$\pi(X)=\delta(X)$ FOR COMPACT X

I. JUHÁSZ*

Magyar Tudomanvos Akademia, Matematikai Kutato Intezete, Realtanoda U 13-15, 1053 Budapest, Hungary

S. SHELAH

Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Received 11 December 1987

Abstract

We prove that if X is a compact T_{2} space (and $\left.x \in X\right)$ and $\pi(X)=\kappa(\pi X(x, X)=\kappa)$, then there is a dense subset $Y \subset X$ (resp. a set $Y \subset X$ with $x \in Y$) such that $d(Y)=\kappa$ (resp. $x \notin Z$ for any $Z \subset Y$ with $|Z|<\kappa)$. Previously this only has been proven for κ regular. A consequence is that the point-picking game $G_{a}^{D}(X)$ is always determined if X is compact T_{2}.


```
AMS (MOS) Subj. Class.: 54A25, 54D30
Boolean algebra of regular open subsets
singular cardinals point-picking game
compact \pi}\pi\mathrm{ -weight dense set
```

In [5] the authors introduced the cardinal function

$$
\delta(X)=\sup \{d(Y): Y \subset X \text { dense in } X\},
$$

and raised the following interesting problem: is $\pi(X)=\delta(X)$ for a compact T_{2} space X ? It was shown in [2 and 4] that every compact T_{2} space X has a dense subspace Y left separated in type $\pi(X)$, hence if $\pi(X)$ is regular, then the answer to the above question is "yes", and in fact we have a dense set Y with $\delta(X)=d(Y)=$ $\pi(X)$, i.e. sup $=$ max. It also follows then easily that under GCH we have $\pi(X)=$ $\delta(X)$ always. But the problem then remained whether the extra set-theoretic assumption is necessary here for singular values of $\pi(X)$? We are going to show below that in fact it is not, though the proof of this is definitely more difficult than that of the case in which $\pi(X)$ is regular.

Theorem. If X is any compact T_{2} space, then X has a dense subspace Y with $d(Y)=$ $\pi(X)$. Consequently, $\pi(X)=\delta(X)$.

Proof. Since this has been known if $\pi(X)$ is a regular cardinal, let us assume now that $\pi(X)=\kappa$ is singular.

[^0]Let $\mathrm{RO}(X)$ be the boolean algebra of regular open subsets of X and let us put $\mathscr{R}=\mathrm{RO}(X) \backslash\{0\}$. Given a regular cardinal λ and a function $p \in^{\wedge} \mathscr{R}$ (i.e. $p: \lambda \rightarrow \mathscr{R}$) we put, for any $b \in \mathscr{R}$,

$$
A_{b}(p)=\left\{\alpha \in \lambda: \exists a \in[\alpha]^{<\omega}\left(0 \neq b-\bigvee_{i \in a} p(i) \leqslant p(\alpha)\right)\right\}
$$

where, of course,,$- \vee$ and \leqslant are taken in $\operatorname{RO}(X)$. Now, we let I_{p} denote the λ-complete ideal on λ generated by the family

$$
\left\{A_{b}(p): b \in \mathscr{R}\right\}
$$

i.e. we have

$$
I_{p}=\left\{A \subset \lambda: \exists \mathscr{B} \in[\mathscr{R}]^{<\lambda}\left(A \subset \bigcup\left\{A_{b}(p): b \in \mathscr{B}\right\}\right)\right\} .
$$

Note that for any $\alpha \in \lambda$ we have $\alpha \in A_{p(\alpha)}(p)$, hence I_{p} contains all singletons and thus all subsets of λ of size $<\lambda$.

For any collcetion $\mathscr{B} \subset \operatorname{RO}(X)$ we shall denote by $\langle\mathscr{B}\rangle$ the (not necessarily complete) subalgebra of $\operatorname{RO}(X)$ generated by \mathscr{B}.

We now formulate a lemma that is perhaps the crux of the whole proof.

