Topology and its Applications 32 (1989) 289-294 North-Holland

$\pi(X) = \delta(X)$ FOR COMPACT X

I. JUHÁSZ*

Magyar Tudomanyos Akademia, Matematikai Kutato Intezete, Realtanoda U 13-15, 1053 Budapest, Hungary

S. SHELAH

Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Received 11 December 1987

We prove that if X is a compact T_2 space (and $x \in X$) and $\pi(X) = \kappa$ ($\pi_X(x, X) = \kappa$), then there is a dense subset $Y \subset X$ (resp. a set $Y \subset X$ with $x \in \overline{Y}$) such that $d(Y) = \kappa$ (resp. $x \notin \overline{Z}$ for any $Z \subset Y$ with $|Z| < \kappa$). Previously this only has been proven for κ regular. A consequence is that the point-picking game $G_a^D(X)$ is always determined if X is compact T_2 .

AMS (MOS) Subj. Class.: 54A25, 54D30Boolean algebra of regular open subsets singular cardinals point-picking game compact π -weight dense set

In [5] the authors introduced the cardinal function

 $\delta(X) = \sup\{d(Y): Y \subseteq X \text{ dense in } X\},\$

and raised the following interesting problem: is $\pi(X) = \delta(X)$ for a compact T_2 space X? It was shown in [2 and 4] that every compact T_2 space X has a dense subspace Y left separated in type $\pi(X)$, hence if $\pi(X)$ is regular, then the answer to the above question is "yes", and in fact we have a dense set Y with $\delta(X) = d(Y) = \pi(X)$, i.e. $\sup = \max$. It also follows then easily that under GCH we have $\pi(X) = \delta(X)$ always. But the problem then remained whether the extra set-theoretic assumption is necessary here for singular values of $\pi(X)$? We are going to show below that in fact it is not, though the proof of this is definitely more difficult than that of the case in which $\pi(X)$ is regular.

Theorem. If X is any compact T_2 space, then X has a dense subspace Y with $d(Y) = \pi(X)$. Consequently, $\pi(X) = \delta(X)$.

Proof. Since this has been known if $\pi(X)$ is a regular cardinal, let us assume now that $\pi(X) = \kappa$ is singular.

* Research partially supported by OTKA grant no. 1805.

0166-8641/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

Let $\operatorname{RO}(X)$ be the boolean algebra of regular open subsets of X and let us put $\mathscr{R} = \operatorname{RO}(X) \setminus \{0\}$. Given a regular cardinal λ and a function $p \in {}^{\lambda} \mathscr{R}$ (i.e. $p : \lambda \to \mathscr{R}$) we put, for any $b \in \mathscr{R}$,

$$A_b(p) = \left\{ \alpha \in \lambda : \exists a \in [\alpha]^{<\omega} \left(0 \neq b - \bigvee_{i \in a} p(i) \leq p(\alpha) \right) \right\},\$$

where, of course, -, \vee and \leq are taken in RO(X). Now, we let I_p denote the λ -complete ideal on λ generated by the family

$$\{A_b(p): b \in \mathcal{R}\},\$$

i.e. we have

$$I_p = \{ A \subset \lambda : \exists \mathcal{B} \in [\mathcal{R}]^{<\lambda} \ (A \subset \bigcup \{A_b(p) : b \in \mathcal{B}\}) \}.$$

Note that for any $\alpha \in \lambda$ we have $\alpha \in A_{p(\alpha)}(p)$, hence I_p contains all singletons and thus all subsets of λ of size $<\lambda$.

For any collection $\mathscr{B} \subset \operatorname{RO}(X)$ we shall denote by $\langle \mathscr{B} \rangle$ the (not necessarily complete) subalgebra of $\operatorname{RO}(X)$ generated by \mathscr{B} .

We now formulate a lemma that is perhaps the crux of the whole proof.

Lemma. There are in κ cofinally many regular cardinals $\lambda < \kappa$ for which there is some $p \in {}^{\lambda} \mathcal{R}$ such that the ideal I_p on λ is proper, i.e. $I_p \neq P(\lambda)$.

