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Abstract

The original theme of the paper is the existence proof of “thefig=s(ny: « < 1) which is a
(r, J)-sequence fof = (I;: i < 8), a sequence of ideals”. This can be thought of as a generalization
to Luzin sets and Sierpinski sets, but for the produet. s dom(Z;), the existence proofs are related
to pcf.

The second theme is when does a Boolean alg8bleve a free calibek (i.e., if X € B and
|X| = A, then for someY C X with |Y| =X andY is independent). We consider it f& being
a Maharam measure algebra, Bra (small) product of free Boolean algebras, ardc Boolean
algebras. A central case is= (J,)T, or more generallyp = u+ for u strong limit singular of
“small” cofinality. A second one ig = u=¥ < A < 2#; the main case i& regular but we also have
things to say on the singular case. Lastly, we deal with ultraproducts of Boolean algebras in relation
toirr(-) ands(-) etc.0 1999 Published by Elsevier Science B.V. All rights reserved.
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0. Introduction

1. The framework and an illustration

We define whenij = (,: o < A) is a(x, I, J)-sequence fol = (I;: i < 8)”, which
means ( = JP for simplicity) that eachy, € [];_; Dom(l;) and that forA = (A;: i <
8) € [ 1,4 Ii for all large enoughy, 1, “run away” from A, i.e., for theJ-majority of
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i <38, ne(i) ¢ A;. We give the easy existence If is x;-complete andx;: i < §) are
strictly increasing converging to a strong limit (singulaf)u™ = 2* = A (1.8). We define
normality, explain how by the existence of sughcoloring properties can be lifted (1.6).

As an illustration we prove that (the well known result that), e.gi, 4 2= = %, then

3% is not a free caliber of the Maharam measure algebra (i.e., son¥e skt elements,

is non-independent, in fact in a more specific way). For this we use ideals related to the
Erdos—Rado Theorem.

2. There are large free subsets

Why does the application in §1 involve“near” a strong limit singulay. of cofinality
Ro? We show that this was necessaryuil < 1 < 2* and ci}) is large enough= J; is
OK, > 2% js almost OK, but involves more pcf considerations), thés a free caliber of
the Maharam measure algebra.

3. Strong independence in Maharam measure algebras

We define whenfj is a superi, I, J)-sequence fof”. The strengthening is that we now
can deal withm-tuples (anyz < w) and prove the easy existence (see 3.1, 3.2). We define
for a set ofx intervals in a Boolean algebra variants of independence and strong negation
of it (3.4) and apply it to prove existence of a stronghanti-independent set in a Maharam
measure algebra (3.6), which (by 3.7) suffices for having a subalgebra of dimengitin
no independent set of cardinality This completes the consistency part of the solution
of a problem, which was to characterize all cardiriaishich can have this property. The
question was asked far= X, by Haydon and appeared in Fremlin’s book [5]. Haydon [8,

9] and Kunen [10] independently proved it to be consisteniferii assuming CH. The
question from [8] and [5] was what happens with under MA. Recently, Plebanek [13,

14] proved that under MA all regular cardinatsk; fail the property, and finally Fremlin

[5] gave the negative answer to the original question of Haydon by showing that under MA
the property fails fokk1. DZamonja and Kunen [2,3] considered the general casex(any
and topological variants.

We prove here, e.g., it = 3,41 = 3], then there is a Hausdorff compact zero-
dimensional topological space with measure on the family of the Borel subsets such that
it has dimensiork, so as a measure space is isomorphic to the Maharam measure space
B(x), but there is no homomorphism froi onto#2 (see 3.8). We finish by some easy
examples.

4. The interesting ideals and the direct pcf application

We return to our original aim: existence bfsequences fof. In 4.1 we consider some
ideals (%9, [T,_, Je, J M e<ny = 1o J5, €achi, regular, in the cases; < A¢i1, A¢ >
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Aoty he > 2%+1). We point out (4.8) that for = (/% i < 8), if & =tcf([T; s i/ Jf%
we get existence directly from the pcf theory. We then turn to the gase[],_,. Jffi,
give a sufficient pcf condition for the existence when,: ¢ < n) is increasing (4.10) and
then prove that this condition occurs not rarely (in 4.12), so if

r=[]nis2

<8

A; increasing, we can “group together” intervalsipfand the existence of suc¢h;: i < §)
is an important theme of pcf theory.

5. A-sequences for decreasing’ by pcf

We consider cases witly = J3° .,_,,, (Lie: € <n;) a decreasing sequence of

regulars. We prove the existence by using twice cases of true cofinalities, and show that
if the pcf structure is not so simple then there are such cases Ig,g4 > :l;;“’). We
concentrate on the case: § = n; = n, and then indicate the changes needed in the general
case.

6. Products of Boolean algebras

Monk asks about the free caliber of productsBpft= FBA(x;) = the free algebra with
xi generators, foi < §. In fact he asks whether= 1} is a free caliber of the product of
the FBA(J,) for n < w. But we think that the intention was to askjif= cf(x) > 2/4!
is a free caliber off [;_; B;. Note that this product satisfies ttjgh)*-c.c. In fact it
has cellularity ?!, so “tends to have free calibers”. We show that if there is a normal
super(x, J)-sequencej for appropriatel = (I,: n < w), thenx is not a free caliber of
[1,-, FBA(IDomI,]) (see 6.3, 6.3A), so a negative answer is possible. Now being “near
a strong limit singular of cofinalitykg” is necessary as a result parallel to that of §2 holds
(see 6.4).

Though the choice all,, was probably just natural as the first case to consider, actually
the product of uncountably many FBg)’s behave differently, e.g],'[iq)l FBA(J;) has
free caliber(J,,) ™! (see 6.5). The proof involves pcf considerations dealt with in §7. We
turn to another problem of Monk [12, Problem 34], this time giving unambivalent solution.

If  is weakly inaccessible witl2*: 1 < «) not eventually constant, then there is-a.c.
Boolean algebra of cardinality? and no independent subsets of cardinatity(see 6.8,

using the existence of suitable trees). We note that results similar to countable products
hold for the completion of FBAy).

We end by deducing from Gitik and Shelah [6] complementary consistency results (so,
e.g., the first question is not answerable in ZFC) and phrasing the principles involved, so
slightly sharpening the previous results. (See 6.11-6.14.) So together with the earlier part
of the section we have answered [12, Problems 35, 36] and [12, Problems 32, 33] in the
case we are near a strong limit singular cardinal.
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7. A nice subfamily of function exists

For completeness we deal with the followingy: € *Ord fora < A are given, 2 < 1 =
cf(r) and we would like to get approximation to “for someC A, | X| = A, (fy: ¢ € X)
is a A-system”, continuing [26, Claim 6.6D]. We phrase a special case (7.1) and deal with
some variants.

8. Consistency of “P(w1) has a free caliber” and discussion of pcf

We deal with another of Monk’s problems, [12, Problem 37], proving the consistency
of “there is no complete Boolean algel®eof cardinality 21 with empty free caliber” (in
factR,,+1 = 2% is always a free caliber aB). The universe is obtained by addiRg, +1
Cohens to a model of ZFG GCH, and the proof uses §7. We finish by discussing some
pcf problems.

9. Having aA-sequence for a sequence of non-stationary ideals

We return to the original theme, for a more restricted case. We assumef(2*)
where u is strong limit singular, and in this section= 2+, i.e., 2* is regular (for the
singular case see §10). We get quite strong results:n(f < « for simplicity) for
some ideal/ on cf(u) (usually Jé’ffu), always close to it) we can finth: i < cf(u)),

i <j=maxa) <min(A/), Al = (Ai¢: £ <n(x)), Aigr1 > 2% (A ¢ regular of course,
14 = SUQ _gf(,1) A.0), Such that there is @., J)-sequence fol = (beid: i < cf(w)). This

is nice (compare with 85) but we get much mofés a sequence of nonstationary ideals
and even([T,_, Jﬂi}": i < cf(u)) whereJ?s'% = {A: AN {5 < x: cf(§) =0} is not
stationary ando = cf(o) € (cf(u), u).

We then work more and get versions with club guessing ideals. We deal further with the
version we get for the case(gf) = Rg. (So itis less clear which ideals can be used.)

10. The power of a strong limit singular is itself singular: Existence
We do the parallel of the first theorem of 89 in the ca$esXsingular.
11. Preliminaries to the construction of ccc Boolean algebras with no large
independent sets
Here the problem is whether everyc.c. Boolean algebra has free caliigrthe case
of being “near a strong limit singular of cofinality < «” was considered in [18], we

deal with the case. = u= < A < 2*. Here we make the set theoretic preparation for
a proof of the consistency of a negative answer with strong violation of GCH. We use
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Boolean algebras generated hys freely except forr, Nxg Nx, =0 for {o, B, ¥y} e W

for some setW of triples with intersection of any two having at most one element. The
point is that the properties ofij“is a A-sequence fod” with such ideals/ (unlike the

ones associated with the Erd6s—Rado theorem) are preserved by adding many Cgahens to
(whereu <« |Dom(1;)]| etc.).

12. Constructing ccc Boolean algebras with no large independent sets

We complete the consistency results for which the ground was prepared in §11. We
construct the relevant Boolean algebra usin@ .a/)-sequence fof, I as there, using, as
building blocks, Boolean algebras generated, e.g., from the triple system. So we will give
sufficient conditions for the-c.c. and other properties of the Boolean algebra.

13. The singular case

We continue 8§11 and 8§12 by dealing here with the case singular but(Va < 1)
(Ja|=* < 1), note that the forcing from 812 essentially creates only such cases.

14. Getting free caliber for regular cardinals

We continue dealing witlx-c.c. Boolean algebras, giving a sufficient condition for
being a free caliber, hence a consistency follows (complementing 811 and 812; together
this solves [12, Problems 32, 33] in the case we are not near a strong limit singular cardinal;
thus together with §6 this gives a solution).

15. Onirr: The invariant of the ultraproduct, greater than the ultraproduct of
invariants

We prove the consistency of

irr( ]_[ B,,/D) > ]_[ irr(B,),D
n<w n<w

whereD is a nonprincipal ultrafilter om and ir B) = irr,(B) and irr, (B) = sug| X|: X C
B and if xg, x1, ..., x,, are distinct members of, m < n thenxg ¢ (x1,...,x,)p}. The
way is to buildB,, with irr,, (B,) = A7, irrp,.1(B,) = A, A = AN, Our earlier tries as the
approximation toB,, did not work. So the point is a version etgraded independence
phrased a$F;: ¢ < n), then solve [12, Problem 26]. We then deal with, hL(—), hd(—)
and Lengtli—), using the construction of 812 in ZFC, and solving [12, Problems 22, 46,
51, 55].
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0. Introduction

Our original aim was to construct special subsetf[pf; A;, concentrating particularly
on the case whek; converge to a strong limit singular.

This continues [18] (so [25,28], Rostanowski and Shelah [15]), but as these are
essentially notes from the author’s lectures in Madison, they are self-contained. (81 and 84
just represent old material, adding an illustration for Maharam algebras.)

Some sections improve the general existence theorems. The main new point is the case
when we use

I = H J{’fi with thex, ;’s regular decreasing

l<n;

(as well as the case of the nonstationary ideal). We shall discuss this below and give the
definition after we first fix some notation.

Notation.

(1) I denotes an ideal on a set Dofy, which means that is a subset of?(Dom(/))
closed under (finite) unions and subsets, RO 7, and usually for simplicity, all
singletons are assumed to belond to
I is k-complete if it is closed under unions efx elements.

(2) 1, J denote ideals.

(3) IT={AC Dom(I): A¢lI}.

(4) If Ais a set of ordinals with no last member we let

JY= (B C A: B abounded subset af}.

(5) The completeness of the iddalcomp(/) is the maximak such thatl is x-complete
(it is necessarily a well-defined regular cardinal).

(6) [A]* ={a C A: |a|=«},[A]™* ={a C A: |a| < «}, etc.

(7) cour, i, 0,0) =Min{|P|: P C [A]<#, and for everya e [A]<Y there arex < &
anda; € P fori <« suchthau C | J;_, ai}.

Definition. We sayij = (no: « < A) is a(x, I, J)-sequence fof = (I;: i < 8) if
(a) I is anideal or (if not mentioned, we assunie= J)\bd), I; is an ideal on Dor¥;),
(b) J is an ideal or® (if not mentioned, we assume= JP9%),
(©) ne € Hi<8 Dom(/;),
(d) If X e I then

{i <8 {na(i): e X}eli}el.

By [18], if J; is k;-completey; > >°;_; kj, b =D ; s« strong limit, [Dom(/;)| <
and 2t = u* = A, then there is such a sequence. We recall this in §1.
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As an example of the application of sughwe presented the following (presented in
1.13): Suppose thd is a Maharam measure algebra of dimensiomn, cf(i) = Rg. Then
we can finda, € B for o < A such that Lelu,) > 0 and

(VX € D)@ (Vag < -+ <y € X) [ o, =0.
i<n
A “neighborhood” ofix being strong limit of cofinalityg is necessary.

Our usual case, which we call normal is:> ]_[j<l. |IDom(7;)| (this was not used in the
measure algebra application, but it is still good to have).

Main point. The main new point of this paper is to build’a 1, J)-sequence for certain
I without using2* = . We describe the cases bivhich we can handle.

Casel: The easiest case ¢f. [; = J)\bid, A =cf([];_sAi/J). We only need to translate
from the known pcf results.

Case2:

=TT,
l<n;

where, ; are regulaincreasingwith ¢ andi, andJ is an ideal on{(i, £): i <§, ¢ < n;}
such that

(VX € J)(3<Jr3bd)+i)< NGO ¢ X)
l<n;
and where for idealg,, (m < n)

[T s Z(X S xmenDOmI™): =36 3034 x1 -+ I, 1((x0, .. x0-1) € X)),

m<n

Starting from reasonable pcf assumptions and working a little, we can handle this case as

well.
Main Cases:
=],
l<n;

Ag.i regulardecreasingwith ¢.
We prove:lf A,;n; =n, and ¢ = tcf(J;_sA¢.i/J") for £ < n, thenwe can find
(ng: @ € l_[£<n Ae) (na,(i) S 1_[£<n Aeiri < 5) such that

df
e (T1) 0

l<n
then{i <&: (na(i): @€ X} e (J2 . ,,))} €7

Interesting instances.; decreasing witlf andi < j = A¢,; < Ay ;-
Case4: Like Case 3, but using the nonstationary ideal, or nonstationary ideal restricted
so some “large subset” of ; instead ofjffi.

Caseb: Like Case 3 but using a suitable club guessing itdielé[fe’i)).
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On history, background etc. and on Boolean algebras, see Monk [11,12]. This works
continues [18] and it evolved as follows. Getting the thesis of Carrieres, which was based
on [22], we started thinking again on “free calibers”, this time on measure algebras. We
noted that [18] gives the answer if, .3+ (J,)" = J,+1, and started to think of what is
called here “there is @, J)-sequence fof ”. We started to lecture on it (§1, §4, then §5,

89, 810). Meanwhile Mirna DZamonja asked me if this doesn’t solve a problem from her
thesis. This was not actually the case, but it became so in §3. Then she similarly brought
me p. 256 of Monk [12] and this influenced most of the rest of the paper, while later | also
looked at pages 255, 257 of [12], but not so carefully. Lastly, 815 is looking back at the
problems from [15]. Some of the sections are (revisions of) notes from my lectures. So |
would like to thank Christian Carrieres, Donald Monk and the participants of the seminar
in Madison for their influence, and mainly Mirna DZamonja for god-mothering this paper
in many ways, and last but not the least Diane Reppert for typing the paper, and even more
for correcting and correcting and to David Fremlin who lately informed me that 1.13 was
well known and 3.7, 3.12 have already appeared in Plebanek [13,14].

1. The framework and an illustration

We are considering a sequenée i < §) of ideals, and we would like to find a sequence
1= (ne: a < A) of members of [, _; Dom(/;) which “runs away” fromA = (A;: i < 6)
whenA; € I; (see Definition 1.1 below).

When J; is k;-complete,x; > [];_; IDom(I;)|, u = }_; s« strong limit singular,
Ar=ut =24, this is easy. We present this (all from [18]) and, for illustration, an example.

Definition 1.1.
(1) We say thafj is a(x, I, J)-sequence fof if:
(a) Jis anideal ors and/ is an ideal or,
(b) I =(I;: i <$&), wherel, is an ideal on Dor;),
(€) 7= (na: a < 1) wheren, € [],_s Dom(1;),
(d) if X e I'" then

{i <8 (i) eX}eli}el.

(2) We sayi is a weakly(x, 1, J)-sequence fof if we weaken clause (d) to
(d™) if X eI then

li <8 (i) eeXtelt}edt.

(3) We may omit/ if J = JP4, we may omit/ if 7 = JP9, and then we may sayj‘is a
A-sequence forf”.

We can replace by another index set.
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Definition 1.2.
(1) We sayi is normally a(x, I, J)-sequence fof (or in short, ‘7 is normal”, when
1,1,J are clear) if:
(x) foreveryi <3§,
compl;) > |{17a [i:a< A}!.
(2) We sayl = (I;: i <A) is normal if
compl;) > l_[ |Dom(Z;)|.

j<i

Claim 1.3. If I = (I;: i <$8)isnormal andjisa(x, I, J)-sequence fof thenij is normal
(i.e., normally a(x, I, J)-sequence for).

Proof. As for eachi < §

[{na Ti: o <2}| < =l_[|Dom([/)|<com[(Ii).

j<i

H Dom(/;)

j<i

Discussion 1.4.Why is normality (andA, J)-sequences in general) of interest? Think for
example of having, for each< §, a coloringc;, say a function with domaifDom(/;)]?

(or even[Dom(I;)]<%0), call its range the set of colors. These colorings are assumed to
satisfy “for everyX e Il.+ we can find som& C X with Y € I, such thai; | [Y]? (or
[Y1<™0) is of some constant pattern”. Now usifgve can define a coloring on [A]? (or
[A]1<%0) “induced by the(c;: i <38)”, e.g.,

c({e, BY) = ciw.py ({na i, B)), npli(a, ﬂ))}),
where i(a, B) =Min{i: ne (i) # np@)}.

Now, normality (or weak normality) is a natural assumption, because of the following:

Claim 1.5. If 7 is normally a(x, I, J)-sequence fof (or weakly spand X e I, thenthe
following set is= § modJ (or £ ¥ modJ):

Y= {i < 8. for somev € l_[ Dom(/;) andX; € I;" we have
j<i

(Vx € X))@ € X)[v =1q [i&x:na(i)]}.

Proof. Let X; = {n«(i): o € X}, by the definitions it is enough to prove

(x) if X; e I" theni e Y.
LetZ, ={ny [i: « <A},S0Z; C ]_[j<iDom(lj) and|Z;| < compl;) by the normality

of . Now for eachv € Z; let us define

X, ={n(): @ € X andn, [ i =v}.
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Clearly X; = U{X@: v e Z;}, and I; is |Z;|T-complete (as|Z;| < comp[;)). As
X; € I, necessarily for some € Z we haveX e I". This exemplifies that € Y, as
required. O

Conclusion 1.6. Assume
(a) 7 is a normal weakax, I, J)-sequence fof.
(b) ¢; is a function fron*> (Dom(I;)) to a setC of colors (or fromDom(1;)]<%0).
(c) d is a function from®> g (x) (or from[e(x)]<N) to C.
(d) ¢; exemplifiesl; 4 (d) which means
(*) for everyX e I;* we can find distinck, € X for ¢ < e(x) such that:
ifn<wandgg < -+ < -1 < e(x) then

C,'((X;O, ey x{n—l)) = d((é‘o, ey {n—l))

(orei({xg, -, xg, 1 D =d{%o, ..., Zn—1})).
(e) We define the coloring such that for alk < w

({0, - an—1)) = €i((Mag Q) - -, Ney_y (D))
(OI‘ C({O{O, MR a}’l*l}) = Ci({nao(i), R nan,]_(i)}))v When
C<m<n=i=Min{j <8 0y (j) # N, ()}

Thenc exemplifies! 4 (d).

[Why?If X € I, letY be the set as in Claim 1.5, henges J*. Pick ani € Y, so there
is X; Il.+ andv exemplifying thati € Y. Let {x;: ¢ < e(x)} exemplify thatl; A (d).
For¢ <e(x), leta; € X be such that,, [i =v andne, (i) = x;. Hence for all < w and
Lo<--+<n—1<e&(x) we have

C((OQ-O, . ,Otgnil)) = C,’((X{O, . ’xfn—l)) = d((é‘o, ey {n—l))-]

Comments 1.6A.

(1) Of course in 1.6 we can restrict ourselves to coloring of pairs. Note that the
conclusion works for alll’s simultaneously. Also, additional properties of ihés
are automatically inherited hy, see 1.7 below.

(2) We can also be interested in colorsefuples,n > 3, wherei < § as in clause (e)
of 1.6 does not exist.

(3) Whatis the gain in the conclusion?

A reasonable gain is “catching” more cardinals, i.e.fiit= J2¢, I = JP9, then in
addition to having an example fay we have one fok. A better gain is whed is simpler
than thel;’s. The best situation is when we essentially canfyet J29, 7 = 799 for all
normal/ with ((Dom([;)|: i < §) increasing with limitw. Assuming a case of GCH this is
trivially true.
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Normally we can find many tuples for which therg is § as in clause (e) of 1.6.

Fact 1.7. In 1.6if 6 = (21)*, or at leastd = cf(9) & (Va < 6)(|«|1®! < 0) then
(%) for everyX e [1]?, we can findr € [X]? andi < 8 and al-to-1 functionk from Y
into Dom(/;) such that

c((@o, ..., an-1)) = i ((h(@o), . ... h(@n-1)))

forag,...,a,—1 € Y (actuallyh(a) = n, (i), where for alle we havey, [i = v for
somev € [;_;Dom(Z))).

Proof. By the A-system lemma applied t{){na [iii<é) ae X} More elaborately,
let x be large enough, and 181 < (H(x), €, <}) be such thato, X, I, J, 1,7} € M and
M?® C M, while |[M|| <6 andM N @ is an ordinal< 6. If we choosex € X\ M, then we
can choose < & such thaty, [ i € M, 1, | (i +1) ¢ M (exists asM® € M). Now notice
that for some suclx andi the setZ d=8f{n,g(i): BeX, ng [i=nqli}has cardinality
0.Leth:Z — X be such tha € Z = nu) [ i =ne [ i andny,,) (@) = y. Lastly let
Y =Rangh). O

Lemma 1.8. Assume
(a) I; is ak;-complete ideal on; for i < 8, andé is a limit ordinal,
(b) ki =cflei) > 32 i
(C) o= SUR sk =SUR_s A,
(d) cf(f;, ©) < ut (usually in applications it is< 1 as usually2" < u; the cofinality
is that of a partially ordered sit
(e) A =put = ul®l (sor =A%l note thatu!®! > u&®W > 1+ always.
Then somg is a u*-sequence fotl;: i < §).

Remark 1.9.
(1) We shall focus on the cageas strong limit singulag = cf(u).
(2) We can weaken the requirement ™, but not now and here.

Proof of 1.8. Let)); C I; be cofinal,

|Vil < A.

So| 15 Vil < APl =2, and we can lisf]; _s ; as({A?: i <8): £ <), whereA! € V.

Fors <A, let(B(s,e): e <) list{B: B <maxu,}} (or {B: B<E}).
Now we choose fot < A, a functionn,; € []; _s Ai. Letn, (i) be any member of

Ai\U{AfW S<ZK,.}.

j<i

<8

[Why can we choose suchy (i)? Because&\f@’” € I; and[; is k;-complete andc; >

Zj<i Kj']
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We claim thatj def (ne: ¢ < A) is as required. LeX be unbounded: A, we need to

showY is co-bounded i, where
Y L' (ngi): @ € Xy e I},

LetAY ={ny(i): « € X} foreveryi ¢ Y. Let A} d=Ef®fori eY.LetA; €);, A; D Af. Let
¢ < besuchthatA;: i <8)=(AS: i <8). Soforevery € X\(¢ + 1), for everyi <
large enoughy, (i) ¢ A;.

[Large enough means: Just that letting e, < n be such thaf = 8(«, &) and letting
i*= i;yg be such thaEM* kj>¢, theni e[i*,8) =>n. (i) ¢ A;.] O

Example 1.10.1 = u™ = 2#, u strong limit of cofinalityNo. Letu =", _, i,. Without
loss of generality, 11 > 4 7(in). Let D, = [Dpa3(un) T1

I, déaf{x C D,: thereish: X — 2 such that for no infinited ish | [A]" constan}.

Fact 1.11. I, is an ideal.
Fact 1.11A. The ideall, is not trivial (so D, ¢ I,,).

[Why? By the Erdés—Rado Theorem, see 1.14-1.15 for a detailed explanation.]
Fact1.12. I, is u; -complete.

[Why? If h; : D, — 2" (i < wu,), then there i : D, — 2#* such thati(x) = h(y) =
Nihi(x) =hi(y).]

Conclusion 1.12A.So, by Lemma 1.8, there i& = (;: i < u™ = ) which is a-
sequence fofl,: n < w).

We apply Conclusion 1.12A to measure algebras getting a well known result:

Application 1.13. Assume. = .+ andu is a strong limit singular of cofinalit (i.e., as
in 1.10) If B is a measure algebréMaharam) of dimensiorn> u, we can findu, € 5 for
a < A with Leb(a) > 0 for eacha, and such that for every e [A]* we can finth* < w,
oy, ..., 0, € X such that

*

BF () aa, =0.
=1

Proof. Let 7 and/, be as in Conclusion 1.12A (all in the content of Example 1.10). Let
(Xn.a: n <o, a < Jyy3(uy)t) be independent in the sense of measure, all elemeifis of
and of measure/2.
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Foranyne[],., Dn, let
Yoo =Ypm) =1— ﬂ Xn,p — ﬂ (1= xn,p).
Benn) Ben(n)

Note thalﬂﬂe,,(n) xn,p has measure?. So Lel(y, ,) =1—2-27" (hence Leloy, ) > 0
if n>2). Let

vy = ﬂy,,,n ebB.

n>5

Solely,) >1-2-) 552" =1-2.274=1-273> 1/2. We leta, = y,, fora < i.
We check thata,: o < 1) is as required. Supposeéc [A]*. So, asl is normal, for some
n>5andv e[],_, D¢ we have

Y, =: {na(n): aeX, Ny [n:v}el,f.

(Note thatv is not really needed for the rest of the proof.)
So there iy, £ < w} € J,13(u,) T increasing such that

[{ye: £ <0}]" S V..

We use justyy: £ < 2n —1).
Foru e [{ye: £ <2n —1}]" leta(u) € X be such that

na(lt)(n) =u.
Itis enough to show that i8

m Ve = m Ay =0.
u u

So suppose that therejse B with Leb(z) > 0 and such that < (1), yy,,,,- Then without
loss of generality

€<2n—1:>2<xn,ygvzgl_xm}/@'

Casel. [{€: z < xp,y,}| 2 n. Letu € [{ye: £ <2n — 1}]" be such that
/\ @ <xny,).

Yeeu

Soz < ﬂweu X,y BULZ <y, <1— ﬂyeu Xn,y, @ contradic.tion. _
Case2. Not Case 1. So{¢: z <1 — x,,,}| = n and continue as above using-1
Xn,y. O

Let us elaborate on the ideals used above.

Definition 1.14. Forn, A, ¢ let
ERJ® = J* ={A C[A]": thereis now C 1, otp(w) = ¢ and[w]" C A},

ERIS = 1)

=1L {A C[A]": there areA; € J{”s fori <i(x) <

such thatd = U A,»}.

i<i (%)
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Fact 1.15.
(1) 1, is acf(u)-complete ideal ofia]", not necessarily propefsee(2)). J;* is not

necessarily an ideal.
2 I)(’Z is a proper ideal, i.e.[A]" ¢ I)(’Z iff

X <u=>r—> ().