Lemma. There are in κ cofinally many regular cardinals $\lambda<\kappa$ for which there is some $p \in^{\lambda} \mathscr{R}$ such that the ideal I_{p} on λ is proper, i.e. $I_{p} \neq P(\lambda)$.

Proof. Assume, indirectly, that there is a cardinal $\nu<\kappa$ such that whenever λ is a regular cardinal with $\nu<\lambda<\kappa$, one has for every $p \in^{\lambda} \mathscr{R}, I_{p}=P(\lambda)$. We are going to show that then for every cardinal λ with $\nu \leqslant \lambda \leqslant \kappa$ we have

$$
\begin{equation*}
\text { for every } \mathscr{B} \in[\mathscr{R}]^{\lambda} \text { there is } \mathscr{C} \in[\mathscr{R}]^{\nu} \text { such that } \mathscr{C}<_{\pi} \mathscr{B} \tag{*}
\end{equation*}
$$

where $\mathscr{C}<_{\pi} \mathscr{B}$ means that for every $b \in \mathscr{B}$ there is a $c \in \mathscr{C}$ with $c \leqslant b$. Of course, then ($*)_{\kappa}$ implies $\pi(X) \leqslant \nu$, a contradiction.

Now, $(*)_{\lambda}$ is proven by induction on λ. Of course, $(*)_{\nu}$ is trivial and thus assume next that $\nu<\lambda \leqslant \kappa$ and that $(*)_{\mu}$, has been shown to hold whenever $\nu \leqslant \mu<\lambda$. The case in which λ is singular is easy:

Let $\mu=\operatorname{cf}(\lambda)<\lambda$ and $\lambda=\sum\left\{\lambda_{i}: i \in \mu\right\}$ with $\lambda_{i}<\lambda$ for each $i \in \mu$, and let $\mathscr{B} \in[\mathscr{R}]^{\lambda}$ where $\mathscr{B}=\bigcup\left\{\mathscr{B}_{i}: i \in \mu\right\}$ with $\left|\mathscr{B}_{i}\right|=\lambda_{i}$ for $i \in \mu$. By induction we have a $\mathscr{C}_{i} \in[\mathscr{R}]^{v}$ such that $\mathscr{C}_{i}<{ }_{\pi} \mathscr{B}_{i}$ for each $i \in \mu$. Then

$$
\|\left\{\mathscr{C}_{i}: i \in \mu\right\} \mid \leqslant \nu \cdot \mu<\lambda,
$$

hence now by $(*)_{\nu \cdot \mu}$ there is a set $\mathscr{C} \in[\mathscr{R}]^{\nu}$ such that

$$
\mathscr{C}<_{\pi} \cup\left\{\mathscr{C}_{i}: i \in \mu\right\}<_{\pi} \mathscr{B}
$$

i.e. $(*)_{\lambda}$ holds.

Next we assume that $\nu<\lambda<\kappa$, and λ is regular, and consider

$$
\mathscr{B}=\left\{b_{\alpha}: \alpha \in \lambda\right\} \in[\mathscr{R}]^{\lambda} .
$$

Let us put, for any $\alpha \in \lambda$,

$$
\mathscr{B}_{\alpha}=\left\{b_{\beta}: \beta \in \nu+\alpha\right\},
$$

then we get a sequence $\left\langle\mathscr{B}_{\alpha}: \alpha \in \lambda\right\rangle$ of subsets of \mathscr{R} which is increasing, continuous (i.e. $\mathscr{B}_{\alpha}=\bigcup\left\{\mathscr{B}_{\beta}: \beta \in \alpha\right\}$ if α is limit) and satisfies $\left|\mathscr{B}_{\alpha}\right| \leqslant \nu+|\alpha|<\lambda$ for each $\alpha \in \lambda$. In what follows we are going to say that a sequence with all of these properties is nice.

Claim. For every nice sequence $\left\langle\mathscr{B}_{\alpha}: \alpha \in \lambda\right\rangle$ there is a nice sequence $\left\langle\mathscr{B}_{\alpha}{ }_{\alpha}: \alpha \in \lambda\right\rangle$ such that $\mathscr{B}_{\alpha}^{\prime}<_{\pi} \mathscr{B}_{\alpha+1}$ for every $\alpha \in \lambda$.

