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ABSTRACT 

We continue investigating the strength of monadic logic in elementary classes. 
Mainly we show that all stable unsuperstable theories with finite vocabulary 
are either among the (easily definable class of) hopelessly complicated or are 
essentially as complicated as a variant of the tree ~ ~2. 

The main point here is the second section (see [BSh156]): if 3- is (a first 
order) stable, not superstable theory with finite vocabulary ( = set of predicates 
and function symbols), then we can, in monadic logic, interpret in it essentially 
trees (o,~2, < ) with quantification (Qpdf) (on pressing down functions). (Note: 
if (3-~, 2nd) _-< (3-, Mon), this follows immediately as the class of such trees 
(up to isomorphism) is definable in second order logic, so the statement follows 
from 2.6.) 

So this is another step in the classification of pairs (3-, Q), 3 -  a first order 
theory, Q a quantifier. This, of course, raises the question of how complicated 
is the theory of such trees in L(Qpd); this was dealt with in [Sh205], § l, where 
erroneously we said that the above interpretation appeared in [BSh156]. We 
give here a revised form of part of [Sh205], §1. 

As for [Sh205], §2, note that conjecture 2.14A (on ultrafilters on a~) was 
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disproved in Blass-Shelah [BISh242], but its aim - -  doing the interpretation in 
ZFC - -  was accomplished in Part B; i.e. [Sh284b] (but not interpreting the 
second order theory of 2 - -  only after the forcing). 

The referee points out another wrong quotation of  a nonexisting theorem 
which was corrected by strengthening 2.1 (omitting a saturation demand). 

NOTATION. The letter T serves as a tree and as a first order theory for the 
latter meaning, so we use here ~ ' .  

§1. Remarks on [Sh205],  §1 

CONVENTION. Hence, 1. x refers to [Sh205], § 1 (or the revised/additional 
ones here). 

On the connection between the L(Qpd)-theory of  K~ (trees with co levels) and 
of  the trees '°>2 (pd stands for pressing down) note: 

1.3(5). NOTATXON. Kt~a = { T ~ K ~ :  ( V x E T ) [ I S u ~ r l  =2]} ,  K~hom = 
U a K#z. 

1.3B. NOTATION. (a) Tt is a nice subtree of To (both in K~r) i f  

(i) (T~, <_- r,) is a submodel of (To, < r0). 
(ii) for every x ~ T~, 

Sucr,(x) -- { y E T I  : x < y,  "1 ( 3 z ~  Tl)[x < z < y ] }  

is a front of To, above x, i.e. 

(V z ~ T0)[x < z ~ ( 3 y E SUET, (x))[z < y v y _-< z]]. 

Every branch ( =  maximal linearly ordered subset) of To to which x 
belongs, is not disjoint to SueT, (x). 

1.4. CLAIM. (1) The L(Q~)-theories of K~ and {~>2:2 > R0 a cardinal} 
(i.e. of  K~om) are recursive one in the other. 

(2) Being a nice subtree is a transitive relation. 
(3) Let T E K ~ .  

(a) for every tree T fo r  some nice subtree T~ of  T a n d  4, T~ = °'>2. 
(4) Every nice subtree of'~>2 is isomorphic to '°>2, so every nice subtree of  a 

tree from Kt~'~aom[K~z] belongs to K~,,hom [Kt~,a ]. 

PROOF. Straightforward: first prove (2), (3), then deduce (1) (by the more 
elaborate Claim 1.4A below). 

In fact we can say how much of the model theory is preserved. 
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1.4A. CLAIM. There are functions HI, n 2 from the set of sentences in the 
L(Q~)-logic for trees to itself, such that: 

(1) for every sentence g in L(Q ~) (with vocabulary ( < }): 
(a) ~g E Th(K~ho=) iff H~(~g) E Th(Kt~), 
(b) V ~ Th(Kt~) iff n2(g) ETh(Kt~,ho=). 

(2) Hi, /-/2 are recursive, so ThL(c#)(K~), ThL(Q~)(K~r°hom) have the same 
Turing degree. 

(3) (a) For such a sentence g and T E K g ,  T ~ Hi(V) i f f  for some nice 
subtree T~ of Tand  2, TI ~ °>2, °>2 ~ g. 

(b) For such a sentence ~t and tree T, T V H2(g) ifffor some subtree T~ 
of  T, T~ ~ g. 