3) I, = Igﬁvwn)ﬂ%")* (wherel,, and (u,: n < w) are from1.10).

(4) In the proof ofl.13we could have used less, for example,

I = n,2n+1
Dsalun)t ot

asJdyi1(un)t — (), forn>1.
Proof. (3) First direction Let A € I,,, so there ish: A — 2#» witnessing it. LetA; =
h=Y@)fori <2 . Now X C A, |X| >Ro = [X]" Z A;, by the choice ofd. Hence
. n,w
Al € J:ln+7(l‘vn)+.

Hence

n,w
ACIg )t @yt

Second directiorLet A € Igﬁﬂﬂnﬁ’(zunﬁ, sothere ard; (fori <i(x) < (2*7)*) such

thatA; € J_S;“;Wﬁ andA =J; ;¢ Ai.
Renaming, without loss of generalitgx) < 2%, and let

A = Ai\Uj<iAi ifi<i(.*), - -
! % otherwise, i.e., if € [i(x), 2"").

So (A]: i <i(x) is a partition of A. As A; € Jg’iﬂu yr e know that—(3X C

J.a7(un) T infinite) ([X]* € A;). Hence, lettinge = 3,47 (s) ™
—(3X C « infinite) ([X]" C A)).

Defineh: A — 2/» by
h@ =i iff aeAl,

soh withessesA € [,,. O

Definition 1.16.
(1) AsetWw c [A]<M is called a ccc base if

(x) foruvinW,|lunv| < |u|/2.
(2) Forw c [A]<No let
LIWl={ACx WN[A]™N =g},

L. [W]={A Ca: Alis the union of< x members of, [W1}.
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(3) For a Boolean algebrB we definelg by letting: X € I, iff X € B\{1} is the
union of < « ideals ofB.

Claim 1.17.
(1) Assume
(@) 7isa(x, J)-sequence fof = (I;: i <48), andcf()) > 8.
(b) Fori < §, the functiom; : Dom(/;) — A; satisfies

a <A = {x e Dom([;): hi(x) <a} €.

Leth = (h;: i <8) andlet f, = h o 1q d=Ef(h,»(17a(i)): i <8) (e]j—sM)-

Then

© (Vf €[Tr) (W'y <2) (f < fi)-

(d) for some clubE of A, we have

(d)e ifa<e < B <randec Ethenf, <; fz.

(SoifX € [A]", (V8§ € E) | X N (8, min(E\(8 + 1))]| < 1then(f,: a € X) is <y-
increasing cofinal i [, _s A;.)

(2) If f={(fs: a <), E satisfiegd)r (and of coursesug _s ; < A) andu < A then
without loss of generality fok as in(d)z the sequencg | X is u-free(see below
Moreover f is (u, E)-free (see below clausgl) of 1.18),if (x) or just the weaker
()’ or just (x)” below holds where

Definiti9n 1.18.
(1) fis u-freeif for X € [A]=* we can finds = (s4: o € X), s € J such that
[ <B&aeX&BeX&iec\sa\sp|= fuli) < fp(i).
(2) fis (u, E)-free if for X e [A]<* we can finds = (so: « € X), so € J such that
[¢<8<P&aecX&ScE&PEeX&ied\ss\sp|= fuli) < f50i).

(3) Fora > p andx = (A;: i < 8) we consider the conditions
(%) A=x*, x =cf(x) > u for somey,
(x) w=limyA; and{s < i: cf(f(8)) < u} € I[A],
(%)” thereisf’ = (f,: a < ) whichis < -increasing cofinal irf] |
is u-free.

Ai, <y)and

<8

Remark. This applies to the construction in 84, 85, etc. (e.g., construction ftem
[Tizs ’\i/Jsbd)-
2. There are large free subsets

The reader may wonder if really something like= cf(1) € (u, 2*] for u strong limit
singular, is necessary for 1.13. As in [18], the answer is yes, though not for the same reason.
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Of course, in what follows, Maharam measure algebra can be replaced by any measure
algebra. The interesting case(@y)(x < A < xM).

Fact 2.1. Let B be a Maharam measure algebraJp < = 1™ < cf(x) < A < 2* and

aq € Bt (soLeb(a,) > 0) for o < A are pairwise distinctthenfor someX e [A]* we have

(x) any nontrivial Boolean combination of finitely many member&gf « € X} has
positive measure.

Proof. Let {x;: i <i(x)} be a basis of the Maharam measure algebra (so gablas

measure 12 andux;'s are measure-theoretically independent). So for each A we

can find ordinalsi(«,n) < i(x) for n < », and a Boolean term, such thata, =

To (Xi(@,0)» Xi(a,1)» - - -). NOte that this equality is only modulo the ideal of null sets.
Without loss of generality, eacty, is a countable intersection of a countable union of

finite Boolean combinations of the’s. Again without loss of generalityj («, n): n < w)

is with no repetition. Note that without loss of generality

(%)= {i(a,n): o < Aandn <a)}.

Hence without loss of generalifyx) < A, hence without loss of generalityx) = 1. By
the Engelking—Karlowicz Theorem [4], we can dividléo u sets(X.: ¢ < u) such that
()1 the setsA; , dzef{i(a,n): a € X} for each¢ satisfy: (A; ,: n < w) are pairwise
disjoint.
As the number of possible termg < 2% <y, without loss of generality
(%)2 if &, B € X, thent, = 15, callit €.
Note also
(¥)3 if Y € X, then

ind(Y) =: {a eY: fornom <wandpy, ..., Bn—1 €Y Na do we have:
ay € the complete subalgebra generated by
{Xi@Benmy: L <m,n < w}},

satisfiegind(Y)| + 2% > |v].
[Why? We can prove by induction am ¢ ind(Y) that for somen < w and fo, 81, . . .,
Bm—1 €ind(Y) N a we havea, € the complete subalgebra Bf*generated” by{x; g, )
£ <m, n <o}, whenx;, . are considered generated &y. Now for eachrn < w and
Bo, ..., Bm—-1 € ind(Y), the number ofa, such thata, € the subalgebra generated by
{Xi(ge.n): £ <m, n <w}isat most continuum.]
As cf(r) > p, for at least ong < u, | X¢| = A, hence by £)3 we havelind(X;)| = A.
So, without loss of generality
(x)4 (a) the setsA, = {i(«, n): a < A} are pairwise disjoint,
(b) 7y =1 fora < A,
(c) fornom <w and fg < --- < By < A do we haveag, € the complete
subalgebra generated by; g,,,): £ <m, n < w}.
Now for eache < A we define an ideal, onw: it is the ideal generated by the sets

Zap=: {” <w:i(B,n) =i(a,n)} forg <a
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and let (where ch(n)is 1ifne Aand O ifn ¢ A)

J={A§w2 (20,22, -5 220, -+ +)

= T(Zo+chA(0)’ Z24chy) - - - 22n+Chyn)s - -)}~

As {x;: i <i(x)}is free (in the measure theoretic sense) Aat J, and{«,,: n < w} and
{B.: n < w} such thaty, < i(x) are with no repetition an@d, < i(x) with no repetition,
we have the following:

If Vm,n <)oy =Bn o n=mé&n¢A]lthent(xy,,...) =1(xg,,...) (just apply
the definition ofJ to (x4, Xg,, Xay. - - .)). By transitivity of equality we get

Vn<w)n¢ A= oy =Byl = T(Xaq, ...) =T(xg, .. .).

HenceJ is closed under subsets and (finite) unions. By clause (c})afwe know that
o ¢ I,; sol, is an ideal onw though it is possible that singletons are nofjn(a violation
of a convention in 80). [In fact we could have eliminated this violation, but there is no
reason to put extra work for it.] Alsd, < J.
Now, the number of possible ideals anis at most3d,; < u < cf()), so it suffices to
prove
(x)5 if YCA, aeY =1, CI, wherel is an ideal onw (sow ¢ I but singletons
may or may not belong td) extending/, thenany finite Boolean combination of
{aq: a € Y} has positive measure.O

Proof of (x)s. LetBp < --- < Bn—1 be fromY. Let
A={n <o: forsomel <k <m we havei (B¢, n) =i(,n)}.

By the definition ofZ, g, clearlyA € I. ForZ C i(x) let B*[Z] be the complete subalgebra

of B generated byxg: g € Z}. We letB* d=e'(B*[Z] if Z={i(Be,n): £ <m,n € A}. Let

B; ® B [{i (Br. n): n e AL,

As B} is complete, for each < m we can findb, , b € B} such that
() by <ap, <bf,
(ii) if ceB;thenc<apg, = c¢<b, andc >ap, = c=> bZ‘.
By the definition of3* and assumptions ofy;: i < i(x)) and{a,: @ < A) clearly
(x)e if {i(Be,n): ne A}y C Z and{i(B¢,n): n€w\A}NZ =@ andZ Ci(x) then
(i) z if c € B*[Z], thenc <ap, = c¢<b, andc >ap, = c>b;.
Obviously, for some Boolean terms, r[ we have

Z = tei(' -5 Xi(Bg,n)s - - JneA,
bl =1 (.o xignys - - Inea.

Now, clearly z,; = v~ andt,” = ¢+ for some fixedr~ and t*. Also b, < b, as
otherwisew\A € J. Let by = b[ — b, so Leliby) > 0, and for some term*, by =
T, Xi(Bn)s - - IneAs and leth = ﬂ€<m by € B*.

Clearly

(¥)7 Leb(b) > 0= any Boolean combination of thg;, (¢ <m) has positive measure.
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[Why? Prove it or{ag,: ¢ < m'} by induction onm’ < m using §)e.]
For proving Lel),_,, be) > 0, we define an equivalence relatiénon w:
n1Eny iff forevery?¢ <k <m we have
i(Be,n1) =i(Bx,n1) < i(Be,n2) =i(Px,n2).

Clearly E has finitely many equivalence classes, gy Az, ..., Ag@)—1. FOrky <k(x)
and?f = (€;: ky <k < k(%)) let

={t*(... Xiyum....): foreveryk <k(x), for somet <m we have
{(yn: n € Ag) = (i(Bn, )1 n € Ag), but
if k > ki thent = ¢;}.

Zk;]_,l7

We prove by induction ok < k() that for any?
cr E'Leb( (b be Z, ) > 0.

(In fact the measure does not dependgn

Fork = k(x) we have{by: £ <m} C Zy, () So we are done.

The casé = 0: Itis trivial: Z ; is a singleton{z*(... ., Xi(y,.n) - - )}, wherey, € A, so
obviously is not zero.

The caseq + 1: So letl = (¢x: k1+ 1< k < k(x)), and we know that for eaoh< k(%)
the elementl, = Coy~i is > 0. For¢ <m let f; be afunction fromt’ = {i (8,, £): £ <w
such thatif¢ € Ay thenk e [k1 + 1L k(x)]=>n=4{; andk =k1=n =0 andk < k1 =
n < m} into A, fr is one to onef; is the identity onY* = {i(B,,£) € Y: £ ¢ Ay} and
(Rangd f; [ (Y\Yy)): ¢ <m) are pairwise disjoint and

te Ay = fr(i(Bo, ©)) =i (B, 0).

Now we can imitate the proof a%)7 and get"),_,, d. > 0. LetY, = Rand f;), and note
that fo is the identity and’p = Y. Clearly f; induces an isomorphism frofi[Yo] onto
BlY,]. Call it £, and easilyd; %' f; (do). So we can imitate the proof af); and get
(Np<m dn > 0. But

Cp= ﬂc’(n)/\g: ﬂdn>0

n<m n<m

as required. O

Discussion 2.2.
(1) The proof of 2.1 gives more, almost a divisiongou subfamilies of independent
elements (in the Boolean algebra sense), see 2.16 below.
(2) We may wonder if & > 35" is necessary. Actually it almost is not (see 2.5 below)
but cfr > 2% is essential (see 3.10 below).
We shall see below (in 2.5) what we can get from the proof of 2.1.
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Definition 2.3. For a Boolean algebr® we say ({(aq, by): @ < a*) is an explicitly
independent sequence of intervalHrnif

(@) BFay < by,

(b) if uo, u1 C * are finite disjoint then

BE ﬂbaﬁ ﬁ(—aa)>o.

aeug aecuy

Claim 2.4. Assume
(x)y[X] (a) |X| = x and B(X) is a Maharam measure algebra with free basis
{xi: i € X}. For Z C X we let3(Z) be the complete subalgebraB{X)
generated byx;: i € Z}.
(b)y aq € BT (i.e., Leblay) > 0) for « € Y and B < a = ag # a,, While
Y| = A
(1) If A =cf(r) > 81 thenfor someY’ € [Y]*, Z € [X]=* anda, < a; from B(Z) we
have
(i) forceB(Z)wehaver <ay = c<a, anday <c¢ = a} <c,
(i) ifue[Y'1<N,npe*2and

ﬂ{a;: o EU, n(a):l}ﬂﬂ{l—a(;: o Eu, n(a):O};éO,

then),.c, a&' " # 0, wherecl® = —¢, 1 = .

(2) Assumeénf{Leb(a,Ab): b € (ag: B <a)}p > 0fora e Y. Thenin part (1) we can
demand:, < a; . Hence
(%) thereisY” e [Y']* such that{a,: « € Y”) is independent iff there i8” € [Y']*

such that((a, ,a)): « € Y”) is explicitly independentSee Definition2.3
above)

@) If |¥Y|=1>|X|=x and x1 < x, 0 = cov(x, x5 ,®1,2) < A thenY can be
represented as the union &fo subsets’’ such that for each there ig e [x ]S
satisfying{a,: « € Y'} C B(Z).

(4) If the clause(w) below holds then we can represénias the union oK u subsets
Y’ each satisfyingc) below(and(b)y/),
©y aa=7( .., Xi(@.n), - In<w: N £ m=>i(x,n) #i(e,m)andthe seta\,,(Y') =

{i (o, n): n < w} are pairwise disjoint, where
(o) (i) 2% < = pNoand2* > i or at least
(i) 2% < u and the density of the< X1)-base product x is < .

(5) If Y is as in(4), i.e., satisfies clausg), thenany finite intersection ofi,’s (for
a € Y') is not zero.

(6) If Y'is asin(4), i.e., satisfies clausg) thenY’ is the union of< 3, subsetsr”,
such that
(*)y~ there is an algebra/ with universeY” and < 3; functions(with finite arity,

of coursé such that

ifuCY’ acu=ad¢clyluna}l, then{a,: a € u) is independent.

Proof. Straight and/or included in the proof of 2.10
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Claim 2.5. In 2.1 we can weakefix > J5” to “u > 2% or even“cf(1) > 2%0” except
possibly whern is singular butX below fails
X for any countable sat of regulars,|pcf(a)] < Rg or (x) from 2.6.

Proof. Without loss of generality we assume){ from the proof of 2.1 (as the proof of
2.1 up to that point works here too). Létbe as there, sé is an ideal onw, so

(+) Jisanideal onv and{i(«, n): n < w)/J for a« < A are pairwise distinct;
by the following observation 2.6 for some iddabn » extending/ andX € [A]*, we have

aeX&peX&a£B={n i(a,n)=i(B,n)}el.

This is enough for continuing with the old proof of 2.10

Fact 2.6.
(1) If J is anideal onk, (fy/J: o < A) are pairwise distinct functions ifOrd and
6 = cf(x) > 2¢ thenfor some ideal onx extending/ and X € [A]* we have

aeX&pBeX&a#P= fuF#I I8

except possibly when
(x) A is singular and-X,, where
X, for any seta of regular cardinals> « we havda| <« = |pcf(a)| < «,
(2) We can replacéx) by
()" A is singular andﬂﬁik or =X, , where
X" for no seta of regular cardinals> «, do we havela| <« and A =
supx N pcf(a)),
X, . there are noy, cf(A) =6 < x < 4 and increasing sequences =
(Af: i < «) of regular cardinalse (2¢, x) such that{(max pc{kf: i<
k}: ¢ < 6) is increasing with limit but for every ultrafilterD on « we

have
sup{tcf(ﬂkf/D): ¢ < 9} <.

i<k

Proof. (1) Follows by (2).
(2) The proof is split to cases.
Casel: 1 is regular. By [20, 6.2].
Case2: 1 singular. First note

Fact2.6A. -K;, =X .

[Why? Let a exemplify ﬂ&h, let 6, € pcf(a) \ {A} be increasing for < 6 with
limit A. Let b, € a be such that, = max pcfb,) and let(x;: ¢ < «) list a and let
A; be:hg if A; € be and (2) if A, ¢ b.. Now A¢ = (A1 ¢ < «) exemplifies—i; .
First max pcfaz: ¢ < «} =0, <A and 6, is increasing with limit sug. N pcf(a)).
Secondly, for every ultrafilteD on « for eache we have tc(]'[w( A‘E/D) is (2°)* or
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is tcf(]‘[kk A¢ /D). (Simplify the first case if¢ < «: A, ¢ be} € D and the second case if
{¢ <k:x; €be} €D.) Sonow if tel], ., Ac/D) > 1 implies tek[ ], _, 27 /D) = 29+
as the latter is< 0, < A, so really there is no ultrafilte® on « for which

sup{tcf(ﬂ)@/D): e <9} <2,

<k

so the second demandiy_, holds.] O

Now we assum&;_, . For every regulas € (2, 1) we apply 7.3tq f: o <o), SOwe
can findA, C k and(y,,;: i < «) such that

(x)o for every sequenc@s;: i € A, ) satisfyingB; < y..; there arer ordinalse < o for

which
i€ Aa = ﬂi < foz(i) < VYo,is
i €k\As = fo(i) = Vo,

(¥)1 BeJ =0 epcfici(yyi): i <k, i€ Ay, i ¢ B).

Let J, = {B € x: maxpcfcf(ys.i): i € k\As andi € B} < o}, so clearlyc =
tef([]; -, cf(vs,i)/Js) andJ C J,. Let A be suchthat € A,, ando = max pcicf(ys,i):
i € AL}, Also, asf = cf(r) > 2¢, for someA’ C « (infinite) the set® = {o: 2 <o =
cf(o) <6 andA, = A’} isunboundedin. Let(o;: ¢ < 0) be anincreasing unbounded se-
guence of members @, such thatits limitis.. Apply 7.3 (see case 1) t@. [ A’: & < ),
whereg; (i) = y5,.;, and get{;: i € A’) andB’ € A’ such that

(%) if (B;: i € A') satisfiesi € A’ = B; < ' thenfor unboundedly many ordinals

<0

i€B =B <Vo.i<B
i€ A\B' =y, =B
CanB’ = (? This would mean that for some unboundéd: 6 we have
e€X = (Vi € A)Yo,i = B,

hencefo,: ¢ € X} C pcf{cf(B)): i € A’}, so{cf(B}): i € A’} has pcf of cardinality> 6 >
2 whereagA’| < «, contradiction, so reallyg’ # @.
As we are assuminglX;_ , there is an ultrafilteD on A’ such that

A< sup{tcf( I1 ygg,l-/D>: £ < 9}.

ieA’

Clearly

tcf( 1_[ yag,i/D> <o <A

ieA’
(by the choice ofd, = A’). Without loss of generality, > 6 for eache < 6. So we can
choose, for each, a functioni, € [[;. 4 ¥o..i such that
(%) if ¢ <6 and¢ # e, while (y,, i i € A’) <p (yo,.i* i € A’) then

(Vor.ii i € A') <p he.
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(Note that(y,, ;: i € A") #p (vs..i: i € A’) because of the cofinalities of the respective
ultraproducts.) So, consideririg as an ultrafilter on:

X, = {oe <0g: he <p fo <D (Vo..it I <k), but
B<a = —(fu<D 8 <D Vo.il i <k))}
has cardinality,. SoX = J,_, X, is as required.

We may wonder whether we can remove or at least weaken the assumgtidhe(
answer is:

Claim2.7. If « <A and® = cf(2) < 4, andX; (from 2.6) thenfor somef, € “A (for
a < A) the conclusion o2.6(1)fails.

Proof. Let y, Af i<k, <0)beas ir&;’,(.

Leta; =: {/\f: i <k}, ando; = max pcia;). Without loss of generalityo;: ¢ <6) is
increasing with limitx. By [25, 1l, 8§3] for each; < 6 we can find(fof: o < or) be such
that:

b Car = |{fS I b: & <max pclas)}| =max pcib).
Define(fy: a < A) by: fo, (i) = f()f(“)(xf) whereg (@) = min{¢: oy > a}. Now check. O
Discussion 2.8.
(1) Soif 2 < A, 6 =cf(x) then 2.7 shows that 2.6 is the best possible. (Of course we

still do not know ifX; " is possible.) See more in 3.11.
(2) Note: If cf(r) > 2¢, and

(Va)(a € Reg &|a] <k <min(a) = [pcf(a)| < |al),
then(J;_, cannot occur as without loss of generality
Jy ={A C«k: max pci{kf: i € A} <max pc{kf: i<k}

does not depend an

3. Strong independence in Maharam measure algebras

Claim 3.1. Assume
(a) I; is ak;-complete ideal on; fori < §,
(b) ki > X5,
(c) u=sup_;«; is strong limit singular,
(d) Ai < p,
() A=pt =2,
Thenthere is;; a superi-sequence fotl;: i < §), where
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Definition 3.2. We says is a super(, J)-sequence fotl;: i < §) if, in addition (to the
demandsin 1.8)
() foreveryn <w andBy ¢ < A (for @ < A, £ < n) increasing with?, pairwise distinct
we have

{i <8 {(np,(): L<n):a<r}e l_[Ii} elJ.

t<n

Moreover
(%) if n < w, Bae <A (for & < A, £ <n), Bur < Bae+1, and theB,  are pairwise
distinctthenfor someA € J we have:

ifm<w, ig<iy<---<iy—1belongtos\A, then

ot < e ac<ap < (T (1))

t<m “l<n

Proof. Like the proofof 1.8. O

Example 3.3. A =pt =2, u=3,_ Ai,i<j = §=« <A <Aj < p and each,
is measurable with &+ > . _; A ;)T-complete normal (or just Ramsey fey) ultrafilter

j<i
D; on;.
Letn=(n;: i <«k),i <n; <o (if «k =R, n; =i we may omit it),
I; ={A C[x]%: for someB € D; we have B]" N A = ¢}.
Then

(x)1 Claim 3.1 applies,
(x)2 foreverym <w andX €[],_,, Ii we can findA € D; such that:

[5:5=(se: L <m), s¢ € [A]", s¢ <spp1} NX =0

Definition 3.4.
(1) For a Boolean algebr® we say((aqs,by): @ < «*) is a strongly independent
sequence of intervals if

(@) BFEay < by,

(b) if B’ is a Boolean algebra extendi®yandn < w, ag <a1 < --- <ay_1 < o*
andB’ E “ay, < x¢ < by,” for £ < n, then any nontrivial Boolean combination
of (x¢: £ < n) is nonzero (inB’).

(2) We say, for a Boolean algebi that ((ay, by): o < a*) is a A-anti-independent
sequence of intervals if

(8) BEay < by,

(b) if B’ is a Boolean algebra extendilyandX e [¢*]* andB’ = “ay < xo < by”
for o € X, then there are < w andag < a1 < -+ < a1 from X such that
some nontrivial Boolean combination ofy,: ¢ < n) is zero.

(3) We say((aq, by): o < ™) is an independent sequence of intervals in the Boolean
algebraB if letting B’, x,, be as in 3.5 below, we havg,: a < «*) is independent

(in B').
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(4) We say((aq, by): @ < a™*) is a stronglyr-anti-independent sequence of intervals
for the Boolean algebrB if:
(8) BEay < by,
(b) if B, X, x4 (a € X) are as in 3.4(2)(b) above, then the Boolean subalgebra of
B’ generated byx,: o € X} contains no free subset of cardinality
(5) We say((aq, by): a < a*) is mediumlyi-anti-independent (sequence of intervals
of the Boolean algebr®) if
(@) BFay < ba,
(b) if B’ is the free extension d for ((ay, by): o < a*) (see 3.5), then the Boolean
subalgebra ofB’ generated by{x,: o < «*} contains no free subalgebra of
cardinalityx.

Definition 3.5. We say thatB’ = B’ (B, ((as, by): a < a*)), or B’ is the free extension of
B for ((ay, by): a < a*), if
(*) B'isthe algebra freely generated ByJ {x,: a < o*} except for the equations:
(a) the equations whicB satisfies,
(b) ay < xy < by, fOra < a*.

Observation 3.5A.
(1) In 3.4(3),if B C B(ap), ap+w +a* < a1 thenwe can embed’ into B(«1) overB.
(2) There are obvious implications among the notion from DefiniBohand some
equivalencesindependen(3.4(3))with explicitly independentind strongly inde-
pendent with(a) of 3.4(1)and ifas, ..., ay, B1, ..., Bu < o™ with no repetition,
n m
BE" ﬂ gy N ﬂ(—bm) > 0"

(=1 (=1

Lemma 3.6. Assumaeu is strong limit singular of countable cofinality and= u+ = 2~.
Thenin B(n), (the Maharam measure algebra of dimensjonwe can find a sequence
((ag, ba): a < ) such that

(@) B(u) Faq < ba,

(b) ((aq,by): a < A) is stronglyi-anti-independent.

Remark. What is the difference with 1.13? Note that 3.4(ii)(b) speaks of “no free subset
of the Boolean algebra”, not just of the set.

Proof. (1) Let u =Y,_,A0 (we may demandd,4s(A0) < A2, , < u) and let I,

be ERE,{I,l(AO)Jr,(AO)* (see Definition 1.14, they were used in the proof of 1.13). Let

n=ng: o < A) be as guaranteed by 3.1 (sdig) = w, ny(n) € [A,]", wherea, =

:1"_1(,\3>+. So1,,1 is |IDom(1,)|T-complete (we could also havé,: n < w) is normal).

Renaming, lek} (for n < w, a < 1,,) be the free generators of the Maharam algebra.
Define fore < 1 andm < w

ag,, = [ ){x§: B appearsime(m)}.
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by .= U {(Q—x}'": g appearsiny, (m)}.

We define by induction on, the elementsy ,, by, as follows: forn <5 letay , =0,
bon =1.Forn > 5we letay n = agn-1U (a; , N byn) andby,, = by n—1 N (b}, Uag.n)-
We can prove by induction om < w thatay n—1 < ag.n < ban < by n—1. We can compute
the measure, e.9., l€by , —ay.) =[[{1—2"¢D: 5< e <n).

Letay = Un<w Ao, € B(w), by = mn<w by € B(w).

So clearlyB(n) F ay, < by, and by the measure computations abd¥éy) F a, <
by. SO {(aq,by): @ < A) is a sequence of intervals. SuppaBe ¢, (for @ < 1), is a
counterexample to the conclusion so there is an independent $dfiset< A} of (c,: @ <
A)p € B. Thus, for eaclx < A for somek, < w and a Boolean term= t, (xo, . . ., Xk, —1)
and someBy.0 < Ba.1 < -+ < Bu.k,—1 We haved, =1, (CByos CPuts -+ cﬂa,ka—l)'

As we can replacé¢d,: o < A} by any subset of the same cardinality without loss of
generalityr, = 7, SO letk, = k(x).

Similarly, by the A-system argument without loss of generality for satne k(x) we
have

L<k=Bue=p and o) <a(2) = Bu) k-1 < Ba(2).k-

Let X, = {(np,,(0): k <€ <k(): a <} € * D=0 q,1"). So we know thatB =
(n<w: n>k(x)—kandX, e (n’;gg*l I,)" )} e J*. Letn € B. We can find a function
h:X, — A such that

fe€Xy & h(f)=a=1=np,,(n): k<L <k(x)).

