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We prove that if X is a compact T, space (and x€ X) and #(X) =« (wx(x, X)=«), then
there is a dense subset Y < X (resp. a set Y < X with xe Y) such that d(Y) =« (resp. x¢ Z for
any Z < Y with |Z|<«). Previously this only has been proven for x regular. A consequence is
that the point-picking game G[(X) is always determined if X is compact Ts.
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In [5] the authors introduced the cardinal function
8(X)=sup{d(Y): Y X dense in X},

and raised the following interesting problem: is 77(X)=8(X) for a compact T,
space X ? It was shown in [2 and 4] that every compact T, space X has a dense
subspace Y left separated in type 7(X ), hence if 7(X) is regular, then the answer
to the above question is “yes”, and in fact we have a denseset Y with §(X)=d(Y) =
w(X), i.e. sup =max. It also follows then easily that under GCH we have #(X) =
8(X ) always. But the problem then remained whether the extra set-theoretic assump-
tion is necessary here for singular values of #(X)? We are going to show below
that in fact it is not, though the proof of this is definitely more difficult than that
of the case in which #(X) is regular.

Theorem. If X is any compact T, space, then X has a dense subspace Y with d(Y) =
7(X). Consequently, w(X)=8(X).

Proof. Since this has been known if 7(X) is a regular cardinal, let us assume now
that 7(X) =« is singular.
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Let RO(X) be the boolean algebra of regular open subsets of X and let us put
% =RO(X)\{0}. Given a regular cardinal A and a function pe*® (i.e. p:A>R)
we put, for any be R,

Ab(p)={a€/\: Jaela]™ (0?5 b-V p(l’)él)(cx))},
where, of course, —, v and < are taken in RO(X). Now, we let I, denote the
A-complete ideal on A generated by the family

{As(p): be R},
i.e. we have
I,={Acx:3%B ¢ [R]* (AU {A(p): be B

Note that for any @ € A we have @ € A,(,,,(p), hence I, contains all singletons and
thus all subsets of A of size <A.

For any collection % = RO(X) we shall denote by (%) the (not necessarily
complete) subalgebra of RO(X) generated by %.

We now formulate a lemma that is perhaps the crux of the whole proof.

Lemma. There are in « cofinally many regular cardinals A < « for which there is some
p€ R such that the ideal I, on X is proper, i.e. I,# P(A).

Proof. Assume, indirectly, that there is a cardinal » <« such that whenever A is a
regular cardinal with ¥ <A <, one has for every pe *%&, I, = P(A). We are going
to show that then for every cardinal A with <X <k we have

forevery B c[#]* there is €c[#]” such that € <_ B, (%)

where € <, % means that for every be @B there is a c€ € with ¢<b. Of course,
then (*), implies 7(X )= v, a contradiction.

Now, (*), is proven by induction on A. Of course, (*), is trivial and thus assume
next that v <A <k and that (), has been shown to hold whenever v=< u <. The
case in which A is singular is easy:

Let w=cf(A)<A and A =Y {A;: i€ u} with A; <A foreach i€ yu, and let B[R]
where B =\ J{%B,;: i u} with |g3,-|= A; for ie u. By induction we have a €, €[R]"
such that 6; <, %, for each i€ u. Then

|U{(€i: l~€,’-‘~}|s Ve <A,
hence now by (*),., there is a set € €[R]" such that
€<, U{G:icu}<,B,

i.e. (#), holds.
Next we assume that v <A <k, and A is regular, and consider

B={b,: acA}e[R].



Sh:341

L. Juhdsz, S. Shelah / w(X)=8(X) for compact X 291

Let us put, for any a € A,

B, =1{bg: Bev+al,
then we get a sequence (A,: a € A) of subsets of R which is increasing, continuous
(i.e. B, =\U{Bp: Bea}if « is limit) and satisfies |8, |< v+|a|<A for each a €.

In what follows we are going to say that a sequence with all of these properties is
nice.

Claim. For every nice sequence (%,: a € A) there is a nice sequence (B,: a€A)
such that B, <., RB.,, for every a € A.

Proof. Let us write, for «a € A,

Bos1= {q(ﬁa): Bev+al
For fixed B € A let y; be the smallest ordinal a such that q};’) is defined. (Clearly,
vs =0if B<v and B+1=v+vy; otherwise.)
Now we may apply our indirect assumption to the function gz € *® defined by

+a)

gpla) = qp">
and conclude that I, is not proper, i.e. there is some €5 ¢ [#]1"" such that
(U{A,(gp): be €} =A.
In particular this means that for every « € A\ y; there is a non-zero element ¢ of

(6sufgy:yp<i<al)

with ¢ < gj". Thus we put, for any a € A,

Do =U{Eulqs: yo=i<al}:Berv+al\{0}
Clearly, the sequence &, is continuous, and, according to our above remark, we have
@u <77 %a+l .

But [2,]| < A, hence by induction we may find €, €[?®]” such that &, <, 9,.
Let us now define the sequence (A.: a € A) as follows:

B :{U{%ﬁz B=<a}, ifaisnotlimit;
“ U Beal, ifaislimit.

It is clear that (B : @ € A) is a nice sequence. If a is not limit, then &, < A/, , hence
Bl <D, <,RBoy,. If, on the other hand, « is limit, then we have %,k =
(U {%s: Bea} and &, < B, for each B € a, hence

Bi.=U{%:Bea}t<,D, <,Bai1,
i.e. the sequence (#.: a € A) is as required.