1.4B. CLAIM. (1) Those interpretations do not change the Lowenheim 
number of sentences, i.e. the H~,//2 from 1.4A for g E L ( Q  ~) satisfy: 

Min{2" °'>2 ~ V} = M i n { I T I ' T ~ K ~ ,  T ~ H2(~/)), 

Min{lTl"  TEK~r, T V g/} = Min{2" 0">2 ~ HI(V)}. 

(2) Hence for the logic L(Q~),  the classes K~', K~r0",hom have the same 
Lowenheim numbers. 

PRooF. Easy. 

Note 1.13 can be slightly improved to: 

1.13'. LEMMA. (1) For every sentence O in second order logic we can 

compute a sentence O* in L0",o,(Q ~) (tree language) such that the following are 
equivalent: 

(i) ]~-~olt~) "(a, < ) ~ O for  some a, a < 2 +", 
(ii) i f  T E Kg , I T i x  l = 2 for every x E T, then ( T, < ) ~  0". 
(2) I f  V = L we can add 

(iii) (2, < ) ~ 0". 

PROOF. By 1.12, 1.8, 1.9. 

1.15'. PROOF. The reference is wrong; see Theorem 2.6. 

1.18. CONCLUSIONS. (1) If  (the first order theory) ~" is countable deep and 
superstable (or just stable), then the Lowenheim number of L0",0"(Mon) on ~- is 

< 0 "  ->__ the Lowenheim number ofL0",0"(Q ~)  on Kt~ , if(~'~, 2nd)£(~ ' ,  Mon) then 

equality holds. 
(2) So if V = L, it is the Lowenheim number of 2nd order logic. 
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(3) If~" is stable not superstable, the same conclusions hold. 
(4) If 3- is uncountable, just replace Lo~l,~o by L I Tt +,o~. 

PROOF. (1) If(3-~, 2rid) _--< (3-, Mon) - -  there are no problems. So assume 
not. By [BShI56], (Theorem 7.1.14, p. 284; Definition 2.1.3, p. 241) we can 
interpret (3-, L~,~o(Mon)) in (Kg '°, Lo~,~o(Mon)), and vice versa, by formulas in 
Lo~,o~(Mon), hence by 1.17, (K~ °~, Lo~,o~(QPd)). 

(2) By (1) and 1.14. 
(3) Similar, using [BSh156], 7.1.14. 

[I.e., in addition to the vocabulary of 3-]: 

1.19. CONCLUSION. If3-  has finite vocabulary ( -- language), is stable, not 
superstable, then 

Lowenhcim Number (3-, Mon)> Lowenheim Number (K~r, Qpd). 

PROOF. By I. 15. 

1.20. DISCUSSION. (1) Suppose for simplicity ~" has finite language. If3- is 
supcrstable (3-®, _-< )£(3-,  Mon), (so NDOP) and ~ is deep, 3" may still have 
small Lowenheim number R0, e.g. ('°>2, R), 

R -- {(~/, v) : ( 3 n ) [ lg0 / )  = n + 1 ^ v -- ~/r n]}  

or large (see 1.16). We are sure there is a nice classification but have not 
worked on this. 

(2) We know that for unstable T 

Hanf Number (3-, Mon)= Hanf (2nd order logic) 

see [Sh284b], 6.1. 
(3) We think that the conclusions which assume V = L cannot be proved in 

ZFC. 

§2. On stable 3-, (3-®, 2nd)£(3-, Mon) 

We assume here some knowledge of [Sh-a], [BSh156]. 

2.0. HYPOTHESIS. Suppose ~ is stable, (~'~, 2nd)~(2z', Mon) and the 
vocabulary of T is finite with relations only. (~ = ~r, models will bc < ~.) 

2.0A. NOTATION. n(,~') is the maximal arity of atomic formula of LIT). 
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2.1. LEMMA. There are formulas ~(x ,y ,g ) ,  ¥ ( y , ~ ,  t-) such that the 

following holds: 

(a) i f  a ~ M  and Mo < M,  then tp~(~;y.~)(a, Mo) is definable by g/(y, ~, d) for 

some d E Mo, 
(b) define R~ff for M < ~: 

a R~i v' b ifftpo,(a, M U (b)) is not definable by ~/(y, ~, d) where d is some 
(any) sequence from M such that tp~(a, M) is definable by g/(y, ~., d). 

Then 
(i) 
(ii) 

a R~ff b implies a Eu  b, a, b q~ M,  
i f  M < N < ~, a E:g b, a E N, b ~ N then there are n and c~ ~ N for i = 0, 

n such that co = a, c, = b and for i < n we have ctR~tV'c~ + ~. 

