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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 102, Number 3, March 1988 

Q-SETS DO NOT NECESSARILY 
HAVE STRONG MEASURE ZERO 

JAIME IHODA AND SAHARON SHELAH 

(Communicated by Thomas J. Jech) 

ABSTRACT. The purpose of this paper is to give a negative answer to the 
following question (see Miller [4]): Do all Q-sets have strong measure zero? 

1. Definitions and standard facts. 
1.1 Q-set. A set of reals X is a Q-set iff every subset of X is a relative F,. The 

history of Q-sets can be found in Fleissner's paper [2]. We recall the following facts 
(i) If X is a Q-set then IXI < 21?O and 21xl = 2NO = c. 
(ii) Every Q-set has universal measure zero. 
(iii) Martin's axiom implies that if X C R and IXI < 2No, then X is a Q-set. 
1.2 Strong measure zero set. A set of reals X has strong measure zero iff given 

any sequence e,n > 0 for n < w, X can be covered by a sequence of open sets X" 
each having diameter less than E, 

1.3 Ramsey ultrafilters. An ultrafilter U C P(w) is a Ramsey ultrafilter iff U 
contains the filter of cofinite sets and for any ir: [w]2 -+ 2 there is an A E U with ir 
constant on [A]2. For A, B subsets of w, we say that A C* B iff there exists n E w 
such that A - n C B. 

We say that a family (A<>: a < K.), K. a cardinal, is a tower iff Ap C* A<> and 
A,>, 5* Ap for every a < fl, and for every A C w, it is not the case that Va < K. 
AC* Aa. 

The following facts are well known. 
(i) Martin's axiom implies Ic = 21o. 
(ii) Martin's axiom implies that there exists a Ramsey ultrafilter which is gen- 

erated by a tower. 
Let U be a Ramsey ultrafilter over w. We define the following poset Pu: the 

elements of Pu are ordered pairs (s,A) such that s E w<W, A E U, sups < inf A, 
and the order is given by: (s, A) < (t, B) iff 

sCt, BCA and t-sCA. 

It is clear that Pu satisfies the countable chain condition and the generic object 
can be regarded as a subset of w characterized by being almost contained in every 
member of the filter U (see Mathias [5]). 

2. THEOREM. Let V be a model for ZFC+Martin's axiom, let U E V be a 
Ramsey ultrafilter generated by a tower (Ao,: a < c), let Pu be the forcing notion 
defined above this U, and let G C Pu be a generic object over V. Then 

(i) V and V[G] have the same cardinals. 
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(ii) V[G] 1- 'c = cv". 
(iii) If X E v n P(R) and IXI < c, then 

V[G] 1 "X is a Q-set". 

(iv) If X E v n P(R) and IXI > No, then 

V[G] I= "X does not have strong measure zero". 

2.1 REMARK. In V[G], the old uncountable subsets of reals, of cardinality less 
than c, are Q-sets but not of strong measure zero. 

PROOF. Clear by (iii) and (iv). 
2.2 Proof of the theorem. (i) By countable chain condition of Pu. 
(ii) By countable chain condition every real in V[G] is obtained by a name which 

is encodable in V by a real. 
(iii) Let X E V n P(R) and IXI < c. Let h: X -- {0, 1} be a Pu-name for 

a subset of X. By Mathias [5], for every i E X there exists Ai E U such that if 
n E Ai and s C n, then 

(s,Ai-n) 1F h(i) = 0 or -(s,Ai-n) 1F h(iQ = 1. 

Since U is generated by a tower, and IXI < c, there exists A E U such that for 
every i E X, A 5* Ai. Therefore, for every i E X there exists ni E w such that 
A-ni C Ai and ni E Ai. 

So if (X, A) E G, and r (C w) is the real number defined by G, we have that h(i) 
is computable from r r ni. 

Now we define the following equivalence relation on X: 

i j iff ni=nj and 
(VsC ni)((s,Ai-ni) 1F h(i) = 0 iff (s, Aj-nj) 1 h(j) = 0). 

It is clear that - is an equivalence relation with countably many classes, say X = 

UlEw Xi where each Xi is an equivalence class and the following holds: 
if i, j belong to Xi for 1 E w, then 

(, A) 1F h(i) = h(j). 
Each Xi for 1 E w belongs to V and also (Xi : 1 E w) is a number of V. Since 
V 1= MA for every 1 E w, there exists Y1, an F, set of reals, such that 

V F Xi = Y1 nX. 

Therefore, by an absoluteness argument, 

V[G] X1 XI=lYi nX 

(remember that Y1 is a definition of a set), and thus in V[G] 

{i: h(i) = o} = x n (U{Y: (Vi E X,)(h(i) = 0)} 

and this says that {i: h(i) = 0} is a F, set relative to X. This completes the proof 
of (iii). 

(iv) This fact is well known and the proof is obtained following the argument 
given by Baumgartner [1, ?9] in which it is possible to replace Mathias' forcing by 
Pu and to use the results proven by Mathias [5]. 

This concludes the proof of the theorem, and the following question arises: Is 
"ZFC+ Borel conjecture + there exists Q-set" consistent? 
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