Now, starting with our original nice sequence (A, ={bs: Bev+a}l aci) we
repeatedly apply our claim to define nice sequences (%.: a € A) by induction on
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new as follows. We put B° =B, and if (B7: a € A) is defined we choose a nice
sequence (B1"": @ e A) such that B2 < B2, for a €.
Next we show that

(B newt<,B={B,: ac Al

Indeed, if bel J{BL: a € A}, then the minimal o with be B” is either 0 or suc-
cessor, say a = fB+1, since (B,: a €A) is continuous, thus in the latter case, by
By <,Bj., there is an ordinal a'<a and a b'e B, with b'<b. Using this
repeatedly, and starting with any b e B, = B, we can define a decreasing sequence
of ordinals that, after finitely many steps must end up with 0 and yield some c € %
with ¢ < b.

In other words, we have

€=\ {By:ncw}t<,B,

while €€[R]”, i.e. (x), holds, and the proof of the lemma is thus completed. [

Let us now return to the proof of our theorem. By the lemma we may choose an
increasing sequence {A;: i € u = cf(k)) of regular cardinals with A,> u such that for
each i € u there is a function p; € *% for which the ideal I, is proper. Let us now put

Y={yeX:(Viep)({aecryepla)lel,)}

we claim that Y is the required dense subset of X, i.e. d(Y) =~k

To show that Y is dense in X it will clearly suffice to prove that Y b #0 for
each be R. So let be R, we will then define by induction on i€ u sets A, € I, such
that the collection

€=U {b-—p(a) acA\A}I=R

iep
is centered, i.e. any finite subset of € has non-zero meet in RO(X). This in turn
implies that

U {E\Pi(a): acA\A}

e
is a centered collection of closed sets in X, hence by compactness there is a point
y in its intersection. But then, for each i€ u, we have

{ae;: yepi(a)}CAiEIpia

hence ye Y n b, and we are done.
To start our induction we put

Ao = Au( po).

Now, if a,, ..., a, € A\A, with a, < - - - <a,, we show by induction on /= n that

k/l1 [b—polar)]=5b _k\:/l polag) #0,
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using the fact that «, £ A,(py) for each = n. Hence the set {b—py(a): a € A\ Ay}
is indeed centered in RO(X).

Now assume that i € u\{0} and that for every j <i we have already defined A, € I,
such that the family

7720 B I & N S v\ A
6; = WO~ Pilajl & e Aj\Ayg
€i

7

is centered in RO(X). Let €¥ < % be the family of all finite meets of elements of
%.. Then it follows from our assumptions that

|(6i1 = ‘(gﬂ <A
Consequently, using that I, is A,-complete, we get that
A =U{A(p): ce€Flel,.

Now let a,, ..., a,€ A\ A, with a;<--- <a,, moreover let ¢ be the meet of any
finite subset of €, i.e. ce €¥. We want to show that

cn A b—p{a;)#0.
=1

This is shown by induction on /< n in exactly the same way as it was shown for
i =0, but now using the fact that

a g A pi)u An(p:)

for every = n. This, however, means that the inductive hypothesis is preserved and
thus the induction defining the A,’s is completed.

Finally, to show d(Y)=k, let Z< Y with |Z|<«k. Then there is an i€ x such
that [Z| < A;. Now, for each z€ Z we have {a € A;: z€ p,(a)}€ I, hence

faeer: Znp(a)#0t= U {acr:zepla)el,
zeZ

as well. But I, is proper, hence there is some a € A; with Z N p;(a) = ¢ showing that
Z is not dense in X, hence not dense in Y as well. This completes the proof of the
theorem. [

In [1] the so-called point-picking game G (X ) was introduced and studied. From
our theorem we get the following result concerning this game.

Corollary. If X is compact T,, then the game G2 (X) is determined for any ordinal «.

Proof. Indeed, if w(X )= a, then player I has an obvious winning strategy. If, on
the other hand « = 7(X) > a, then by our theorem player 11 will win by restricting
his choices to a dense set Y= X with d(Y)=«k>a. [
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This result is, at least consistently, false for non-compact spaces (cf. [1, 3]). In
fact non-determined spaces for the game G~ exist under ¢ or MA,, . However, it
is still open whether undetermined spaces exist in ZFC.

Finally, we note that the proof of our theorem actually yields the following more
general result, in which 7(R') for some #'< R is defined by

(R =min{|P|: Pc R&EP < R}

Theorem'. If X is compact T, and R'< R = RO(X )\{0} with w(R') =k, then there
is some set Y < X such that Y n b # ) for all be ' while for every Z < Y with |Z| < k
there is some be R' with Z " b =4.

To see that this is not an ““idle” generalization, consider a point x€ X and put
R'={beR: xc b}

Then 7(R') = wy(x, X) and thus the following corollary is obtained.

Corollary'. For any point x in a compact T, space X there is a set Y such that xe Y
but forany Z < Y with | Z| < mwx(x, X ) we havex ¢ Z (or, inshort, a(x, Y) = mx(x, X)).

Again (cf. [2] or [4]), this was known in case mx(x, X) is a regular cardinal but
is new if it is singular.

References

[1] A. Berner and I. Juhdsz, Point-picking games and HFD’s, in: Proc. Log. Coll. Aachen (Springer,
Berlin, 1983) 53-66.

[2] 1. Juhasz, Cardinal functions—ten years later, Math. Centre Tract 123, Amsterdam, 1980.

{3] L Juhdsz, On point-picking games, Topology Proc. 10 (1985) 103-110.

[4] B. Sapirovski, On tightness, 7-weight and related notions (in Russian), U¢en. Zap. Latv. Univ. 257
(1976) 88-89.

[5] J. H. Weston and J. Shilleto, Cardinalities of dense sets, General Topology Appl. 6 (1976) 227-240.