REMARK. On EM see [BSh156], 4.2.1 and Lemma 4.2.6 (p. 259), 4.2.7 

(p. 261) and 2.2.4. 

PROOF. First we know that if a , - ~  for i < n, m < n, M < ~, and 
tp((a~ . . . . .  a,_O,  M U { a o , . . . , a m _ ~ } )  forks over M, then for some 

i E [m,  n - 1], j ~ [0, m], tp(a ,  M U {aj}) forks over M. 

Hence ifa~ E ~  for i < n(~'),  m < n(3"), 

tpqf((am • • "antn-l),  M U ((a0 . . . .  , am-1)}) 

is not definable by any (----- some) formula over M which defines its restriction 

to M, then for some i ~ [ m ,  n(T) ) , j~[O,  m), formula ¢o, and d ~ M  the type 

tp,~x.y.a~(ai, M U (aj)) is not definable by any ( ~  some) formula over M which 
defines its restriction to M. 

By compactness (the vocabulary o f ~  is finite!) there are formulas (o~ . . . .  , (~k 

so that one will be suitable for any m, M, a 0 . . . ,  a, tn_t (note - -  we may re- 
place the model M by another). By obvious monotonicity and coding (see 
[Sh-a,II]), we can use one (0. Then by [Sh-a, II] we can find ~v such that (a) 
holds. 

Let us prove (b). Now (i) is easy by the theory of forking (and the definition 
o f  EM). Let us prove (ii), so M < N < ~, a Eu  b, a, b ~ N .  Let 

A = { c E N :  there are Co . . . .  , c., Co -- a, cn = c 
and ctRlgci+l,  and ci ~ N ) .  

Let B = N \ M \ A .  By the choice of  ~o, for any atomic formula 0(~,3~, ~), 

a ~A,  6 E B  (lg(a) = lg(x), lg(6) = lg(y)), we have: tp0(a, M u 6) is definable 

by a formula over M. Now tp(A, M U B) does not fork over Mbecause  of  the 
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following quite general claim, so once we prove 2.1A, the proof of 2.1 is 
finished. 

2.1A. CLAZM. S u p p o s e N i s a m o d e l o f ~ r , M  < N,N =A tJ B U IMl , t he  
sets A, B, I MI are pairwise disjoint, then tp(A, M U B) does not fork over M 
provided that 

(.) for any atomic 0 -- 8(:¢, y, :~) 
(®)0(~,~,~) i f a  E ~ / i ,  6~I~pB, d~M, 

~(y, g, d) define the 0-type of a over M, 
then for e ~  ~ IMI,  

O(a, 6, e) if ~(6, e, d); 

equivalently 
(**) tpqf(A, IMI U B) is definable over M. 

Also N t (M U A), N t (M U B) are elementary submodels of M. 

PROOF. First observe that without loss of generality, the model 
(N, M, A, B) is (21rl) +-saturated ((N, M, A, B) is the expansion of N b y  three 
unary relations; note that still we do not get the assumption of [Bsh 156], 4.3.6 
(p. 266) - -  N is II M II +-saturated). This is because by [Sh-a,Ch.II], for any 
atomic 8, we can choose one ~ = ~0 defining any 0-type p over A with 
parameters from A (for A with > 2 elements). 

Let us phrase, for a formula 0 -- 0(~, y, g), a condition, which is clearly 
sufficient: 

®otx,~,~)if CCM,  I C I < I T I ,  6iEI~)M for i < I T I  +, 6= /~ l r l+~  
~t~)(MUB), {/~,-: i _<--IT[ +} is an indiscernible set based on C 
(satisfaction in ~, M < N ~ ~), a E lgX(M tA A), tp(d, M) does not 
fork over C, and d ~ C then: 

O[a,/~, d] iff ~ O[a, 6,, e] for every (----some) i < I TI +. 

We prove this by induction on 0: first on the quantifier depth of 0 and then 
on length (simultaneously for all M, N, A, B, C, a, e, (b~:i < I T I  +) as 
above). 