Proof. Assume, indirectly, that there is a cardinal $\nu < \kappa$ such that whenever λ is a regular cardinal with $\nu < \lambda < \kappa$, one has for every $p \in {}^{\lambda} \mathcal{R}$, $I_p = P(\lambda)$. We are going to show that then for every cardinal λ with $\nu \leq \lambda \leq \kappa$ we have

for every
$$\mathscr{B} \in [\mathscr{R}]^{\lambda}$$
 there is $\mathscr{C} \in [\mathscr{R}]^{\nu}$ such that $\mathscr{C} <_{\pi} \mathscr{B}$, (*)

where $\mathscr{C} <_{\pi} \mathscr{B}$ means that for every $b \in \mathscr{B}$ there is a $c \in \mathscr{C}$ with $c \leq b$. Of course, then $(*)_{\kappa}$ implies $\pi(X) \leq \nu$, a contradiction.

Now, $(*)_{\lambda}$ is proven by induction on λ . Of course, $(*)_{\nu}$ is trivial and thus assume next that $\nu < \lambda \leq \kappa$ and that $(*)_{\mu}$ has been shown to hold whenever $\nu \leq \mu < \lambda$. The case in which λ is singular is easy:

Let $\mu = \operatorname{cf}(\lambda) < \lambda$ and $\lambda = \sum \{\lambda_i : i \in \mu\}$ with $\lambda_i < \lambda$ for each $i \in \mu$, and let $\mathscr{B} \in [\mathscr{R}]^{\lambda}$ where $\mathscr{B} = \bigcup \{\mathscr{B}_i : i \in \mu\}$ with $|\mathscr{B}_i| = \lambda_i$ for $i \in \mu$. By induction we have a $\mathscr{C}_i \in [\mathscr{R}]^{\nu}$ such that $\mathscr{C}_i <_{\pi} \mathscr{B}_i$ for each $i \in \mu$. Then

 $\left|\bigcup\{\mathscr{C}_i:i\in\mu\}\right|\leq\nu\cdot\mu<\lambda,$

hence now by $(*)_{\nu \in \mu}$ there is a set $\mathscr{C} \in [\mathscr{R}]^{\nu}$ such that

 $\mathscr{C} <_{\pi} \bigcup \{\mathscr{C}_i: i \in \mu\} <_{\pi} \mathscr{B},$

i.e. $(*)_{\lambda}$ holds.

Next we assume that $\nu < \lambda < \kappa$, and λ is regular, and consider

$$\mathscr{B} = \{ b_{\alpha} \colon \alpha \in \lambda \} \in [\mathscr{R}]^{\lambda}.$$

290

Let us put, for any $\alpha \in \lambda$,

$$\mathscr{B}_{\alpha} = \{ b_{\beta} \colon \beta \in \nu + \alpha \},\$$

then we get a sequence $\langle \mathcal{B}_{\alpha} : \alpha \in \lambda \rangle$ of subsets of \mathcal{R} which is increasing, continuous (i.e. $\mathcal{B}_{\alpha} = \bigcup \{ \mathcal{B}_{\beta} : \beta \in \alpha \}$ if α is limit) and satisfies $|\mathcal{B}_{\alpha}| \leq \nu + |\alpha| < \lambda$ for each $\alpha \in \lambda$. In what follows we are going to say that a sequence with all of these properties is nice.

Claim. For every nice sequence $\langle \mathcal{B}_{\alpha} : \alpha \in \lambda \rangle$ there is a nice sequence $\langle \mathcal{B}'_{\alpha} : \alpha \in \lambda \rangle$ such that $\mathcal{B}'_{\alpha} <_{\pi} \mathcal{B}_{\alpha+1}$ for every $\alpha \in \lambda$.

Proof. Let us write, for $\alpha \in \lambda$,

$$\mathscr{B}_{\alpha+1} = \{ q_{\beta}^{(\alpha)} \colon \beta \in \nu + \alpha \}.$$

For fixed $\beta \in \lambda$ let γ_{β} be the smallest ordinal α such that $q_{\beta}^{(\alpha)}$ is defined. (Clearly, $\gamma_{\beta} = 0$ if $\beta < \nu$ and $\beta + 1 = \nu + \gamma_{\beta}$ otherwise.)