Letm(x) < w be large enough, a power of 2 for simplicity.

As X, € ([T}5) 1 1,)F, we can find(S¢: € € [k, k(+)]) and(us: 5 € Sp) for € € [k, k(x))

such that

(@) Sk=1{0Oh

(b) us € [1,]"®,

(c) theus's are pairwise disjoint,

(d) Sep1={5"(w): 5 € Se, w € [uz]"},

(€) Sk S Xn-

(We just do it by induction ori using the definition oﬂ’gfz’l I, and the definition of.)
So it suffices to show thadtl,;): 1 € Sk(x)) is notindependent. For this just note:

(®) for everye € R*C if n is large enough compared k@x), 1/¢, andm () is large
enough compared t@ thenfor every ultrafilterD on B(u) we can by downward
inductionon? =k, ..., k(x) —1findu; € [us 19729 andp; e ke k=112 for
5 € Sg suchthats <7 e S, and? < ¢1 < k() anda € u: = [x2eD=n;(l1) =
1].

Now letn* =5y (i.e., n; for the uniques € Sp) and form < k(x) letting S;, = {5 € S,,: if
£ <mthens(®) [MA:W]”}’ we haves € S,’((*) =dys eDorse Sl/<<*) = dyi) ¢ D.

So to prove thafd,: o < 1) is notindependent it suffices to fifiC S (. such that

®s (Nues e NNgesyuy\s —da =0,
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or equivalently
®Y for no ultrafilterD on B(u) do we have

a € Sy = dye eD=a eS].

By the argument above it will suffice to have
® if (ug: 5 e U(S;: £ < k(x)) satisfiesSy = So, S, € Se,
S8, = us € us" 2
ands; ., = {57 (w): 5 € S, andw € [u;]"} thenS N Sl/<<*) ¢ {0, S}.
Now, not only that this is trivial by the probabilistic existence proof 4 la Erdos but the proof
gives much more than enough

Claim 3.7. Assume
(x) A is regular > Rg and ((aq, by): a < 1) is a strongly(or just mediumly r-anti-
independent sequence of pairs fréi(h) satisfyinga, < by .
Then
(a) There isB’, such that
(a) B’is asubalgebraoB()),
(B) B’ has cardinalityx and even dimensiaon,
(y) there is no subset a8’ of cardinality A which is independent.
(b) LetB’, x4 (o < A) be asin3.5,then the Boolean algebra in claué®) can be chosen
isomorphic to(xy: o < A) .

Proof. Straight. Clause (a) follows from clause (b). For clause (b) apply Definition 3.4(5)
and 3.5A. (Note: we can usB’ € B(x + 1).) It has already been done by Plebanek
[13]. O

Conclusion 3.8.For A as in 3.6 (i.e.) = u* = 24, pu strong limit > cf(u) = Rg) or just
asin ) of 3.7, we have
() there is a topological space which is Hausdorff, compact zero-dimensional, with
a measure Leb on the Borel sets such that it has dimeasgmas a measure space
is isomorphic taB3(1) but there is no homomorphism fro onto*2.

Proof. By 3.6(a), &) of 3.7 holds so we can restrict ourselves to this case. So by 3.7 we
know that clause (a) of 3.7 holds. Now it follows tha) holds, more specifically, that
the Cech-Stone compactification & (i.e., the set of ultrafilters oB’ with the natural
topology) and the measure 8f (which is just the restriction of the one dh())) satisfies
(x)of3.8. O

Example 3.9. AssumeBB is a Maharam measure algebra of dimensioand free basis
(xq: o < ), u = A > cf(d) = Ro. Then(x)z , below holds, where
(x)2., there are positive pairwise distinct membeygsof 5(u) for o < p, such that for
everyX e [A]* for somex # B from X, aq N ag =0.
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Proof. Trivial: let A =", _
Xota N (X —Upep Xm). O

Any An < Apg1 and foro € ((J,_,, Ae. An) We letay =

Fact 3.10. Suppose¥g < cf(r) < A and there are positiveé, € B(cf(1)) for « < cf(d)
such that for everyX e [cf(\)]S™® for somem < w and fo, ..., Bn € X we have
Leb(ﬂKm bg,) =0andu > A. Thenwe can find pairwise distinat, € B(A) for o <
such that for every e [A]* for somem < w, Bo, ..., B € X We haveLeb(ﬂKm ag,) =
0,i.e.,B(A)E ngm ag, =0.

Proof. Like the proof of 3.9 replacing, — |,,,, xm (for n < ) by b, (for « < cf(n)).
(Just say that if ¢fh) is a precaliber of3 then soisk.) O

Remark 3.10A.
(1) By 2.1 we have in 3.10 that necessarily»9f< 3» is normally c{A) < J;.
(2) Note that 3.11 elaborates 2.7 above and 3.12 is complementary to §2.

Example 3.11. AssumeRg < o <0 =cf(d) <27 < u < A,
A =sup{maxpcfa): a € Regn u\2%, |al =0, [a]*" € Jomaxpctwlal, and
sup(pcf(a)\(max pela)}) < u}
and there is4d C [0]° such thaj.A| > 6 and
A#B& Ac A& Be A= |ANB|<o.

Or just for no uniform ultrafiltet ono do we havgD N A| > o.
Thenwe can find ordinal$(w, ¢) for « < A, ¢ < o such that
(8) fora+#B,{e: i(a,e)#i(B,¢)}is infinite. Moreover
(a)™ for any ' < A for some ultrafilterD on o, {(i(a,¢): ¢ < o)/D: a < A} has
cardinality> 2/,
(b) for no ultrafilter D on o do we have{{i(a,¢): ¢ < o)/D: « < A} have

cardinalitya.
[Why? Let
A=Y ke A<k kg =maxpclag),
<0

lacl =0, [a;177 S Joylac], = suppcfla)\{Ac)).
Let fz €] ar for¢ <0, a < X be such thatfs: a < Ae)is <J<Ag[a£]-increasing cofinal

andb € J; (ar) = 1> [{fs 16 a <Al LetA= (A ¢ <6}, leta; = {ti: e € A},
Lastlyi(a, ¢) is

5(8) if U)\gga<)\;&aeA;,
3¢
¢ if Ux§<a<k;&e¢A§.
§<t
Now check.]



Sh:620

162 S. Shelah / Topology and its Applications 99 (1999) 135-235

Remark 3.11A. There are easy sufficient conditions: if 2 u! < u, cf(ul) = o,
pp(ud) = &, (Vx < uhH(cf(x) <o — pp(x) < ut) and » < u@ or at leastr =
supx: u < x =cf(x) <rand—(Fa)(a c RegN x\u & |a| <o & x € pcf(a))}.

Example 3.12. Assume
(@) Ng <O =cf(h) <2 < <A,
(b) there is &@-Luzin subset of’2.
Then
(«) there are pairwise disjoint, € B(u) for a < A such that for noX e [A]* is
(aq: o € X) free,
(8) moreover forX e [A]* for somen < w and By < B1 < --- < B, from X we have
B E ﬂzgn ag, =0.

Proof. (Has already appeared in Plebanek [13].) By 3.10 it suffices to prove its assumption.
Let for n < w, (cae: £ < (n + 1)?) be a sequence of pairwise disjoint members of
B(w) with union 1, each with each with measur&(+ 1)2. Forn € [],_,,(n + 1)? let
by =\p<w@ — cy.nee)). Now suppose
(¥) X €“2,|X|=0,and ifY e [X]’ then for some: < w andv € ITe-, €+ 1)2 we
have

{Z: €<(n+1)2}:{17(n)2 nln=u, neY}.

So {b,: n € X} is as required. Lastly from clause (b) of the assumption ther¢ &s
required in ) so, we are done. O

Remark 3.13.
(1) So we can weaken clause (b) of the assumptiom)tfrém the proof, or variants of
it.
(2) Note that strong negation of (b) of 3.12 which is consistent, implies the inverse
situation.

4. The interesting ideals and the direct pcf application

Our problem, the existence of, I, J)-sequences fof, depends much on the ided}s
we use. Under strong set theoretic assumptions, there-seguences by 1.8 (and 3.1);
but we would like to prove their existence (i.e., in ZFC). For some ideals, by [25] we will
have many cases of existence, e.g., whes ind, Ai regular. But we are more interested
in the existence for more complicated ideals. The first step uplxti‘fewith 1 a (finite)
strictly increasing sequence of cardinals. The proof for them is not much harder than with
the J/°%s. We then consider the central ideal hef& for 1 a (strictly) decreasing sequence
of regular cardinals, and explain why the existence fifr these ideals is more useful. We
also consider their strong relative which comes from the nonstationary ideal. We would
of course love to have even stronger ideals but there are indications that for those which
we considered and failed, the failure is not completely due to incompetence, i.e., there
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are related independence results (see later). We commence this section by reviewing some
general definitions, some of them used earlier in the paper.

Definition 4.1.
(1) For asetA of ordinals with no last element (mainly = 1 = cf(}))

JY=(B: B C Aisboundegl
(2) If ACOrdis such that ¢btp(A)) > Rg andA stationary in supA), we let
Ji%'={B c A: Bis nota stationary subset of sup }.
(3) If ACOrd,d =cf(®) < cf(otp(A)) and
{8 <supA): s € A, cf(§) =6}
is a stationary subset of sgg), then let
J:“Sw ={B € A: {8 € B: cf(§) =0} is a nonstationary subset of gup}.
Definition 4.2.
(1) For anideal/ let (3/" x)¢(x) mean that
{x e Dom(J): p(x)} e JT.
(2) Foranideal/ let (v/x)p(x) mean
{x e Dom(J): —p(x)} € J.
Definition 4.3.

(1) J =]1,-, Je is the following ideal on [,_, Dom(J,): for X € [[,_, Dom(J;) we
have

X e JTiff (3% x0) (31 x1) -+ (@ 1x, 1) (X0 ... x0o1) € X]-

(2) If A= (A¢: £ <n) we let:
bd bd
(a) Ji = H£<n ‘]M :
(b) If cf(r¢) > o for £ < n then we let

nst__ nst
‘]X - 1_[ JM :

t<n

(c) If cf(rg) > 6 =cf(0) for £ < n then we let

nsto nsto
JX - 1_[ ‘]M’, )

l<n

(d) 1f 6 = (6, € <n)and clry) > 6, = cf(6y) for £ < n then we let

nstd nstoy
o 1_[ ‘]M’, )

l<n

Claim4.4. If » = (A;: £ < n) is a strictly increasing sequence of regular cardinals then
the following conditionga)—(d)on X < [T, _,, & = Dom(J>?) are equivalent
(@) X € (PH*;
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(b) fornoa €[],_, A¢ do we have

(VBeX)(—(@<p)). wheref<a=: )\ i <as
l<n

(c) we can finday: n € U, <, [ 1, »¢) such that

() @ < Mg,

(i) o~y < o~y fori < j < Migap+1

(i) nelljepre= (ayp: €<n)eX;
(d) like (c), adding

(iv) oy =0, =>n=nv.

Proof. Straight. For (b)= (c) use induction om = Ig(1), see the proof at the end of the
proof of 4.11, of §) there. O

Discussion 4.4A.From 4.4, we see that foX ¢ (Jibd)Jr there are patterns which
necessarily occur as subsetsXf These are essentially like the branchesraximal
nodes) of a tree with levels, with a linear order on each level and with no dependencies
between the different levels. These patterns were explored in [28,15,18]. The patterns
considered there can be represented as a\set[[,_, B¢, B¢ € Ord such that(i) =

v(i) = nli=v]i (i.e. treeness). Now look a’&bd, where the gain is that does not

have atree, thatis, we have anyc [[,_, B¢, B¢ € Ord, so thap, v € A can havgl < n:

n(¢) = v(¢£)} being arbitrary (rather than being an initial segment), of course this depends
on the ideal.

Claim 4.5. AssumeJ = (J;: £ < n) and J; is akg-complete ideal on,. We also demand
ke > A whent > k. Letd =T],_, Je.
(1) The following conditions oX < [],_, A, are equivalent

(@) XeJ™;
(b) forno A = (As: £ <n), Ay € J;, do we have
Bex=\/BeAs;
¢

(c) we canfinday: 1 € U, <, [1o< A¢) such thaiw, < iig(,; and
(x) foreachv e [],_, 2¢ we have
(ave+1): £ <n)eX, {avrgﬂ(wi y < )»|g(,,)+1} e Jlér(n)'
(2) f[AC XA & |A| < A¢] = A e J,thenwe can add
(d) like (c), but adding
(iii) Ay~ (i) < Ay~(j) ifi<j< Ag(v)+1-

Proof. Similarto 4.4. O

Claim 4.6. Letx = (A;: £ <n) be a decreasing sequence of regular cardinals.
(1) If Ap > 2*+1 for £ < n, then
bd bd
(x) foreveryA e (J; YT, there areA, € ;) )" such thaf,_, A¢ C A.
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2 fJ=J.,Jeand J, is a (2*+1)*—complete ideal on,, then(x) holds, withJ
in place ofJ)-\bd and J; in place ofJ,\bZd.

(3) ForeveryA e (Jibd)+ andk < w we can findB; € [A¢1* such thaf],_, B, C A.

(4) In (3),instead ofk and J,\b@d (for £ < n) we can use any and ((A¢41)¢)T-complete
ideal J, on A, for £ < n.

Proof. E.g., (3). We prove it by induction on
n = 1. Trivial, as singletons are in the ideal.
n+1. LetXo={a <o (@ €[[}_1 e (@)@ eA}e (T, J2HT).
Clearly, X € (J{’Od)f
By the induction hypothesis, for eaehe Xo, there is(By: £ =1,...,n — 1), such that

BY €[] and HBE_ ge[r: @aeca;Lse

So Xg is the union of [;Z{ A = A1 setsXo[B] = {« € Xo: B = B}, so for someB,
|Xo[B]| > k and letBy = flrstk members oy 3. O

Definition 4.7. For a partial orderP let tcf(P) = A iff there is an increasing cofinal
sequence of length in P (tcf — stands for true cofinality); so, e.dw, <) x (w1, <)
has no true cofinality, but t¢f[(R,;, <)/D is well defined ifD is an ultrafilter orw.

Fact 4.8.

(1) If 7 2 JMisanidealr; = cf(r;) > 8, fori < § anda = tcf([;_5 »:/J), then there
isa(, J)-sequence = (1, o < A) for (ind: i <3$).

(2) If ; isincreasing in then(J)\bid: i < 8) is normal(hencey is norma) provided that
8 =w or at least
()1 A >[4 fori <s.

(3) If we just askj to be normal it suffices to demand
(¥)2 A; >maxpctr;: j<i}fori <Sé.

Proof. In[];_sAi/J, there is a cofinal increasing sequerigg: « < ). Itis as required,
as we now show. LeX e [A]*, let X; = {f,(i): a € X} fori < 8. Definef [Tizshi

()=

{ supX;)+1 if sup(X;) <A,
otherwise.

But (fy: « < A) is cofinal, so for some < A, f <j fae- NOW X € [A]*, so for some
o1, we havewg < oy € X. As (fy: @ < A) is increasing fu, <, for, hENCES <; fo,. SO
A={i: f() =2 fu, (D} e J.But fu,(0) € X;, s0i € 5\A = A; =supX;).

(2) Easy.

(3)By[25,11,3.5]. O
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Comment 4.9.
(1) Thisis good, e.g., to lift a coloring of thie’s to one ofx. But we would like to have
an upgrade as well.
(2) The kind of assumptions of 4.8 is the central interest in [25].

Claim 4.10. Assume.’ = (rie: € < n;) is an increasing sequence of regularss for
i <48. Also assume that is anideal on{(i, £): i <4§,¢ <n;} and

A= tcf(]_[xi,@/1>,
il

and for some ideal’ on§, we have/’ D ngd andJ is generated by
{{.n):n<njieA) At}
Thenthere is a(), J')-sequence for ( /-\b,.d: i<$).
(2) (Jib,.d: i < &) is normal(hence; above is normalif
(#)1 d=wandi < j <8=A;p—1<Aj0,0r
(02 [riesi<j,€<nj}<Aijo.
(3) If we ask just; to be normal it suffices to demand
()3 maxpclr; e i < j, € <nj}<Ajo.

Proof. Again, let f = (f,: o < A) be <j-increasing cofinal. Let, (i) = (fx (i, £): £ <
ni) € [[A". LetX e [A*. LetX; = {na(i): « € X}. If X; € Jﬁdx,-,thenthere i e [0 =
[T, Xi.c such that

®)  BeXi=\/ B <al.
l<n;
(We return to this at the end of the proof.)
Soletf e ]'[M Ai e be given byf (i, £) :aé. So, as before, for somee X, f <, fo-
So

A= {i: /\ £ 0) = full, e))} et

l<n;

Now fori € §\A we haveX; ¢ Jl%d/-\i.
[Why (¥)? Prove the existence af , for notational convenience denoted herefyby
induction onn; . Herewe use “increasing’”.

n; = 1. Clear.

ni =k + 1. Fora < 1; 0 define
Xio={B L n): Be X}
So we know that for somgg < A; 0

@ €lyo, hiol = Xige P9 .
e=1hie
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So for each such we have® € [];_; Ai.¢ as given by the induction hypothesis. Let

Pe= UIBY: @ € [yo, 2i,0)} Otherwise.

Why is the latter< A; ¢? AsX; o < cf(ri¢).] O
Question 4.11. Are there many cases fitting the framework of 4.10?

Answer 4.11A. Not so few. E.g., for any, for many A = cf(A) we have thath =
tef([T, -, »i/JP%) for some sequencg;: i < «). E.g., if Rg < cf(8) =« andk < pu =
Js <A =cf(A) <JsygorjustRo <« =cf(n) <A =cf(h) < and(Vx < w)x* < ul
thenthere is an increasing sequence of regularsi < «) with limit Js or u, respectively
as above. [Why? see [25, VIII 81, 2.6].] Even«if= Rg this holds for many’s, e.g., if
uw<i<pt®lorjust|/{x: u<x <irandyx =R,}| < pu see [25, IX] and use 4.12 below.

Note that by the pcf theorem (see [25, VIII, 2.6]).

Claim 4.12. Assumd to be an ideal or$, andx; , = cf(x; () > |8| for i < and? < n;
andO0 < n; < w. Thenthe following are equivalent
(a) Forevery(k;: i <8) € [];_sni we have

i<é
A= tcf(]_[/\,»,kiﬂ).
i<$

(b) Letting

I'= {A c U{i} x n;: for someB € I we haved C U{i} X ni},
i<s ieB

we have[ | A; /I’ has true cofinality..

Proof. Let A*, B* be a partition of_J;_,{i} x n such that
r=max pcfr;,: (i,n) € A*} and A ¢pcf{r;,: (i,n) e B*}

(exists by the pcf theorem). Now:

@ = (b) If [];,2i.n/1" does not have true cofinality, then for someA e anH+
we have thaf [; ,)c4 4i,n/1" has true cofinality” # A (here we use the pcf theorem)
and without loss of generalitd € A* v A C B*, hencex ¢ pcf{r; ,: (i,n) € A}. Let
B=1{i <8 (3n <n;)[3 n) e Al}, so by the definition of’ we knowB € I*+. So, for
i € B we can choose; € {0, ...,n; — 1} such that(i, k;) € A. So{(i,k;)): i€ BJC A
hence

pcf{Aix: i € B} Spcf{rix: (i,k) € A},

but A does not belong to the later, hence not to the former, contradicting (a).
—(a) = —(b) So there is(k;: i <) € [[;_sni such that=[tcf([] A, /I) = 1] hence
by the pcf theorem, for soma € (I)*, let, e.g., max pdh;: i € A} < A. Let B =
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{(i, k;): i € A}, so clearly max pdh;«,: (i, k;) € B} < A. But by the definition off’, we
haveB e (I’)" so we get contradiction to (b).O

Remark 4.13. See more on related topics in [17].

5. r-sequences for decreasing’ by pcf

Discussion 5.1.0ur aim here is to get “decreasing from “increasingx” (for Jibd), in
some sense, to “make gold from lead”. We do this by using pcf assumptions, then proving
that these assumptions are very reasonable.

(Note when we cannot materialize the pcf assumptions the situation is close to SCH, and
then we have other avenues for construction-sequences for somke e.g., (1.8, 3.1).)

In the following claim the interesting case is whienare increasingl! = (Aeit £ <
n) decreasing sequence of regular cardinals, > [] Am,j, O at leasth,; >
max pctr, ;j: m<n, j <i}.

j<i, m<n

Claim 5.2. Assume

(@) A= (Ae: £<n), A = (hg;: £ <n)fori <8,

(b) I is anideal ors,

(€) re =tcf(J;_s Ae,i/1) fOr € <m,

(d) f¢=(fr.a: @ <Ag) is <s-increasing and cofinal iff|

(€) 8 < Ag,i =cf(re,),

(f) fora ey, re let fz be defined byz (i) = (fr.0, () € <n) €1, Ae,i-
Thenfor any X € (J2%* we have

ALis

i<$

lis {fal:aexyesfel

Proof. Let X; = {f3(i): @ € X} andletB={i <§: X; € Jf,.d}.
AssumeB € I and we shall get a contradiction. For eack B, m <n anda €
HZ<m Aei, let

n—1
Xé:{ﬁe 1_[)»5,,': &AEGXZ'}

{=m
and let

gi (@) = min {y <anit if B €y, hmi) thenXi 5 € er[?,,l }

t=mi1rei

This definition just unravels the definition af; note
(x) Xi, =X; e

PO
/A i bd
(%) if X eJ -

Tlesig e theng; (&) < lig@)-
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Now we choose by induction on < » ordinalse,, < A, such that fom < n we have
(%) Bn=:{ieB: X\, e Jpd = B modI
m m =- © Sy (0): L<m) [Tosm rei ’

So, stipulating]l%‘:> .., = (9}, the ideal or{()}, we have that)o holds with B = Bo.
If (%), is true, cTearIy

(8 ((fea (D) £ <m)): i € Bu)
iSiN ;s Am,i- But By, € I and(fi.o: o < An) is <j-increasing cofinal if [; _s Am.i-
So for somey,,

B, =i € Bu: gi({fe.oe(i): € <m)) Zam} el
Defining B,,+-1 using thisx,,, we easily obtain

Bm+t12 By \B,, so we see that),,+1 holds.

So
&= (a: L<n)ye[]nre

l<n
is well defined.
In the inductive definition oé,,, any largek,, would serve in place af,, (of course it
would influence the future choices). So, in addition:),{, we can demand
n—1
(k%) m {B €[] re (e t<m)Be X} € (Jfg )T

[m,n)
=m

So from(xx), we get{a,: £ < n) € X hence for ali we have() X’G
definition. But

X by the

Lo, (D) <n

_licp i bd —
B, = {z € B: Xéfe,az (@): t<n) € Jl'[@n M’l} =B mod],

£ ; i bd _ i _
SO B, # @, and ifi € B, this means’(m_az(l.): t<n) € Jnm rei = {7} SOX(ﬁ.aN): 1<y =9
contradicting the previous sentencex

In fact, more generally,

Claim 5.3. Assume
(@) 7°=(n’: a <A)inan(l, J, »)-sequence fotl; ¢: i < §) for eacht < n,

() I =T1,-, L,
(€) 7= {(na: @ <L), wheren, €]

Na (i) = (15,(): € <n).

Thengn isan(l, J, A)-sequence fotl;: i < §).

Dom(/;) and

i<$

Proof. Like the proofof 5.2. O
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Claim 5.4. Assume
(@) A=tcf(J[;_56ei/J) for £ <n ando,; are increasing witr¢;
(b) e = tcf(]'[Kei .i¢/Ji) and tp ;. are regular decreasing witlt, i.e., 7, ;. >
Te+1,i¢ (the interesting case is).

Let
J*:{A: AC{,i,e): L<n,i<$6, ¢<g}and
N\ DL i ) ¢ A]},
L
and let
Le=]] Jgd
l<n
Then

A= tcf(]_[rz,i,s/J*>
ie

and we can findj, € ]_[l.’s Ii. for « < A such(ny: a < A) is a (1, J*)-sequence for
(lig: 0, 8).

Proof. Straight. (Using 5.3 and [25, I, 2.10].)a

Example 5.5. Assume
(x) (A;: i <8)isastrictly increasing sequence of regulars,

5<hro, A= tcf(HAi/Jabd).
<8
Discussion 5.5A.This may seem a strong assumption, but getting such representations is
central in [25]. If u is strong limit singular
® No <k =cf(u) <pu<r=cf(x) <2¥,

then there is suchx;: i < cf(w)), A < u = supxr;). So without loss of generality
24 < )41 (see 4.11A).
Now fix n for simplicity. Let

)\K,i = )\nxiJran .
So

A= (re;: € < n) is strictly decreasing.
In 4.12 an example is given for 5.2. For 5.4 we have, e.g.,

Claim 5.6. Assume
(&) w is strong limit,
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(b) No=cf(u) < u,

(c) 2¢ > ptetl = ) [also ut@stetl = ) is OK, or justa = u 13+ < ppt(un) and
cf(ut?) < ul.

Then

(1) We can findv, ;, k, such that(¢ <i < w):
(A) Xie <=3 mj
(B) herli < hei and2*o.i < 2)~i+1,i+1,
(C) (O[T <y 1e.if I = ™,
(D) 0 <k < kipy1 < o,
(E) » =tcf([T,, ., 't /09,

(2) Foreveryn < w, we can findJ, /\}’i (¢ <n,i <w) such that

(i) there isij a A-sequence fo(Jaf,j <o),
(NN

l<n)’
(i) 2*e+1i < Xy i

(ii)) 2%01 <A/ 4,
(iv) (VA € J)3®) [n x {i}NA=4¢].

Remark 5.7.
(1) This claim can be used with no further reference to pcf: just foriaag in (a)—(c),
we havey for which we can construct colorings, objects, etc.
(2) There are theorems withincreasing, they are somewhat cumbersome.
Of course, we can use

Ny +1

I - I_I JA{, b<npy)*

i=npy

(3) Note 2* > u®*1is a strong negation of2= .+ which was very useful here. (Our
general theme is=SCH is a good hypothesis) and we shall deal with closing the
gap.

(4) Note if 2* = ") we can prove nice things with= J Lt g <n(i0)”

(5) If g < cf(n) < n the parallel claim is even easier, apdbelng a strong limit is
necessary only for (B).

Proof of 5.6. (1) We will just give a series of quotations.
First cf(u*®) = Ro, so by [25, Il, 1.6], there is an increasing sequet@ie i < ) of
regulars with limite t* such that

A= ptotl= tcf(HG /de>
I<w
so fori large enouglé; > . So without loss of generalitp\; 6; > .
So leto; = /ﬁ"' ki € (0, w) strictly increasing. By [25, IX, 5.9, p. 408], we have
pp(r) > uwt*. (We would like to have p@) = 2, but only “almost proved”.) This
means by the no hole theorem [25, I, 2.3] that for some countable,sef regulars
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<1, 0 = supae) andutke e pcf(a,). So by the pcf theorem, without loss of generality
utke =max pcfay) andut, ..., ut*e=D ¢ pcf(a,) (alternatively use [25, VIII, §1]).
So necessarily

/JL_H(z = th(l_[ Clg/./l?f).