Proof. Let us write, for $\alpha \in \lambda$,

$$
\mathscr{B}_{\alpha+1}=\left\{q_{\beta}^{(\alpha)}: \beta \in \nu+\alpha\right\} .
$$

For fixed $\beta \in \lambda$ let γ_{β} be the smallest ordinal α such that $q_{\beta}^{(\alpha)}$ is defined. (Clearly, $\gamma_{\beta}=0$ if $\beta<\nu$ and $\beta+1=\nu+\gamma_{\beta}$ otherwise.)

Now we may apply our indirect assumption to the function $q_{\beta} \in^{\lambda} \mathscr{R}$ defined by

$$
q_{\beta}(\alpha)=q_{\beta}^{\left(\gamma_{\beta}+\alpha\right)}
$$

and conclude that $I_{q_{B}}$ is not proper, i.e. there is some $\mathscr{C}_{\beta} \in[\mathscr{R}]^{<\lambda}$ such that

$$
\bigcup\left\{A_{b}\left(q_{\beta}\right): b \in \mathscr{C}_{\beta}\right\}=\lambda .
$$

In particular this means that for every $\alpha \in \lambda \backslash \gamma_{\beta}$ there is a non-zero element c of

$$
\left\langle\mathscr{C}_{\beta} \cup\left\{q_{\beta}^{(i)}: \gamma_{\beta} \leqslant i<\alpha\right\}\right\rangle
$$

with $c \leqslant q_{\beta}^{(\alpha)}$. Thus we put, for any $\alpha \in \lambda$,

$$
\mathscr{D}_{\alpha}=\bigcup\left\{\left\langle\mathscr{C}_{\beta} \cup\left\{q_{\beta}^{(i)}: \gamma_{\beta} \leqslant i<\alpha\right\}\right\rangle: \beta \in \nu+\alpha\right\} \backslash\{0\} .
$$

Clearly, the sequence \mathscr{D}_{α} is continuous, and, according to our above remark, we have

$$
\mathscr{D}_{\alpha}<{ }_{\pi} \mathscr{B}_{\alpha+1}
$$

But $\left|\mathscr{D}_{\alpha}\right|<\lambda$, hence by induction we may find $\mathscr{E}_{\alpha} \in[\mathscr{R}]^{\nu}$ such that $\mathscr{E}_{\alpha}<{ }_{\pi} \mathscr{D}_{\alpha}$.
Let us now define the sequence $\left\langle\mathscr{B}_{\alpha}^{\prime}: \alpha \in \lambda\right\rangle$ as follows:

$$
\mathscr{B}_{\alpha}^{\prime}= \begin{cases}\bigcup\left\{\mathscr{E}_{\beta}: \beta \leqslant \alpha\right\}, & \text { if } \alpha \text { is not limit; } \\ \bigcup\left\{\mathscr{E}_{\beta}: \beta \in \alpha\right\}, & \text { if } \alpha \text { is limit. }\end{cases}
$$

It is clear that $\left\langle\mathscr{B}_{\alpha}^{\prime}: \alpha \in \lambda\right\rangle$ is a nice sequence. If α is not limit, then $\mathscr{E}_{\alpha} \subset \mathscr{B}_{\alpha}^{\prime}$, hence $\mathscr{B}_{\alpha}^{\prime}<_{\pi} \mathscr{D}_{\alpha}<_{\pi} \mathscr{B}_{\alpha+1}$. If, on the other hand, α is limit, then we have $\mathscr{D}_{\alpha}=$ $\bigcup\left\{\mathscr{D}_{\beta}: \beta \in \alpha\right\}$ and $\mathscr{E}_{\beta}<_{\pi} \mathscr{D}_{\beta}$ for each $\beta \in \alpha$, hence

$$
\mathscr{B}_{\alpha}^{\prime}=\bigcup\left\{\mathscr{E}_{\beta}: \beta \in \alpha\right\}<_{\pi} \mathscr{D}_{\alpha}<_{\pi} \mathscr{B}_{\alpha+1},
$$

i.e. the sequence $\left\langle\mathscr{B}_{\alpha}^{\prime}: \alpha \in \lambda\right\rangle$ is as required.