Now we may apply our indirect assumption to the function $q_{\beta} \in {}^{\lambda} \mathcal{R}$ defined by

$$q_{\beta}(\alpha) = q_{\beta}^{(\gamma_{\beta} + \alpha)}$$

and conclude that $I_{q_{\beta}}$ is not proper, i.e. there is some $\mathscr{C}_{\beta} \in [\mathscr{R}]^{<\lambda}$ such that

$$\bigcup \{A_b(q_\beta): b \in \mathscr{C}_\beta\} = \lambda.$$

In particular this means that for every $\alpha \in \lambda \setminus \gamma_{\beta}$ there is a non-zero element c of

$$\langle \mathscr{C}_{\beta} \cup \{ q_{\beta}^{(i)} : \gamma_{\beta} \leq i < \alpha \} \rangle$$

with $c \leq q_{\beta}^{(\alpha)}$. Thus we put, for any $\alpha \in \lambda$,

$$\mathscr{D}_{\alpha} = \bigcup \{ \langle \mathscr{C}_{\beta} \cup \{ q_{\beta}^{(i)} \colon \gamma_{\beta} \leq i < \alpha \} \rangle \colon \beta \in \nu + \alpha \} \setminus \{ 0 \}.$$

Clearly, the sequence \mathscr{D}_{α} is continuous, and, according to our above remark, we have

$$\mathscr{D}_{\alpha} <_{\pi} \mathscr{B}_{\alpha+1}.$$

But $|\mathscr{D}_{\alpha}| < \lambda$, hence by induction we may find $\mathscr{C}_{\alpha} \in [\mathscr{R}]^{\nu}$ such that $\mathscr{C}_{\alpha} <_{\pi} \mathscr{D}_{\alpha}$. Let us now define the sequence $\langle \mathscr{B}'_{\alpha} : \alpha \in \lambda \rangle$ as follows:

$$\mathscr{B}'_{\alpha} = \begin{cases} \bigcup \{ \mathscr{E}_{\beta} \colon \beta \leq \alpha \}, & \text{if } \alpha \text{ is not limit;} \\ \bigcup \{ \mathscr{E}_{\beta} \colon \beta \in \alpha \}, & \text{if } \alpha \text{ is limit.} \end{cases}$$

It is clear that $\langle \mathscr{B}'_{\alpha} : \alpha \in \lambda \rangle$ is a nice sequence. If α is not limit, then $\mathscr{E}_{\alpha} \subset \mathscr{B}'_{\alpha}$, hence $\mathscr{B}'_{\alpha} <_{\pi} \mathscr{D}_{\alpha} <_{\pi} \mathscr{B}_{\alpha+1}$. If, on the other hand, α is limit, then we have $\mathscr{D}_{\alpha} = \bigcup \{\mathscr{D}_{\beta} : \beta \in \alpha\}$ and $\mathscr{E}_{\beta} <_{\pi} \mathscr{D}_{\beta}$ for each $\beta \in \alpha$, hence

$$\mathscr{B}'_{\alpha} = \bigcup \{ \mathscr{E}_{\beta} \colon \beta \in \alpha \} <_{\pi} \mathscr{D}_{\alpha} <_{\pi} \mathscr{B}_{\alpha+1},$$

i.e. the sequence $\langle \mathscr{B}'_{\alpha} : \alpha \in \lambda \rangle$ is as required.

Now, starting with our original nice sequence $\langle \mathcal{B}_{\alpha} = \{b_{\beta}: \beta \in \nu + \alpha\}: \alpha \in \lambda\rangle$ we repeatedly apply our claim to define nice sequences $\langle \mathcal{B}_{\alpha}^n: \alpha \in \lambda\rangle$ by induction on

 $n \in \omega$ as follows. We put $\mathscr{B}^0_{\alpha} = \mathscr{B}_{\alpha}$ and if $\langle \mathscr{B}^n_{\alpha} : \alpha \in \lambda \rangle$ is defined we choose a nice sequence $\langle \mathscr{B}^{n+1}_{\alpha} : \alpha \in \lambda \rangle$ such that $\mathscr{B}^{n+1}_{\alpha} <_{\pi} \mathscr{B}^n_{\alpha+1}$ for $\alpha \in \lambda$.

Next we show that

$$\bigcup \{\mathscr{B}_0^n: n \in \omega\} <_{\pi} \mathscr{B} = \bigcup \{\mathscr{B}_\alpha: \alpha \in \lambda\}.$$

Indeed, if $b \in \bigcup \{\mathscr{B}^n_{\alpha} : \alpha \in \lambda\}$, then the minimal α with $b \in \mathscr{B}^n_{\alpha}$ is either 0 or successor, say $\alpha = \beta + 1$, since $\langle \mathscr{B}^n_{\alpha} : \alpha \in \lambda \rangle$ is continuous, thus in the latter case, by $\mathscr{B}^{n+1}_{\beta} <_{\pi} \mathscr{B}^n_{\beta+1}$ there is an ordinal $\alpha' < \alpha$ and a $b' \in \mathscr{B}^{n+1}_{\alpha'}$ with $b' \leq b$. Using this repeatedly, and starting with any $b \in \mathscr{B}_{\alpha} = \mathscr{B}^0_{\alpha}$ we can define a decreasing sequence of ordinals that, after finitely many steps must end up with 0 and yield some $c \in \mathscr{B}^n_0$ with $c \subset b$.