Letu =Y, _, Mn: in < tnt1 < . We start choosing, ; by induction oni, for all i by
downward induction o, so that

Aei > Wi,  Agi €4,

and (B) holds. So, ak;; € a; andi,; is increasing with, with limit x, we have

tcf(]_[/\g,i/JCEd> — ke,
i

(2) Let h:w — o be such thatVm)(3%i) (h(i) = m). Choose by induction om,
Ay i € {Aniy.m: m < w} such that (b)+ (c) of (2) hold.
For each we do this by downward induction ah Then apply the last theoremo

We may deal with alk’s at once, at some price. The simplest case is:

Claim 5.8. Assume
(a) (As: £ < w) is a sequence of pairwise disjoint sets,
(b) A= th(nn<a) 9}1/*’5%1
(€) 6n =tct([ Ty, Tn.e/JEY, Ta e regular > Ro,
(d) h:w— wissuchthath=1({n})| =Ro, J = {A Cw x w: (V') (Vo' m) (h(n) =
0= AN {m} x [hn), 2h(n))}.
Thenthere is a(x, J)-sequence fo(JTt”:’z: (n,0) € wx w).

Proof. Straight. O

Remark 5.9.

(1) We canreplac®,: n < w) by (6;: i <§).

(2) Another way to get an example for 5.4 is to hdug: i < «) increasing continuous,
K = Cf(ic) > Vo, kK < po, p = e = 3 _;_, iy (i) <181, PR (i) < Mit1s
xi = |RegN [u;, pp&(m))l, S C « stationary such that for eve§f C S stationary
we have[ [, xi > X«

(3) In all the cases here we can get normality as in §4.

(4) See 1.16,1.17.

6. Products of Boolean algebras
Monk asks [12, Problem 35, p. 15]:

Monk’s Problem 6.1. Does[ | FBA(J,) have free calibeD} ? Here:

n<w
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Notation 6.1A. FBA(B) is the Boolean algebra freely generatedby: o < 8).

Definition 6.2.
(1) We say that the cardinal is a free caliber of the Boolean algehBaif for every
X € [B] there isY € [X]* such that is independent irB.
(2) FreeCalB) = {A» < |B|: A is afree caliber oB}.

We show that, e.g., B}, = 2= then the answer is NO.

Claim 6.3. Assume
(a) there is a normat super(x, J)-sequence for I = (I;: i < §),
(b) I; = ERIi’K{_ =: {X C [»]% for someh:yx — ki, |Rang:| < «;, and for no
u € [1;1% do we haveX | [u]? constant& [u]? C X},
(€) 8§ < ws.
Thenx is not a free caliber of [; _s FBA(%;).

Remark 6.3A. By 3.1, if A = u™ = 24, u strong limit > 8¢ = cf(u), then we can find
suchk;, A; < u andz for § = w.

Proof. By renaming without loss of generality
M1 na@=Y A
j<i
Let £, (i) = {f2G), f1()}, £9G) < £1Gi) (< 1). First we deal with the cask= w, as its
notation is simpler. Le, = FBA(%,) be freely generated bi): o < A,}. We define
8o €[ ]y<p Bnfora < by
¢ ¢
8o ()= ﬂ (xfg(k) - xfal(k))'
k<t
Note:
®1 fora <p <21, we haveg;, g; are distinct elements df[, _, B,
®2 if £2(B) = fl(a) andm > n thenB,, F gi(m) N g5(m) =0.
" mo "t e g mom
[Why? ASxan(a) X ) is disjoint tOxan(ﬁ) x.f,}(ﬁ)']
®3 if n < wand fori = 1,2 we havey;, g; < 1 and f2(8:) = fX(a;) and

N\ o) = f@) and A £LB) = £ B2,

k<n k<n

then

l_[ By F 8oy N 8Ey = 8a, N 85,

n<w
[Why? Check each coordinate in the product,fot n use®> to show that both sides are
zero, and ifm < n use the last two assumptions.]

21f [ is normal, i.e.xi+1 > A;, the normality ofi; follows.



Sh:620

174 S. Shelah / Topology and its Applications 99 (1999) 135-235

Now if X e [A]* then there are suchy, a2, B1, B2 (using the choice of; and its
normality). O

Claim 6.4. Assume
(%) (@) u=pu? <r=cf(h) <2*,and(y;: i <6) a sequence of cardinals, or
(b) 2 <1 =cf(x) and in the(< 67)-base product topology oi'Px)2 the density
is < A, or at least in the box product topology df, _,(*'2) (where eacht2
has Tychonoff topologyas density< A.
Then[]; _, FBA(x;) has free caliben.

i<6

Proof. Asin 82. O

Probably the choice of the product ¢FBA(J,): n < ) in the original question
was chosen just as the simplest case, as is often done. But in this case the products of
uncountably many free Boolean algebras behave differently.

Claim 6.5. Assumex = cf(A) > 27, cf(§) > Rg and (Va < A)(Je|™ < A). Then
[1;-o FBA(x:) has free caliben.

Proof. First assume a stronger assumption
(x) A=ut, cf(u) =6>Roand(Va < w)(ja|® < n),
or alternatively
(¥)~ A =cf(r) andu > 29 are as in 7.3 below and we assumed = x; < u.
(This was our first proof. It possibly covers all cases under some reasonable pcf hypothesis,
and illuminates the method.)
Let g% € [, FBA(x:) for o < A be pairwise distinct, and we should fidd e [1]*
such thatig’: « € X) is independent. Let

g:xk ()= Tavi(xﬂa,i,O’ XBaitr v ‘xﬂa,i‘m(a,i)—l)’
wheret, ; is a Boolean term. Without loss of generality ng, ,, is redundantg, ; »
increasing withm. As 2 < A = cf(1) without loss of generalityr,; = 7; and so
m(a,i) = m(i). Let f, be the function with domaif, f, (i) = (Bu.ie: £ <m(i)). Let
£80) = Baie, 50 Dom(f5) = {i <6: € <m(i)}.
If () holds then by 7.1 and 7.2 (see below) we have
® there ara:*, m*, v, B*, X such that
(@) u* €01’ andX € [A]*, D an ultrafilter onu* disjoint to J29,
(b) i eu* = m@)=m",
(€) v S m* butv##m*, andi =tcf[[ B ;/D for £ e m*\v,
(d) B*=(Bf;: L <m*,ieu®),

@ tev= (fi1u* aeX)is < ba-increasing and cofinal ifl]; .« B/ ;.

) tem*\v = fil lu*= (B}, ieu®),
(9) foreveryy €[]se,, icux Bi; fOr A ordinalse € X we have,

ieu*&Llev=yi < fy](i) <Blis
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(h) if ev, aeX,iecu then fiG) > sudp; ,: Bi . < Bi; wherely < m*
andi; < 0} anda < 8 € X implies: for everyi € u* large enough we have
fﬂm(i) > max{fa[el] (i1): ﬂjl’l.l = p;,; and¢1 < m* andiy < 6} (the interesting
caseigi =1i).

Now for anyn < w, andag < - - - < a,—1 from X, we have
® for arbitrarily largei € u*

(fao @) far (@) fan 1 (D)
=((Bag.it: £ <m*), (Bagie: € <m™), ..., (Ba, 1.ie: £ <m™))

is as in aA-system, in fact

Boywy.int (D) = Barzy.ivt@ = (k(1), (D) = (k(2), £(2)) v (£(1) = £(2) € v).

Asv=£{0,1,...,m* — 1} and int no variable is redundant clearly

®' foreveryi € u* large enough(z (xg, o, -..). T(xg, ;0. ---).--.) IS independent.
This implies that(g;; : ¢ <n) is independent (if [; _, FBA(x;)) as required.

If we do not have £) or (x)~, by (Vo < A)(le|™ < &) and 2 < 1 = cf(L) without
loss of generality for some = (x4, ..., x,_1) and infiniteu C 6, and someX € [A]* we
have:(fy [ u: « € X) is with no repetitiongz,; = 7 for & € X, i € u. So without loss of
generalityx = 6. Then we can find an ultrafiltédP on 6 as in 7.4 below and then the proof
above works. O

Comment 6.6. Before we use 7.4, we wonder if; < 1" is necessary in{)~ of 6.5. This
is quite straight. We can omit it if

aC RegNA\u, lal <0 = max pcfa) < 1.

Problem 6.7.
(1) Which of the following statements is consistent with ZFC:
(&) w is strong limit, cfu) = Rg, and for every. € Regn (1, 2#] and cardinalg,
suchthaw =73, _, xn, A is a free caliber of |,,_, FBA(x,),
(What about “some suck’? See 6.11 below.)
(b) The same for all such.
(2) Can you prove in ZFC that for some strong limit 6 = cf(u) < n and for
some set(q;: i < o) whereo = 61 or o = (2)%, pairwise disjoint there is
re(u, 21NN -, pcf(a;).

n<w

Now we turn to another of Monk’s problems.

Claim 6.8. Assume
(x) « > Rg is weakly inaccessible an@*: u < «) is not eventually constant.
Then
(a) there is ax-c.c. Boolean algebra of cardinalit®<*, with no independent subset of
cardinality « .
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Proof. There are sequence€Z;, J;): i < k), ((ki,A;): i < «) such that7; is a dense
linear order of cardinality; andZ; C .7; a dense subset ¢f; of cardinalityx;, (k;: i < k)
increasing with limitc, anda; > 37, 29 (>3, _; 1), by [26, 3.4].

Let B; be Intalg.7;), the Boolean algebra of closed-open intervalg/pfLet B be the
free product of{ B;: i < «}, SO B extends eactB; and each element @ is a Boolean
combination of finitely many elements pj; _, B;. Itis straight to checl is as required:

()1 1Bl =Y |Bil +R0=2, A =Y, 29 =27,

(x)2 B satisfies the-c.c.

[Why? Leta; € B\{0} for i < «, so leta; = i (bi0,...,bin—1) fOr i <k, bi¢ € By, .
As we can replace; by anya{, 0< alf < a; without loss of generality; = m[<n,- bir,
bi¢ € By;,\{0}. So without loss of generality;0 < aj1 < --- < &j ;. AS k > Rg IS
regular and as we can repla¢g: i < k) by (a;: i € X) wheneverX e [«]*, without
loss of generality for some, A\,_,, @i =a¢andi < j & {£,k} S [m,n] = i <aji.
Leta; =(),_,, bie, SO Clearly

ajNa;#0&aiNa;#0s [\ bigNbj¢#0.
l<m

But B; satisfies the-Knaster condition (as = cf(x) > density.7;)), so can we finish.]

(¥)3 B has no independent subset of cardinatity.
[Why? Leta; € B fori <«™t, leta; = ti(bio, ..., bin—1) and letb; ; € By, ,\{0, 1}. We
can replacéa;: i <«k¥) by {(a;:i e X)for X e [K+]K+, so without loss of generality, =
T, ni =n anda;¢ = ay. Letbi e = Upey, , [%i, 0.k Xi, 0. k+1) wherex™* = (x; ¢k k < ki)
is an increasing sequence of elementg-efo} U J; U {0}, xi 0,0 = —00, Xi ¢k, = 00,
uie C ki . We can findy; ¢ x € Z; such thatx; ¢ x < yiex < xi¢x+1. Without loss of
generalityk; ¢ = k¢, yi.e.k = Yok, Wie = Ug.

Without loss of generality; ¢ x = vy r. For afiniteA C B let attA) = at(A, B) be the
number of atoms in the Boolean subalgebraBoivhich A generates (all this was mainly
for clarity). Now for any finiteu C «

at({ai: i €uj, B)
<at({bie: i eu,l <n}, B) < ]_[at({bi,g: icu),Ba,,)

t<n

<[at(xiex: i €u.k <ke), Bay, }) <] | ( > (ul+ 1)) <K x Jul"

l<n l<n “k<kg

for k* = maxk, + 1: ¢ < n}. So if u is large enough this i< 2/, showing non-
independence.] O

Claim 6.9. Let B be the completion dfBA(x)
(1) x is not a free caliber oB if
(¥*) A=ut =2* u< x, 1 strong limit singular of cofinalityy,
(2) X is afree caliber ofB if
(¥) p=p <r=cf(h) <2 x >, oratleast
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() x =mp, u < x=cf(r) < 2%, u strong limit singular of cofinalitydy and the
(< R1)-box product topology ofiw has density< A.

Proof. (1) By 6.3, 6.3A's proofs.
(2) If (%) use 6.5, if )’ the proofis similar. O

Remark 6.9A. We can deal with singular cardinals similarly as in the earlier proofs.

Claim 6.10. In the earlier claims if

()1 A =utT, oratleast if

()2 <A, and[a <A = cf([@]?, ©) <Al, x =sup_y xi
then ‘in the (< 6™)-box product topology: 6 has density< A" can be replaced b$in the
(< 6%)-box product topology‘6 has density< 1”.

Conclusion 6.11.
(1) Let¢ € {1, 2} for simplicity. The following questions cannot be answered in ZFC
(assuming the consistency of large cardinals). Assfife< 3,1
(@), Does[],.,, FBA(J,) have free calibeDd}‘?
(b), Does the completion of FBA,,) have free calibeD}‘?
(c). Does the completion of FBA}*) have free calibeD}?
(2) Moreover we can add

for x € {a, b, c} even(x)1 + (x)2, and—(x)1 + —(*)2.

Proof. (1) Let ¢ = 2. By Gitik and Shelah [6] it is consistent with ZFC that with the

(< N1)-box product topology=~)w has density< 3%, so we can use 6.4 (using 6.11 of
course). For the other direction by Gitik and Shelah [6] the necessary assumptions for 6.3,
6.9(2) are consistent.

For¢ =1, if 3} = 23 then the answer is NO by 6.2, 6.9.

To get consistency fok = 3} we need dual: if‘w, for everyu™ open sets there is a
point belonging tq.* of them (this is phrased in 6.12 below). This too is proved consistent
in [6].

(2) Similarly. O

Definition 6.12. Pry » (A, 1) means:
if f, is a partial function fronu to 6 such thatDom( /)| < o for a < A,
thensomejf € "6 extends. of the functionsy,.

If o =6 we may omit it.

Claim 6.13. In Claim6.11the assumption on the density of box products can be replaced
by cases of Definitiof.12:
(@) [2.1]JAssumeB = B(x) is a Maharam measure algebra of dimensjoref(1) > 2%
andcf(A) >y v A=cf(h) v &;’RO. If Pre, (A, x) thenB hasa as a free caliber.
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(b) [6.4] Assume?? < 1 = cf(r), x = sup g xi- If Pe(x, x) then[]._, FBA(x;) has
free calibera.

Proof. Straight. O
In fact cases of Pr are essentially necessary and sufficient conditions.

Claim 6.14. Assume. = cf(1) > 2%, and y, are cardinal. The following conditions are
equivalent

(@) T1,,-, FBA(xx) has free caliben;

(b) iffor o <X, i <, (uf,v{) is a pair of disjoint finite subsets ¢f thenfor some
X e [A]* we have

i<w= Uu?‘ﬂ va’:@,
aeX aeX
i.e., if £% is a finite function fromy; to {0, 1} for i < w, @ < A, then for some
(fiii<w)
Fa<)(Vi<w) fEC fi.

Proof. Straight. O

Discussion 6.15.For measure, the parallel seems cumbersome. We still may like to be
more concrete on the dependencies appearing. Note
®1 in 3.6, we can haveé = (x,: a < A) satisfies
(¥)p.z for everyX e [A]*, m < w, and B(a, k) < A for a < A, k < 2m pairwise
distinct, for every: large enough there are pairwise distiagt. .., a2,—1 €
X such that

0= ﬂ ( U (xﬂ(a%»k) A xﬂ(dzprl,k))),

l<n “k<m

®2 if (*¥)p.5 holds then the Boolean algebB{ = (x,: « < A)p has no independent
subset of cardinalityr. Moreover, if x, € B’ for « < A are distinct, then
(*)B’,(x[x: a<A):
7. A nice subfamily of functions exists

We expand and continue on [26, 6.6D], [20, 6.1].

Claim 7.0. Assume
(A) r=cf) > pn>2",
(B) D is au-completé filter on A containing the co-bounded subsets.of

31n parts (0), (1) = (2¥)T is OK.
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(C) fo:x— Ordfora < A,
(D) @ <u = Dis|a|S-complete.
Then
(0) We can findw C « and g* = (B i <k)suchthati e k \ w= cf(8) > 2 and
for everyB € [T;c,\, B; for A ordinalsa < i (even a set irD*) we haves < f, |
(\w) < B* | (c\w), fu [ w=F"w, andsupBs: B7 < B} < fuli) < B}
(1) We can find a partition(w}: ¢ < 2) of k, X e D* and (A;1 i < k), (A1 i <«),
{(hi: i <«), (n;: i <«)suchthat
(a) A; € Ord,
(b) Ai = (hie: € <n;)and2< < ;g < Aigq1 <A,
(c) h; isan order preserving function froﬂkni Aig ONtOA; son; =04 [A;| =1
(the order on[ [, _,,, A¢,; being lexicographic<yy),
d i<k & a e X = fu(i) € A;, and we letf) (G, ¢) = [hlfl(fo,(i))](Z), o)
f; € Hi<K, l<n; )“i,e'
(e) i ewg=n; =0(s0|A;|=1),
(f) if i € w} then|A;| <A, hencel Uiew’l‘ Al <A,
(g) ifge ]_[i,:nx Liethen{a € X: g < fF} e DT,
(h) w < max plci{/\,;g: i ewj]and £ < n;} <A whenw] # ¢ (so, e.g., undeGCH
max pcicf(r; ¢): i ewy andl <n;} =1).
(2) In part (1) we can add*); to the conclusion ifE) below holds,
()1 if ;¢ €[, 1) thena; ¢ is regular.
(E) For any seta of < « singular cardinals from the interva{u, A), we have
max pcicf(x): x €ea}l <.
(3) Assume in parfl) that (F) below holds. Then we can dema@d,.
(%)2 )»2 >pfori ews, £ <n;.
(F) cf(u) > k anda < i = D is [|a|S“]T-complete.
(4) Ifin part (1) in addition(G) below holdsthenwe can add
(¥)3 & € Pl _complerd s i € wi ande < n;} if wi # 0,
moreover
()4 if & <n; fori € w theni € pef, _compierdCf(A,): i € wil.
(G) (i) (Va <A)(Ja|=? < A)ando = cf(o) > R,
(i) Dis r-complete.
(5) Ifin part (1) in addition(H) below holds then we can add
(x)5 if m <m*, A € J, and¢; <n; fori ex\ A (sow} C A) theni € pcf{/\;i: i€
Kk \ A}
H) () m* <wandJ, anXi-complete ideal or for m < m*,
(i) Dis A-complete.

Remark.

(1) If A; ¢ is singular we can replace it with a sequerigg,,: ¢ < cf(x;¢)), and the
index set({x): a < Xx;¢) by ((¢,y): ¢ <cf(rie) andy < yi¢,), andy; g, are
replaced by sequences of regular cardinals. Not clear if all this helps.

(2) The reader may concentrate on the case (F) + (G)(ii) holds.
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Proof. (0) By part (1).

(1) Let x be regular large enough. ChoaSesuch that

() N <(HGO, €,

(i) 2*+1C Nand||N| =2~

(i) x, u, 2, D and(fy: o < A) belongtoN,

(iv) N CN.
Next choos&(x) < A which belongs t&8* = (\{B € D: B € N}, which is the intersection
of < 2 < u members ofD. NecessarilyB* € D soé(x) exists. For each < « let

Y; =: {A e N: Aasetofordinals ands) (i) € A},
clearlyY; #0 asuyd(fy (i)+1) € N, hence there is a sdt; € Y; of minimal order type.
As N¥ C N clearlyA =: (A;: i € «) belongs taV.

Let us define:

wo=: {i <k: |Ai] =1},

wi = {i <k 2 <|A;)| <A}

Now note
($)1 A; #0.
[Why? AsA; € Y; hencefs) (i) € A;.]

()2 1Ai| =1iff Aj = {fs ()} Iff f56) @) e N (iff i € wg).
[Why? Think.]

(x)3 Without loss of generality; C {f,(i): @ < A}.
[Why? As{fy(i): a <A} eY; andA; N {fu(i): @ < A} € Y;.]
Hence

()4 Ifi e K\wé then|A;| < A.

Let
K;={(x, B) € N: forsomen, A= (A;: £ <n) € N, and

B= By nell,., )€ Nandp, e{fu(i): a« <A}and
foen @) €{By: ne -, Ay and: ifn <g v are from[],_, A
theng, < B,}.

We define a partial ordet™ on K;

(AL BY) <* (32, B%) iff {ﬁ,}: ne]‘[k%}g{ﬂ,f: nenkf}
4 4

and:

otp(]‘[x%, <ex> < otp(]_[k?, <ex> or
¢ ¢

otp<1_[)~%, <6x) = otp(l_[?»f, <€x> and Igit) <lg?) o
¢ ¢

otp(]‘[x%,ga)=otp<1‘[x%,<5x), lgxh) =1g(:*) and
4 4
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1 2 1 _ 42
\/ [)‘Ig(xl)lk < )‘Ig(iz)flfk and /\ )“Ig(il)flfe - )‘Igd?)le]'
k<lg(lb) <k
()5 (K;,<*) C N is a partial order which is a well quasi order (i.e., no strictly
decreasing-chains).
[Why? Reflect.]
(x)s Thereis(x, B) € K; such thal;/\klg(;\) re <A
[Why? By (x)7 below.]
(x)7 otp(A;) < |A;|" for somen < w.
[Why? By Dushnik and Milner [1], we can find; , € A; for n < w such thatd; =
Up<e Ain and otfgA; ,) < |A;|". So asA; € N there is such sequencd,; ,: n < w)
in N soA;, € N hence for some we havef;s.,(i) € A;, € N, so by the choice oA;
clearly otgA;) < |A; "]
So we can find a<*-minimal (A’, %) € K; and letn; = Ig(1’). Note:
(x)s We can above in the choice df demandd; = {B}: n € [,_,. AL}, where(Al, B7)
is a<*-minimal in K;,
(¥)o Ay <A, <Arfore<n;.
[Why? The second inequality by )s and ¢)s, the first inequality as otherwise by renaming
we can omit\,_, and contradict the<*-minimality of (A", 87).]
Let (n}: i <«) be such tha,Bf?? = fon (i) andny € [T, A}
(%)10 Aje > 2¢ [trivial].
Let Y = {a < A: for everyi < k we havef,(i) € A;},asf e N and(A;: i <k) e N
necessarilyy € N. Also Y € Dt becausé(x) € Y and the choice o8(x). So fora e ¥
we can choosery: i < «) such thaty? € [T,_,, 4, and fu(i) = B.. We now define
fre ]‘[Z<K A fora < Al (i, 0) = n¥(0).
Note
()11 (M:i<«), (B i <k)andf, hencef* = (f: a € Y) belong toN.
(¥)12 n¥(0) = £, €) e[SUPN NAL), Ailanda € Y = £, €) < AL
[Why? Reflect.]
(¥)13 foreveryg € [ i<« )»2 andX e [Y]* N N such tha#(x) € X there ise € X such
12

that '
g<fr e, i<kandt<n; = g, 0 < fiG0).

[Why? If not, there is sucly, so as((A!, B)): i <«), f = (fa: @ <A) andX, Y belong
to N also f* = (f: « € X) belongs toN, so all the requirements on are first order
with parameters fronw, so without loss of generality e N. Now § (x) € X cannot satisfy
the requirement hence there dre «, ¢ < n; such thatg(i, ¢) > f;(*) (i, £) contradicting
(#)12.]

Let

Z;= {n € 1_[ A;: if ve 1_[ )»; andv <y, nthenﬂl’; <ﬂ£}}’
i<n; l<n;

Zi+={77 [ k: neZ; andk < n;}.
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As (A, B') € N clearly alsoZ;, Z;}" € N.
(¥)14 If i <k, k <n; theni! = otp{n(k): (n} k) <n € Z;}.
Why? LetZ, ={ne Z;: AL >otp{ve Zi: n [k <ve Z;}}. Son* € Z, € N, by renaming
i k i i

nezZ. =i >suplve Zinlk<vezl,

and if A}'{ is regular we get a contradiction {e@)s as in the proof ofx)g. If x;'( is singular,
we by renaming get the desired equality.]

Hence

(x)15 without loss of generalityg]: n € [],_,. A}) is increasing (with<y),

(¥)16 w < supAl: i € wi ande <n;}.
[Why? Otherwise lefu > po = sunkz: i € wi and{ < n;}, and soB* d=6f{ﬂf7: i <k,
ne Hkm /\;} has cardinality.o so there isP € N, |P| < &, P C [uo]S¢ andP is cofinal
in ([1o]S¥, ©). (Why? By assumptionf9).) Note that if for someX € (D + V), f | X
is constant we are done. Otherwise

aceP= {a < A Rand fy) ga}:@modD
butD is u-complete hence
X*=:{a eY: (3a € P)[Rang f,) Cal} =PmodD

andX* € N andé(x) € X*, contradicting the choice of*.]

(¥)17 max pcfA,: i € wf ande <n;} <A
[Why? By ()15]

(¥)18 Ay has cofinality> 2.

[Why? Otherwise we can decrease it, getting a contradiction to<theninimality of
(1, B8H.]

The conclusion can be checked easily

(2) Leta = {cf(A}): A} is singular angk < A, < A} and use (E).

(3) Easy.

(4) Assume that the desired conclusion fails. For this we choose not just one model
but an(w + 1)-tree of models. More precisely, we choose by induction grw a sequence
(Ny: neT;) such that

(@) T; €'a,

(b) j<i&neTi=nljeT;,

©) ITil <2,

(d) N, < (H(x), ) satisfies (i)—(iv) from the proof of part (1),

(e) forneTi,ne Nyand(N,: velJ;_; T;) € Ny and

vaIn= N, <Ny &N, €Ny,

(f) if i =0, thenT; = {()},
(@) ifiisw, thenTy={neir: Vj<i(nljeT),
(hyifi=j+1,neT;and{ay,: & <&, <A) list [supgN, NA)]=7, then

{v eTi:n< v} = {nA(a): o <8,,},

anda,,,s € Ny~(e),
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() T=Ui<oTi-
There is no problem to carry out the definition (note #hak A by assumption (G)(i) and
|Tu+1] < A as in addition is regular, andT,,| < A by assumption (G)(i) as > Xg). Now

B*=("){B e D: for somen € T we haveB € N, }

being the intersection o& |T| + 2¢ < A sets inD, belongs toD (using assumption
(G)(ii)), so choos&(x) € B*. Now we choose by induction dn< o, 1 € Ty andw}, wk,
(0K Biky: i < k) € Ny, as in the proof of (1) fowv,,, such thatw§ < w’(‘)“, Nk < Nit1
and(¥i € wh)[(AHFFL, gik+ly < Rk Bik)]. The last assertion holds by the assumption
toward contradiction and basic pcf.

If Upeo wh = &, then fse) € Ny, ne» henced(x) € N, ,,, contradiction. Ifi €
i\ Ugzp wh, then (K, Bi5): k < w) is strictly decreasing ink; (more exactly in
Uk <o Ki[Ny, 1), contradicting a parallel of«)11.

(5) We choose by induction ane w the objectsV;, §;, A’ = (Al i < k), (A, B): i <
«), (hi: i <«), K} such that

(a) for eachr, they are as required in the proof of part (1),

(b) N; € Nya, KE € KM randGiHE, Bith) <+ (3, g1y in K1,

(c) for eachy for somem; < m* we have

li <i: UL BT <* (L, BD) =k mod J,y, .
No problem to carry it out by assumption toward contradiction. So for seme m, = m}

is infinite, contradicting 7, is 81-complete, and for each< «, [ J, K} well ordered by
<*". O

See Section 9 for actually some consequences.

Notation. If f is a function from, sayj to the ordinals, ang is a sequence of lengthof
functions from the ordinals to the ordinals, théh= f8 is a function from the ordinals to
the ordinals defined by* (i) = g; (f (i)).