Now, starting with our original nice sequence $\left\langle\mathscr{B}_{\alpha}=\left\{b_{\beta}: \beta \in \nu+\alpha\right\}: \alpha \in \lambda\right\rangle$ we repeatedly apply our claim to define nice sequences $\left\langle\mathscr{B}_{\alpha}^{n}: \alpha \in \lambda\right\rangle$ by induction on
$n \in \omega$ as follows. We put $\mathscr{B}_{\alpha}^{0}=\mathscr{B}_{\alpha}$ and if $\left\langle\mathscr{B}_{\alpha}^{n}: \alpha \in \lambda\right\rangle$ is defined we choose a nice sequence $\left\langle\mathscr{B}_{\alpha}^{n+1}: \alpha \in \lambda\right\rangle$ such that $\mathscr{B}_{\alpha}^{n+1}<_{\pi} \mathscr{B}_{\alpha+1}^{n}$ for $\alpha \in \lambda$.

Next we show that

$$
\bigcup\left\{\mathscr{B}_{0}^{n}: n \in \omega\right\}<_{\pi} \mathscr{B}=\bigcup\left\{\mathscr{B}_{\alpha}: \alpha \in \lambda\right\} .
$$

Indeed, if $b \in \bigcup\left\{\mathscr{B}_{\alpha}^{n}: \alpha \in \lambda\right\}$, then the minimal α with $b \in \mathscr{B}_{\alpha}^{n}$ is either 0 or successor, say $\alpha=\beta+1$, since $\left\langle\mathscr{B}_{\alpha}^{n}\right.$: $\left.\alpha \in \lambda\right\rangle$ is continuous, thus in the latter case, by $\mathscr{B}_{\beta}^{n+1}<_{\pi} \mathscr{B}_{\beta+1}^{n}$ there is an ordinal $\alpha^{\prime}<\alpha$ and a $b^{\prime} \in \mathscr{B}_{\alpha^{\prime}}^{n+1}$ with $b^{\prime} \leqslant b$. Using this repeatedly, and starting with any $b \in \mathscr{B}_{\alpha}=\mathscr{B}_{\alpha}^{0}$ we can define a decreasing sequence of ordinals that, after finitely many steps must end up with 0 and yield some $c \in \mathscr{B}_{0}^{n}$ with $c \subset b$.

In other words, we have

$$
\mathscr{C}=\bigcup\left\{\mathscr{B}_{0}^{n}: n \in \omega\right\}<_{\pi} \mathscr{B},
$$

while $\mathscr{C} \in[\mathscr{R}]^{\nu}$, i.e. $(*)_{\lambda}$ holds, and the proof of the lemma is thus completed.
Let us now return to the proof of our theorem. By the lemma we may choose an increasing sequence $\left\langle\lambda_{i}: i \in \mu=\operatorname{cf}(\kappa)\right\rangle$ of regular cardinals with $\lambda_{0}>\mu$ such that for each $i \in \mu$ there is a function $p_{i} \in{ }^{\lambda_{i}} \mathscr{R}$ for which the ideal $I_{p_{i}}$ is proper. Let us now put

$$
Y=\left\{y \in X:(\forall i \in \mu)\left(\left\{\alpha \in \lambda_{i}: y \in p_{i}(\alpha)\right\} \in I_{p_{i}}\right)\right\}
$$

we claim that Y is the required dense subset of X, i.e. $d(Y)=\kappa$.
To show that Y is dense in X it will clearly suffice to prove that $Y \cap \bar{b} \neq \emptyset$ for each $b \in \mathscr{R}$. So let $b \in \mathscr{R}$, we will then define by induction on $i \in \mu$ sets $A_{i} \in I_{p_{i}}$ such that the collection