For 0 atomic - -  this follows by (,). 
For O being -~ 0~ or O, ̂  0~ ~ trivial by the induction hypothesis. 
So assume O(:~,y,z)=(3w)Ot(:~,w,y,2); so let C, /~ (i_- < ITI+), 6 - -  

bl rl *, d E C, ~ E ~ ( M  tJ A) be as in the assumption of ~ 0(~.~.~). Without loss 
of  generality C < M(as we can delete, not too many, b~'s for i < [ T I ÷, and can 
increase C). We have to prove the "iff" in the conclusion of ~ .  
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PROOF OF THE "ONLY IF" PART (i. e. =*). So we assume V O[a, 6, d], hence 

for some d E N ,  ~ 011o, d, 6, c]. 

First case in the "only if"part: d EM.  
Without loss of generality d E C, and apply the induction hypothesis (with d 

"joining" d), i.e. applied to a, 6i, c^ (d).  

Second case in the "only if" part: d EA. 
Without loss of generality tp(a ^ (d) ,  M) does not fork over C; now apply the 

induction hypothesis (with d "joining" d), i.e. applied to a ^ (d), 6i, c. 

Third case in the "only i f" part: d E B. 
Without loss of  generality tp((d)^6,  M)  does not fork over C, so we can 

let dlrl+ = d  and choose d iEM for i < I T [  + such that ( (d i ) '6 i : i  < I T I  +} 
is an indiscernible set over C based on stp((d) "6, C). We can do it as M 

is I Tl+-saturated. Now apply the induction hypothesis to a, (d i)^6i, 
(d)^6,  c. 

PROOF OF r u e  "IF" PART (i.e. ~ ) .  So we assume ~ O[a, ~,  C] for 

i < I Tt +. So for each i < I TI +, there is di E N  such that ~ O~[a, di, 6i, ~]. 
By [BSh156], 4.2.7 for each i, tp(an(di), C u 6~) does not  fork over C or 

tp(a, C u 6/U {di}) does not fork over C. If the former case occurs, then 

j < [ T [ + & tp(a ^ (di), C U ~)  does not fork over C =* 01 [a, di, ~ ,  e] *; but this 
occurs for all j large enough, so without loss of generality dj = d* for all 

J < I T I ÷ for a fixed d* E N. If the former fails, then necessarily the latter 

occurs, without loss of  generality, di E M; and as M is I T I +- saturated without 
loss of  generality, { (di) ^6i: i < I TI + } is an indiscernible set over C based on 
C; also tp(di, C u 6/) forks over C (by [BSh156], 4.2.7). So the following two 
cases cover all possibilities. 

First Case: d* well defined. 
First Subcase: d* EM.  
Without loss of  generality d* E C and apply the induction hypothesis to 

a, bi, en(d*). 
Second Subcase: d* EA. 
Without loss of generality tp(a ^ (d*), M) does not fork over C; now apply 

the induction hypothesis (on d ^ (d*), ~., ~). 

) (Remember C -< N, hence tp(a^(di), C) is stationary.) 
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Third Subcase: d*EB.  
We will discard this case. 
For n < o 9  let 0~'=0~'(X;~;:P~ . . . . .  ~n,,~)=A['_~O~(X,w,.~i,~.); it has 

quantifier depth smaller than that of 0, so applying the induction hypothesis 
to it we can find d * * ~ N  such that ~ 0~[d,d**,6~ . . . . .  6~,C] (let 
C U / ~ U . . . U 6 ~ C c _ C ' C _ M ,  IC'l < I T I ,  and { d * : i < l T l + ) _ C M i n d i s -  
cernible set on C'  based on C', so C', a, d*, d*, 6~ ̂ . • • ^/~ ̂  c here play the role 
of  C, a,/~i, 6, d in ~ ) .  For n < 09 large enough, by [Sh-a,II], we have: for every 
i < I TI + large enough, ~ O~[a, d**, 6i, e]; so we can use the first subcase. 

Second Case: di E M for i < I T I, {(di ) ^ 6/: i < I T I + } an indiscernible set 
on C based on C and tp(di, C U 6/) forks over C. 

Choose d = dfr~+~N such that {(di) ^6i : i < I TI + } is an indiscernible set 
on C based on C. 

First Subcase: d ~ M .  
Impossible as tp(d, C u 6) forks, over C whereas tp(6, M) does not fork 

over C. 
Second Subcase: d CA.  
This case should be impossible, or at least avoidable, as A, B are quite 

independent  over M, whereas tp(d, C O 6) forks over C (part of  the assump- 
t ion of the second case). However, we have not yet proved tp(A, M O B) does 
not  fork over M,  only for formulas of  quantifier depth smaller than that of 0; 
but  this suffices. 