We spell out a special case.

Fact 7.1. Assume
) 2 <p,cfw)=6 and (Vo <w) (e’ <w),

andir=put.
Then:
(1) For every sequencg = (f,: « < A) of functions fron® to the ordinals, we can find
u* € [01Y andg* = (B}: i e u*) such that one of the following cases occurs
(%), for someX e [A), fy [u* = B* fora € X,
(x)2 if 0 > Ro then g is a limit ordinal (for everyi € u*), and(cf(8): i e u™) is
strictly increasing with limitw andx = tcf([ [;,,« Cf(ﬂf)/]f*d) and for every
7 €[ 1icu» B for A ordinalsa < A we have

(Vi e u)(yi < fa(@) < B)).
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if & = Ro then for some strictly increasing sequence (A;: i € u*) of regular
cardinals with limits, A = tcf([ [; ., /\i/Jl?*d) and for someg = (g;: i <6),

gi -Ord— 1;, we havefor everyy €[], A; for A ordinalse < A we have
ieu" =y < f8() <A,

()3 B is alimit ordinal of cofinalityi for i € u* and for someX e [A]* we have
i eu™ = (fo(i): a € X) is strictly increasing with limi3* and fora € X, the
interval [ f, (i), ) is disjoint to

{fs(): BeXandjeu™\{i}&B; #p; or B <a andj e u*}.

(2) Assum@ > Ro. For every sequencg = (f,: a < A) of pairwise distinct functions
fromé to > Ord such that{ f, (i): « < A}| < A fori <6, we can find:* € [9]? and
n(x) € [1, w) andv C n* nonempty ang* = By £ <n*,i eu”) such that for
eachi
(a) for £ € v we have thatﬂ;j’l. is a limit ordinal, (cf(ﬂzi): i €u*) is strictly

increasing with limit and i = tcf([ ], cf(8;,)/J2%, and also fori < j
inu*, and?, k € v we have:f(ﬂzl.) < cf(ﬂ;j),
(b) foreveryy e [],; By ; for & ordinalsa < A we have

(Vi <u*)(VLev)[yei < (fu@d)(©) < Bf;] and
(Vi € u*)(Ve € n"\0)[ fu ) (0) = B},

(3) In part (2), we can replaca:* € [#]° by u € J* for any normal ideal/ on 6.
Moreover if{§ < 6: (Va < cf(8))(la|=? < cf(|§])} is stationary therRand f,) €
>0rdis fine. If we omit the assumptiofi, (i): o < A}| < A, instead ofv we have
a partition (v1, vz, v3) of {£: £ < n*} such that clauséa) holds for¢ € 2, clause(b)
holds with¢ € vo U vz, £ € v1 instead of? € v, £ € n* \ v, and the parallel of(x)3
holds for¢ € vs.

Proof. (1) By 7.0(0)—(2) we know that
® thereis(: i <6)andw* C 0 such that letting:* = 6\w* we have:
(a) foreveryy e [];c,« B; for A ordinalsa < A we have

i € w* :> fa(i):ﬂl*9
ieu" =y < fuli) < B,

and moreoverwg, wy), (Ai¢: i € wi, € <n;), X, g =(g;i: i <46) as there (so
wi =u*); clearlyx; ¢ < A and without loss of generality; ,,, = A.
Casel. [u*| < 6. So for someX e [A]* we have(f, | w*: « € X) is constant. Easily
(%)1 holds.
Case2. For some unbounded subséof 6 and(m;: i € u’), m; <n; and supr; ¢: i €
u', 0 <mi} < p* < pandi,,, =A.
Clearly (x)3 holds and we geX by “thinning”: choose by induction op < X the yth
membery, < X of X, fixing (gi_l(fa(i)) Im;:ieu').
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Case3. Neither Case 1 nor Case 2.

Letpw=7";_4 mi, i < u increasing withi. Choosej; € u* such thatj; is the minimal
J>Ue<ider Mjni—1 > wi + 2, *j., and letm, <nj be the minimaln such that
Ajim > Wi + 2 Mj, and they; is such thak j; m, < .

If 6 > R, by Fodor's lemma, replacingj;: i < 0) by a subsequence, without loss
of generalityu =:SUpAj, m: i <60,m <mj} < u, and without loss of generality

(fa(],)) Im;:i<08)=xisthe same foralk € X.

Chooseu* {J, i <6}, A = Aj; m;» Which is regular by 7.0(2). Now;: j € u*) is
a strictly increasing sequence of regular cardinals with lymiand hencg [, A; /Jl?*d
is u-directed and hencg-directed. But, by 7.0{ h_l(fo,(i))(m)' ieu*) aeX}is
unbounded in it (or use “maxpgf; ;: i <0,£ <n;} <A”). SOr= tcf(]‘[,eu* A /Jl?*d
Letg; be defined by (y) = (hjfl(y))(m.,-), and we are done.

(2) First without loss of generality (g, (1)) = n*, i.e., does not depend @n secondly,
e.g., by successive applications of part (1).

(3) Similar. O

Conclusion 7.2. For
(1) In7.1(1), )2 and ¢)3 implies
(%), there are«*, p* = (B': i € u™) andX such that
(@) u* [0,
(b) X e A%,
©) (fu Tu*: ¢ X)is <o increasing ifd > Rp, and fa [u* o€ X)is
< ybg- increasing ifo = Ro (for appropriatez),

(d) if 0> Ro then for everyy € [];.,« B there are. ordinalse € X such that
ieut =y < foli) < B,

if 6 =R, A; = Randg;) then for everyy €[]
o € X such that

ey i there arel ordinals
ieut =y < fE0) <M
(e) if (x)3 then
() e <pfromX = f, [u* < fg [u*
(ii) if i # j are inu* andp’ < ﬁ;f thena € X = fo(j) > B/,
(i) if i, jeu”, B} =,8;’f ando < g are fromX then f, (i) < fg(j).
(2) Similarly for 7.1(2), gettinge from the proof of 6.5.

Proof. Straight. Choose thgth member ofX for y < A, by inductionony. O
Similarly we can prove
Claim 7.3. Assume

(A) r=cf(r)> 27,
(B) w=minfu: n? > 2}, cf(u) =6 > Ro,
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(C) if a < Regn s\ 2%, a] <6, & € pchy_complerd®), then for someb € a, 1 =

tcf([Tb/[6]1<%). (Note this holds if
2 S Reg\ 2 & 0] <0 = |pcf@)| < 6.

Why? Now(by[a]: & € pcf(a)) is well defined and. € pcfy-complerda) SO letting
pcf(a) N A be(6;: ¢ <0), chooseu, € by [a]\ qu by [a], and letb = {u;: ¢ <
6}.)

Thenthe conclusions of.1, 7.2hold.

Proof. Similar. O

Fact 7.4.
(1) Assume

(A) A=cf(r) > 2 andn < o,

(B) ftelordfore <n,a <,

©) a#p = (flrt<n)#(ff L <n),

(D) (Yo < ) (o™ < 1).

Thenwe can find an ultrafilterD on 6 (possibly a principal ongand X e [A]*,

v Cnand f, € ?Ordfor ¢ < n such thaty = ¢,

(a) for ¢ € n\v anda € X we haveft/D = f,/D,

(b) for @ < g from X and¢, m € v such thatf,/D = f,/D (e.g.,£ = m) we have
f4/D < 3D,

(c) if &, m <nandf¢/D < f,/D anda, g are fromX then f{/D < f4/D.

(2) Assume

(@) »=cf(r) > 22 and(Va < 1) (Ja|<? < 1) andR1 + |e(x)| < o =cf(o) and
(b) f¢ eOrdfore < e(x) anda < A,

(c) I isao-complete filter o,

(d) D is axr-complete filter on. to which all co-bounded subsetsibelong.
Thenwe can findX, v, f; (for ¢ < e(x)) andw, J such that

(@) X e[r,

(B) f. €?Ordfor e < e(x),

(y) Jisac-complete ideal o® extending/,

(&) w=(we: € <e(x)), we S0,

(¢) if o € X ande < e(x) then £ [ we = fe [ we,

(¢) ifa < BarefromX thene <e(x) = ff < fg mod (J + w,), moreover

i <6: forsomes, & < e(x) we have ¢ we,i ¢ we and
¢ §
fr (i) < fe () but f () > fé(i)} €J,

(n) foeXandi <6,¢,& <e(x), fr (i) < fe() thenf; (i) < f§(i),
) if 2™ <5 thene <e(x) = w,eJ VvV 0\ w, € J.

(3) We can combing.0(1)with part(2) (having(a; ,: € < £)).

Remark. We can prove also the parallel of 7.0(5).
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Proof. (1) Like the proof of 7.0(4) or by part (2) far = R;.

(2) We repeat the proof of 7.0(4) except tHatc |, _,, ‘1. After definingB* € D and
choosingd(x), forn e T, ¢ < e(x) andi < 6 we let, ; , = min[N, N Ord\ f(f(*)(i)] and
We,y =1{i <6: fas(*)(i) € NyJ.

So clearly

(1 n<QVeT = (Ye < () (Vi <0)(Bein > Beiw & Wey S We)
and

(¥)2 1 ¢ wey = Cf(lgs,i,n) > 20
Let J, is theo-ideal ond generated by

11U {w C 0: for somee < ¢(*) we havew C 0 \ w, , and
A > maxpekct(Be,i): i < wh}.

If for somen, 6 ¢ J, then we are done (choosing théh member ofX by induction on
«). So assume thate T = 6 < J,,. We now choose by induction an< o, a sequence
ne € T; suchthag <¢ = ne =n [ j and

r=£+1={i <0: 3e <)) (Bein, > Peiine)} =6 modl.
For somes < ¢(x) and infiniteY C 6 we have:
EeY=Zy={i <0: Boit > Peiig+1} =0 modl.

Butfor& < ¢ we haveg, ; 11 > Beic by (x)1. Without loss of generality ofy) = w. As
I is o-complete and > Ro, there is an € (\{Zg: £ e Y}, and(B;¢: & € Z) is strictly
decreasing, a contradiction.

Now for ¢ =0, ¢ limit there are no “serious” demands and tosuccessor ordinal we
used € Jy.

(3) Left to the reader (and not used)a

Fact 7.4A. Assume

(A A=pt, u>2%6=cf(n) > No,

(B) le()| T +Ro <0,

(C) f&efOrdfore < e(x), a < A,

(D) (Va < u)(lal’ < ).
Thenwe can find a stationang € {§ < 6: cf(§) > |e(x)|T + Ro} and unbounded subset
X' of L and S, C S and f, € SOrdfor ¢ < g(x)

(@) fore <e(x) wehavex e X = f5 [ Se = fe | Se,

(b) forer < e(x) ande < pfromX if S, ={i € S: fo (i) < fr ()}\S:\S¢ is unbound-

eding thenfs | S < f4 modjgi,
(€) if ¢, e <e(x), fr (i) < fe(i), anda € X then f; (i) < f2 (i),
(d) if 216®! < g thene < e(x) = S, € {0, S}.

Proof. Let f& = (f£: a < A), let x be large enough an@..: ¢ < 8) be increasing
continuous with limitw, and choose by induction @n< 6, an elementary submods} of
(H(x), €, <}) of cardinality (1. )? such that(a;)? € N¢, (N;) € N, {f: e <e(%)} €
N¢,and({Ng: &€ <) e N¢.
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Chooses(x) € A\ U,y Ny, possible a$l J, .o N;| = | > ep(ke)?| = p < A. For each
<0,e<e(x)andi <0 Ietﬁ* =min(N; N Ord\ fa(*)(’))

For each limiti < 6 of coflnallty > |e(%)| look at (ﬂjlc ¢ < i), itis a non-increasing
sequence of ordinals, hence it is constant on some end segment, i.e., foj.somewe
have

Jei K¢ <i= Bl =Bij.

As cf(i) > |e(x)|, necessarily; = sufj..i: ¢ <e(x)}is < i, hence for somg (x) < 6 the
set

S={i <0: cf(i) > [e(»)], i alimit ordinall

is stationary. The rest should be clean

Remark. We can demands € S* in 7.4 if S* C {§ < 6: cf(§) > |e(x)|T + Ro} is
stationary.

Discussion 7.5.We may wonder what occurs for ultraproducts of free Boolean algebras
[1; =9 FBA(xi)/D (or even reduced products, recall FB4) is the free Boolean algebra
generated, say, biyt,: o < x;} freely). Now

(x)1 if D is R1-complete, the situation is as in the> X case for products;

(*)2 if

(EIAO,Al,...)(/\A,,eD& ﬂA,,:@),

n<w n<w

the situation is as in theé = Rg case.

Claim 7.6. Assume
(A) r=putt, u>2,
(B) fy:6 — Ordfora < A.
Thenwe can findi* = (ug, uf, u3), B*, X such that
(@) (ug,ui,us) is a partition of6,
(b) B= (B i<0),
(c) X e[A]* (we can use an appropriate idedlon A and demand € J 1),
d) aeX = folug= (B icug),
(e) if i eu? then(fy(i): a € X) is strictly increasing with limit3* (socf(8/) = A),
(M icuy=2" <cf(B) <,
(g) foreveryy e ]'[ia,é B} for A ordinalsa € X we have

i€u§=>)/i<fa(i)<ﬂ£k,
(h) ifthere are(A; ¢: i <6, € <n;), (A;ir i <0),(h;:i <0)asin7.0,i euf < n; =0,
icu] <n >0&ro0=rsn; >0& (VO (Xie=A1r),

and ifug # 0, theni = maxpcii; ¢: i <6, £ <n;} andut ¢ maxpcfh; i <0,
L <n,~}.
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Proof. LetC = (Cy: o < u™) be suchthatofft®y) <0F,[f € Cy = Cp=Cy NP, Cqy
a set of successor ordinals and the set

§*={8 <a*: cf(8) =07 anda = sup(C,)}

is stationary (exists by [24, §1].)

Let f = (fy: o < A) be given. Lety be strong limit such thaf € H(x). We choose
M, by induction onx < u* such that

(@) Ma < (H(x). €, <5),

(8) 1My || =2° and 2 + 1< M, and?> (M) € My,

(y) A, f, C anda belong toM,,

(8) (Mg: B <a) belongstoM, andp € C, = Mg < M,.
Now for everyg € A \ Ua<u+ M, we define a functiogg e (M, N Ord) and a function
Fg from ™ tout, as follows

®2 gl =min(My N x\ f5()).

[Why is it well defined? Asf € M, alsolJ{f, (i) +1: y <1} € My and fg (i) is smaller
than that ordinal.]
We let

ul =i <6 f30) € M),
ul =i <6: f3() ¢ My and cigh (i) = 1},
I/tgyz: {i <0: Cf(gg(i)) <ut and fg(i) ¢ Ma}.

Note fz(i) ¢ My = X >cf(gp(i)) > 2.
[Why? If i € 6\ul) o and < cf(gh (i), then

U{fy(i): y <randf, () < gl )

belongs toM,, and contradicts the choice gf @).Ifie 9\“5,0 and ctgg (i) < 2 then

gl (i) = SUR M, N g4 (i)).]
Similarly chooseg(AL - i < @), (hf ;i <6), 0, ci<6, e<nl ), (fal:y e X)

a,i”

asin 7.0(1). LeUZ = {(i, 0): i <0, ¢ <n;}; thisis Dorr(f;j,’,g) fory e X2 Let
J=Jpoa={uc U ut>max pci{cf(kgyil): (i, 0) e u}}.
By the pcf theorem [25, VIII, 2.6] there Wf - Uo’? such that:
wt ¢ pef{cf(il , ): (0 e UL\ WE,
ut = max pefcfl, ) . 0) e WEY.
If WE ¢ J let hpo = (hap,: v <ut) € M be <
n(i,i)ewo‘? Agu. Then for some =y (o, B) < u,

g-increasing and cofinal in
JIW

fg < ha,ﬁ,y(a,ﬂ) mod J.
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In fact anyy’ € [y (o, B), u*) will do, and now we letFg () = (e, B). If WO’? € Jgo We
let Fg(a) = + 1.

So the settg = {§ < u*: § a limit ordinal such thatVa < §) Fg(a) < 8} is a club of
wt. Hence there i$ = 85 € $* N acAEp) (i.e.,§ = supEg N ) ands € S*). Now for
each(i, ¢) € Uo’? the sequencegf(i,ﬁ): a € Cs,) is non-increasing aéM,: a € Cyy) is
increasing. Hence it is eventually constant, and similérﬁ(i, hgyi), Ag,i asin 7.0(2) (any
freedom left—choose the? first), so easilx(ig,,., hﬁ,,.): « € Cs,) is eventually constant;
say fora € Cs,\a* (B, 7). But otp(Cs,) = 0% soa*(B) =supa*(B,i): i <6}is <dg, and
reflection shows that

a€Csy \ (@ (B)+1) = WP e g,

Choose such?. So for somex®, §%, ((A;, hi): i <6) we have

X:{ﬁ</\: B¢ U My andaf =a®, 55 = 6%,
a<ut

Xﬁ@i:}_\,i, /’l/3 =hif0ri<9}

a®i
belongs tdA]*. Now we continue as in 7.0.0

Claim7.7.
(1) In 7.6we can replace. = ut+, byr = tt, r = cf([r]S#, ©) using[24, §2].
(2) Also if A is weakly inaccessible 3, (Va < 1) [A > cf([«]S*, )] we can get.6.

8. Consistency of “P(w1) has a free caliber” and discussion of pcf
This solves [12, Problem 37].

Claim 8.1. Assume for simplicitsCH and P is addingX,,, Cohen reals. IV ¥ we have
2% =R, 2% =R, 41 and
(%) there is no complete Boolean algebBaof cardinality 21 such thatFreeCalB) =
@. In fact for any complete Boolean algebBaof cardinality 2™t we haveR,,, 1 €
FreeCa(B).

Proof. Clearly (as if the Boolean algebr has cardinality ¥ = &,, 1 and satisfies
the ccc then(x) holds, i.e..X,,+1 € FreeCalB), because/ ” F “ (R, =R, ", [22],
otherwise we can reduce to the cdde- P(wy)) it is enough to show

(*)1 VP ER, 1 € FreeCalP(w1)).
Soletp* e P

prlFp “{a: o < Ry, 41) is @ sequence of distinct elementsRfw)”.

Note P = {f: f isfinite function from®,, to {0, 1}} so without loss of generality
p*=0.S0Ps ={f € P: Dom(f) C A} < P foranyA C R, .
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For eachr < 8,41 andi < wy there is a maximal antichaify ; ,: n < ) of P and
sequence of truth valuds, ; ,: n < ) such that

Sfain Fp“ie ay iff toz,i,n”-

Let Ay = U; —pyne DOM(fai.n) U DOM(p*), SO Ay € R, IS Let Ay = {yaj: j <
Ja} Ya,j strictly increasing withy.

AsV E 2% <R, 11, without loss of generality

()2 (@) ju=J"

(b) the truth value of §, ; € Dom(f,,; )" and the value off, ; , (v, ;) do not
depend ornx.
Leta be the Mostowski collapse of the name, ie= OP;x 4, (a) for eacha (without
loss of generality it does not depend @) [Remember OR z(8) =« iff « € A, B € B,
opt(8 N B) = otp(a N A).] We apply 7.0(1) tofy:j* — Ru, fo(j) = va,j @and get
(w;: £<2),Xe [Rwﬁl]&wﬁl and(rje: j < j*, £ <ny), andh = (hj: j < j*). For
i<wiletw, ={j<j* jewgorij,—1 <N}
We Ca||((gl-0, gl-l, &): i < wi1) awitness aboveg* if:
(i) f* g, ¢ € Pandp* < f*,
(i) £*<g,

(i) f*<gl,
(iv) Dom(g;) < j*,
(v) (Dom(g?) UDom(gh\Dom(f*): i < w1) are pairwise disjoint,
(vi) g IF"& ea”,

(i) g IF“& ¢ a”,

(viii) & < w1 andg; #£&; fori # j.

Shrinking X (still unbounded i, 1) we get:
X if « < B are fromX then there i < w1 such that

JEFNW A A1 >N = (B (e, ) (m) < (A7 (vp.)) (m),  and
JEJ\wi A 1< =S Vaj Ve
Fact. There are f* and a witness((g?,gil,si): i < wp) above f* and X € R, 41
unbounded and an ideal 2 J29 onw; such thatletting
Ua,i = OPy, j+ (Dom(g?) U Dom(g})\Dom( f*))
@ if e < g arein X then
{ii ugiNug,; #0}elJ.
We show how to finish the proof assuming the fact, and then prove the fact. For some
unboundedX C R, 11 we havea € X = f** = OPy, j+(f*), i.e., does not depend on

a € X. (As there are |P| =R, < R, +1 possibilities.)
We shall prove

¥ Ikp “({aq: a € X) isindependent (as a family of subsets.j,
even modula/2%".
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This is more than enough.
If not then for some: < w and pairwise distinaky, . .., a2, € X, we have:

n 2n
ﬁ(f** IF* ﬂ Ay N ﬂ (w1\de,) is unbounded im}l”)'

=1 t=n+1
So for somef?!, f** < fle P, and¢ < w; we have

X e (Naw N () (@1\aa) S

=1 {=n+1
Now letting
gg’i = gl.o o OPj*,Aa and
8a.i =8 ©OPja,
we have
Dom(gg ;) UDOM(g; ) < {yaji j < j*}-
Let
B={i<wi & <¢}el,
Bom =:{i: ug,,i N, i #0yeJ forl#£m,
By =: {i: Dom(f%) n (Dom(g2 ;) UDom(gl ) # Dom(f**)} € J
(in fact is finite).
So we canfind € w1\ U, Be.n\ U, Be\B (because the set of inappropriateis in J).

Sof2=frulj_y gl ;U U1 ga,.i € P forces that the intersection frol is not
C ¢, contradicting the choice of!. O

Proof of the Fact. We divide the proof into two cases, depending on the answer to:

Question. Is there¢ < w1 such that: for ngg?, g Pj« abovef* and¢ € [¢, w1) do we
have

g lwe=g"Twy, glF"tea”. g'lF"tga™

CaseA: The answer is YES. For some unboundedt X, 41 and(y/’.**: j e w) we
have |

jew & aeX =y =y

So ¢ is actually aP{yf*;jewC}—name. So fora € X, a, depends only on{f €
Gp: DOM(f) C {Yu,i: i € we}).

Hence there arg ®1 < 8, such names, a contradiction.

CaseB: The answer is NO. So for every < wy, we have(é;‘,g?,g;l) giving the

counterexample far, without loss of generality Do(rg?) = Dom(gg). As {(j(£): ¢ <w1)
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is increasing continuous, by Fodor’'s lemma we can find »; stationary and* < w1
andn* such that

¢ €S = (Dom(gd) Nwg) U (Dom(gy) Nwy) S wys,

and (Dom(gf) U Dom(g;): ¢ € S) forms aA-system with heart, andg? [ v =g [ v
does not depend og, and we call it f*. Also Dom(ggZ \ wg+) hasn* elements and
1<t eS=§ <¢.

Let(e(i): i < w1) be a(strictly) increasing sequence listifigands; = 8*0.). For¢ < n*,
ae€ X andi < w1 we let fof(i) be thefth member of{y, ;: j € Dom(gg(l.)) \ wer )
Shrinking X without loss of generalityy, ;: j € wy+) does not depend o € X (by
X); J = J24 andX are as required. O

Discussion 8.2.

(1) Clearly we can repladey, ®,,+1 by anyf, A asin 7.4.

(2) Normally if u is strong limit singular of cofinality, (at least large enough), we can
find long intervalsa; of the Regn w fori <6, i < j = supa;) < min(a;) such
that(Ya € []; a;) [max pcf(Ranga)) = A*] for somexr* € [, 241, usually cf2#).
This is a strong indication tha(t]snup(u,-),min(u,-): i < 6) will have a A-sequence,
so, for example, there is @’)*-c.c. Boolean algebra of cardinality having no
independent subset of cardinalityfor which eveni-Knaster property fails.

To make this happen for n@, we need a very special pcf structure in the universe.
But we do not know even if the following simple case is consistent.

Question 8.3. Is it consistent that
(x) for every seta of odd (or even) regular cardinals witla| < Min(a) we have
max pcia) is odd (or even respectively) (we may moreover &&k) 2% = R, 2)?

Essentially by [26, 8§5]:

Lemma 8.4. Assumeu > 6 = cf(u), p strong limit,u =3, _, ni, ni < p strong limit,
cf(u;) =o0; and2ti = ;Lj', Wi = Z£<0i Wi, nig <w, A=tcf(J]; -y l,l,j_/.]*), Jebd cJ*

Let/; , = ERI" and
i Dy i

7=y
J*
Then
(a) there is a(x, J)-sequence for
(licii <0, ¢ <o),

(b) ifi <0 = 0; =6 thenwe canfing (i) <6 fori < 6 such that there is a-sequence
ﬁfor <Ii,{(i): i <0).
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Remark 8.5. So if § = {u: u strong limit cf(u) = Ko, 2# = u*} is unbounded, then for
a class of cardinalg which is closed unbounded
(*) (&) w strong limit andu = sup(S N w),
(b) if cf(u) = Vo then we can find € (1, 2*] N Reg andu, < u =", in,

n < n+1 and there is a-sequence for ( n<ow).

I" :
D))

9. Having aA-sequence for a sequence of non-stationary ideals

Lemma 9.1. Assume
(a) w is a strong limit singular of cofinality,
(b) A =2*=cf(n),
(c) A; regular increasing foii < § with limit u, § < u (usuallys = 0),
(d) J is an ideal ons extending/
(€) A =tcf([ ;5 2/ ),
() (A¢: ¢ < (%)) isapartition ofs (S0A;s pairwise disjoinjeachA, in J* (otherwise
not interesting,
(9) 18| <o =cf(o) < Ao.
Thenthere is a sequendg= (ny: @ < 1), Ny € [ ;-5 Ai, Cf(ne (i) = o, satisfying
(x) foranysequencdF; ;: ¢ < {(x),i < §) of functions, for every large enough<
we have
(k) if ¢ <C(%), Fri(a [U§<§ Ag) isaclub ofa; fori < § (reallyi € Ay),
then

{i € Ar na(i) ¢ Fri(la rUA;>} eJ.
§<¢
Moreover
(xx)T if ¢ < ¢(x), n < and fo, ..., Bu—1 < @, and for eachi € A, we have

Fri(py, Bos -+ > MB,_1> Bny> Na I U§<§ Ag) is a club ofA;, then

{i € Ari ng(i) & Fri(mgg, Bos - -2 My_1s Ba—1: N | U A;)} el
§<¢

Discussion 9.2.For a givenu as in (a), clause (b) may fail, but then we will have another
lemma. What about (e)?

If 6 > Ro there are suckn.;: i < 6) even forJ = J9 (see [25, VIII, §1]. If6 = 8o we
do not know, but we know that the failures are “rare”. E.g.,

{8 < w1: Js fails (), i.e.,~[Js11 =" pp(3s)1}

is not stationary. About PR, €.9., ifla] <Ng = |pcf(a)| < Ro we then can get it, see
[25, XI, §5].

Remark 9.3.
(1) This can be rephrased as having.aJ)-sequence fof] | J{'is:": i < &) with A; ,
decreasing. ’
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So compared to earlier theorems, the.; for which the lemma applies are fewer,
but the result is stronger: nonstationary ideal and we get also the “super” version see
(k)T

(2) Of course another variant is to start with= J/{‘I_St" and get/ = J"'7.
(3) Considering functions with finitely manys’s, 8 < « as parameters (i.e(x*)™");

thinning (f,: @ < 1) the conclusion follows.

(4) In (++)* instead ofr < w we can ashe < o if (Yo <A)(Ja|=7 <A).