In other words, we have

$$\mathscr{C} = \bigcup \{\mathscr{B}_0^n \colon n \in \omega\} <_{\pi} \mathscr{B},$$

while $\mathscr{C} \in [\mathscr{R}]^{\nu}$, i.e. $(*)_{\lambda}$ holds, and the proof of the lemma is thus completed. \Box

Let us now return to the proof of our theorem. By the lemma we may choose an increasing sequence $\langle \lambda_i : i \in \mu = cf(\kappa) \rangle$ of regular cardinals with $\lambda_0 > \mu$ such that for each $i \in \mu$ there is a function $p_i \in {}^{\lambda_i} \mathcal{R}$ for which the ideal I_{p_i} is proper. Let us now put

$$Y = \{ y \in X : (\forall i \in \mu) (\{ \alpha \in \lambda_i : y \in p_i(\alpha) \} \in I_{p_i}) \};$$

we claim that Y is the required dense subset of X, i.e. $d(Y) = \kappa$.

To show that Y is dense in X it will clearly suffice to prove that $Y \cap \overline{b} \neq \emptyset$ for each $b \in \mathcal{R}$. So let $b \in \mathcal{R}$, we will then define by induction on $i \in \mu$ sets $A_i \in I_{\rho_i}$ such that the collection

$$\mathscr{C} = \bigcup_{i \in \mu} \{ b - p_i(\alpha) \colon \alpha \in \lambda_i \setminus A_i \} \subset \mathscr{R}$$

is centered, i.e. any finite subset of \mathscr{C} has non-zero meet in $\operatorname{RO}(X)$. This in turn implies that

$$\bigcup_{i\in\mu} \{\vec{b} \setminus p_i(\alpha) \colon \alpha \in \lambda_i \setminus A_i\}$$

is a centered collection of closed sets in X, hence by compactness there is a point y in its intersection. But then, for each $i \in \mu$, we have

$$\{\alpha \in \lambda_i \colon y \in p_i(\alpha)\} \subset A_i \in I_{p_i},$$

hence $y \in Y \cap \overline{b}$, and we are done.

To start our induction we put

$$A_0 = A_b(p_0).$$

Now, if $\alpha_1, \ldots, \alpha_n \in \lambda_0 \setminus A_0$ with $\alpha_1 < \cdots < \alpha_n$, we show by induction on $l \le n$ that

$$\bigwedge_{k=1}^{l} [b-p_0(\alpha_k)] = b - \bigvee_{k=1}^{l} p_0(\alpha_k) \neq 0,$$

292

Sh:341

using the fact that $\alpha_l \notin A_b(p_0)$ for each $l \leq n$. Hence the set $\{b - p_0(\alpha) : \alpha \in \lambda_0 \setminus A_0\}$ is indeed centered in RO(X).

Now assume that $i \in \mu \setminus \{0\}$ and that for every j < i we have already defined $A_j \in I_{p_j}$ such that the family

$$\mathscr{C}_i = \bigcup_{j \in i} \{ b - p_j(\alpha) \colon \alpha \in \lambda_j \setminus A_j \}$$

is centered in $\operatorname{RO}(X)$. Let $\mathscr{C}_i^* \subset \mathscr{R}$ be the family of all finite meets of elements of \mathscr{C}_i . Then it follows from our assumptions that

$$|\mathscr{C}_i| = |\mathscr{C}_i^*| < \lambda_i.$$

Consequently, using that I_{p_i} is λ_i -complete, we get that

$$A_i = \bigcup \{A_c(p_i): c \in \mathscr{C}_i^*\} \in I_{p_i}.$$

Now let $\alpha_1, \ldots, \alpha_n \in \lambda_i \setminus A_i$ with $\alpha_1 < \cdots < \alpha_n$, moreover let c be the meet of any finite subset of \mathscr{C}_i , i.e. $c \in \mathscr{C}_i^*$. We want to show that

$$c \wedge \bigwedge_{l=1}^{n} b - p_{i}(\alpha_{l}) \neq 0$$

This is shown by induction on $l \le n$ in exactly the same way as it was shown for i = 0, but now using the fact that

$$\alpha_l \notin A_c(p_i) \cup A_b(p_i)$$

for every $l \le n$. This, however, means that the inductive hypothesis is preserved and thus the induction defining the A_i 's is completed.