$$
\mathscr{C}=\bigcup_{i \in \mu}\left\{b-p_{i}(\alpha): \alpha \in \lambda_{i} \backslash A_{i}\right\} \subset \mathscr{R}
$$

is centered, i.e. any finite subset of \mathscr{G} has non-zero meet in $\mathrm{RO}(X)$. This in turn implies that

$$
\bigcup_{i \in \mu}\left\{\stackrel{\rightharpoonup}{b} \backslash p_{i}(\alpha): \alpha \in \lambda_{i} \backslash A_{i}\right\}
$$

is a centered collection of closed sets in X, hence by compactness there is a point y in its intersection. But then, for each $i \in \mu$, we have

$$
\left\{\alpha \in \lambda_{i}: y \in p_{i}(\alpha)\right\} \subset A_{i} \in I_{p_{i}}
$$

hence $y \in Y \cap \bar{b}$, and we are done.
To start our induction we put

$$
A_{0}=A_{b}\left(p_{0}\right)
$$

Now, if $\alpha_{1}, \ldots, \alpha_{n} \in \lambda_{0} \backslash \boldsymbol{A}_{0}$ with $\alpha_{1}<\cdots<\alpha_{n}$, we show by induction on $l \leqslant n$ that

$$
\bigwedge_{k=1}^{\grave{1}}\left[b-p_{0}\left(\alpha_{k}\right)\right]=b-\bigvee_{k=1}^{\grave{\bigvee}} p_{0}\left(\alpha_{k}\right) \neq 0
$$

using the fact that $\alpha_{i} \notin A_{b}\left(p_{0}\right)$ for each $l \leqslant n$. Hence the set $\left\{b-p_{0}(\alpha): \alpha \in \lambda_{0} \backslash A_{0}\right\}$ is indeed centered in $\operatorname{RO}(X)$.

Now assume that $i \in \mu \backslash\{0\}$ and that for every $j<i$ we have already defined $A_{j} \in I_{p_{j}}$ such that the family

$$
\mathscr{C}_{i}=\bigcup_{j \in i}\left\{b-p_{j}(\alpha): \alpha \in \lambda_{j} \backslash A_{j}\right\}
$$

is centered in $\operatorname{RO}(X)$. Let $\mathscr{C}_{i}^{*} \subset \mathscr{R}$ be the family of all finite meets of elements of \mathscr{C}_{i}. Then it follows from our assumptions that

$$
\left|\mathscr{C}_{i}\right|=\left|\mathscr{C}_{i}^{*}\right|<\lambda_{i}
$$

Consequently, using that $I_{p_{i}}$ is λ_{i}-complete, we get that

$$
A_{i}=\bigcup\left\{A_{c}\left(p_{i}\right): c \in \mathscr{C}_{i}^{*}\right\} \in I_{p_{i}}
$$

Now let $\alpha_{1}, \ldots, \alpha_{n} \in \lambda_{i} \backslash A_{i}$ with $\alpha_{1}<\cdots<\alpha_{n}$, moreover let c be the meet of any finite subset of \mathscr{C}_{i}, i.e. $c \in \mathscr{C}_{i}^{*}$. We want to show that

$$
c \wedge \bigwedge_{i=1}^{n} b-p_{i}\left(\alpha_{i}\right) \neq 0 .
$$

This is shown by induction on $l \leqslant n$ in exactly the same way as it was shown for $i=0$, but now using the fact that

$$
\alpha_{l} \notin A_{c}\left(p_{i}\right) \cup A_{b}\left(p_{i}\right)
$$

for every $l \leqslant n$. This, however, means that the inductive hypothesis is preserved and thus the induction defining the A_{i} 's is completed.