Proof of 9.1. For simplicity we concentrate or£) (in 10.1 we concentrate on the parallel
of (xx)™). List the possibleF; ;: i <38, ¢ < (%)), i.e., sequence with eadf ; having
the “right” domain and range, which are clear from the stateme (%: i<$, <
{(x)): B <A). Letus defing, € []; A; by induction onx.

For a givern we choosey, | A; by induction org < ¢(x).

Define fori e A;, B <«

s

ch — { ng(na [ Ug<c A¢) if this setis a club of;,
! Ai otherwise.

So we need

Fact. Thereisy € [];c,, A such that

/\ {ieAnG)¢ Cf} elJ, i€eA;=cf(ni)=o.
B<a

iea, M Such

(VB <) (Vi € Ar)[(ge (i), ge11(D)) N CP #01].

Why is this enough?
Letv=n[ A, be defined by

v(i) = ().

£<o

Now v(i) < A; asge(i) < A; ando < ; = cf(4;). (We can also say something fer> u,
but not now.) Also(g. (i): ¢ < o) is strictly increasing, so ¢b(i)) = o.
Now let 8 < o and define

By =liecA:vi)¢Cl).

We would like to haveB; € J. For each € B;, the sequencég.(i): i < o) is a strictly

increasing sequence of ordinals with limit notcnﬁ.
So for someg ; <o

CP N (gey, (), v(D)) = 0.
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So
/\ (8. ge42(D) N Cpi = 1.

£2epi
Leteg =sSup_sep,i-
Noweg; <o & o =cf(o) > |8] > |A¢|, SOgg <. SO

N (865 (D). 865 (D) N CP =0,
ieB;
and henceB; € J as required, i.ey is the required,.

Why is the choice of theg, possible?

Construction.
¢ =0. Trivial.
g limit. g.(i) = U81<g 8e, (i) < A (Bse <o < A; =cf(Xy)).
¢+ 1.Forf <a definehg; € [[;cq, 2i DY

.\ def . .
hpe (i) Eminfy <t (g:(). )N CL #0).
So {hpe: B < a} is a subset off[;, 4 of cardinality < 2, but []; _s2;/J hence
HiGAI Ai/(J | A¢) has true cofinality. (as if A; € J there is nothing to prove). So there
is g, € HieA; Ai which is a<4,-upper bound ofig . < a}.

Let g.+1(1) = max{g. (i), g (i) + 1}, clearly itis as required. O

Claim 9.4.
(1) Assume
(@) 71 = (ot a < i), Whereny € [[;cpomsy POM(Z;) and J is an ideal oné
extending/?9, eachs; an ideal and/ an ideal on. extending/d,
(b) (A;: ¢ < (%)) is a partition ofDom(J), A; ¢ J,
(c) foreveryF = (F;: i e Dom(J)), for thel-majority ofa < A, for everys < ¢ (%)
if Fi(no | Ug -, Ag) € 1; fori € A, then

U A§>:|.

§<¢

(d) I} =Tlon, Lijo for j < &%, wherei(j, £) <6,

(e) J*={ACé*: forsomeB <8, \,(BNA;) € Jand /., Vian,; 1. 0) € B}
is an ideal ons*,

() nk is defined by

N () =(nai(j, 0): € <nj).
Then* (n*: « <A)isa(xr, J*, I)-sequence forl;.": Jj <9).

o

v'ie A;)[naa) ¢ Fi (na I

4 S0 we have dealt here with the casel?f‘, X decreasing.
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(2) If we strengthen clausg) to the parallel of(xx)™ in 9.1, then(n*: o < i) is a
super(x, J*, I)-sequence fot/": i < §).

Proof. Straightforward. O

Conclusion 9.4A. Assume (a)—(g) of 9.1 (see 9.2) and (a), (e) of 9.4. Then there is a super
(&, J*)-sequence fotl}: j <4).

Conclusion 9.5. Assumeu > cf(u) = Rg is a strong limit, and

A =2k =cf(2") = tcf( I x,,/Jgd),

n<w

An regular< u. Let (k,: n < w) be such that
(Vk)(3%n) (ky = k),
and, e.g.0 = (2%)*.
Forn <w andk <k, leté(n,k) => {kn: m <n}+k and let

_ nsto
Iy = 1_[ "Mm,k)’
k<ky

J={ACw: supk, <o}.
neA

Thenthere is ai, J)-sequence fo(l,: n < w) (even a super one).

Proof. By Lemma 9.1 and Claim 9.4, we choose in 9.4 the paraméters, {(x) = w
and let

A;:{ka—g:k,,>§}. o

m<n

We may wonder on the “tcf” assumption; at the expense of using “sfhtieis can be
overcome:

Claim 9.6. Assumeu > cf(u) = R strong limit singular,
A =2t =cf(2") e pcfir,: n < w},
An =Cf(hy) <,

and(k,: n < w) is as in9.5. Thenwe can find (n, £) < w, £ < k, with no repetitions,
in,0)>imn—Lky1—-1D>--->i(n—1,0),

and letting

nsto

In= Ain,e)’

<k,

we havefor some ideal/l © J(Bd onw, there is a(x, J)-sequence fotl,;: n < w).
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Proof. Let
pCfJat);d({)xn: n< a)}) = {XZ cf(x)=x= th( 1_[ )»n/Jgd>
neA

for some infiniteA C a)}.
By a pcf claim:

Fact 9.6A. We can find increasinglx.: ¢ < (%)), (*) < w1, a limit ordinal, J* an ideal
> Ji4, such that

Xe € pCfJat))d({)xn: n< a)}),
say

. =tcf( 1 /Jgg),

neBg

(Be: & < g(x)) Is a partition ofw, and

A:tcf( I1 xs/1*>.

e<e(x)

Continuation of the proof of 9.6. Let (k,: n < w) be as before. Choose
(i(n,0): € <k,) foreachn

such that
(@ i(n, &) >i(n,£+1),i(n,€1) <i(n+1,4£2),and
(b) for everyk andeg, ..., g;—1, for infinitely manyn we have

kn=k, i(n,0)€ B,
Let
Ap = {i(n,ﬁ): n<ow, k, > E}.
So
(Ag: £ < w) is a sequence of pairwise disjoint subsets of
such thajA, N B, | = Ro.
We apply 9.1 for

(Ap: n<w), Apin<ow), u. O
Remark 9.6B. If u > cf(r) > Ro, 2* regular, the parallel to 9.5 always occursa
If we useA = (Ag), Ag=2481in9.1:

Conclusion 9.6C. In 9.1 we get:

there is aA, J)-sequence fofl;: i < §), even a super one.
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Remark 9.7. By the proofs in [24, 81] we can repla(;&g": i <$§), Sé\ ={8 < A;: cf(d) =
0} by some large enough= (S;: i < 3), whereS; € I[1;], see below.

Also if (fy: a < A) is <y-increasing cofinal irf [; _; A;/J, continuous when it can be,
then for some clukE of A we have(fs: § € E, cf(§) =@, f | § has an exact least upper
bound lub is OK. Probably more interesting is to strengtr@ﬁw by club guessing, as
follows.

Definition 9.8. ForC = (Cs: 8 € §), S C A, stationary

id*(C) = {A € A: for some clubE of A the set
{§ € S: Cs C E} is not stationary
(so as we can shrink, equivalently, empt)})

Lemma 9.9. Assume
(a) w is a strong limit singula®,
(b) A =2*=cf()),
(c) A; regular increasing foi < § with limit w, § < u (usuallyé = cf(uw)),
(d) J is an ideal ons extending/ ¢,
(€) A =tcf([ ;s 2i/ ),
(f) (A;: ¢ < ¢(%)) is apartition ofs (so pairwise disjoir,
(g9) o =cf(o) < u, moreovers < Ag and satisfies
®‘;’5 we haver > § (or atleastifA, € J for ¢ < o then

{i < §: i € A for every large enough < a} el).

Then
For 6 € RegN (o, Ag) we can findS;: i < §), (C'ii<8),I=(L:i<$), n={Ng: @<
A) such that
(@) S; € I[x;]is stationary, and € S; = cf(3) = o,
(B) C'=(Ci: 8 €S;), Ciaclub ofs,
) I = id"(fl) = {A C A;: for some clubE of A; we have § € S N A; implies
SURCL\E) < 8},
(8) (%) forany sequencéF;;: ¢ < ¢(x),i <) of functions, for every large enough
o < A we have _
(%) i & < C(), Fri(na | Ug -, Ag) amember oid (C") for i < 8 (reallyi € A),

then
{i €At g (i) € F;,i(na U A;)} eJ.
§<¢
Moreover
(xx)T if ¢ < (%), n < and fo, ..., Bs—1 < « and for eachi € A, we have

Fri(pgs B0s -+ Ny Bu-1.Ma | Uz -, Ag) in @ member ofd*(C") then

{i € Agima(i) € F;,i(ﬂﬁo,ﬁo,.-.,nﬁnpﬁn—l,na I U Ag)} €J.
§<¢
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Remark.
(1) Included in the proof are imitations of proofs from [24, §1] and of 9.1.
(2) We have a bit of flexibility in the proof.
(3) In (xx)*, we can replace < w byn <t when(Va < 1) (Ja|<% < A).

Proof. Letd =2°. By [24, §1] we can find’ such that:
(i) fori <8,é =(el: aes;), S ellrl,
(i) €, aclub ofa of order types such thatx € S; = cf(a) =0,
(iii) for x large enoughx € H(x), we can find(N;: i < o) such thatx € N, <
(H(x), €, <§), (Nt ¢ < &) € Net1, Ng increasing continuougNe || =6,0 +1C

N, and

i <8=>supel, vy ) €Si-

o

d;). For each suchi we repeat the proof of 9.1, so we chooge= n¢ by induction
on a < A, and for eachx, choosen, | (UK{ A.) by induction on¢ < ¢(x). If we
succeed fine, so assume we fail. So for some «[d], ¢ = ¢[d] the situation is:
(ng: B <a) andnfz T(Us<; A.) are defined, but we cannot definé [ A; and as there
we can compute a familyg = Elg of cardinality < A whose members has the form
B = (B;i: i <3), B €id*@"?) and IetE"Bi be a club ofx; exemplifying B; € id*(&"?);
let Eil ={(Ep: i <8): B=(Bi: i <4) € E}. Let (N;: i <o) be as in®(iii) for
x= {((Eé,&): d; Co aclubfori <8), x, (e: i <8)}.

As in the proof of 9.1 quite easily:

Ford e | {[T;_sei: e aclubofo} let ghd = (eid: o € 8;), ef);‘j = (B e otpel,NB) €

8<(f&§=(8i:i<8)eUEg:>{i<8: sup(NsmimEgi}eJ.
d

Letd; = mtp(eéumvami) NSUAN: N1)): € <o and SUPBN: N A;) € eéup(/vc,m,-)}- Clearly

d; isaclub ofo and letd = (d;: i < 8). Now (SURN; N A;): i € Acay) is as required.

Conclusion 9.9A.
(1) In 9.9 we get:

for some functiorc: [A]2 — o, for everyX,Y e [A]* and¢ < o, for somex € X,
B €Y we havex > 8 andc({«, B}) =¢.

(2) In 9.9 we can add:

if, e.g., x = (2M)*, for everyx C 2 for everya < A large enough, for < ¢(x),
there is a sequeng@/;: ¢ < o) as in the proof of 9.9 such that

(X) i € Ag no(i) #SUpNs N A1)} € J.
Remark 9.9B. In 9.9A(1) we get even R(A, A, 0, 0).

Proof. (1) We relay on part (2).
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(2) Fora < B letc({e, B}) = ¢ if
{i € Ao: fp(i) = fuli) O f5(i) < fu(i) &  #o0tp(e’, ;N B} €V,

and zero if there is no such

Let X, Y € [A]*. Takex € X large enough, so that we can fitd.: ¢ < o) as there,
with (X) for part (2). We can fingg € N1 NY such thatsup(N; N1;): i <§8) <j ng (as
Y N N1 is unbounded i N Ny41). Now« > 8 are as required. O

Claim 9.10. In9.1
(1) Instead of' u > 6 =cf(9) > |8]|” we can assume only
®1 u>0=cf(®) andif (u;: ¢ <0) is a sequence of membersothen

{i <8 0=sup¢:i¢uc}}=58modJ.
(2) Weakening the conclusion 8fl to “weak(J, A)-sequenck we can replacéd =
cf(®) > |8|" by
®2 0 =cf(9) andif (u;: ¢ <0) is a sequence of membersothen

{i<s:0=sup¢:i¢usl}est.

(3) In part (1) and(2), if > No, then we can fin@' = (Ci: 8 € ;") with C} a club of
8 such thatwe can replacd{'isw byidg (C"), see9.9above.

10. The power of a strong limit singular is itself singular: Existence

Lemma 10.1. Assume
(a) w strong limit singular,
(b) 2*is singular,x = cf(2*) (S02* > A > ),
(€) u>o =cf(o) > cf(n),
(d) 2 =pp(wn) (see discussion if9).
Then
() we canfind/, J*, 6" = (Gé: ¢ <cf(n)) fori < A andx such that
(i) 6'is an increasing sequence of regular cardinalg: with limit ;. fori < ,
(i) 2= (A @ <A) is anincreasing sequence of regula$u + A, 2%) with limit
2K,
(i) J < J* are ideals orcf(u), cf(u)-complete,
(V) ho =tcf([T, 62/7),
(V) (9% a < 1) is <y«-increasing, i.e.¢ < B — {¢ < cf(u): 02” > Qf} e J*, with
< jx-exact upper bounw;: ¢ < cf(w)) and(@;k is a cardinal < u, normally
singulaf) p = Iim(eg: ¢ <cf(n)) and

/\ 0g <07,

a<h
¢ <cf(u)
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(vi) if J # J§2,, thencf(u) = No and PP;a (1) < 2 and J as in9.6 s for most
suchu we have the conclusion ¢f), se€[16] and §4.
(B) If J, 6% < 1), A are as in claus€w) thenwe can findj = (n,: « < A) such that
() 7= (na: @ <), 1o € [Ty <t 6F < " . Moreoverng € [T, g, 65 @nd
o =cf(ny () fora < A, i <cf(u).
@iy If C = (Cr: ¢ < cf(u)), 92" N C; aclub of@? for o < A, ¢ < cf(u), thenfor
somex™ = o% we have

aela*, )= (V¢ <cf(w)[n() € Ce].

(y) AssuméA;: ¢ < ¢*) is a partition ofcf(u) to sets not in/. Thenwe can add
(i)™ For any sequence of functions

F=(F;: ¢ <cf(w),

for somen™ = oe%, for everyux € [a*, A) we have
(%) ife <e*,n<w, Bt <afort <nthen

{¢ <cf(u): Fe(....Beng,.-na || Ac) N6 is a club ofg

E<e

butne (£) ¢ Fr (Be, npe - e || Ae) N6}

E<e

belongs taJ. (If we use constank this reduces tdii).)

Proof. Of clause &): First choosgA0: « < 1) as demanded in clause (i) (but we will
manipulate it later, possible by clause (e)). Now as in 9.6, for esttiere are

o, 0% =(0f: ¢ < cf(w)
as there, so satisfying (i), (iii), (iv), (vi).
As 1 = cf(h) > u > 250 we can replace. by a subsequence, so without loss

of generalityJ < J*, so J* is cf(u)-complete andh® is <,-increasing, see 7.0. So
(6% a < 1) has<«-exact upper boun@*, without loss of generality

/\eg <6;.
a8

So clause (v) holds.

Note If cf (1) > 8o we haves = J .

(B) + (v): (Here cf) can be replaced by amy< u such that ofs) = cf(r).)

List all relevantF = (F;: ¢ < 8) with values subsets of. So there are< 2 of them,
list them as(F': i < 2*) with

F' =(Fj:¢<9).

We chooseq € [, ) 07 by induction on.

For a givenx < A we choose), | A by induction one < ¢*. We will choosen, | A¢
such that

() if n <, Po, B1, ..., Pn—1 <a andi < sugirg: B < a} (necessarily< Ay),
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{t €A FIC..Benpy - oma || Ae) N6 is a club of but

E<e

1« (¢) does not belong to fite J.

Butin 9.1's proof we have shown that this is possiblel

We have conclusions variants similar to the ca$ésZegular.

11. Preliminaries to the construction of ccc Boolean algebras with no large
independent sets

Monk [12] asks:

Problem 33.Assume cfu) <k < u < A < u Is it possible in ZFC that there is
a Boolean algebra of cardinality satisfying thec-cc with no independent subset of
cardinalityr?

This is closely related to the problem of “isa free caliber of such Boolean algebra”
(see also in Monk [12]).

Why in ZFC? Because of earlier results understrong limit, 2* = ™", I think.

The real problem seems to me is foregular, and we shall prove that “almost always
there is such a Boolean algebra, so we prove the consistency of failure.

We shall use(Ja‘i’_o’MJ): i < 8) with regulari; o > 2; 1, but we use Boolean algebras
whose existence is only consistent.

So we shall us@ a (1, J)-sequence f0”<t/]\(,~j_o,x,-_1>: i <§),if § =wthe Boolean algebra
B will have a dense subalgeb#®* which will be the free product ofB,,: n < w},

x;,x;" € B, for t € Dom(l,) and B = (B*,y,: a < A) wherey, € completion of

B* is defined from(x,;(n),x;;(n): n < w). We need special properties &,, x,”, x;"

(t e Dom(I,)). The construction continues [15, 83]. Concerning the parallel to 6.13 see
later.

For the caseu strong limit we can use instead subalgebras of the measure algebra.
See 8§2. Now we have consistency (and independence) for< 1 < 2#, u strong limit
singular, hence we concentrate on the other case where the behavior is different, i.e., when
for somey we have cfu) <« < x = x =¥ < u < A < uf® < 2%, The proof here uses
ideals which are “easier” and can be generalized to get ‘namdependent subset & of
cardinalityx for some specifia”. For this we need to start with “there isig-complete
uniform filter D,, on A",

Definition 11.1. We say(B1, x+, x7) witness(/, T) if
(a) 7 is a set of Boolean terms written as= t(x1, ..., x,,),
(b) I isanideal,
(c) B is aBoolean algebra,
(d) it = (x;": r e Dom(I)), x;" € B,
() x~ ={(x;: teDom(l)), x; €B,
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M x;7 <xT,
(9) if Xe It andB C B’ and

B’hxt_gytgxﬁ', forre X,
thenfor somer (x1, ..., x,) € 7 and pairwise distincty, . .., #, € X we have

B'Et(yiy, Yigs o+ +s Y1) =0.

Explanation 11.2. We think of havings a (A, J)-sequence for/;: i < §), and hav-
ing (Bi,i;L,yEl.—) witnessing (1;,7) for i < § and using the sequence of intervals
((x;na(i),x:“na(i)): i < 8) as a sequence of approximations for an elemgnof the de-
sired Boolean algebrR of cardinalityA.

But we may think not only of {x4: o < A} has no independent subset of cardinality
but of other subsets @&. So sometimes we use

Definition 11.3.
(1) We say thatB, x—, x ") strongly witnesses¢l, T) if: (a)—(f) as before, and
()t If BC B/,

B Ex” <y <x;” forteDom(I),

(be: £ < m) is asequence of pairwise disjoint nonzero membe®' pfn < w

and
m +
Xe (H 1) ,
=1
andu C [1, m], thenwe can finde, (x4, ..., x,) € 7 and distinct?, ..., 7" €
X,sot" =(t;: £=1,...,m), such that (cj, ..., cn) =0 where

c;=boU U (beNy) U U (be = yr,)-

te[1,m] te[1,m]
Leu ldu

(2) We say thatB, x™, x™) witness(I, 7) m-strongly if we restrict ourselves to this
m. Similarly [m1, m2]-strongly.

Next we need our specifitB, x—, x 1, I). The following is essentially from [23, pp.
244-246].

Claim 11.4.
(1) If w=2"=17, (orjustu —» [u]2) and2* = u*, then we can find” = (F,: o <
wT) such that
(*)% (@) Fy:[1]?— a x uis one to one.
(b) If Ae (J&d+’m)+, then

for some(e, ip), (a, i1), (B, i2) € A we have
Fy({io. i1}) = (B, i2).
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We wrrite this also as

F({a, io}, {a. i1}) = (B, i2).

We can add that for everg we have|Rang F,) N ({8} x w)| < 1 for
a > 1. We do not strictly distinguisk from F.
(2) The property(+)“ is preserved by forcing notions which have t8eJP%, )*-c.c.
(seell.6below).
(3) Let B = By be the Boolean algebra freely generated by

x;:l. =xal.); Xgi =X@i) (for (a, i) e uT x )

except that, , < x;fl. and

+ + +
Xy VX @,y VX Eyijy = O
Then
() (B, ", %7) witness(J0L . {xoNx1Nx2=0)).

(i) B satisfies the ccc.

Remark 11.5. On more general Boolean algebras generated by such equations see Hajnal
etal. [7].

Definition 11.6. For an ideal/ and forcing notionP, we say thatP satisfies thdn, J)-
c.c. if for (p;: t € A), Ae JT, there isB C A, B € J* such that any: conditions in
{p:: t € B} have a common upper bound.

Fact11.7.If P is the forcing notionP, o of addingy Cohens fo© andr<? = i thenP
satisfies(n, J)-c.c. forn < w, J = Jy++ ;+.

Proof of 11.4. (1) Let{A,: o < u™} list all subsetsA of 4™ x u of cardinalityu such that

for everyg < u we havelA N ({8} x )| < 1. For every such thafy < a < 4™ choose

Hy:[11]?> — « such that(VX e [u]*) [H/([X]?) = a]. For eacha, chooseF, (i, j) €

{B{i.j}} x n by induction on<®, whereli, j} <® {i’, j/} iff max{i, j} < maxi’, j'} v

(maxi, j} = maxi’, j'} & min{i, j} < min{i’, j’}), with ﬂ;’f/. with no repetition so that
Foli, j) € a x p I\ J {88 i x e 07,37 <® i, j})

and if possible

Fo(i, j) € A,y

which occurs ifA g, ;. iy S o x .
(2) Trivial. Let P be the forcing notion. Lep* I “ 4 € (J(‘Ld+ m)* and it exemplifies a

contradiction to(*)%". Let A d=Ef{(oz, i): p* W (a,i) ¢ A}. SOA C u™ x u and,

* “ bd +n
PrIFTA2A. Ae(ph )t
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hence

Ae (J(T+,u>)+'

For (a, i) € A there isp(q.;) > p* such that
Py IF“(a, i) € A7,
Apply (3, J(t/’ﬂym)—cc 10 (pw.i): (@, i) € A), and obtainB as in Definition 11.6. As
Be (J(t,];d+,m)+’ by ()% we can find(, io), (@, i1), (B, i2) € B such that
Fy({io. i1}) = (B, i2).
But by the choice oB there isq € P such that

q Z P(ig) P(ain)s P(B.i2)
(henceg > p*). So

q I-*(a, ig), (a, i1), (B,i2) € A and Fy({io,i1}) = (B,i2)".

But this contradicts the assumption pi, A.
(3) For clause (i), read the definition. For clause (ii):
Call Z C ut x pclosedf F(t1, 1) =t3 & |{t1, 12, t2) N Z| > 1= {11, 12, 13} € Z. Now,
(*) if F(t,si)=r; fori =0, 1then
{to, s0, ro} N {11, s1, 71}

has< 1 or 3 elements.
[Why? As eachF,, is one to one and
F= | Ful({e} x [1]?)
a<pt
and
2

(for} x [1]% @ < ™) are pairwise disjoint.]

(xx) If ZC ut x u, andB z is defined naturally: it is freely generated by, x; : t €
Z} except the equations explicitly demanded on those variatiles,Bz C B
(evenif Z is not closed).
[Why? If f:{x;,x;": t € Z} — {0, 1} preserves the equations, and we define

frodx xtirent x uh— {0, 1)
by

w, o def | f(y) ify:x,i,teZ,
f(”‘{o ity =1 ¢ 2,

then f* preserves the equations.]

(k) B Eccc
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[Why? Let(a;: ¢ < w1) be a sequence of nonzero elements. We can find fiteuch
thata; € Bz, . letf:Bz — {0, 1} be a homomorphism such thgt(a;) = 1. Let

def
Z;—:eZ; U U {{tl, 12,13} F(t1,12) =t3, and{ty, t2, 13} N Z¢ > 1}.
Without loss of generalityzj: ¢ < w1) is aA-system with hearg ™.
Without loss of generality; I {x;": t € Z+} is constant.
Without loss of generality, N Z* is constant.
So
()a If ¢ #& <
F(t1,t2) =t3 and ({r1,12,13} C Z: U Z,
then
{n,12,13 € Z; or {n, 12,13} € Z¢.
[Why? Without loss of generality
{1, 12,13} N Z¢ | > 2.
So
{r1, 12,13} < Z;”.

Now if #; € Zj\Z;, thens; ¢ 2 (otherwiser; € Z;L N Z;, hencer; € Z+, butZ, N 2+
is constant). Sdry, 12, 13} € Z;.]

Now f; U f: preserves the equations @i U Z¢ and by the homomorphism it induces,
ar Nag ismappedto 1, sBz uz, F“ar Nag # 0" hence by §x) we haveB = “a; Nag #
0"] O

Fact 11.7A. Assume
(@) (B,x~,xT) is awitness foll, 7),

(b) y; =—x;", y' = —x; fort e Dom(;), 3~ = (y; : t e Dom(I)), 3+ = (y;": t €
Dom(7)),
(c) T'={—-t(—x0,..., —xy—1): T(x0,...,xp—1) € T}.

Then(B, y~, yT) is a witness folZ, 7’) (and is called the dual of B, x—, xT)).
We may consider

Definition 11.8.
"
(1) Let(_*)ﬁﬁ mean

(@) F = (Fy: a < put), F, is a partial function fromiu]2 into o x u,

(b) H = (Hy: o < ut), Hy, is a partial function fromiu]? into {0, 1},

(c) if Ae (J('Ld+ )T and ¢ < 2 then for some(a,io), (@,i1) € A we have
F,(io,i1) € AandH,(ig, i1) = £,

(d) the Boolean algebr# 7 defined below satisfies the c.c.c. We may write
F=Uyop+ For H=:U,,+ Ho instead ofF, H, respectively.
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(2) Bf g is the Boolean algebra generated freely oy, x,;": t € ut x u} except
that x; < x5 and x5 N x,1 N x; =0 when F(i0,11) = t2, H(to, 1) = 0 and
(—=X10) N (—=x;)) N (—=x;,) =0 whenF(to, 1) =12, H(to, 1) =1

Remark 11.9. Of courseB7 3 is defined from two sets of triples, which are disjoint and
no distinct two have- 1 elementin common.

Claim 11.10. Assume{*)‘,ﬁo of11.4(1)and, e.g.;u = AT, 1< = 1.
(1) For some(@<?)*-c.c.,0-complete, forcing notio® of cardinality < x+ we have

IFp* (*)‘},H for someF, H” .

(2) If (', and Q is a forcing notion satisfying the, J<Zd+ )-c.c. then inv @
we have(x)y ;. If V.=V, P as above it is enough thak « Q satisfies the
3, J&dﬂm)—c.c.