Finally, to show $d(Y) = \kappa$, let $Z \subseteq Y$ with $|Z| < \kappa$. Then there is an $i \in \mu$ such that $|Z| < \lambda_i$. Now, for each $z \in Z$ we have $\{\alpha \in \lambda_i : z \in p_i(\alpha)\} \in I_{p_i}$, hence

$$\{\alpha \in \lambda_i \colon Z \cap p_i(\alpha) \neq \emptyset\} = \bigcup_{z \in Z} \{\alpha \in \lambda_i \colon z \in p_i(\alpha)\} \in I_p$$

as well. But I_{p_i} is proper, hence there is some $\alpha \in \lambda_i$ with $Z \cap p_i(\alpha) = \emptyset$ showing that Z is not dense in X, hence not dense in Y as well. This completes the proof of the theorem. \Box

In [1] the so-called point-picking game $G^{D}_{\alpha}(X)$ was introduced and studied. From our theorem we get the following result concerning this game.

Corollary. If X is compact T_2 , then the game $G^D_{\alpha}(X)$ is determined for any ordinal α .

Proof. Indeed, if $\pi(X) \leq \alpha$, then player I has an obvious winning strategy. If, on the other hand $\kappa = \pi(X) > \alpha$, then by our theorem player II will win by restricting his choices to a dense set $Y \subseteq X$ with $d(Y) = \kappa > \alpha$. \Box

294

This result is, at least consistently, false for non-compact spaces (cf. [1, 3]). In fact non-determined spaces for the game G_{ω}^{D} exist under \blacklozenge or MA_{\aleph_1} . However, it is still open whether undetermined spaces exist in ZFC.

Finally, we note that the proof of our theorem actually yields the following more general result, in which $\pi(\mathcal{R}')$ for some $\mathcal{R}' \subset \mathcal{R}$ is defined by

 $\pi(\mathcal{R}') = \min\{|\mathcal{P}| \colon \mathcal{P} \subset \mathcal{R} \& \mathcal{P} <_{\pi} \mathcal{R}'\}.$

Theorem'. If X is compact T_2 and $\mathscr{R}' \subset \mathscr{R} = \operatorname{RO}(X) \setminus \{0\}$ with $\pi(\mathscr{R}') = \kappa$, then there is some set $Y \subset X$ such that $Y \cap \overline{b} \neq \emptyset$ for all $b \in \mathscr{R}'$ while for every $Z \subset Y$ with $|Z| < \kappa$ there is some $b \in \mathscr{R}'$ with $Z \cap b = \emptyset$.

To see that this is not an "idle" generalization, consider a point $x \in X$ and put

 $\mathcal{R}' = \{ b \in \mathcal{R} : x \in b \}.$

Then $\pi(\mathcal{R}') = \pi \chi(x, X)$ and thus the following corollary is obtained.

Corollary'. For any point x in a compact T_2 space X there is a set Y such that $x \in \overline{Y}$ but for any $Z \subseteq Y$ with $|Z| \le \pi \chi(x, X)$ we have $x \notin Z$ (or, in short, $a(x, Y) = \pi \chi(x, X)$).

Again (cf. [2] or [4]), this was known in case $\pi \chi(x, X)$ is a regular cardinal but is new if it is singular.

References

- A. Berner and I. Juhász, Point-picking games and HFD's, in: Proc. Log. Coll. Aachen (Springer, Berlin, 1983) 53-66.
- [2] I. Juhász, Cardinal functions-ten years later, Math. Centre Tract 123, Amsterdam, 1980.
- [3] I. Juhász, On point-picking games, Topology Proc. 10 (1985) 103-110.
- [4] B. Šapirovski, On tightness, π-weight and related notions (in Russian), Učen. Zap. Latv. Univ. 257 (1976) 88-89.
- [5] J. H. Weston and J. Shilleto, Cardinalities of dense sets, General Topology Appl. 6 (1976) 227-240.