More formally, when we choose the di ~ M  for i < I TI +, without loss of 
generality there are de E~x)C for ~ < 09, {a¢ : ~ < o9} indiscernible, 
Av({a¢: ( < oJ}, M) = tp(a, M). So we know that ( 3 =n)O~(an, di, 6i, e) holds 
(and this is just a finite Boolean combination of {0~(dn, di, 6i, ~) : n < 09 }) and 
this suffices (for the satisfaction of Ol(a, di, 6i, e)) if di ~ M .  So if the formula 
( 3  ®n)O~(a,,y, 6i, e) does not fork over C, without loss of  generality 

tp(di, C U bi) does not fork over C, but  then we would have fallen to the 
First Case. So for some (equivalently, every) i < I T I  + the formula 
( 3 ®n)O~(a., y, 6i, e), hence the formula ( 3 ®n)Ol(an, y, 6, ~.), forks over C, 
hence it is not realized in M. But it is realized in M U B. But (increasing C) 
without loss of generality tp(d, M) does not fork over C, and there is 
{ di : i < I T I + } c_ M indiscernible over C based on C; di realizes tp(d, C). Now 
apply the induction hypothesis (interchanging A and B). 

Third Subcase: d EB.  
As C < M < N < ~, tp(6, M) does not fork over C, and tp(d, C U 6) does 
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fork over C; (by [Bsh 15 6], 4.2.7) we know tp((d) ^ 6, M) does not fork over C. 

So we can apply the induction hypothesis (to a, (d;) ^bi, (d)  ^6, c). 

2.2. REMARK. Comparing this with the proof in [Bsh156], 4.3.11, p. 268, 
the definition for E f°r suggesting itself by the lemma is in some sense more 
simply defined D we quantify over finite sets (looking for a possible path 

Co,.. •, c,) rather than over formally good sets! 
Also in [Bsh156], 4.3.11 we assume "N is II M l] +-saturated" which is not 

needed here. In short 

2.2A. CLAIM. I f M  < N( < 6), E~ ~ Nis definable in the model (N, M)  (i.e. 

N expanded by a unary relation) by a formula in weak monadic logic,* and by 

the (same) formula in monadic logic where: 

2.2B. DEFINITION. Weak monadic logic has the same syntax as monadic 
logic, but in the definition of the satisfaction relation, the monadic variables 
range overfinite sets of  elements. 

PROOF OF 2.2A. Let ~, V be from Lemma 2.1. First note that xR~;~y is first 

order definable in (N, M) (use [Sh-a,II]). 
Now for both logics, for a, b ~ N ,  a EM b ifffor some Z, a ~ Z,  b ~ Z and 

(V Y _ Z)[(V x, y EZ)[xR~V'y --'(x E Y ~ - y  E Y)]=* a E Y ~ b  ~ Y]. 

If a EM b let Z -- {Co,.. . ,  c, } from (ii) of  2.1; it satisfies the right side by 
2.1(b)(ii). 

If  7 a E~t b and Z exemplify the right side, choose Y = (a/EM) n Z. 

2.3. CLAIM. If M < 6, ~0, q/are as in Lemma 2. l, then for each n there are 
finite sets A, ~ , A 2 of formulas such that: 

ifciR~dV'ci+ 1 for i = 0 ,  1 , . . . ,  n - 1, then 

tp~2(c 0, M U {c,}) forks over M 

and 

tpa1(c., M U {Co}) forks over M. 

PROOF. Easy; again use compactness. 

t If the signature of~r is infinite, say of power 2 (but ~" is stable, (3"®, 2nd)~(~', Mon)), then 
2.1A, 2.2A and 2.5 still hold for the logic L~.~ (which is stronger than weak monadic logic)_ 
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2.3A. REMARK. Would one A suffice for all n? In general, no! For example, 
let ~" be the theory of  graphs without cycle. In this case, x EM y iffx, y are in the 

same component and if this component C is not disjoint to M, all z E C N M 
have the same distance from x and from y. 

2.4. DEFINITION. For 2 let O~' be the model with universe °'2 × 09 and 

relations 
E* = {((r/, n), (v, m));  r /=  v}, 

E = {((r/, n), (v, m)) :n  = m, r/~ n = v  ~ m}, 

<*  = {((r/, n) , (v ,  m))" q = v ,  n < m} .  

2.5. THEOREM. Suppose ~r is stable not superstable with finite vocabulary. 
Then for every 2for some model N of ~r of cardinality 2Ro, in some expansion N* 
of N of three unary predicates, a model isomorphic to O~ is monadically 
definable in N* with elements represented by elements. 