Proof. (1) Let

= {(f,h): for someu = us) € ut x p of cardinality < 6 we have f,h are
partial functions, Dorf) = Dom(k) € (Dom F) N [u]? f € Fo and
Rangh) € {0, 1} andB s, satisfies the c.c.};.

whereB s, is defined as in 11.8(2) (and see 11.9).
The order( f1, h1) < (f2, hp) iff
() w(prny) S u(foh)
(i) fi=f2 [ lucsnpl?
(iii) h1=ho | [ucrnpl?,
(V) B(f1.h1) S B(f.h) MOrEOVEIB (1,47 <0 B 1)
The reader can check.oO

Claim 11.11. Assume* ™" = A++1 for ¢ < n and leth, = A"—¢+1,

(1) We can findW such that
(a) w < [H£<n )“E]n'
(b) if ug # uz belongs tow then|ug Nua| <1
(c)ifAe (Jx t<n) Yt then[A]"NW #£ @,
(d) (r¢: € <n) is a decreasing sequence of regulars.

(2) Thereis a forcing notiorQ of cardinality A™, A*™-complete satisfying the™-c.c.
and even thén, JM ¢<m))~C-C. and adding¥ satisfying(a)—(c)of part(1) and
(e) W is locally finite if A € [],_,A¢ is finite, then for some finit®, A € B €

[l reandw e W & [wNB|>2= wC B.

(3) If P is addingy many#-Cohen realsp = A’ and inV, W satisfiega)—(e) then in

VP still clause(c) holds(and trivially the other demands o). (Se€[23].)

Proof. (1) We prove by induction om that for any such satisfying? < n = p
D we can findW, F) such that (a) (c) of 11.11(1) hold fék, (A t¢*D: ¢ < n) and

(f) F:W — At satisfies: ifA € (J2d D gy y*, then RangF | [A]") = AT.
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The induction step is as in the previous proof.
(2) Similar to the proof of 11.10.
(3) Becauser satisfies then, /3¢, ,_ )-c.c. O
Claim 11.12. Assume
(A) W, (e £ < n) satisfy(a)—(e)of Claim11.11(1), (2).
(B) 3<m<n/2,n>6.
(C) B isthe Boolean algebra generated by, x;": t € [,_, A¢} freely except
(1 x <x,
(x)2 if w={r,...,t,—1} € W, wheret, is increasing in the lexicographic order,
andu Cn, |u| > m andn — |u| > m, then

mx,‘;ﬁ m (—th):O.
Leu t<n,léu
D) T=Twm= {mku xeN m£<n,£¢u(_xi): uCn,m<|ul<n—m}
Then
() BE"x, <x; & x; £x; " for t £sin[],_, e,
(i) (B,x~,x")isawitness fon(Jl%‘j D
(i) B satisfies the ccc. -

Proof. Clearly B F x;” < x;” by the equation in%); and B = “x,” # x;7” because the
function fp given by,

1 s=1¢,

folx;) =0, fo(x;L)={O ‘i

preserves all the required equations (as ). Taken togetherB = x; < x;7. Also
BEx; £ x; whent # s using f1 defined by

AlH = file) = {é + o
So clause (i) of the conclusion holds. Clause (ii) holds easily by the equatiefimitd
assumption (A), i.e., (c) of 11.11(2).

We are left with verifying clause (iii), i.e., the c.c.c. So dgte B\{0} for { < w1. For
every¢ we can find a finite seZ; € [],_, A¢ such thati; € (x; ,x;": t € Z;). By 11.11,
i.e., by clause (A), without loss of generality

(x) fweW&|lwNZ]22=>wC Z;.
Let fg*: x . xtte Z;} — {0, 1} be such that it preserves all the equations (fre (
+ (%)2) on these variables and so the homomorphism it induces Bgmto {0, 1}, fc*
mapsa; to 1. Without loss of generalityZ;: ¢ < w1) is a A-system with hearZ and
fETx, x" 1 € Z) is constant,

Letz(1) < ¢(2) < w1 and definefs

B fc*d)(xf) if t € Z{(l),
folx) = fg*(Z)(xl_) if t e Z¢(2)s
0 otherwise.
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. fg*(l)(x;—) if r e Z¢(1)s
0= froGih) i 1€ Ze),
otherwise.

Clearly it is well defined and with the right domain. Dogspreserve all the equations?

Casel.x; <x;'. If t ¢ Ze 1y U Z¢ (o) trivial (both get value zero), and ife Z; ) then
trivial (as f;*@) preserves this equation).

Case2.( e, Xt N ﬂgw (—x;)=0.1f¢ {1, 2} and{r, ..., 1,—1} € Z¢ (1) this holds as
f;*(e) preserves this equ%tion. So assume this failg ferl, 2 sol{r, ..., ti—1}NZ; (| < 1
hence 2> [{to, ..., tai—1} N (Z¢ ) U Ze(2))| SOLE: 10 & Zp 1y U Zy(2)} Nnecessarily includes
members of:, hence the equation holdso

Comment 11.13.

(1) If in addition we havex-complete maximal ideal$, ; on A, ¢ extendingjfndz
and (A, £ < n) as above fom a (1, J)-sequence, e.g., fal*: n < w) where
I¥ = [T J(ane: e<ny, We are in a powerful situation as it can be applied ituples
rather than each one separately. But above we prepare the proof for not using it by
having strong equations.

(2) We can waive the “locally finite” demand proving as in the proofsef«) in the
proof of 11.4.

12. Constructing ccc Boolean algebras with no large independent sets
On such constructions see Rostanowski and Shelah [15, §3].

Construction’s Hypothesis 12.1.We assume
(a) nisanormalr, J)-sequence fotl;: i < §),
(b) (Bi,if,ff) is a witness fo(/;, 7;), | B;|| = | Dom([;)],
(€) A=cf(r), Y ;_sIDom(I)| < A.

Remark 12.2. Actually 7; do not influence the construction, only the properties of the
Boolean algebra constructed. Similarly, the normality and the fact#Bat = | Dom(Z;)|,
as well as clause (c).

We define a Boolean algebmandy, € B (@ < A) as follows:

Construction 12.3.

Casel. § = w. Let B, be the free product ofB;: i < §} (S0 B, = *;,B;, B" C
B"1c B, soB.=(J,_, Bx)B.)

Let B¢ be the completion oB..

Foreach <édandne{ny [i: o <A} CJ]
is done by induction on.

i=0.y,=0,y/=1.

Dom(/;) we definey,” <y, in B'. This

j<i
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. - + - + - + +
P= A Loy =y U Oy N g = Y Y 05 00X Gy)-
So easily

j<i=>y,;¥”<y;1r,~ <yr_1:ﬁ gy;l:ﬁ/"

Now lety, be lubly, ;: i <§). (Note If B; F*0 <x;, < xift < 1" for + € Dom (I;), then
alsoy, = maximal lower bound Of% i+ i < 8}. This will not be used.)
[Otherwise, the difference contains some membeBof hence of someB’ (i < §), but
there is none.]

Lastly B = Br‘;,i,<(B,~,x;,5c,-*): i<8) is the subalgebra aBS generated byB., U{y,: o < A}
(by the finitary operations, so it is not complete).

Case2.§ > w. We find by induction ori < §, B, {y s y,,*): ne€{ng i: @ <A}}such
that

() B’ increasing (byc, even<o).
(i) B'Fy; <y, (when\/on=nq [i)

N L7 SN
J<i= B FEy; Sy Syy Sy

(i) BCis the trivial Boolean algebra.
(iv) If i = j + 1thenB’ = B/ x B, (free product) and fon € {ny [ i: a < A}

- _ — + —
Yo = Yo Y O 0% 560)
+_ - + +
i = Yo Y Oy N55)-
(v) Fori limit, B! is generated freely by
UB‘/U{yn_,y;;': nef{ngli: o <A}}
j<i
except: the equations iR and
Yatj SV S y,;L < ynﬂj for j <i,nas above
Lastly, B € completion(|J; _; B) is defined as in case 1 usinyg défy,;a.

Construction 12.3A. A variant

=i nelne [ +1): a<2))

1

SO We USex; ,;, 1(i+1) instead ofy; ,, ;).

Construction 12.3B. A variant. Itis like 12.3A but we are give@Bl.i, (xi.0: o < Aj)) and
we define by induction oh, B* (increasing with'), and follows:

Casel:i =0: B' is the trivial Boolean algebra, |, =0, y," ;= 1.

Case2: i = j + 1: B' is generated byB’/ U o “,x;; i @ < A} freely except the
equations inB’ and

(.o X xF

T ey 100 ﬂa/g“"")ﬁ<nzo
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wheneveB; E (... . )e<n = 0; lastly defines

- +
Mty (1) M1y ()

p— _ — + p—
Youti = Vnati Y Ot 0 X nain)>

+ - +
Vrati = Yaati Y Oty N e i)-
Case3: i limit. B is generated bjul.<i B/ U (R “,y;; i <A} freely except the
equations inB/ for j < i andy, |, <y, ; < y;zr

i

+
SRARY fora < .

Comment 12.4. Clearly 12.3A includes 12.3B as a special case, but mostly there is no
real difference in the uses. The reader may concentration on 12.3B.

Discussion 12.5.Usually the conclusions are of the form: among anglements ofB,
something occurs. The first need|iB|| = A, a trivial thing.

Fact 12.6. (x)3 = (%)2 = (x)1, Where
()1 1Bl = A
(x)2 Foreverya < B < A
{l B F _‘(EY)(X,;U) <Y< xr—;;(i) /\xﬂ_ﬁ(i) <y < x;;}(i))} #V,

i.e.,

.. - + - +
{i BiFx, o) £x00 Y Y0 £ Xy} # 9
(x)3 If t £ s are inDom(/;) for somei < §, then

B F=x,~ ij' ANXy fx;'
Proof. Easy. O
Remark 12.7. If not said otherwise, all examples satisi)4.

We will also be interested in stronger properties. In Section 15 we will be interested in
the casé€B,x~,x") the pairs(x,’, x,), (x;7, x;) were independent.

Claim 12.8. Assume
(*) ag€B fora <.

Thenwe can find inB a sequenceéb,: ¢ < m) a B-partition of 1 (i.e., a sequence of
disjoint nonzero elements with unidj m >0, and X € [A]* andc < bg in B andn, and
Boolean terms, for £ =1, ..., m with n variables and ordinalsy x € X fora € X,k <n
andyy for k € [n, n*), wheren* > n andi* < 8, v for k < n* such that
(i) n=0iff m =0iff (a,: @ € X) constant,

(i) Yw.0 <VYwl < <VYan—1aNdyy < ¥ns1 < - < Vu*—1 < Va0,

(iii) if o < B areinX theny, ,—1 < .0,

(iv) if « € X thena, < Uzgm be, ag Nbg=c and [l € [1,m] = aq Nbe = T (Yy, 0,

Ve s Yyun D], AN € [1,m] = 0 < aq N by < be] (SOT, NONtrivial,
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v) NYek [i* = fork <n,
(V|) {be: £ <m} < (B; U {yyk: k e [n,n*)}> andn)/k “* — v forke [n’n*),
(vii) (vx: k < n*) is with no repetition.

Proof. By the A-system lemma and Boolean algebra manipulatian.

Claim 12.9. A sufficient condition to
®o B has no independent subset of cardinality
is
®1 if ay, X, n,m, v, Yk, be(@ € X, k <n, £ <n) are as above il2.8 andcp =0,
m =1, then{a,: @ € X} is not independent,
which follows from

®2 ifae, X,n,m, 7, yox (@ € X,k <n) are as above il2.8,co=0,m=1,i =i*,
then

for everyA, B’ andy,, if A € (I;)")*, B; € B/,
B =x; <y, <x; fort e Dom(l;),

then(t1(ysg, - -, Yi,_1): (t0, - .., ta—1) € A)
is not strongly independent

Remark 12.10. If we ask more ori;, we can weakem®y, like:
if n <o, (Yuk: k < n) increasinge < B = yun—1 < a0, then lettingn,, =
Ny, () k < n): i <38), gives thaty’ = (n,: « < A) is a (&, J)-sequence for
((IH™: i < 8) as well as some weaker versions.

ooy

Proof of 12.9. ®1 = ®¢. We choose by induction of < m a sequencé(te, V(f,0~
Vf,mw)—l): « < A) such that
(i) e =r1e(xi, ..., xm@)—1) is a Boolean term, nontrivial,
(ii) V(f,o < V(f,l << ytf,m(l)fl <A
(i) a<B<i=> y(f,m(l)—l < Vé,O when they are well defined,
(iv) IE(aVof,o’ R (f,m([)fl) N Uelge by, =0.
For ¢ =0: Let ty(x0, x1) = x0 — x1, SOm(£) = 2

vQo=2a, yly=20+1.
For ¢ 4+ 1: For eachx(x) < A, apply®1 with 1 — by41, by41, (aﬁ(*)+a: o < A), where

al Tt @yt .--~a, ) herestanding fabo, by, (aq: @ < 1) there, and get a Boolean
4+1 ; ¢ ¢ ;
term ra(*)(xo, oo Xm(e4La(+))—1), and ordlnalsﬁa*(*)’o << ﬂa(*),m(6+l,a(*))—l’ all in
the intervalla (%), A), such that
+1( ¢ ¢ ¢
T a ,a s, a =0.
Ot(*)( ﬁﬁ(*).o ﬂft(*),l ﬁﬁ(*).m((+1,a(*)—1))

Let X € [A]* be such that
@ aeX=tit =1, m, o) =m, %),
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(b) X is thin enough, i.e., ix < g are inX theng o, ..., B ..y < B-
Now if ¢ is the¢th element ofX we let

ut = {yg o m<m@andB e (Blo. ... B -1}
SO |ug = m(t) x m(€,%) let m(t + 1) = m(€) x m(€, %) let y it < y/TH <+ <
;f;%ul%l list u’é*l, and it should be clear what is, 1. For¢ = m we have finished.
®2 = Q1 Straight. O

Fact 12.11.
(1) In 12.8we can addso in®; of 12.9we can assumehat
(viil) T¢(x0,...,X0—1) € {xg, —xx: k <n}
if

(x) for a set ofi < & from J* we have(xl.ft — X TE Dom(l;)) is a sequence of
pairwise disjoint(nonzerd elements of;.
(2) Assume
(x)* for everyi < § we have(xl.ft —x;,0 t € Dom(l;)) is a sequence of pairwise
disjoint(non zerg elements oB;.
Then
(a) In 12.8above we can add

bo.....bm=|_J B'.
i<$
(b) Under12.3Bwe can addfor k € [1,m), if i is large enough, ifxg, ..., a,—1 € X

letting b} be the projection ob,, in B! (i.e., any elemer#) satisfying

(Vx € BN (x <bp— b < by, x = by — b>by)
(there is a minimal and maximal sub;j andtheyare inB U{p: p= fu | (x + 1)
for somei, =(v <)1), fo [i= foo i, (fa, (D) £ < 5) is with no repetitions and
7(x0,...,Xxs_1) IS a Boolean term then

B b Ft(brNyags .-, bk N Yo, 1) =0=

B el Nyag, ... b Nyg, ) =0

(we can even be more explicit
Proof. Straightforward. O

We can now phrase sufficient conditions for having free calib@or 7°) and for having
no 7 -free subset oB of cardinalityi.

Claim 12.12. Sufficient conditions fot B satisfies thec-c.c” are («x is regular uncount-
able ang:

(¥)1 § = w and eachB; satisfies th& -Knaster condition,

(x)2 eachB; satisfies th&-Knaster condition andva < «) (Jo|®! < «),
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(x)3 eachB; satisfies the-Knaster conditiony > § and for everyA € [A]*, and limit
ordinal §’ < § for someB € [A]¥ andi < § we have

a€B,BEB N 8 #ng 8 =1g(ngNng) =i

(follows from*“7; is « T-free”, seel.17and Definition1.18).

Claim 12.13. Assume
(A) 7isanormal(x, J)-sequence fotl;: i < 8),
(B) (B, %, %) is awitness fo/;, {xoNx1Nx2=0}),
(C) B isas constructed in2.1, 12.3.
Then
(a) Ais not a free caliber o3,
(B) B has cardinalityr and satisfies the-c.c. ifx isasin12.12.

Proof. Straightforward. O

Conclusion 12.14.Assume for simplicity tha¥/ £ GCH,0 =60<Y < y = x<X and P is
the forcing notion of adding #-Cohen subsets &, i.e.,

P= {f: f is a partial function frony to {0, 1}
with domain of cardinality< 6 }.

Then(cardinal arithmetic oV © is well known) and
(%) ifcf(u) <6 < u < x thenthere is a2¢fW)*-c.c. Boolean algebr® of cardinality
A =T such thatx is not a free caliber oB (and even satisfying the-c.c. if k is
asin 12.12).

Proof. Use 12.13 and §11.0
The problem of ‘B with no independent subset of cardinalityis somewhat harder.

Claim 12.15. Assume
(A) nisanormal(r, J)-sequence fotl;: i < 38).
(B) (Bi,ii_,ii*) is a witness folf;, 7, m;) (0N7y,; m; Seell.12clause(D)).
(C) 3<m; <n;/2.
(D) Foreveryk < w, {i: km; <n;} € J7.
(E) B isasin constructiori2.1, 12.3.
Then
(i) B does not have a free subset of cardinality
(ii) B has cardinalityr and satisfies the-c.c. ifx is asin12.12.

Proof. Straightforward (using the criterion in 12.9)0
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Conclusion 12.16.Assume for simplicityV = GCH, andd = 0<% < x = x<* is the
forcing notion of addingy 6-Cohen realsThencardinal arithmetic iV’ is well known
and
(%) if cf (u) <6 < u < x then there is a(2®)*+-c.c. Boolean algebraB of
cardinalityr = u* without an independent subset of cardinality
(x*) we can demand tha satisfies thecf(u)™)-c.c. if cf(u) = Rg or

VE“(§ <u™: cf(§) =cf(n)} € I[7]".

Proof. By 12.15, Where(Bi,)Ei_,)E;“) is provided by 11.12 (an® for it by 11.11). For
(xx) see 1.17(2). O

We would also like sufficient condition for inequalities, for simplicity= 2.

Claim 12.17.
(1) Assumd2.1,12.3and(x) of 12.11andn < w andt% = t%xo, ..., x,_1) a Boolean
term andr! = t9%(—xo, ..., —x,_1). Then(x)1 = (x)2, where
(%)1 if £ < 2 for a set ofi < § from J* we haveif X ¢ I,.Jr then for some
fo, ..., th,—1 € X, pairwise distinct, we have

¢
BiEt (xis, ..., Xip, 1) =0,

(x)2 if ay € B for @ < A then for someé < w andwg,, <A for £ <k, m <n

we havewpo < ap1 < -+ < ogm—1 < gy1,0 (for £ < k) and for some
i(¢) €{0,1} for £ < k we have

B E ﬂ ©Oay0,...,a0m-1) =0.
<k

(2) Assumel2.1, 12.3 @sing 12.3B) and (x) of 12.8 and for simplicity /; = J
and assume furthez < w, t a function from{0,...,n — 1} to {+1, -1} and

79 =1%o, ..., x,_1) a Boolean term, increasing iny if #(¢) = +1, decreasing
with x; if #(¢) = —1. Let t1(x0, ..., xn—1) = t%—x0, ..., —xn_1). Assume also
t0(—x0, ..., —xy—1) =0ifx, € {0, L} and A\, (x, =1=t@) =D or A\, x,=1=

t(¢) = —1. Then(x)3 = ()4, Wwhere
(x)3 for a set ofi < § which belongs ta/* the following holdsif v, , < A; and

a<B <A = MaXyye <MiNyye
l<n l<n

then for somex(0) < - -- < w(n — 1) we have, for every < n:

0(..t(t) t(0) 110 _
T (x)/a(O),z’ xVau),/z’ Tt xya(nfl),i) - 0’
1/ . —t() —t() —t(£) —
T (x)/a(O),z’ xVau),/z’ e xya(nfl),i) - O’
(¥)4 ifay € Bfora < Athenforsomeyg < --- < a,—1 we haver®(agy, . . ., aq, ;) =

0.

Proof. Easy. O
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Comments 12.18.

(1) This concludes the proof of the consistency of the existence, answering a part of
Monk’s Problem 33.

(2) We can get B = (cf (u))*-c.c.” when 12.12 provides one.

(3) We may still like to get “nd-independent set” for some specifias done in 12.17.
Probably also 11.13 will help but we have not really looked into it.

Clearly it is supposed to have, for/a -set ofi’s:

(x); for some functionF, if m < w, and X € (Dom/;)™ is F-large (i.e., ifk < w,

0. lexandF@,...,1*1) eI then for some € X, Rang N F(1°, ...,
=1y = g).
Thenfor some distinci?, ..., 71 € X, we have
t<m=1(0, 1}, ..., 07 =0

See more in 15.11, 15.12.

13. The singular case

We continue to deal with Problem 33 of Monk [12]. This time we concentrate on the case
A is singular. Though a priori this looked to be the side issue, we can get quite a coherent
picture.

Note. If ¥ > cf()) there is such a Boolean algebras (the disjoint sum ¢f)dBoolean
algebras each of cardinality A). Moreover

Claim 13.1. Assume
() A >cfl) =0 and(Va < A) (Ja|=* < ) andX > k = cf(x) > Ro.
(1) The following conditions are equivalent
(A) There areB anda, such that
() B is ax-c.c. Boolean algebra,
(b) a; € B\{0} for ¢ <6,
(c) if (wz: ¢ < 6) is a sequence of pairwise disjoint finite subset8 tifenfor
some finite: C 6 we have

ﬂ U ag =0.
teutew
(B) There is a Boolean algebr® of cardinality » with no independent subset of
cardinality A.
(2) The following conditions are equivalent
(A)" There areB, a; such that
(a) B is ax-c.c. Boolean algebra,
(b) a; € B\{0} for¢ <0,
(c) forany X €[]’ for some finitas C X we have(),,, a; =0.
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(B)' There is a Boolean algebr® of cardinality > A which does not havk as a
free caliber.

Proof. (1) (A) = (B) The casé& = R is easier, so we leave it to the reader.

Without loss of generalitys has cardinality). LetA =« +6 + > . _o A; wherex >
Ae>Kk+60+ qu Lg. Let B* be the Boolean algebra freely generatedBoy {x; «: ¢ <
0, a< /\;} except for the equations iR and

xeo<ar (forg<6,a< )»;f)

Clearly B € B* and assume thab,: y < A} € B* is independent. Then for eaghthere
aren(y) < » and Boolean terms, and¢y ¢ <0, oy ¢ < Ag,, for £ <n; ande, ;€ B
for ¢ < m(y) such thatb, = 7, (xz, g,0y.01 -+ X¢pni)-1.@yn(y)-10 7,05 - s Cym(y)—1)- AS
cf(L) =6 > Ro, without loss of generality, = 7, n(y) =n(x) andm(y) = m(x). Also
for eache < 0 there isX; € [)»j]*e+ such that

(%) v e X impliesgy, ¢ =& (%) <0, ¢y 0= C:,z € B.
Without loss of generality¢. ¢: € < n(x)) is nondecreasing. We can fite [01° such
that((¢..¢(*): € <n): e €Y) is aA-system. In fact for some’(x) < n(x) we have

(¥)1 e €Y & L <n'(x) = e o () = Lo (¥).

(¥)2 e1€Y & e2€Y & €1 <82 = Loy n(s)—1(*%) < Lepn/ () (¥).
By renaming, without loss of generali&, = [A,, Aj] fore eY. Let

we = {Ce0(0): n'(%) <L <n(x)},

so letu be as required in clause (A)(c), 8ac 6 is finite.
Letfore € u, ye 1 < ye.2 be members ok,.
Clearly

byg,lAbyg,z < U Ageos
Leln’ (x),n(x)

hence
Newot<N( U o)
EEU EEU ZE[H/(*),I’!(*))
~UNa=n
E€U Ecw,

S0 (b,: y <) is notindependent.
—(A) = —(B) Like [22]. In short: LetA = Zc<8 hey Vo <) (Ja|= < Ap), Ap =
Cf(he) > K+ 0+ 3, e LetS, = {8 < A¢: cf(8) > «}. Remember that by [22]:
X, [B] LetB be ax-c.c. Boolean algebra. Then:
(%) foranyx = (xo: o < A;) pairwise distinctx, € B, there arer™ <a™ in
B\{0}, such that: if(B,: o < A;) is an increasing continuous sequence
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of subalgebras oB of cardinality < A, satisfyingx, € Bo+1, {a™, at}c
Bg, we have

a” <xs <atand
§€S; (Vy)0<y<at—a & yeBs—
(xs—a )Ny#0& (a™ —x5)Ny#0]

is stationary.

So fixx = (x,: y < A), sequence of distinct elements Bf for each; < 6 let a;,aj be
as in ¢) (for x [ A;), and leta; = a;' —a; € B™". Let B, be the subalgebra generated
by {x,: y < maXe, qu re}}Ufag: £ <6} for o < 1, and for eaclt < 6 let S; be as
above.

As —(A), necessarily there is a sequence of pairwise disjoint finite subseétssaly
i = (us: & <0) with any finite intersection of membefsJ, ., a:: & <) is not zero.

Now we can manipulate, choosing by inductiongoa 0, %% € H{Eus S and defining

oy ((; Y ag) mxtg,a).

C€u, Ecu\(C+1)

(2) Similarly. ©

Discussion 13.2.

(1) Note: ifo <«, clearly (Ay & (A) .

(2) Note if (Vo < 0) (Ja|=F < 0),then—(A)g & —-(A){g.

(3) Note that ifx = x <X < x(x) = x (%)<X™ then for somey*-c.c. (< x)-complete
forcing notion of cardinality (x) in V¥ we have-(A)y & —(A), whend = cf(0) €
(X, x ().

(4) Itis natural to get COM < x = x =% <6 =cf(0) < 2% + (A)g & —(A)y). Thisis
well connected to our problems but we have not looked at it.

Claim 13.3. In 11.3the condition
(+) (Vo <) (Ja< <)
can be replaced by the weaker one
(%)~ forarbitrarily large regularA’ < A we haveX,,[ B] for any«-c.c. Boolean algebra
(seel3.1's proo).

14. Getting free caliber for regular cardinals

Remember that is a free caliber of a Boolean algebBaif for any X e [B]* there
is an independent e [X]*; of course we can replace a Boolean algebra by a locally
compact topological space (which is a slightly more general case, but the proof is not
really affected).
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Monk asks whether there is &acc Boolean algebraB of cardinality > A with no
independent subset of cardinalityandu such that

p<i<p, (Vo<p)(al<n).

Here we deal with the case afregular and give a sufficient set-theoretic condition on

« such that anyk-cc Boolean algebra of cardinality A hasi as a free caliber, so the
consistency of a negative answer follows, but we do not directly force. So this section is
complementary to Sections 12 and 11.

Hypothesis 14.1.
() A =cf(n) > 2¢, but for simplicity we assume
=ptop= ) M M=AT cf(w) <k
i<cf(u)
We shall use it to shorten proofs when helpful, and, later, will show what can be

done without it.
(b) B* is ak-cc. Boolean algebra,, € B for « < A are pairwise distinct.

Leta def (aq: a < A). We would like to findX e [A]* such thafa,: o € X} is independent.

Definition 14.2. For B € B*, x € B* let
ProP(x, B) £'{y e B: y <x),

Prof(x, B) &' {y e B: ynx =0},
Projz(x,B)Ci=Ef{yeB: y=00r(Vz)(0O<z<y&zeB=0<zNx <z)}.

Fact14.3.Let B C B*, x € B*
(1) If y¢ € Prof(x, B) for £ < 3, then(y,: £ < 3) are pairwise disjoint.
(2) U, _3Prof (x, B) is dense inB.
(3) Prof (x, B) is an ideal onB.
(4) Prof(x, B) is complete insid®*, i.e., if in B* we haver is < lub of {x,: o < o*}
and{x,: o < a*} C Prof (x, B) andx € B thenx € Prof (x, B).