Finally, to show $d(Y)=\kappa$, let $Z \subset Y$ with $|Z|<\kappa$. Then there is an $i \in \mu$ such that $|Z|<\lambda_{i}$. Now, for each $z \in Z$ we have $\left\{\alpha \in \lambda_{i}: z \in p_{i}(\alpha)\right\} \in I_{p_{i}}$, hence

$$
\left\{\alpha \in \lambda_{i}: Z \cap p_{i}(\alpha) \neq \emptyset\right\}=\bigcup_{z \in Z}\left\{\alpha \in \lambda_{i}: z \in p_{i}(\alpha)\right\} \in I_{p_{i}}
$$

as well. But $I_{p_{i}}$ is proper, hence there is some $\alpha \in \lambda_{i}$ with $Z \cap p_{i}(\alpha)=\emptyset$ showing that Z is not dense in X, hence not dense in Y as well. This completes the proof of the theorem.

In [1] the so-called point-picking game $G_{\alpha}^{D}(X)$ was introduced and studied. From our theorem we get the following result concerning this game.

Corollary. If X is compact T_{2}, then the game $G_{\alpha}^{D}(X)$ is determined for any ordinal α.

Proof. Indeed, if $\pi(X) \leqslant \alpha$, then player I has an obvious winning strategy. If, on the other hand $\kappa=\pi(X)>\alpha$, then by our theorem player II will win by restricting his choices to a dense set $Y \subset X$ with $d(Y)=\kappa>\alpha$.

This result is, at least consistently, false for non-compact spaces (cf. [1, 3]). In fact non-determined spaces for the game G_{ω}^{D} exist under $\leqslant M A_{\aleph_{1}}$. However, it is still open whether undetermined spaces exist in ZFC.

Finally, we note that the proof of our theorem actually yields the following more general result, in which $\pi\left(\mathscr{R}^{\prime}\right)$ for some $\mathscr{R}^{\prime} \subset \mathscr{R}$ is defined by

$$
\pi\left(\mathscr{R}^{\prime}\right)=\min \left\{|\mathscr{P}|: \mathscr{P} \subset \mathscr{R} \& \mathscr{P}<_{\pi} \mathscr{R}^{\prime}\right\}
$$

Theorem'. If X is compact T_{2} and $\mathscr{R}^{\prime} \subset \mathscr{R}=\mathrm{RO}(X) \backslash\{0\}$ with $\pi\left(\mathscr{R}^{\prime}\right)=\kappa$, then there is some set $Y \subset X$ such that $Y \cap \bar{b} \neq \emptyset$ for all $b \in \mathscr{R}^{\prime}$ while for every $Z \subset Y$ with $|Z|<\kappa$ there is some $b \in \mathscr{R}^{\prime}$ with $Z \cap b=\emptyset$.

To see that this is not an "idle" generalization, consider a point $x \in X$ and put

$$
\mathscr{R}^{\prime}=\{b \in \mathscr{R}: x \in b\} .
$$

Then $\pi\left(\mathscr{R}^{\prime}\right)=\pi \chi(x, X)$ and thus the following corollary is obtained.
Corollary'. For any point x in a compact T_{2} space X there is a set Y such that $x \in \bar{Y}$ but for any $Z \subset Y$ with $|Z|<\pi \chi(x, X)$ we have $x \notin Z($ or, in short, $u(x, Y)=\pi \chi(x, X))$.

Again (cf. [2] or [4]), this was known in case $\pi \chi(x, X)$ is a regular cardinal but is new if it is singular.

References

[1] A. Berner and I. Juhász, Point-picking games and HFD's, in: Proc. Log. Coll. Aachen (Springer, Berlin, 1983) 53-66.
[2] I. Juhász, Cardinal functions-ten years later, Math. Centre Tract 123, Amsterdam, 1980.
[3] I. Juhász, On point-picking games, Topology Proc. 10 (1985) 103-110.
[4] B. Šapirovskǐ, On tightness, π-weight and related notions (in Russian), Učen. Zap. Latv. Univ. 257 (1976) 88-89.
[5] J. H. Weston and J. Shilleto, Cardinalities of dense sets, General Topology Appl. 6 (1976) 227-240.

[^0]: * Research partially supported by OTKA grant no. 1805.

