}$, then X is a Q-set.
1.2 Strong measure zero set. A set of reals X has strong measure zero iff given any sequence $\varepsilon_{n}>0$ for $n<\omega, X$ can be covered by a sequence of open sets X_{n} each having diameter less than ε_{n}.
1.3 Ramsey ultrafilters. An ultrafilter $U \subseteq P(\omega)$ is a Ramsey ultrafilter iff U contains the filter of cofinite sets and for any $\pi:[\omega]^{2} \rightarrow 2$ there is an $A \in U$ with π constant on $[A]^{2}$. For A, B subsets of ω, we say that $A \subseteq^{*} B$ iff there exists $n \in \omega$ such that $A-n \subseteq B$.

We say that a family $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle, \kappa$ a cardinal, is a tower iff $A_{\beta} \subseteq^{*} A_{\alpha}$ and $A_{\alpha} \unrhd^{*} A_{\beta}$ for every $\alpha<\beta$, and for every $A \subseteq \omega$, it is not the case that $\forall \alpha<\kappa$ $A \subseteq^{*} A_{\alpha}$.

The following facts are well known.
(i) Martin's axiom implies $\kappa=2^{\aleph_{0}}$.
(ii) Martin's axiom implies that there exists a Ramsey ultrafilter which is generated by a tower.

Let U be a Ramsey ultrafilter over ω. We define the following poset P_{U} : the elements of P_{U} are ordered pairs (s, A) such that $s \in \omega^{<\omega}, A \in U, \sup s<\inf A$, and the order is given by: $(s, A) \leq(t, B)$ iff

$$
s \subseteq t, \quad B \subseteq A \quad \text { and } \quad t-s \subseteq A .
$$

It is clear that P_{U} satisfies the countable chain condition and the generic object can be regarded as a subset of ω characterized by being almost contained in every member of the filter U (see Mathias [5]).
2. TheOREM. Let V be a model for $Z F C+M a r t i n ' s ~ a x i o m, ~ l e t ~ U \in V$ be a Ramsey ultrafilter generated by a tower $\left\langle A_{\alpha}: \alpha<c\right\rangle$, let P_{U} be the forcing notion defined above this U, and let $G \subseteq P_{U}$ be a generic object over V. Then
(i) V and $V[G]$ have the same cardinals.

[^0](ii) $V[G] \vDash$ " $c=c^{V}$ ".
(iii) If $X \in V \cap P(\mathbf{R})$ and $|X|<c$, then
$$
V[G] \vDash \text { " } X \text { is a } Q \text {-set". }
$$
(iv) If $X \in V \cap P(\mathbf{R})$ and $|X|>\aleph_{0}$, then
$$
V[G] \vDash \text { " } X \text { does not have strong measure zero". }
$$
2.1 REmark. In $V[G]$, the old uncountable subsets of reals, of cardinality less than c, are Q-sets but not of strong measure zero.

Proof. Clear by (iii) and (iv).
2.2 Proof of the theorem. (i) By countable chain condition of P_{U}.
(ii) By countable chain condition every real in $V[G]$ is obtained by a name which is encodable in V by a real.
(iii) Let $X \in V \cap P(\mathbf{R})$ and $|X|<c$. Let $\mathbf{h}: X \rightarrow\{0,1\}$ be a P_{U}-name for a subset of X. By Mathias [5], for every $i \in X$ there exists $A_{i} \in U$ such that if $n \in A_{i}$ and $s \subseteq n$, then

$$
\left(s, A_{i}-n\right) \Vdash \mathbf{h}(i)=0 \quad \text { or } \quad\left(s, A_{i}-n\right) \Vdash \mathbf{h}(i)=1 .
$$

Since U is generated by a tower, and $|X|<c$, there exists $A \in U$ such that for every $i \in X, A \subseteq^{*} A_{i}$. Therefore, for every $i \in X$ there exists $n_{i} \in \omega$ such that $A-n_{i} \subseteq A_{i}$ and $n_{i} \in A_{i}$.

So if $(\phi, A) \in G$, and $r(\subseteq \omega)$ is the real number defined by G, we have that $\mathbf{h}(i)$ is computable from $r \upharpoonright n_{i}$.

Now we define the following equivalence relation on X :

$$
\begin{array}{ll}
i \sim j \quad \text { iff } & n_{i}=n_{j} \text { and } \\
& \left(\forall s \subseteq n_{i}\right)\left(\left(s, A_{i}-n_{i}\right) \Vdash \mathbf{h}(i)=0 \quad \text { iff } \quad\left(s, A_{j}-n_{j}\right) \Vdash \mathbf{h}(j)=0\right) .
\end{array}
$$

It is clear that \sim is an equivalence relation with countably many classes, say $X=$ $\bigcup_{l \in \omega} X_{l}$ where each X_{l} is an equivalence class and the following holds:
if i, j belong to X_{l} for $l \in \omega$, then

$$
(\phi, A) \Vdash \mathbf{h}(i)=\mathbf{h}(j)
$$

Each X_{l} for $l \in \omega$ belongs to V and also $\left\langle X_{l}: l \in \omega\right\rangle$ is a number of V. Since $V \vDash$ MA for every $l \in \omega$, there exists Y_{l}, an F_{σ} set of reals, such that

$$
V \vDash X_{l}=Y_{l} \cap X
$$

Therefore, by an absoluteness argument,

$$
V[G] \vDash X_{l}=Y_{l} \cap X
$$

(remember that Y_{l} is a definition of a set), and thus in $V[G]$

$$
\{i: h(i)=0\}=X \cap\left(\bigcup\left\{Y_{l}:\left(\forall i \in X_{l}\right)(h(i)=0)\right\}\right),
$$

and this says that $\{i: h(i)=0\}$ is a F_{σ} set relative to X. This completes the proof of (iii).
(iv) This fact is well known and the proof is obtained following the argument given by Baumgartner [1, §9] in which it is possible to replace Mathias' forcing by P_{U} and to use the results proven by Mathias [5].

This concludes the proof of the theorem, and the following question arises: Is "ZFC+ Borel conjecture + there exists Q-set" consistent?

References

1. J. Baumgartner, Iterated forcing, Surveys in Set Theory (A. R. D. Mathias, ed.), London Math. Soc. Lecture Notes Series 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1-50.
2. W. Fleissner, Current research on Q-sets, Topology, vol. I, Colloq. Math. Soc. Janós Bolyai, 23, North-holland, 1980, pp. 413-431.
3. W. Fleissner and A. Miller, On Q-set, Proc. Amer. Math. Soc. 78 (1980), 280-284.
4. A. Miller, Special subsets of the real line, Handbook of Set-Theoretic Topology, Chapter 5 (K. Kunnen and J. Vaughan, eds.), North-Holland, 1984, pp. 201-233.
5. A. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
6. F. Rothberger, On some problems of Hausdorff and Sierpinski, Fund. Math. 35 (1948), 29-46.

Department of Mathematics, University of California, Berkeley, CaliforNIA 94720

Department of Mathematics, The Hebrew University of Jerusalem, Givat RAM, ISRAEL 91904

[^0]: Received by the editors September 23, 1986.
 1980 Mathematics Subject Classification. Primary 03E35; Secondary 03E15.