Definition 14.4.
x =xa=Min{||B||: B< B*, |Wg|=1},
where

Wp =Wga=|a: Prof(ae, (B U {ag: B < a})p+) = {0}, and Prdj(aq, B) is
predense in Prbjay, (B U {ag: p <a})p+) for £ =0,1}.

Remark 14.5.
(1) Prof(as, B) = {0} is close to sayingg, = the lub in B* of Prof(a, B), but not
the same (holds iB <o B*).
Could have worked with a variant as indicated.
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(2) Trivially x < X, useB = (ay: o < A)p*.
Fact 14.6. If x = A, thenfor someX e [A]*, (aq: « € X) is independent.

Proof. Let B, def (ag: B < a)p+, SO B, are increasing continuous i, || Byl < 8o +
|| < A. Let

S d=6f{a <A Prof(aq, Be) = {0}},

S LMo e st cf@) > ).

Now

(x) S’ is not stationary.
[Why? Fors € §', £ <2 letZs  C Prof (as, Bs)\{0} be an antichain, maximal under the
conditions defining Préj So |Zs.¢| < k, asB* F k-cc. Hence for som¢ (8) < § we have

Zs,0UZs1 C Bys).

So if 8’ is stationary, by Fodor's lemma, for somé& < 1, S* ={s§ € §": f(8) =a*}is
stationary.
We would like to show:

(k%) 8 € S*= Prof(as, Bo+) = {0}.

If so, we have gotten tha,«, S* exemplify x < || By+||, contradiction. For proving«x),
lets € $*, assume € Prof (as, Bo+)\{0}.

So, by 14.3, (forBy+, as) we have ¥x € Zs o UZs.1) x Nb =0,

Now, b ¢ PI‘sz(a,s, Bjs), as the latter i$0}. So, there ig such thatBs = “0 < ¢ < b and
cNas=0vc<as" thatisc e Projo(aa, Bjs) U Proj'(as, Bs), but asc < b we have

VxeZsoUZs1)(xNec=0).

So ¢ contradicts the maximality ofZs o (if ¢ € PI'O]O(a(s,Bg)) or of Zs 1 (if ¢ €
Prof(as, Bs)).

The contradiction proves{) and ¢).]

So\S is stationary. Fo € A\ S choosebs € Prof(as, Bs)\{0}. So by Fodor’s lemma,

for someb* e | J,, ., Bo We have

A\ CEf{a: 8 € X\S, bs = b*} is stationary
Now we know thatias: § € S*) is independent. O
Remark 14.6A. In the characteristic cas®* is the completion of a Boolean algebra of
smaller cardinalityB’, sox < || B’|l.
Claim 14.7. Now, without loss of generality

X B* =(BU{a,: a € Wp}) forsomeB C B*,
IBll=x, Wp=AX.
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Proof. B C B* exemplifies the value of, let B¢ be the completion oB, and we can let
fora € Wp

al, =lubin B¢ of Prof(ao, B).

Now if Y e [Wg]*, (a): a € Y) is independent irB¢ then{a,: o € Y} is independent in

o

B*. Alternatively useB U {a;: « € Wg})p=.
(RememberB is not necessarily a complete subalgebr®bf)

Definition 14.8. Let
K & {B: B=(B;: i< y)isanincreasing continuous sequence of subalgebras of
B*, |B;|| <Ro+|i|T,andWg, €[A]*, B, 2 B (of X of 14.7)}
(soWg, is co-bounded in, infactif B, € (B U {ag: B <a})p~then|Wg, 2 (o, 1)|).
Fact 14.9.

(1) cf(x) <«.
(2) covy, x, k,2) > A, meaning

A<min{|Pl: P<S[x]™* & (YA€ [x]™)(3@B € P)(A € B)}.
Proof. (1) By (2).
(2) Assume not. Rememb®& C B*, |[Wg| =4, |B|| = .

For eacha € Wp chooseZ, ¢ C Projz(ao,, B) for ¢ < 2 as in the proof of 14.6. Let
P C[B]<X,|P| <A and

(VA€ [x]"°)@B € P)(A C B).
So for eachr € Wg, there isA, € P such thatZ, o UZ, 1 S A,. So for somed™ € P
W={aeWg: I, 0UL,1C A*} e [A]
(exists as we dividéVp into |P| sets, so at least one has sizeas|P| < A = cf()r)). Now
x < |{A*)p|, contradiction, as in the proof of 14.6 (to the definitionydf O

Definition 14.10. For B € K anda € Wg,, let

u(o, B) déf{i < x: for somet < 2, Prof (aq, B;) is not a predense subset

Discussion 14.10AWe may consideB’ = (B/: i < x) € « when
B;=(B;UX), X fixed countablec B*.

Possibly
u(a, B) # u(a, E/)
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or just for some, Prof(aa, B;) is not dense in Préiaa, Bg). We think of the set of such
« as bad, and put them all in onecomplete ideal. But maybe belongs to it. So we will
try to find someB for which this does not occur.

This will help in that we eventually try to choosg € W5 for ¢ < A by induction ong
such thatiae, : ¢ < 1) is independent.

So in stage we consider all

X e [{oegi & <§}]
The existence oB requires some properties afwhich certainly hold in the main case
(withA=put..)).
So to ease the proof instead of evéry x, we use “every < x large enough”.

<Np

Definition 14.11. ) )
(1) We define a partial order aki: B~ < B” If for everyi large enough

i<x= B} C B2
(2) We sayF2 is finitely generated oveB " if for some finiteX
B?=(B}UX)p~ fori < x large enough.
In this case we leB [X] = (BHMX1:i < x) be B>,
(3) ForB* < B let
Bad B, B?) = {a: if o € Wy N Wpo,
X X
then for arbitrarily largei < x, for some ¢ < 2,
Prof (aq, B}) is not dense in Prbja,, B?)}.
(4) Jp is thea-complete ideal on generated by all Ba®', B°), whereB" < B” and

B’ is finitely generated oveB .
What do we need to carry a proof?

Lemma 14.12. There isB® e K such that. ¢ J50-

Remark 14.12A. We may like to have/ 2 Jze normal extending{'sw (andx ¢ J), then
we need more work.

Proof in the caseir = x*. (Enough, see 14.1(a).) Assume there is no sBich B®. We
choose by induction og < g, B e K, such thatB® is increasing with; and: for each
f,asi e JE; we can find(X; .. ¢ < &;) witnessing it, i.e. X; . € [B*]<No, gr <X (so
without loss of generality, < x)

= BadB*. B (X))

e<er
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where
B [X: 1= (BS UX¢o)pe
Now easily(K, <) is x T-directed, so we demand

N B <Bxa<B"

e<éer
Alsoi €[,2) & ¢ <& < x = BS C BS. Lets* < i be such that

/\ Bi C (B Ulag: a < 8*}>B*.
c<x
So for eaclt < x we have
5* e | J Bad(B*, B [X,.c)).
8<8{

hence there i§(¢) < e, such that
§* e Bad(EC, Eg [X{»g(;)]).
For each; < x, there isi(¢) < x such thatX, ¢(;) < Bfg)l, ¢ <i(¢) hence

N . 1
V)[i(©) <i<x]= Bf[X;c)) S B
because
¢+1 ¢+1
Xeew) S B SB;

We restrict ourselves to < «. So without loss of generality

A N\ BicBg,

f1<esk aelkt, ]

and if ¢ is a limit ande € [« T, x]1, thenBS, = UE<§ Bi. As cf(x) <k, there isi(x) < x
suchthatz = {¢ < K1i(g) < i (%)} is unbounded (we can demand more).

Now the set(8*, B") has cardinality< « becauseB* satisfies the c.c.c.
Remember,

u(a*,E“)={i <x: U Prof (as+, BY)
£=0,1

is not predense iU Prof (as-, B;f+l)}.
0=0,1

Choose foii € u(8*, B*) U {xt} and¢ =0, 1 a predense subsiéfi”z of Prof (as«, BY, ;)
of cardinality < «.

Now, fori € u(a*,EK)U{KJr}\ﬁ the sequenc{d}fH: ¢ < k) isincreasing continuous.
So for some; <k

§*,0 §*,1 i
Ix,i UIK,i gBi+l‘
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Let
£(6%) Lsupz; < «.
i
So clearly
(%) if i e[k, x], £ <2, then
PI’O]{ (a(g*, Bl{[s*]) _ PI’O].E(a(s*, Bf) N Bf[s*]

is a predense subset of Pr@js:, BY).
[Why? By induction oni. If i =« ™ directly. If i is a limit—trivial. If i = j + 1> «™,
j ¢ u(s*, BY), then by transitivity of being predense inil& j + 1, j € u(8*, B), using

5%,
Z; ]
Now, clearly

re[t).6)=
A\ /\ (Prof (as-. Bf) is predense in Prbjas-. BI™).

€<2 iefict,x)

This follows from ). Choose; € Z\¢(5*) so we contradict the choice &7 o

Convention 14.13.We fixB® € K such that. ¢ J5®-

Fact 14.14. {a < A: u(cx,§®) bounded iny } is bounded in..
Proof. By the choice ofy as minimal. O
Convention 14.15.L et f, be an increasing function fromtp(u («, §®)) ontou(a, §®).

Fact 14.16. For somej* < «
Yo={a <A: Dom(f,) = j*} € (J§®)+.
So without loss of generalityfo)[Dom( f,) = j*].
Claim 14.17. We can findyj?k: Jj < j*), w* C j*suchthat
1 ity =(y;i j<Jj"vi<vj,
yi=vi e jew,
thenthe set ofx € Yy satisfying the following, is i/ ze) ™

jew' = fu(j)=v],
jejf\wt =y < fa(j) <v;.

Also
(x)2 jej \w*= Cf(yj?“) > 2¢ and

A =maxpcfcf(y;): j e j \w*}.
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(x)3 Moreover if we fixy = ©=* < A we can demand
jej\w* =cf(y;) > pn.

()4 If j* = supJ*\w*), and E is the equivalence relation or*\w defined by
J1Ej1 <y}, = v}, (so the equivalence classes are contben J is an ideal on

j* such that]jp*dg J,w*elJ,
AeJ=|JUj/E: jeA}el. and

() l_[ yf/] has true cofinality., so possibly shrinkindp, for
J<J*
a<pBinYo, fou<y S8
Proof. By 7.0(0) (or [26, 6.6D] or [20, 6.1]), ag* <«,s0 2/ 1 <A, O
Observation 14.18.()/;.*: Jj < Jj*) is non-decreasing, with limik, and y;.* < x and of
coursecf(j*) = cf(x).
Proof. As Rand f,) € x, and the facty]’." < x if j ew*, y]’." < x if j ¢ w*, butthen
Cf(y;") >2>Kk>cf(x). O
Comment on the Claim 14.19.
(1) Forit, possiblyA, fo = f*, so then we gew* = j*. Also possiblyf,(j) < «, SO
w* =@ andJ = {¢}.
(2) If the ideal /e is normal enough, for som& e (J§®)+, (fo: ¢ € X)is <y-

increasing.
(3) If (Va < 1) (Ja]V"! < &), then necessarily

jeitwt, iyl =1

(like the A-system lemma)BUT for the interesting case, and in particular by our
assumptions, this is not the casejgs< x <, henceJ 2 [j*]=%e.

Hypothesis 14.20.EachB,?® is the union ofu filters (D; g: B < ), u = u=" (we can use
somewhat less), this of course is only a consistent assumption.

Claim 14.21. For some
i=(j<jheln
we can restrict ourselves to
jew = fu(j)=v;,
Yi={a<a JEI\W =y < fu(j) <y and

/\ (Prof(@q. By) N Dy, # (0D
Jj<i*
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where

- _ yj?“ ifjew.*,
Vi = Uiy yi*<y;.*} otherwise

in particular Y1 ¢ Jze.
Proof. As u= <, Jge A-complete ang € j"\w* = cf(y;) > u. O
Claim 14.22. For someX € [X]*, the sequenc@,: « € X) is independent.

Proof.
Casel. w* is unbounded iry*: We choose by induction of < 2,

Ng < (H(2Hh), &, <ipyr)

increasing continuougi,Ng|l <A, Ng N A € A, (Ng;: p,<p) € Ng41 andB®, B*,a € No.
Letag =a(B) be the firstx < A such thatr € Y1, o ¢ U(J§® N Ng)

(so A fa<j>=yf).
jew*
Clearlyag € AN Ngy1\Ng, {ap,: 1 <B) € Ngy1. Letn <w, f1 < --- < B, and we will

prove thatiay g,): £=1,...,n) is independent.
Now

n
, . ; =®
j €w* = thereish; € () Prof(ay,. By;)\{o}~
(=1
Why? AS ag,,...,ag, € Y1, SOD,*,. N Prof(ay ,B%,) + (). Chooseb; ; there, so
B1 Bn vi B2 Py Js
) J
bj = ﬂ?:lbj,é is OK.]
Consider
—®

Bad(B®, B [{da(gy. - - - » du(pp}]) € Je,

it belongs toNg,,,. So

ap,,, ¢ BadB®, B®[{au(py, - - - da(pn)})-
So for each for someip < x, k<2 & i € [ig, x) = Prof‘(aaﬁm, B?) is predense in

Prof(aaﬂm, (B U{dagy)s - s dagg) D)
Soif j € w*, v} >sup_y _, i (exists) and; € 12, we prove by induction of that

L
b§=bj 0 () (e )",

k=1
For¢ = 0 trivial.
For¢ > 0, bf*l c (B% U{day,, - > day, ,}) i8>0, isin

Projz(a“ﬁ’ <B(§} U {aa(ﬂl)’ R ao‘(ﬂi—l}»
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as it is belowb; and b; € Projz(aa(ﬂ{),Bf%) by its choice andj is > iy, S0 b; €
J

Prof (dey, B®U {dap,s - -+ ag, }). We use implicitly

Fact 14.23. For o < A large enough,
i < x = Prof(as. BY) # {0}.

Proof. By x’s minimality. O

Case2. Not 1, i.e.,w* bounded inj* or just j* = sup(J*\w). Similarly using &), of
14.17 findj € j* \ w* such thatifj, € j/Efor¢=1,...,n thenfaﬁl(fl) < fag, (j2) <
w0 < fap, Un). O

Conclusion 14.24.1f p = u<* < 6 = 6<% then for someu-completet-c.c. forcing
notion of cardinalityy, in V

If B is ak-c.c. Boolean algebra of cardinality A, u = u=*, A = cf(A) € (u, 0]
thena is a free caliber oB.

Proof. By 14.1-14.23 above and [21].0

Claim 14.25. The following implications hotd(x)1 = (x)2 = (x)3 = (*)4 where
(91 (@) u?" =p<2r=cfn),
(b) if a Boolean algebraB satisfies thg2<¢)*-c.c. and|B| < A, then B is the
union ofu filters.
()2 (@) k <A =cf(d),
(b) if a Boolean algebraB satisfies thec-c.c., fori < A, F; € B\{0} is a set
of < k members closed under intersectitrenwe can find< A filters D,
(@ < a* <)) of Bsuchthat(Vi < 1) (F; CD,).
()3 (&) k < =cf(d),
(b) if a Boolean algebraB satisfies the -c.c.,D a A-complete uniform filter on,
0 =cf(0) <« and fori < A, F; is a decreasing sequence of elementB of0}
of lengthé then for somex € DT, | ;. Fi belongs to some ultrafilter oB.
(#)4 (a) k <A =cf(),
(b) if B is ax-c.c. Boolean algebra of cardinality A thena is a free caliber of
B.

Proof. Should be clear from the proof in §140
15. Onirr: The invariant of the ultraproduct bigger than the ultraproduct of
invariants

We solve here some of the questions of Monk [12] on the possibility that

inv( ]_[ B;/D) > ]_[ inv(B;)/D.

<K <k
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In 15.1-15.10A we deal with the irredundance number irr (getting consistency of the
above and solving [12, Problem 26]). We then prove the existence of such examples in
ZFC (improving Rostanowski and Shelah [15]) for iavs, hd, hL, Length solving [12,
Problems 46, 51, 55, 22], respectively. See more in [19].

Hypothesis 15.1.4 = A=*, n(x) < w.

Definition 15.2. P = Pf<*) is the set ofp = (u, B, F) = (u”, B?, F") such that

(@) u e 1,

(b) B is a Boolean algebra generated{lyy: o € u},

(C) xeu=xq¢ ({xpg: Beunal)p,

(d) in B, {x,: @ € u} is n(x)-independent, i.e., any nontrivial Boolean combination of
< n(x) members ofx,: « € u} is not zero (inB),

(€) F=(Fu: £<n(x)) andFpy1 € Fy,

(f) F, is a family of functions from{x,: « € u} to {0, 1} respecting the equations
holding in B. Call the homomorphism (fromB to {0, 1}) that f induces,f,

(9) if f € Fey1, £ <n(x) anda € u then for somef’ € F; we have

frlianw=fl@nu, f(o)#flo),

(h) if f:u— {0,1) and(Vv € [u]<M)(f [u € Fy) thenf € Fy,
(i) if a € B\{O} then for somef € Fo, we havef(a) =1.
The orderisp < ¢ iff
(o) u?P Cul,
(B) B? is asubalgebra aB?,

(v) F/ ={flu: feF]}
Let B = the direct limit of{B”: p € Gp}.

Note. We can ignoreB? as it is reconstructible fronfij . Also clause (d) follows from the
rest.

Notation 15.3. We letp [ o = (u” N, (xg: B eu? Na)p, (Fe [ a: £ < n(x))) where
Fela={fTa: f€F}

Fact15.4.(pla) < pforpe P.

Fact 15.5. In P, every increasing sequence of length. has a lub essentially the union.
Proof. Trivial (use compactness and clause (h) of Definition 15.2).

Fact15.6. Fora < A, {p € P: o € u?} is dense open.

Proof. If p € P letus defingg = (u?, B4, F1),u? =u? U {a}, B?is B” if « e u?, and is
the free extension aB by x, otherwise F/ = {f €“2: f [uP e F/}. O
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Fact 15.7.
Q) If pe P, pla <gandu? C « thenp, g are compatible.
(2) P satisfies the.*-c.c. and even in*-Knaster.

Proof. (1) Let us define = (u”, B", F') by:
u' =uPuul, F;=|f: fe“2andf luP e F/, fluleF}}.

Now

()1 F =F] [u?
[Why? if f € F] ,thenf la=fl(aNu)e F[r"‘ but p | « < ¢. Hence there ig € F/
suchthatf o € g,s0fUg € F},(fUq) [u? = f,soF; C F} | u”. The other direction
holds by the choice of 7 .]

(¥)2 Fl=F} [uP
[Why? Similarly using 15.4.]

(¥)3 Fypa CFy-
[Why? As Fg;l CFl, F] 1 € C F1]

(x)a if feFy ,8 cu” then for some € F; we havef | B C g, f(B) # g(B).
[Why? The proof splits into two cases:

Casel. B eul. So f |a € F/,, |« butg € P so there isgo € F; such that

(f1a) B < g0, (f Ta)(B)#go(B)sogoe Fl = F/ [asogo| (P Na) e F''* so
there isg1 such that

golw’Na)cgreF,.
SogoU g1 € F; is as required.
Case2.8 ¢ u?. SoB € u?\a. Now f | u? € Fg;l hence there ig” € Fe” such that
Frrwrnapy=frw’npg), fB#re.
Now f [ « € F/,; hencef |« € F; hence
(f Te)U f" € F/ is as required

By F, we can definéB” and is as required.]
(2) Follows from (1). O

Claim 15.8. If k > 2n(x) + 1, (8,: £ < k) is increasingg, < A; we stipulates, = AT, for
L<k,peeP,pelée=p*, uPt Cépy1andforl,m <k, OPpm yre :uPt — uPm mapspy
to pn, (the natural meanin@tp(u?) = otp(u?m) and

anz = {f 0 OPre yrm: f € anm}

S0 OP,r¢ o induces an isomorphis@P,, ,, from B¢ onto B”), thenthere isq € P
such that

(a) /\m<k Pm <,
(b) |f b S BPO thean ': “b U uC(Ok) (mmeu Pmypo(b))”.

lul>n(x
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Proof. (1) Let us definegy: putu? = J,,_, u” and

Fl={fe™2:n(x) — €= |{me[0,k): Qaculo\u?")
[f(OPyom yro(@)) # f(a)]1}|

andf [uPm e F™ form < k}.

Now note

(#)1 F/" =F] [uPm.
[Why? If f € F! thenf [ uP» € F" by the definition ofF/. If f e F/™, formi <k we
et fin, = f 0 OP,emy ypm» SOU,,, < fmy € F/ and we are done.]

(x)2 if f e F/,, @ cul thenfor some e F/

gla=fTla, gla)# f(a).

[Why? If o« € u?® we havef | u?® € F/); and there igo € F/°, such thago o = f | a,
go(a) # f(a). Let gy, = OP,po yrm o go. Theng =J,,_; gm IS @s required.

Ifnot, o € uP\u?" for somem > 0, sow > 8, andf [ uPn € F[7; sothereig € F/™,
gla=fla,gl@ # f(a). Nowg* =g U (f | (m<« uPm) is as required.]
So e

(*)3 g € Pandp, <gq.
So (a) of the conclusion holds. By clause (i) of Definition 15.2 and the choigeat$o
clause (b) holds. O

Conclusion 15.9.1F ,.» “ B is a Boolean algebra generated fy: o < A*}, which is
n(x)-free hence inf) (B) > AT but irry,y+1(B) = 1".

Proof. Putting together the claims.0

Conclusion 15.10.1f A = 1=* > ¥g and the forcing notio? is P =[], P]' (whereP}' is
from Definition 15.2) then
(¥) P isai-completer™-c.c. forcing notion, and i ¥ for some Boolean algebras;,
(n < w) we have
(a) irrn(Bn) = )\+, irr2n+1(Bn) =2,
(b) for D a nonprincipal ultrafilter om,

,\+<irr(]_[3,,/1>>, Hirr(B,,)/D:)J"/D:A,

n<w n<w

(c) soir[],-, Bn/D) > [1,-,irr(B,)/D.

Proof. The A*-c.c. follows from 15.7(2). TheB,, are from 15.2. The proof thdt p
“irr,(Bn) = AT butirry, 1 2(B) =)' is like the proof of 15.9.
Concerningir([],_,, B»/D) =11 usex} = (x’: n <w)/D€[],., Bx/D. O
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Comment 15.10A. Surely in 15.9 we can fix exactly the such that irf(B) = AT,
irr,+1(B) = A. For this it suffices to demand in 15.8 that= n(x) + 2. Leta, € B!
(for £ < k) be such that OF_,,,(a0) = a, and replace (b) in the conclusion by

(b)Y for some Boolean term,

B ="ap=1(a1,...,anu+1)".

In fact,
nx) - i—1
T(x1, - X)) = [ () G D) N (= (xiAxm))].
i=1"m=1

In the proof we leu? = J,,_, u”" and

Fl=|{fe @"2: form < k we havef,, =: f | uP belongs tor/" and for some
i€{l,....n(x)— £} we have:;j € {1,...,i — 1} = [fi(a)) =
0 & fjy1(ajr1) =1l andfi(a;) = fir1(aiv1) = folao)}

(where forf e Fe”’”, f is the homomorphism fromB4 into {0, 1} which f induces).

Claim 15.11. Assume

(A) & =tef([T; 5 2i/7),

(B) > = (r;: i <$8) is asequence of regular cardinals|s]|,

(C) » > max pcia;: j <i}, sonecessarilyPdc J,

(D) (A;: ¢ <«) is asequence of pairwise disjoint memberd f

(E) D is a uniform ultrafilter onk.
Then we can find a Boolean algebrB; for ¢ < « such that forinv € {s, hd, hL} (see
Monk[12])

(@) invh(B;) <Asor=x" =inv(B;) < x (moreoverinvj(Bg) < A; see[15]),

(b) inv+(]'[§<,( B¢ /D) > a (soifr = x* theninv([],_, B¢/D) = ).

Proof. Let 7 = (n4: « < A) be a<;-increasing cofinal sequence of member$ pf ; 2;
such that

§<K=>A;>|{na[§:a<k}|

(suchi; exists by [25, 1l 3.5]). We defin¢ ;iigi,fgi) for ¢ <k,i < é as follows. Let
L=JP s0%, ;= (o < M), B =0 0 <),
Casel. i ¢ |J{A:: € € [£,x)}. Let By, be the Boolean algebra generated by
{x;iya,x;w: a < 1) freely except that, , < xzi’a, a”d(le',a — X)) N (x;:i,ﬂ -
Xeip) = O whena < 8 < ;.
Case2.i € |J{As: e €[¢,k)}. Let B;; be the Boolean algebra generated{by’l.’a,

tiat @ <) freely except that

X
- + - +
U<B=X 0 SN o SXeipSXeip

(e.9..B:i SPM), x; ;=04 +1), x;i,a =[0, 4a + 2)).

¢ia
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Let B, be constructed as in 12.1, 12.3 from(J;: i < §), (B;,i,jgi,i;fi) fori <8,
and Ietyg,, y,% be as there.

Now inv*(]'[gq B /D) > i is exemplified by(y;: o < A) wherey; = (yé: . <«k)/D,
because fowr < A, u C A\ {«} finite, for some;* < «, we haveg e u = £g(n, Nng) €
8\ Ueerc.x) Ae, hence

¢ €lLap k) => B Fys— () v5>0.

Beu

Hence{¢ <«: B; F ye N yg =0} 2 [¢o,p, k) € D and thereford [, _, B;/DF"y; —
Mpeu yg > 0"

Lastly inv?“z)(B;) < A follows by 12.17(2) forr (xg, x1, x2) = (x1 — xo U x2) with the
variables permuted according to the particular inw

Claim 15.12. Claim 15.11holds forLengthtoo.

Proof. We repeat the proof of 15.11, but in the definitionRf; just interchange the two
cases.

Casel.i ¢ |J{A:: € €[¢,«]}. Let B.; be asB ; in case 2 in the proof of 15.11.

Case2.i € | J{As: e €[, x)}. Asin case 1 in the proof of 15.11 or just I8 ; be
generated byx, , x}: o < A}, o x;i,a: a < A} freely excepix,; , < x;w.

Now for o < B < A, letting i(e, B) = Min{i: no(i) # ng()} and g = Min{¢:
i(a,B) ¢ U{As: € €L, k)} we have

¢ €llap, k)= B F “yé < yé Oryf; < yé",

hence

l_[ B E“y: < y; Ory; <y

{<k

wherey* = (ys: ¢ < «)/D.
As for Length (B;) < A, itis by 12.7(1). O

Conclusion 15.13.
(1) If D is a uniform ultrafilter one, then for a class of cardinajs= x* and Boolean
algebrasB; for i < « such that, for in {s, hL, hd} we have:
(@) inv(B;) < x hence[,_, inv(B;) < x, or
(b) inv([];,., Bi/D)=x".
(2) Similarly with inv= Length.

Proof. Let x be any strong limit singular cardinal of cofinality«. So by [25, VIII, §1]
we can find();: i < cf(x)), strictly increasing sequence of regular cardinalg with
tef(TT; <oty M/ J&)) = x T Without loss of generality],_; ; < 4; and let fori < «,
A ={ak +i: a <cf(x)}. So we can apply 15.11 (for part (1)) or 15.12 (for part (2)n
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Remark. For cellularity similar results hold (in ZFC), i.ez(B,) < A, ¢(I],,-, Bn) > A,

see onitin Monk [12, pp. 61-62]; by [25, 11l 4.11, p. 181, 4.12] so this appliestou™

for A > 81 by [25, 11, 4.1], [27], tox inaccessible not Mahlo by [25, 111 4.8(2), p. 177] and
for many Mahlo cardinals (see [25, Ill, 4.10A, p. 178]. For incomparability number (Inc)
similar results are proved “almost in ZFC”, see [28].
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