PROOF. So there are M, < M, + ~ and a C C such that tp(a, 3/,  + 1) forks over 

M,  for each n. Without loss of generality [[ 34, [[ < R0, and 

[[,.J t<,oMt tO ( a } \ M , ]  

is included in one EM-equivalence class. Let Mo) = U ,<,oh//., Moj U {a} ___ 

Mo)+l, MO)+I XM, c_ alEu., Mo~+l XMo, c_ a/Euo. LetA = M,o+l XMo,. 

2.5A. OBSERVATXON. For no n is tpqf(A, Mo,) definable over )14,. 
[If so we get by 2.1A that tp(A, Mo~) does not fork over Mr,, hence tp(a, M,o) 

does not fork over M.,  contradiction.] 

So for each n, for some m < n (~) ,  a o , . . . ,  am - 1 C M,o \ M.,  a, , .  • • a,~-)_ l C 
A, we have tpqf[(am, • • •, a,t~-)-l), M, U {a0.. "am-l}] forks over M,.  So by 
the choice of  ~0 (from 2.1), for some iC[0,  m) and j C [ m ,  n(~r)), we have 

def 
tp~(x.y,a)(a~,M,U{ai}) forks over M,. Then Pb = tP~tx,y,~)(b, Mo)) forks 
over M, for some b CA. On the other hand, for some k < o9, Pb is defin- 

able over some Mk, hence does not fork over some Mk. As we can replace 
(Mr: l < o9) by any infinite subsequence, without loss of generality we can find 

b, CA such that: 

(*) Pb. = tPgCx,y.~)(b., M,o) is definable over M,+~ but not over M,.  

O)2> Let 2 be a cardinal. Let, for r/C 2,f~ be an elementary mapping Dora f~ = 

M~,), M, d~ Rangf~ such that (M, :  r/C°'>2) is a non-forking tree. Let 
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M* = U {M~: q ~ `o>2}; it is of course < 6 (as (T®, 2nd)~ (T ,  Mon)). Let, for 
r/U °2, f~ be an elementary mapping with domain M`o + ~ extending U k <`o f~ r k 
and letting M~=f~(M`o+0; (M, : r /~ `o2)  is independent  over M*. Let 
N *  = U ~e-a M,  < 6. Note that E ~  t (N x \ M  x) has the A m = M,  \ M * ( r / ~  °'2) 
as equivalence classes (remember: if b, c ~M`o+~\M`o, then tp(b, M`o U {c}) 
forks over M`o - -  by the choice ofM`o+ 0. Let a m = f~(a), b~ = f~(b.) for r/E '°2. 
Easily the expected facts are preserved. So 

tp~(b~, M*) = tp~(b~", M*) iff q r (n + 1) = v ~ (n + 1). 

Let pa = (am: q ~`o;t}, P, = {b~: r/E`o2}, P = U ,<`o P, and 

E* = ((b~, by)"  ~/= v, n <o9,  m <o9}. 

Now in N*, expanded by monadic predicates for M*, P, the following are 
(monadically) definable: 

(a) E *  = {(b~,  b m) : ~? = v, m < c o ,  n < o J }  

because EM, is monadically definable by 2.2A and A~ (q E `o2) are the 
equivalence classes of EM, r (N* - -M*)  (see above) and 

,¢~ h n  lZ h m  
I" I ~-- V ur t~M.c ,  v . 

(b) E = { ( b ~ , b  m) : n = m , t l t ( n  + l ) = v t (  + l)} 
say that their ~o-types over M* are equal [if n = m see above; if n ~ m, 
without loss of  generality m < n, tp~(b~, M*) is definable over M'r(, + l) 
but not over M*r, hence (for any p E `o>2) not over M*, if r/r (n + l ) ~ p  
so that negative result follows]. 

(c) <-_*={(b~,bm):~l=v,n<-_m} 
x <*y iffxE*y A (VZ EP)[(  3 t)(tE*z A tEy) -~ ( 3 t)(tE*z A tEx)]. 

(d) ( (am, b~ )" n < o) and r /~ `o2 } 
same proof  as (a). 

2.6. LEMMA. I f  ~" is stable not superstable, we can semantically interpret 
(K~r + 1, QV, i) in (~r, Mon) by monadic formulas (so the information for Lowen- 
heim numbers is preserved). 

PROOF. Just manipulate the O*. 

REMARK. Remember  we are assuming 2.0. 
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